
Risk and Decision Analysis 1 (2009) 21–33 21
DOI 10.3233/RDA-2008-0002
IOS Press

A risk management approach to RBAC

Ebru Celikel a, Murat Kantarcioglu a, Bhavani Thuraisingham a and Elisa Bertino b

a University of Texas at Dallas Richardson, TX 75083, USA
b Purdue University, West Lafayette, IN 47907, USA

Abstract. Even if Role Based Access Control (RBAC) is employed properly, distributed database environments are still prone
to illegitimate access attempts: in RBAC, users potentially carry the risk of illegal access attempts via credentials violation, or
unintentional/intentional incorrect use of already granted permissions via role misuse/abuse. We introduce a probabilistic risk
management model for enhanced access control in such databases. We incorporate failure modes and effects analysis (FMEA)
scheme for measuring user risks in our design. We combine components as credentials, queries, role history logs and expected
utility for a probabilistic formulation of risk. We present experimental results that we obtained on real world database. The results
emphasize the need for a database where roles are well defined and queries under different roles do not overlap. We suggest using
query templates with minimized role definitions so that the risk model we introduce provides better risk management.

Keywords: Risk management, RBAC, access control

1. Introduction

The risk of an event is the potential to affect the out-
come in a positive or negative manner [1]. By defini-
tion, risk is closely related with uncertainty. Hence, a
model to measure risk needs to handle the uncertainty
involved. In this study, we propose a risk management
system to manipulate risks in RBAC employed distrib-
uted environments. The risk management scheme we
introduce consists of two main components as risk as-
sessment (analysis) and risk control, where the former
is related to the identification of vulnerabilities, as well
as probability and consequence assessment; and the
latter refers to the definition of acceptable level of risk
and consequence mitigation in the system.

Database environments have users, data and techno-
logical means as the key components. A good database
management system is supposed to provide a compre-
hensive administration of these components. Among
these components, data is the most vulnerable: it is
threatened either by illegal access, or by legal but in-
correct use, which constitute the two main sources of
risk in the database. For the most part, these risks are
brought to the system by users. This is because user
behavior is mostly unpredictable.

Role Based Access Control (RBAC) has been intro-
duced in an effort to prevent these risks from occurring,
and/or to reduce their negative effects when they occur.
By restricting user permissions to predefined role defi-
nitions, RBAC provides a satisfactory level of security

on database administration. Especially for distributed
database environments, where users can access data-
base from various physical locations, access granting
and database security becomes very important. If users
attempt to access the database illegally, then this is a
violation of database security and RBAC handles this
by requesting credentials from each user. If they do not
conform to the system requirements, then RBAC will
immediately refuse the database connection attempt.
Even if user credentials are valid and access right is
granted legitimately, users may still violate the data-
base security: they submit illegitimate queries either
intentionally or unintentionally, which leads to the case
that we refer to as role misuse. At this point, RBAC
may remain inadequate and the database system is un-
der risk.

In this work, we design and develop a risk manage-
ment model for RBAC employed distributed database
environments. We expect our design to analyze and
control risk in such databases.

2. Related work

Although risk is a general term, assessment and ma-
nipulation of risk in databases and more specifically
in RBAC is considerably a new topic. One of the few
recent works on the consideration and manipulation
of risk belongs to Dimmock et al. The authors de-
velop a framework called SECURE (The Secure Envi-

1569-7371/09/$17.00 © 2009 – IOS Press and the authors. All rights reserved

22 E. Celikel et al. / A risk management approach to RBAC

ronments for Collaboration among Ubiquitous Roam-
ing Entities) [2,5,7,6,8–11,18] for establishing a trust-
based generic decision making. As a basement for this
framework, they use an extended RBAC implementa-
tion called OASIS (The Open Architecture for Secure
Interworking Services) and apply SECURE on a grid
computing environment. This study introduces a gen-
eral trust model by focusing on the other principal’s
trustworthiness – denoted as likelihood – and the out-
come’s cost. In this format, the SECURE framework
is a general trust scheme rather than a risk model with
two parameters as likelihood and outcome. Their work
is extended by Carbone et al. [7,6] to enclose a formal
trust model that concentrates on the aspects of trust for-
mation, evolution and propagation in a global comput-
ing environment. With global computing they refer to a
platform where entities are autonomous, decentralized,
mobile, dynamically configurable, and flexible enough
to operate on partial information. Different from the
SECURE project and its successives, our work focuses
on risk by introducing a third parameter to its calcula-
tion: detection rating. Furthermore, we base our design
specifically on RBAC employed distributed databases
rather than proposing a more general risk model. Con-
sequently, the major component we use for risk calcu-
lation is the user queries.

In another work, Nissanke and Khayat [15] intro-
duce a security risk ordering on tasks involving dif-
ferent access operations posed by different users in
RBAC. With a graph based representation of risk or-
dering, they try to solve the permission delegation and
allocation problem for users by making use of role hi-
erarchy principles. Their work singles out the actual
risk assessment itself. They assume that the outcome of
the risk evaluation process is given. The authors then
build a system to combine the following: the formu-
lation of several principles to define role hierarchies
and to manipulate role delegations. Our proposal can
be considered as a front-end to this work: providing
a complete risk model including risk calculation and
control.

3. Risk management scheme

Our aim is to design and develop a risk manage-
ment model to measure and evaluate user risks in a dis-
tributed database where RBAC is employed. The risk
management system we propose is made up of two key
components as risk analysis (assessment) and risk con-
trol. During risk analysis we identify risks, and assess

event probabilities together with consequences. With
risk control, we define the tolerable level of risk, com-
pare and evaluate alternatives via monitoring and de-
cision making and provide failure prevention and risk
mitigation. With risk mitigation, we refer to the actions
to reduce the likelihood of a negative event occurring
or to reduce the negative consequences if the event oc-
curs.

Risk analysis in a database is important because it
helps quantify and model risks caused by various fac-
tors under several conditions. The analysis of risk also
assists in decision making and determination of the
cost-benefit tradeoff process in the database.

In general, the systematic approach for risk analy-
sis involves the following: the definition of objectives
and failure scenarios, collection of data, assessment of
qualitative and quantitative risk, failure prevention and
risk mitigation. Several risk scenarios may exist in a
database: e.g. risks caused by technical problems, man-
agement risks, and user risks. In our design, we primar-
ily concentrate on user risks. User risks are incurred
to the system either by users having illegitimate cre-
dentials, or by users that are already authorized but use
their access rights in an incorrect manner.

In Fig. 1, we give a flowchart of the risk manage-
ment system that we design and develop.

In the following subsections, we define the individ-
ual steps of the risk management model we introduce.

3.1. Definition of database system

As given in Fig. 1, we define the database sys-
tem under consideration in the very first step of our

Fig. 1. Risk management scheme flowchart.

E. Celikel et al. / A risk management approach to RBAC 23

risk management design. Database definition combines
several processes as identifying risk analysis and con-
trol objectives, determining boundaries, and identify-
ing success criteria in terms of measurable perfor-
mances. During the course of database system defin-
ition, we employ data collection. The data collection
contains information to evaluate failure likelihood and
consequences.

3.2. Definition of risk and failure scenarios

At the second step of our risk management system
design, we define risk scenarios (Fig. 1). For a general
system, several sources of risk – and accordingly many
risk scenarios – are likely to occur. In this study, we
concentrate on an RBAC employed distributed data-
base environment rather than a general system. Even
if we concentrate on a specific system, still the gen-
eral case of risk occurrences holds: several sources of
risk accompanied by multiple scenarios are probable
for such a database. The generic model for RBAC is
associated with three essential components: (1) user,
(2) role and (3) permission. Among them, we delib-
erately focus on risks incurred by users. In a usual
RBAC setting, users are assigned to roles which are
then granted permissions to perform predefined tasks
[12,13,16,22]. The reason why we focus on user com-
ponent is that users are very likely to incur risks be-
cause they are the component of the database system
that make several access attempts in various forms.
Furthermore, defining and handling user risks would
allow an early detection and control of probable nega-
tive consequences in the system.

Before we give a sample scenario, we make the fol-
lowing assumptions: we assume that the physical stor-
age media where the database is stored is safe. More
specifically, we assume that the database cannot be ac-
cessed in any other way than RBAC, i.e. no by-pass is
possible.

For better understanding of the scheme, let’s assume
an RBAC administered distributed database where
users are mostly located at geographically distant lo-
cations. Due to its distributed feature, such a database
becomes more prone to security flaws as the number
of users, roles and permissions increase. Therefore, we
need to define probable failure scenarios to take nec-
essary precautions on time. A failure scenario is the
complement of a success scenario. Then, we start with
defining a success scenario for the sample database:
Assume that an arbitrary user say user A logs in to a
dynamically maintained events calendar database un-

der the role of public relations staff. User A wants to
enter an announcement about an upcoming workshop
event. He also wants to change the show time of a pre-
viously entered event and plans to list all events that
will occur in July. To obtain access right to the data-
base, the first thing user A needs to do is to submit
his credentials to the events calendar database. At that
point, the admin of the database investigates the insti-
tution that issued user A’s credentials and checks his
credentials for correctness. If the credentials are le-
gitimate, user A is assigned to the role of public re-
lations staff in the database. According to the prede-
fined role boundaries, a public relations staff role in
the database is allowed to make new entries about up-
coming event announcements, to update the existing
ones and to list the upcoming events. After user A’s
credentials are confirmed for correctness, he is allowed
to submit his three queries, i.e. entering a new event
announcement, changing the show time of an existing
event and listing all upcoming events in July. As long
as each individual query of user A complies with the
public relations staff role definition in the underlying
RBAC model, his queries are executed and results are
returned. Even if a query complies with the role defi-
nition under which it is supposed to be executed, sub-
mitting it too many times should raise a risk condi-
tion warning, i.e. a role misuse. Also, a query attempt
that tries to exceed its role boundary should raise an-
other risk condition warning, what we call as role mis-
use. Subsequently, a success scenario for an ideal user
would require legitimate user credentials together with
no role misuse or role abuse attempt. In Fig. 2, we give
a block diagram of the success scenario that we define.

To identify the risk scenarios we use the success
tree approach, which represents the successful system
operation as a logic expression. This is because suc-
cess trees are a general means of representing risks
in any system and they can visualize the effect of in-
dividual components even in complex environments.

Fig. 2. Block diagram for the sample scenario.

24 E. Celikel et al. / A risk management approach to RBAC

Fig. 3. Success tree of the sample scenario.

The success tree for our on going scenario is drawn in
Fig. 3.

According to the success tree (Fig. 3) based on the
sample scenario block diagram in Fig. 2, a successful
database access would occur when the logic expression
below holds true:

Successful Access = W ∩ X ∩ (Y ∪ Z). (1)

Hence, with simple conversions, the probability of suc-
cessful access P (SA) becomes:

P (SA) = P (W) × P (X)

×
(
1 − P (Y ′) × P (Z ′)

)
. (2)

Our aim is to maximize the probability P (SA) so that
the legitimate access attempts result in success and do
not violate the security of RBAC.

3.3. Qualitative and quantitative risk assessment

According to Fig. 1, the definition of failure and risk
scenarios step in our risk management scheme is fol-
lowed by qualitative and quantitative risk assessments
step. They both aim at determining the probability (Pi)
and consequence (Ci) figures for each risk factor i. The
qualitative risk assessment relies only on judgment and
expert evaluations, a property that makes it insufficient
when it is applied individually in our system. For this
reason, we also incorporate quantitative risk assess-
ment, which utilizes probabilistic and statistical meth-
ods for risk factor measurements in our implementa-
tion.

While determining which risk assessment technique
to employ, we have considered several alternatives as
preliminary hazard analysis (PrHA), failure modes and

effects analysis (FMEA), fault-tree analysis (FTA) and
event tree analysis (ETA). Among them, we have cho-
sen FMEA. This is because it is a fast and practical
method to assess risk and has been applied in several
areas. Furthermore, the inductive property of FMEA
well complies with our motivation: bringing multiple
risk factors together to calculate the overall risk.

We consider two access control violations as poten-
tial sources of risk for the database: (1) illegitimate
user credentials, (2) role abuse/misuse. In the former,
the risk factor is the credentials of the user, and in the
latter the query submitted by the user determines the
risk. We need to tokenize a query to reveal what it re-
ally does: either adding a new instance to the database,
or listing attribute(s), or updating attribute(s) or delet-
ing attribute(s) and/or relation(s). Obviously, not every
attribute in each relation, and every relation in the data-
base would have the same degree of importance. We
need to assign various degrees of importance to each
factor by taking the consequence of its execution into
consideration. This process requires a thorough analy-
sis of the database.

Regardless of the system of consideration, the gen-
eral risk formula involves multiple risk factors with dif-
ferent probabilities and consequences. Hence, the gen-
eral risk formula can be represented as follows:

Risk =
n∑

i=1

Pi × Ci, (3)

where Pi denotes the probability of each risk factor i =
{1, . . . , n}, and Ci denotes the consequence (outcome)
these risk factors.

For a distributed database environment with RBAC,
several risk factors are probable. Among them, illegit-
imate credentials, role misuse and/or abuse attempts
(that we call as user risks in short), malfunctioning
database system and physical acquisition of the storage
media are the most threatening. It is the responsibil-
ity of RBAC to ensure that only users with legitimate
credentials are granted permissions to access requested
database resources. So, the risk factor of illegitimate
credentials is eliminated in advance by RBAC model.
In our implementation, we assume that the physical
protection of the storage media is handled by the risk
mitigation efforts (which will be a part of the overall
risk management system). So, illegal acquirement of
the physical storage media problem is also eliminated
and we do not take it further into consideration as a risk
factor. Hence we mainly focus on the user risk and two

E. Celikel et al. / A risk management approach to RBAC 25

factors in it that threaten the security of access in the
database: (1) role misuse and (2) role abuse.

To process each risk factor, we utilize the FMEA
method and suggest the use of risk priority number
(RPN) that is defined as part of FMEA. RPN is a num-
ber related to a particular risk factor and is calculated
as the multiplication of several ratings with weight as-
signments. We use RPN to determine the contribution
of each risk factor to the computation of the overall
risk. The general formula for the risk priority number
(RPNi) is as follows:

RPNi = ORi × SRi × DRi, (4)

where ORi denotes the occurrence rating, SRi denotes
the severity rating and DRi denotes the detection rating
for the risk factor i. RPNi is an index that indicates
how serious a risk factor is. So, the larger the RPNi,
the higher would be the severity of the risk factor. Each
risk factor that contributes to the calculation of RPNi

is in the form of a rating scale, where a larger scale
implies higher risk.

By definition, the above mentioned two formulas are
closely related: for each risk factor i, the parameter
probability (Pi) of Eq. (3) becomes the occurrence rat-
ing (ORi) in Eq. (4), and the parameter consequence
(Ci) of Eq. (3) becomes the severity rating (SRi) in
Eq. (4). Additionally, Eq. (4) introduces a new para-
meter to the risk formula: the detection rating (DRi).
The reason why we need this additional parameter is
explained in the following paragraph.

Our aim is to compute a single risk value for each
user. Hence, we assume i = 1 for Eq. (4). To establish
a comprehensive risk evaluation scheme in our work,
we concentrate on user risk that is caused by illegiti-
mate credentials, role misuse and/or role abuse. Since
RBAC eliminates the occurrence of illegitimate cre-
dentials, we are left with two main sources (factors) of
user risk: role misuse and role abuse. To compute the
user risk, we base our user risk calculation on queries
and consider several aspects of a query into consider-
ation: the frequency of a query, which is denoted by
the occurrence rating (OR) parameter in Eq. (4), and
the content of the query, which is denoted by the sever-
ity rating (SR) parameter of Eq. (4). According to the
RBAC model, users and their queries can be under dif-
ferent role definitions. So, for a comprehensive risk
calculation, we need to consider how similar a query is
to the other queries in the same and/or other role def-
initions, and whether we can detect this easily or not.
This brings the need for a third parameter for similar-

ity detection, which is denoted by the detection rating
(DR) of Eq. (4). Transforming Eq. (3) into Eq. (4) al-
lows us to include more parameters into calculation of
user risk.

As for the actual risk computation, for each individ-
ual user that submits quer(ies) to the system, we cal-
culate a risk magnitude for him. In a typical database,
users can submit multiple queries to the system and
the risk of a particular user should be determined by
considering each individual query he submits. For that
reason, we use the set of queries (SQ) that are submit-
ted in a predetermined time period (t) by a single user
(U). For each query q from this set (SQ), we calcu-
late its occurrence rating (OR), severity rating (SR) and
detection rating (DR) and finally we multiply each to
compute the risk priority number (RPN) for the current
user. Below, we give details regarding the calculation
of each parameter in RPN for each user.

3.3.1. Occurrence rating (OR)
Basically, we use the occurrence rating (OR) as a

means of expressing the degree of role abuse in the
database. A typical role abuse would occur when a user
attempts to submit a query that he was already permit-
ted to execute too many times. So, a simple method to
detect the potential role abuse is to determine the num-
ber of occurrences of a particular query that is submit-
ted by the same user. To calculate the occurrence rat-
ing (OR) for a single user, we refer to his query his-
tory logs so as to determine how many times this query
has been submitted by the same user before. As was
used in other implementations [1] we use a standard
rate based on a scale of 10 for each RPN multiplicand:
For OR, the highest rate is indicated with a 10 and the
lowest rate is indicated with a 1. For our design, we use
the OR listing given in Table 1.

According to Table 1, a high OR indicates a user
with higher risk and low OR indicates a user with lower
level of risk.

To compute the overall OR for the current user, we
consider each distinct query in the whole set of queries
(SQ) submitted by him and sum their individual fre-

Table 1

Sample occurrence ratings for the scenario

OR Values Explanation

Minor 1 Query occurrence frequency < 1%

Low 2–3 1% � Query occurrence frequency < 3%

Moderate 4–6 3% � Query occurrence frequency < 15%

High 7–8 15% � Query occurrence frequency < 35%

Extreme 9–10 35% � Query occurrence frequency � 100%

26 E. Celikel et al. / A risk management approach to RBAC

quencies. For fast and practical manipulation of each
query, we reduce different query types into three dif-
ferent types of representations: these types are coarse
grain, medium grain and fine grain, in the order of in-
creasing complexity. We adapted the aforementioned
granularity types from Bertino et al.’s work [3] and
modified each type to remove the inherent redundancy
they originally contained. More specifically, for coarse
grain we rephrase a query as:

〈SQL statement, #of Relations, #of Attributes〉.

With medium grain the query representation becomes:

〈SQL statement, Attribute Counter[]〉,

where AttributeCounter[i] contains the number of at-
tributes of the ith relation in the SQL statement. And
lastly with fine grain, we symbolize a query with the
statement below:

〈SQL Statement, Attribute Matrix[][]〉,

where AttributeMatrix[i][j] gets a value of 1 if the
jth attribute of the ith relation is accessed by the SQL
Statement and gets a value of 0 otherwise.

In Bertino et al.’s work, the authors design and im-
plement an intrusion detection system based on the
classification of user queries in an RBAC employed
database. As for classification they incorporate the
Naïve Bayes Classifier algorithm. In that sense, our ap-
proach has some similarities with this work: as was
done by Bertino et al., we use SQL statements as the
basis of our design and utilize query classification to
generate query clusters for further analysis. Our work
also differs from this work: Bertino et al. aim at detect-
ing intrusions in the RBAC employed database, while
we focus on detecting queries that carry higher risk
than that of what we call the normal queries. More-
over, Bertino et al. employ Naïve Bayes Classifier [4],
which is a supervised classification algorithm, whereas
we use K-Means [19], being an unsupervised classifi-
cation algorithm, for the generation of query clusters.

3.3.2. Severity rating (SR)
Severity rating (SR) is a measure designating the de-

gree of risk for the content of a query. This is what we
call the nature of the query. SR is the second multipli-
cand of the general RPN formula (Eq. (4)) and is cal-
culated very similar to how the occurrence rating (OR)
is calculated. For the set of queries (SQ) that belongs

Table 2

Sample severity ratings for the scenario

Rating Values Explanation

Minor 1 SQL command risk < 1.000

Low 2–3 1.000 � SQL command risk < 2.000

Moderate 4–6 2.000 � SQL command risk < 3.000

High 7–8 3.000 � SQL command risk < 4.000

Extreme 9–10 4.000 � SQL command risk < 5.000

to the current user, we process each query individu-
ally to reveal SR. For that, we first tokenize each indi-
vidual query to find out its three components (tokens)
as (1) SQL statement, (2) attribute(s) list and (3) rela-
tion(s) list. Clearly, not every token would participate
equally in SR calculation because some queries only
list attributes while others add new data to the database
or modify the existing ones. To reflect such query dif-
ferences, we use separate weight index tables for each
of the three tokens as query type, attribute and relation.
To find out the corresponding weight index of a to-
ken, we employ simple table lookup. Obviously, more
complex queries having multiple attributes and/or re-
lations will require comparatively more table lookup.
But again, it does not necessarily mean higher weight
calculations. This is because what constitutes the query
nature is its quality, not its quantity. Finally, we add
each component’s contribution to calculate the overall
risk value. Afterwards, we use Table 2 to find the cor-
responding SR value for this risk. This way, the SR re-
flects the type of the query, how many attributes and
tables it involves and how sensitive is the data that it is
associated with.

As for the SR, we use a scale of 10 as we did with
OR. Again a high SR indicates a user with higher risk
and low SR indicates a user with lower level of risk
(Table 2).

3.3.3. Detection rating (DR)
We use detection rating (DR) in our design to mea-

sure the degree of role misuse. We define role misuse
as the case where a user under role A submits queries
under the role definition B. In an ideal RBAC environ-
ment, we expect role definitions to be well defined so
that no single role overlaps with other role(s) in the
database. But in reality this almost never happens and
this leads to role misuses. We compute a single DR for
the whole set of queries (SQ) that belong to the current
user. This is different than that of OR and SR calcula-
tions. We first apply K-means clustering on query his-
tory to generate query clusters for queries under other
role definitions. Then we compute the distance of SQ

E. Celikel et al. / A risk management approach to RBAC 27

Table 3

Sample detection ratings for the scenario

Rating Values Explanation

Non-detection 10 distMeasure < 1

Very low 9 1 � distMeasure < 10

Low 7–8 10 � distMeasure < 100

Moderate 5–6 100 � distMeasure < 1.000

High 3–4 1.000 � distMeasure < 10.000

Very high 1–2 10.000 � distMeasure < 100.000

to each cluster. We call this distance dQ. By using this
distance value, we calculate the probability of belong-
ing, which we denote as PBQ, for each query to a par-
ticular cluster so as to determine if we can detect simi-
lar queries in the RBAC system. If dQ is close to other
role’s query cluster centroids, it means that the current
user is behaving as one of the users in other role defi-
nitions and we are having difficulty in detecting it. For
being more precise, we use the measure

distMeasure =
dQ

average dis tan ces
,

where average distances is the sum of all other users’
distances to the cluster centroids. This is because we
are interested in how the distance of the queries of
a single user is as compared to all other queries of
other users under that role. So, in our design a small
distMeasure would lead to a poor detection capability,
while a larger distMeasure would mean better role mis-
use detection. Hence, we assign a higher DR for poor
detection capability and a lower DR for better detection
capability (Table 3).

3.4. Failure prevention, risk mitigation, decision
making

After determining the risk factors and their ratings,
we need to decide on what actions to take against them,
and even more importantly, what to in case they occur.
Failure prevention deals with the first part, while risk
mitigation comes with the second part. Decision mak-
ing is associated with all these stages.

4. Implementation

We implement our risk model on a real world data
set, which contains the query logs of a health center
located in Toronto, Canada [3,21]. This database con-
sists of eight different roles that build up the role set

Table 4

Query distributions under each role

Role # of queries Proportion

0 6170 81.31

1 4 0.05

2 20 0.26

3 104 1.37

4 1 0.01

5 156 2.06

6 10 0.13

7 1123 14.80

Total 7588 100.00

R = {0, 1, 2, . . . , 7}, where distribution of queries un-
der each role definition is listed as follows.

As seen from Table 4, the distribution of 7588
queries under each role definition is uneven: while
81.31% of the whole set of queries submitted to the
system are under role 0, only 0.01% of the total queries
belong to role 4. This introduces a very high variance
as 7.98 among query distributions for each role. Ob-
viously, this feature has a negative effect on our im-
plementation. Because, our risk measurement relies on
the fact that role definitions are well formed with strict
role boundaries and query distribution among roles is
highly balanced.

4.1. Occurrence rating (OR) results

As part of our implementation, we calculate a risk
value for an individual user by processing the set of
queries (SQ = {q0, q1, q2, . . . , qn}) that he submitted
during the period of time t. The value of time t can be
set to different values depending on the requirements.
In order to determine the occurrence rating for query
qi(ORqi), we compare each individual query qi from
SQ with other queries in the database history log and
reveal how many times it was submitted before. A high
OR value, i.e. a more frequent query does not necessar-
ily imply that the owner of this query carries a higher
level of risk. Still, a high frequency will have a direct
effect to the calculation of the user risk. This is because
OR is one of the three multiplicands of the general for-
mula to compute the overall risk, i.e. the risk prior-
ity number (RPN) in Eq. (4). Obviously, a high RPN
means high risk in the system. Hence, a high value of
the multiplicands OR, SR or DR would increase the
overall risk for that user.

As a sample implementation, we consider user A,
who submits 10 queries at time t as follows: 3 queries

28 E. Celikel et al. / A risk management approach to RBAC

Table 5

Query frequencies for the sample user

Query (qi) Role Frequency Percentage ORqi

q0 0 48 0.78 1

q1 0 65 1.05 2

q2 0 17 0.28 1

q3 3 1 0.96 1

q4 3 5 4.81 4

q5 3 8 7.69 5

q6 3 19 18.27 7

q7 3 1 0.96 1

q8 5 5 3.21 4

q9 5 19 12.18 6

from role 0, 5 queries from role 3 and 2 queries from
role 7. Examining his previous query submissions, we
get the following distributions given in Table 5.

In Table 5, we calculate the percentage values
for each query by dividing its frequency rate to the
total number of queries under that role definition.
For example, for q0, the percentage is calculated as
48/6170 × 100. To fill the last column (ORqi) of Ta-
ble 5, we use the corresponding ratings for each per-
centile in Table 1. Finally, the overall occurrence rat-
ing is calculated as the sum of ORs, which is 32 for the
example.

Another important aspect of frequency calculation
is how we actually differentiate queries and how their
frequencies are distributed among each role. As an ex-
ample, let’s consider the following two queries from
role 0:

SELECT *
FROM contract_record
WHERE contract_no = ’m2810’;

and

SELECT *
FROM contract_record
WHERE contract_no = ’m2858’;

In essence, these two queries are not different from
each other, because they are both represented similarly
in each of the coarse grain, medium grain and fine
grain query representation modes. Under each role in
the database, there are several queries with similar rep-
resentations. For the sake of easiness in processing, we
introduce the concept of query template (QT) to our
scheme. A query template is a prototype that embodies
queries with similar representations.

Table 6

Query template frequencies under role 0

To reduce the processing load, we analyzed the data
set and grouped similar queries under same query tem-
plates for each role. This way, 6170 queries in role 0
are reduced to 522 query templates, 4 queries in role 1
generate 4 query templates, 20 queries in role 2 are
reduced to 12 query templates, 104 queries in role 3
are reduced to 22 query templates, 1 query in role 4
remains as a single query template, 156 queries in
role 5 are reduced to 10 query templates, 10 queries
in role 6 are reduced to 2 query templates and finally
1123 queries in role 7 are reduced to 152 query tem-
plates.

After we generate the query templates (QT), occur-
rence rating (OR) computation becomes a matter of
measuring the QT frequencies. In Table 6, we list the
frequency of each query template (QT) under role 0 for
our sample data set. We repeated the experiment for
all other role definitions and obtained each role’s QT
frequencies.

According to Table 6, some query templates occur
comparatively more frequently than others under role
0; e.g. the query template (QT) 498 occurs 623 times,
which comprises 10.09% of the 6170 total queries only
under role 0. With further analysis, we have also dis-
covered that some query templates occur in other role
definition(s), as well (Section 4.3). With that much fre-
quency rate, the queries having the same template with
the query template QT 498 would have a higher ef-
fect on the overall risk calculation. Likewise, the sec-

E. Celikel et al. / A risk management approach to RBAC 29

Fig. 4. Chart for QT distributions under role 0.

ond most frequent query template QT 1, which is in the
form of

SELECT *
FROM contract_record
WHERE contract_no = Something;

occurs 327 times, which comprises 5.30% of the to-
tal queries under role 0, would have a considerable ef-
fect on the risk priority number calculation (RPN), too.
Considering their distributions, QT 498 and QT 1 have
an occurrence rating (OR) of 9 each (Table 1).

An interesting observation with Table 6 is that, the
frequency distribution of the query templates (QT) fol-
lows the Zipf’s Law [23]: the frequency of an item is
inversely proportional to its rank. So, the most frequent
item (QT 468) occurs approximately twice as often as
the second most frequent item (QT 1), etc. In Fig. 4,
we give the distribution chart of QTs under role 0.

4.2. Severity rating (SR) results

As we did with occurrence rating (OR), we calcu-
late the severity rating (SR) similarly: for each user, we
process his individual queries qi from the set of queries
(SQ) that he has submitted within time period t. We to-
kenize each qi to find out the following: (1) what sort
of query it is, i.e. either a SELECT, or an UPDATE,
or an ADD or a DELETE query; (2) which attribute(s)
it is associated with; (3) which relation(s) it is associ-
ated with. Then, for each token we perform simple ta-
ble lookup to assign a predetermined weight index to
it.

Let’s consider the q0 of user A:

SELECT *
FROM contract_record

which lists all attributes from the relation con-
tract_record in the database. After tokenizing
this statement, we obtain an SQL command SELECT,
a relation name contract_record, and the whole
attributes (*) of the relation contract_record.
Before we make the weight assignments to each token,
we perform a pre-study of all SQL commands together
with a pre-study of the relations and their attributes in
the dataset. With a thorough analysis, we determine
weight values that will be assigned to each SQL com-
mand, as well as to each relation and attribute. While
doing that, we consider the severity of executing a SQL
command and severity of reading, modifying or delet-
ing a relation or an attribute individually. After this
analysis is accomplished, the parameters of the system
are set and the same weight values can be used repeti-
tively.

Considering our ongoing example, the first token we
get for q0 is the SELECT command and is used to
access the database records in a read-only manner. It
has a comparatively less severe effect on the database
as compared to ADD or UPDATE commands, both of
which modify the database. For this reason, the weight
assigned to the SELECT command is less than that of
ADD and UPDATE commands. With the above men-
tioned pre-analysis of the set of all SQL commands,
we prepared a weight indices table, where each SQL
command is assigned a particular weight value. As
an example, the weights we assigned for some com-
mon SQL commands are as follows: SELECT→10,
ADD→15, UPDATE→12 and DELETE→20. As part
of the SQL syntax, the SELECT command is associ-
ated with a list of attributes in the database. For the
sample query q0, the use of asterisk (*) indicates all
attributes of the relation contract_record are in-
volved in the SELECT statement. So, while making

30 E. Celikel et al. / A risk management approach to RBAC

weight assignments, we need to consider the whole list
of attributes for the relation contract_record as:
active_status, boc_con_num, contract_
amount, contract_branch, contract_
date, contract_no, contract_type,
customer_id, free_type, invoice_num, is_
boc, is_member, is_new, is_sponsor,
net_sales_amount, outstanding_balance,
post_dated_total, referred_media_name,
remark, sales1_id, sales2_id to the calcu-
lation of the severity rating (SR). There are 21 at-
tributes in the relation contract_record. With an equal
weight assignment where each attribute would have
a weight of 1, the total weight to be assigned for
all attributes of contract_record would be 21.
But in reality, some attributes have higher severity,
which leads to higher weight. For example, the at-
tribute contract_amount has a weight of 10, the
attribute invoice_num has a weight of 4 and the at-
tribute outstanding_balance has a weight of 3.
So, the total weight for the whole list of attributes
in the relation contract_record is calculated as
18 + 10 + 4 + 3 = 35. Therefore, the partial weight
value calculated for the first line of query q0, which is
the “SELECT *” line, would be 10 × 35 = 350.

The second token that contributes to the calcula-
tion of the severity rating (SR) in the sample query q0
is the relation name, which is contract_record.
Among 130 relations in our dataset, we assign a weight
index of 24 to contract_record. This weight
is slightly more than three times the average weight
share (1000/130 = 7.69) for each relation, if we
use a 1000 total scale for weights to be assigned to
each relation and had we incorporated an equal weight
distribution for relations. But clearly, not every rela-
tion has an equal share because some of them store
more critical data than the others. The relation con-
tract_record is such a relation because it contains
the contract information between the patient and the
health institute. So, it has higher severity than average
relations. This is why we multiply the weight calcula-
tion for it by 3. Hence, we calculate the partial weight
value for the second line of query q0, which is the
“FROM contract_record” line, as 7.69×3 ∼= 24.

Finally, the query risk value for q0 would be the sum
of two lines for the SQL statement: 350 + 24 = 374.
Repeating the risk calculation for the rest of the queries
for user A in a similar manner, we obtain a sum of
3480. By looking up Table 2, we find the correspond-
ing severity rating (SR) for the value of 3480 and we
conclude that the SR for user A is 7.

4.3. Detection rating (DR) results

With detection rating (DR) we address the problem
of coexisting queries under different role definitions.
Ideally, roles should have well defined boundaries so
that no single query is resubmitted by users that have
different roles assigned. Unlike from the other risk
components as occurrence rating (OR) and severity rat-
ing (SR), a high detection rating (DR) indicates the
poor detection capability in the database. With detec-
tion capability, we mean the ability of the system to
distinguish queries that occur multiple times under var-
ious roles. So, for such queries that occur under mul-
tiple roles we assign a high DR (Table 3). The cal-
culation of DR is more complicated than that of OR
and SR calculations: We construct as many groups as
the number of queries that belong to distinct roles
for an individual user. For the ongoing example, there
are 3 such groups because user A submits queries
from role definitions 0, 3 and 5. Then, for each group,
we consider other users’ submissions under the same
role definition and construct their clusters by using
K-means clustering. By calculating the distance of user
A’s query submissions under the same role to the al-
ready formed clusters, we detect how far is user A (ac-
tually his queries) from the other users (actually from
their queries) under this particular role definition. If the
distance is high.

By analyzing queries under eight different role de-
finitions, we obtained probability values that are not
very distinctive. This is different from what we had an-
ticipated. By further analyzing the queries under each
role, we realized that the same or similar queries occur
in multiple role definitions.

Table 7 lists the number of queries that are common
under each role definition. In this table, the value in
cell (i, j) denotes the count of queries that are submit-
ted by users under roles i and j. As seen from the table,
521 queries occur both under role 0 and under role 7.

Table 7

Common query occurrences under different roles

Role 0 Role 1 Role 2 Role 3 Role 4 Role 5 Role 6 Role 7

Role 0 4 14 2 0 1 0 521

Role 1 4 0 0 0 0 4

Role 2 1 0 1 0 19

Role 3 1 8 4 7

Role 4 1 1 1

Role 5 10 13

Role 6 4

Role 7

E. Celikel et al. / A risk management approach to RBAC 31

This is a very high proportion: For role 0, 8.44% of
its queries are common with queries under role 7, and
when we look from the other side the situation looks
even worse: 46.39% of the queries under role 7 are
common with queries under role 0.

Unfortunately, the occurrence of overlapping que-
ries is far from what we call the ideal case. Normally,
we expect role definitions to have strict boundaries, i.e.
queries under each role definition to be completely dif-
ferent from that of other role definitions. In this way
only, queries can be clustered properly and the ones
that are distant from a group of clusters under the same
role definition are considered to have higher risk than
the others. But this overlapping among different role
definitions causes variation from correct probability
values.

What we suggest is to use query templates instead
of individual queries under limited role definitions. In
this fashion, users are limited to obey the query tem-
plates and cannot submit queries upon their requests.
This helps eliminate the probability of unanticipated
queries for each role definition and hence alleviate the
likelihood of high risk values. In order to detect the
query templates in the current database, we analyzed
queries under each of the eight role definitions and
listed the query templates consisting of similar queries.
This yielded the chart below:

The uneven distribution of query templates among
roles in Fig. 5 is a consequence of the uneven query
distribution among roles (Table 4).

To calculate the detection rating (DR) value for
user A, we repeated three different experiments for
roles 0, 3 and 5 since the set SQ contains query submis-
sions under these role definitions. We give the results
of our experiments on role 0 in Fig. 5. We picked 99
users under role 0 and listed their query submissions by
using the query templates (QT). As for the last user, we
listed user A’s two queries (in the form of QT again).
Then, we applied K-means clustering to first cluster the
existing users’ queries (actually the QTs) and then to
calculate the distance (dq) of user A to these clusters.
In this manner, we detect whether user A behaves ab-
normally as compared to the other users under role 0
or not.

For more precise results, we used normalized
QT values in Table 8. For role 0, we calculated the
distMeasure as 2.78, so the detection rating DR = 9
for queries under role 0. Repeating the experiments,
we calculated the DR values as 4 and 6 under roles 3
and 5, respectively. Hence, the total DR for user A is
(9 + 4 + 6 = 19).

Fig. 5. Query template distribution among roles.

Table 8

Synthetic data view for detection of malicious user

QT1 QT2 QT3 QT4 · · · QT50

User X 162 141 263 34 · · · 5

User Y 206 49 0 202 · · ·
· · · · · · · · · · · · · · · · · ·

User A

To calculate the overall risk value (RPN) for user A,
we combine the risk priority number parameters as oc-
currence rating (OR), severity rating (SR) and detection
rating (DR) to get: RPN = 32 × 7 × 19 = 4256.

As part of the pre-analysis of the dataset, we need
to determine what level of RPN should be considered
as a high risk and what level as low risk. In our sam-
ple dataset, we assume that the highest value of RPN
could be 100 × 100 × 100 = 106. So, the value of
RPN = 4256 calculated for user A is considerably low
level of risk. As part of the risk mitigation and deci-
sion making step (Section 3.4), we give the database
manager these options as: to grant further access to the
database for user A; to reject his requests for further
access, because he did not have a very low level of risk;
to log his activities because he has a certain risk level
assigned and he is suspicious now; or to encrypt the
records in the database so that no further user would
be able to access them easily. This decision depends
on the strictness of the database and the security policy
that is chosen by the database administration.

4.4. Discussion of the methodology

The general risk formula used in Eq. (3) is actually
in parallel with the utility function (Eq. (5)) of the de-

32 E. Celikel et al. / A risk management approach to RBAC

cision theory:

n∑

1

piu(xi). (5)

As risk formula represents the overall risk as the prod-
uct of probability of each risk factor and the conse-
quence of these risk factors; maximum utility function
computes maximum utility as the product of each par-
ticipant involved in utility calculation, and its weight
[14,20]. In that sense, both risk formula and utility
function are general formulas to be used in multidis-
ciplinary research areas. One such study belongs to
Sedeno et al. [17]. In this study, authors measure the
weight of several factors to compute a job satisfaction
value. So, our study incorporates a universal method-
ology for risk calculation.

The general formula for the calculation of risk
(Eq. (3)) is simple and concise. By definition, this cal-
culation involves probability of the occurrence of a
consequence. The key point in this definition is that,
the consequence has not happened yet. Hence, risk
is associated with uncertainty. FMEA scheme, relying
on the calculation of risk via above mentioned con-
sequence factor also involves uncertainty. Still, one
can generate a well representing model for the not-
occurred events by a through observation and a com-
prehensive modeling.

5. Conclusion and future work

This study proposes a novel risk management sys-
tem to provide enhanced security in access control for
RBAC employed distributed databases. The system in-
troduced is made up of two components as risk analy-
sis and risk control. Within our design, we consider
risks incurred by illegitimate credentials, role mis-
use/abuse and/or system failure to the system. We base
our risk measurement on user queries for which we use
a standard three layered representation as coarse grain,
medium grain and fine grain. Experiments showed us
that our scheme can detect the risk in user queries.

For risk analysis, we employ a three parameter risk
evaluation scheme that involves query history, analysis
of the current query and detection rating.

We used a real dataset in our experiments and ob-
tained promising results. With ongoing work, we are
planning to employ other clustering algorithms (e.g.
EM algorithm) in our risk model. Furthermore, we are
searching other real world datasets in which role bor-
ders are well defined and queries do not overlap to run
our scheme.

References

[1] B. Ayyub, Risk Analysis in Engineering and Economics, Chap-
man & Hall, CRC, USA, 2003.

[2] J. Bacon, N. Dimmock, D. Ingram, K. Moody, B. Shand and
A. Twigg, SECURE Deliverable 3.1: Definition of risk model,
December 2002.

[3] E. Bertino, A. Kamra, E. Terzi and A. Vakali, Intrusion detec-
tion in RBAC-administered databases, in: 21st Annual Com-
puter Security Applications Conference, Tucson, AZ, USA,
December 2005.

[4] C. Borgelt and R. Kruse, Graphical Models Methods for Data
Analysis and Mining, Wiley, Chichester, UK, 2002.

[5] V. Cahill, W. Wagealla, P. Nixon, S. Terzis, H. Lowe and
A. McGettrick, Using trust for secure collaboration in uncertain
environments, IEEE Pervasive Computing 2 (2003), 52–61.

[6] M. Carbone, N. Dimmock, K. Krukow and M. Nielsen, Revised
Computational Trust Model, EU IST-FET Project Deliverable,
2004.

[7] M. Carbone, M. Nielsen and V. Sassone, A formal model for
trust in dynamic networks, in: 1st IEEE International Confer-
ence on Software Engineering & Formal Methods, Brisbane,
Australia, September 25–26, 2003.

[8] N. Dimmock, How much is enough? Risk in trust-based access
control, in: IEEE International Workshops on Enabling Tech-
nologies: Infrastructure for Collaborative Enterprises – Enter-
prise Security, Linz, Austria, June 2003, pp. 281–282.

[9] N. Dimmock, J. Bacon, D. Ingram and K. Moody, Risk models
for trust-based access control (TBAC), in: Third International
Conference iTrust 2005, Paris, France, May 23–26, 2005.

[10] N. Dimmock, A. Belokosztolszki, D. Eyers, J. Bacon and
K. Moody, Using trust and risk in role-based access control
policies, in: 9th ACM Symposium on Access Control Mod-
els and Technologies, Yorktown Heights, NY, USA, June 2–4,
2004.

[11] C. English, W. Wagealla, P. Nixon, S. Terzis, H. Lowe and
A. McGettrick, Trusting collaboration in global computing
systems, in: Trust Management: First International Confer-
ence, iTrust 2003, Heraklion, Crete, Greece, May 28–30, 2003,
LNCS, Vol. 2692, Springer-Verlag, 2003, pp. 136–149.

[12] D. Ferraiolo and R. Kuhn, Role-based access control, in: 15th
NIST-NSCS National Computer Security Conference, Balti-
more, MD, USA, 1992, pp. 554–563.

[13] M.P. Gallaher, A.C. O’Connor and B. Kropp, The economic
impact of role-based access control, Planning Report 02-1 for
NIST, NC, USA, March 2002.

[14] B.R. Munier and C. Tapiero, Risk attitudes, in: Encyclopedia of
Quantitative Risk Assessment and Analysis, Wiley, New York,
2008.

[15] N. Nissanke and E.J. Khayat, Risk based security analysis of
permissions in RBAC, in: 2nd International Workshop on Se-
curity In Information Systems, Porto, Portugal, April 2004.

[16] R.S. Sandhu, E.J. Coyne, H.L. Feinstein and C.E. Youman,
Role based access control models, IEEE Computer 29(2)
(1996), 38–47.

[17] M.G. Sedeno, M.I.B. Garcia and C.G. Tejera, The function of
subjective utility as an indicator of job satisfaction, Psychology
in Spain 4(1) (2000), 129–138.

E. Celikel et al. / A risk management approach to RBAC 33

[18] B. Shand, N. Dimmock and J. Bacon, Trust for ubiquitous,
transparent collaboration, Wireless Networks 10 (2004) 711–
721.

[19] P.N. Tan, M. Steinbach and V. Kumar, Introduction to Data
Mining, Pearson Education, USA, 2006.

[20] C. Tapiero, Risk management: An interdisciplinary framework,
ESSEC Research Center, France, 2003.

[21] Q. Yao, A. An and X. Huang, Finding and analyzing database
user sessions, in: 10th International Conference Database Sys-

tems for Advanced Applications, Beijing, China, April 17–20,
2005, LNCS, Vol. 3453, 2005, pp. 851–862.

[22] C.N. Zhang and C. Yang, An object-oriented RBAC model for
distributed system, in: Working IEEE/IFIP Conference on Soft-
ware Architecture (WISCA’01), Amsterdam, The Netherlands,
August 28–31, 2001, pp. 24–32.

[23] G.K. Zipf, Selected Studies of the Principle of Relative Fre-
quency in Language, Harvard University Press, Cambridge,
MA, USA, 1932.

