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Abstract

These are informal notes1 of all the lectures released throughout the 2014-2015 Number Theory
Learning Seminar at Stanford. For more details on the aim of the course, please refer to the syl-
labus, available at http://math.stanford.edu/∼conrad/Perfseminar/refs/Syllabus1415.pdf.
Throughout the text, the references are cited as in the syllabus.

Part I - Adic Spaces

1 Lecture 1: Motivation for adic spaces

1.1 Introduction
Today we give some motivation for the introduction of the category of adic spaces, but
before doing so we expand on a question asked during the lecture. Although one can
functorially associate a rigid analytic variety to a scheme locally of finite type over a field
k, why is a systematic theory of rigid-analytic varieties needed, as opposed to ones tied
directly to algebraic schemes? The point is that we cannot meaningfully work “locally”
in analytic settings (eg, use analytic methods to solve algebraic problems via a GAGA
technique) without an intrinsic analytic theory.

For another example one can also think to the case when we deform, say, a proper
smooth scheme X0 over Fp to a proper formal scheme X over W (Fp) = Zp (this arises
in Serre-Tate deformation theory, where one lifts abelian varieties over Fp via deforming
their p-divisible group, though one a priori only obtains an abelian formal scheme over
Zp, which may well not be algebraizable). This latter may have non-algebraic proper
rigid-analytic “generic fiber”! So a general theory is needed to handle such cases.

This first lecture note is organized as follows. We give motivation for the introduction
of adic spaces, via some examples and the clear analogy with scheme theory. We shall
discuss an example more in detail, expanding on it in the appendix.

1.2 Overview on adic spaces
To start off, consider A an algebra of finite type over an algebraically closed field k, and
let X0 be MaxSpec(A), and X = Spec(A). Regard them simply as topological spaces with

1Notes prepared by me, Alessandro Maria Masullo, meaning that any typo or mistake contained in them is en-
tirely mine. Revised versions of the notes will appear on the website promptly. Please email me with any comment:
amasullo@stanford.edu.
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their Zariski topology. For field extensions K/k, as for instance C/Q, we have a k-algebra
homomorphism

A→ A⊗k K
but there is no natural map MaxSpec(AK) → MaxSpec(A) (e.g, for m = (X − π) ∈
MaxSpec(C[X]) we have m ∩ A = (0) /∈ MaxSpec(A) for A = Q[X]). This makes the
use of X0 inconvienient for globalizing or dealing with geometric arguments incorporating
ground field extensions.

Again, consider instead rings A which do not contain a field (e.g. A = Z[t]). Then
there is simply no associated geometric object for them in classical algebraic geometry.
Such issues are fixed by X = Spec(A), although if A is a k-algebra of finite type then X0

already captures a lot of X, from a topological viewpoint. Let us recall the following:
Definition 1.2.1 A constructible subset C of a Noetherian topological space is a finite
union of locally closed subsets (or, equivalently, a finite Boolean expression in open sub-
sets).

Let X and X0 be as above. Given a constructible set C in X, the assignment

C 7→ C0 := X0 ∩ C

yelds an inclusion-preserving bijection

{constructible sets in X} ↔ {constructible sets in X0}

in both directions, and such C ⊂ X is open, resp. closed, if and only if C0 ⊂ X0 is open,
resp. closed in the Zariski topology. This works the same for any scheme X locally of finite
type over a field, with X0 its subspace of closed points. A sheaf theory on a topological
space is developed on a basis for the topology, and is well posed once one has enough
inclusion relations and, correspondengly, transition maps.

The above dscussion yelds the following::
Proposition 1.2.2 Let X be a scheme locally of finite type over a field, and X0 its
subspace of closed points. We have an equivalence of categories of sheaves of sets

Shv(X) ' Shv(X0)

defined by F 7→ F |X0 , where the categories of sheaves on X and X0, respectively, are to
be considered with respect to the Zariski topology.

Now recall X is of finite type over a field k, and consider the stalk functor at x ∈ X

Shv(X)→ Set

given by sending a Zariski sheaf F on X to its stalk at x, Fx. Due to the equivalence
between the Zariski site on X and that on X0, we expect to be able to describe the stalk
functor purely in terms of X0 and its sheaf theory. As we have

Fx = lim−→
U3x

F 0(U0)

with clear meaning of notation, this is in turn equivalent to characterizing the set

{U0 ⊂ X0 | U 3 x}

purely in terms of X0, that is, without “mentioning” x or X.
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Definition 1.2.3 Let S be a set, Σ a collection of non-empty subsets of S. We say F ⊂ Σ
is a prime filter if the following properties are satisfied:
(1) given U,U ′ ∈ F , then U ∩ U ′ ∈ F (so in particular U ∩ U ′ 6= ∅).
(2) given U ∈ F , and U ′ ⊇ U , with U ∈ Σ, then also U ′ ∈ F .
(3) given U1, . . . , Un ∈ Σ such that ∪Ui ∈ F , then some Ui is in F .
As soon as Σ is non-empty, a Zorn’s Lemma argument ensures prime filters on Σ exist.

It T is a topological space, and F is a prime filter of open sets, then for any F sheaf of
sets on T , the F -stalk of F is defined to be

lim−→
U∈F

F (U).

One has the following::
Theorem 1.2.4 Let X be a scheme locally of finite type over a field k, and X0 be its
subspace of closed points. Then the correspondence

X → {prime filters of non-empty open subsets of X0}

given by x 7→ {open U0 ⊂ X0 | x ∈ U} is bijective.

Proof. We call X ′ the set of prime filters of non-empty open subsets of X0, and prove
that X and X ′ are in bijective correspondence. Given that injectivity of the map X → X ′

is clear, we discuss surjectivity, reducing to the case X is affine (left to the reader as an
exercise). Let F be a prime filter on X0. We set

OX′,F := lim−→
U∈F

OX0
(U)

and
mF := lim−→

U∈F
{f ∈ OX0(U) | {y ∈ U | f(y) 6= 0} /∈ F}.

Call A := OX′,F , so mF ⊂ A is an ideal. Moreover, if f ∈ A \ mF is defined on some
U ∈ F , then

{x ∈ U | f(x) 6= 0} ∈ F

implying that f is invertible in A. Then A is a local ring with maximal ideal mF . We
have a natural composition map

B := Γ(X,OX)→ A→ A/mF ,

whose kernel is a prime ideal P ⊂ B. Let b ∈ B. Then we have

Xb ∩X0 ∈ F if and only if b /∈ P,

where Xb = {x ∈ X | b(x) 6= 0}. On the other hand, the Xb’s form a basis for the Zariski
topology on X. By property (3) in Definition 1.2.3, since we can write every element
of F as a union of basic open sets Xb, we get maps Bb → A, yelding an isomorphism
lim−→b/∈P Bb ' A. This implies that A = BP , so P is a point in X, with the property that
F = {U0 | P ∈ U}, as desired.

Remark 1.2.5 In [vdP] and [vdPS], van der Put and Schneider applied the same idea to
MaxSpec(A) for affinoid algebras A over non-archimedean fields k, using quasi-compact
admissible open subspaces.
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Let us discuss in detail a toy example.
Example 1.2.6 We consider Q with the usual archimedean topology. We write (a, b)q
for the real interval (a, b) with rational endpoints, and (a, b)0q for its intersection with
Q. We call this latter an open rational interval, and likewise we say [a, b]0q is a closed
rational interval. We say a union U of such rational open intervals is admissible if every
closed rational interval B ⊂ U is covered by finitely many open rational intervals I1, . . . , In
among those defining U .

Let U ⊂ Q be an admissible open subset, and Ui ⊂ Q admissible open subsets. We
say {Ui} is an admissible cover of U if

U =
⋃
i

Ui

and every closed rational interval B ⊂ U is covered by finitely many of the Ui’s. We have
the following (proved in the Appendix):
Proposition 1.2.7 The assignment U 7→ U0 := U ∩ Q yelds an inclusion-preserving
bijection

{open sets in R} ↔ {admissible open sets in Q}

sending covers to admissible covers.
Remark 1.2.8 Note that not every set-theoretic cover of an admissible open by admissible
opens is admissible (much as in rigid-analytic geometry), namely if U = (0, 1)0q and Ui =

(0, xi)
0
q ∪ (xi, 1)0q for an increasing sequence of rationals xi with xi → 1/

√
2 then the Ui’s

are admissible opens in Q that cover U as a set yet violates the admissibility requirement
using any rational interval [a, b]0q with 0 < a < 1/

√
2 < b < 1 since the irrational 1/

√
2 is

approximated arbitrarily well by rationals.
With respect to this mild Grothendieck topology on Q, we have an equivalence between

the respective sheaf theories over Q and over R. Basically, the real line is the correct
topological space underlying the category of sheaves on Q with respect to the “topology”
we have just introduced, thus playing the role Spec played for MaxSpec.

We remark that the equivalence Shv(R) ' Shv(Q) also means the sheaf condition
for a sheaf of set F on Q and on R respectively must be checked with respect to the
appropriate notion of covering, meaning that we may well have a nonzero abelian sheaf F
on Q with the property that for all q ∈ Q, the stalk of F at q is zero, although F is not.
Consider, for example, the skyscraper sheaf F at, say

√
2 ∈ R, with F√2 = G, a nonzero

abelian group. Then

F (U) =

{
G if “

√
2 ∈ U”

0 otherwise

where the quotation marks simply mean the condition
√

2 ∈ U is expressed without
mentioning

√
2. We have Fq = 0 for all q ∈ Q, although F is not the zero sheaf.

Remark 1.2.9 Roughly, Example 1.2.6 indicates the sense in which the totally disconnec-
ted “canonical topology” on an affinoid space will be seen inside an adic space associated
to it.
Definition 1.2.10 A topological space T is sober if every irreducible closed subset has a
unique generic point.
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Examples of sober topological spaces are locally Hausdorff spaces and schemes (or any
classical algebraic variety with positive dimension). The easiest non-sober space is an in-
finite set with the cofinite topology, as the space itself is irreducible and it has no generic
point.

The following theorem, for which the reader may refer to [MM, IX] (§ 1 (definition of
“locale”), § 2 Cor. 4, § 5 Prop. 2), essentially says that if we have a sober topological space
T , we can reconstruct it from its sheaf theory, that is, from knowledge of Shv(T ). First,
if X and Y are topological spaces, recall that for any morphism

f : X → Y

we have an induced functor
f∗ : Shv(X)→ Shv(Y )

and in fact an adjoint pair (f∗, f
−1), where f−1 is the inverse image functor

f−1 : Shv(Y )→ Shv(X),

and f−1 is exact (in the sense that it commutes with fiber products and equalizers, or
equivalently with all finite limits). A morphism Shv(X) → Shv(Y ) is a pair of functors
(h′, h), with

h : Shv(X)→ Shv(Y )

and
h′ : Shv(Y )→ Shv(X)

for which h′ is left adjoint to h, and h′ is exact.
Theorem 1.2.11 If X and Y are sober topological spaces, then the natural map

HomTop(X,Y )→ Mor(Shv(X),Shv(Y ))/ ∼

is a bijection, where ∼ denotes natural equivalence for adjoint pairs.
As an example, one may consider X = {∗} to be a single point, yelding

Mor(Set,Shv(Y )) = |Y |,

the set underlying Y (via stalks and skyscraper sheaves of sets).

Towards adic spaces
In light of our previous discussion, we mention that Huber shows in [H1] that for an affinoid
algebra A over a complete nonarchimedean field k there is a naturally associated quasi-
compact sober space Spa(A) containing Sp(A) as a subset so that the inclusion induces
an equivalence of categories

Shv(Spa(A)) ' Sh(Sp(A)),

where we regard Sp(A) with the usual topology as in Tate’s theory.
Remark 1.2.12 Huber also shows in [H1] (as we’ll discuss later) that U 7→ U ∩ Sp(A)
is an inclusion-preserving bijection between the sets of quasi-compact opens in Spa(A)
and quasi-compact admissible opens in Sp(A), with finite covers corresponding to finite
admissible covers. Turning back to Example 1.2.6 and the Appendix, it is unclear if all
open subsets of Spa(A) all come from admissible open subsets of Sp(A), although the two
notions match perfectly in the quasi-compact setting.
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We give a closer look to van der Put’s paper [vdP]. Here van der Put introduced the
notion of a generalized point of Sp(A) via prime filters of quasi-compact admissible open
subsets. Consequently, the maximal such generalized points are called closed, and van der
Put proved in [vdP] that they are in natural bijection with the set

M(A) := {| · | : A→ R | | · | ∈ Pk},

where Pk is simply a notation to mean the set of bounded multiplicative seminorms on A,
extending the given absolute value on k. Recall that boundedness, for such seminorms,
means that for all elements a in A

|a| ≤ C · ‖a‖

where ‖ · ‖ is a (in fact, any, as they are all equivalent) Banach k-algebra norm on A and
C > 0 is a constant which may depend on the Banach norm. M(A) is the Berkovich
spectrum of A.

Likewise Q in Example 1.2.6, Sp(A) has not “enough points”, and the defects which
this fact yelds can already be seen, for example, extending the nonarchimedean base field
(eg. from Qp all the way to Cp) as follows. Let

f : A→ B

be a map of k-affinoid algebras, and call

fK : K⊗̂kA→ K⊗̂kB

We have the following:
Proposition 1.2.13 The map f : A → B as above is flat (in the commutative-algebraic
sense) if and only if the morphism Sp(B)→ Sp(A) is flat (that is, is flat on stalks of the
respective structure sheaves).

Proof. We call X = Sp(B) and Y = Sp(A). Let x ∈ X and y = Sp(f)(x) in Y correspond,
respectively, to a maximal ideal m′ of B and m of A. The local ring OX,x of X at x is
generally not Bm′ . However, the natural local map of local noetherian rings

B → OX,x

factors through Bm′ and induces an isomorphism of completions Bm′
∧ ' O∧X,x (see [BGR,

7.3.2/3]. Likewise, A∧m ' O∧Y,y, and a local map between local noetherian rings is flat if
and only if the induced map between completions is flat (see [Mat, 22.4]). Since f : A→ B
is flat if and only if Am → Bm′ is flat for all m′, this in turn is equivalent to the flatness
of the completion of the induced stalk map

OY,y → OX,x

for all x and y = Sp(f)(x). But that in turn is equivalent to the flatness of the induced
map on stalks (without completion), or in other words the flatness of Sp(f).

Now the question is, given that f is flat, whether or not fK is flat as well. The answer
is yes, but to prove it it’s used Raynaud’s theory on formal models for rigid spaces. The
metric completion inherent in such scalar extension is the main source of difficulties, but at
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a more geometric level one has the annoyance that, roughly speaking, that in the following
diagram the dotted arrows do not exist:

Sp(AK)

��

Sp(BK)
Sp(fK)
oo

��

Sp(A) Sp(B)
Sp(f)
oo

A glance at formal models
Let k be a nonarchimedean field, with valuation ringO. Roughly, a formal model for a rigid
space X over k is a quasi-compact formal scheme X over O, which is locally isomorphic to

Spf (O{t1, . . . , tn}/(f1, . . . , fm)) .

If 0 < |π| < 1, then O{t1, . . . , tn}[ 1π ] is a Tate algebra, so one can associate to such X a
quasi-compact quasi-separated rigid space over k by gluing affinoids

Sp (k〈t1, . . . , tn〉/(f1, . . . , fm)) ,

yelding a “generic fiber” Xrig of the formal scheme X over O.

More in detail, ifX is a quasi-compact quasi-separated rigid space over k, then Raynaud
proved X has the form Xrig := X⊗ k for some formal scheme X as above flat over O, and
in the affinoid case, explicitly, if we let

A := k〈t1, . . . , tn〉/I

for some ideal I of k〈t1, . . . , tn〉, then for X = Sp(A) we can choose

X = Spf (O{t1, . . . , tn}/(O{t1, . . . , tn} ∩ I)) .

(If |k×| ⊂ R×>0 is not discrete then some work is needed to show O{t1, . . . , tn}∩I is finitely
generated).

Suppose X and X′ are two formal models for the same quasi-compact, quasi-separated
rigid space X over k. There can well exist two such. In fact, if X is a formal model for
X, then “blowing up” X along an open ideal (“supported on the special fiber”) does not
change the generic fiber X. However, they are related in the sense that there always exists
another formal model X′′ of X, flat over O, with unique maps X′′ → X and X′′ → X′

respecting the generic fiber identifications with X. The reader may refer to [Bosch].

Let us state the following Theorem of van der Put and Schneider, in a preliminary
form, for now.
Theorem 1.2.14 Let X be a quasi-compact, quasi-separated rigid space over k. Then

lim←−
Xrig'X

|X|

is homeomorphic to the adic space attatched to X, which is to be defined later.
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In their paper [vdPS], such a space goes under the name of “space of the prime filters
of quasi-compact open subsets”. As a concluding remark, we underline that the Berkovich
spectrum of an affinoid k-algebra A, which we calledM(A) (the space of rank 1 valuations
on A subject to some conditions) will turn out to be exactly the maximal Hausdorff quo-
tient of Spa(A). We will Beware however that although Spa(A) will be defined as a certain
set of (possibly higher-rank!) valuations on A, the inclusion M(A) ↪→ Spa(A) will not be
continuous (since “rational domains” in the target will be open yet have preimage that is
compact Hausdorff and essentially never open away from trivial situations)! Nonetheless,
the image of this generally discontinuous section is useful: the “rank 1” points (arising from
M(A) inside Spa(A)) will turn out to be sufficiently abundant in Spa(A) that for certain
problems it is sufficient to work locally near such points (even though Spa(A) generally
has many points corresponding to “higher-rank” valuations, in a sense to be made precise
later).

1.3 Appendix: an example
First of all, we recall the setting of Example 1.2.6.

Throughout, for an open subset V ⊂ Rn, V 0 will denote V ∩ Qn. In particular, for
real numbers ai and bi,

∏n
i=1[ai, bi] will denote the closed box in Rn and

∏n
i=1[ai, bi]

0

will denote
∏n
i=1[ai, bi] ∩Qn. Similar conventions will hold for open boxes. In the case

ai, bi (i = 1, . . . , n) are rational numbers, we shall write
∏n
i=1[ai, bi]q for the closed box in

Rn with rational endpoints, and
∏n
i=1[ai, bi]

0
q for its intersection with Qn. We shall call

this latter closed rational box.
Definition 1.3.1 A subset U ⊂ Qn is called admissible open if it can be written in the
form U = ∪jIj with Ij open rational boxes such that for any closed rational box B ⊂ U ,
there exist finitely many j, say j1, . . . , jm, such that B ⊂ Ij1 ∪ · · · ∪ Ijm .

Any admissible open subset of Qn is open by definition, and it’s natural to ask whether
the converse holds, that is, if all open subsets V ⊂ Rn give rise to admissible open subsets
V 0 in Qn. The answer is yes for n = 1, no for n > 1. The argument for the case n = 1,
and counterexample for the case n > 1, are due to Zev Rosengarten after the lecture.
Proposition 1.3.2 Every open set V ⊂ Q is admissible open.

Proof. Let V ⊂ Q be open, and let U ⊂ R be the maximal open subset of R such that
U ∩Q = V . Such U exists, as one can take the union of all open subsets W of R such
that W ∩Q = V . Write U = ∪jIj , with the Ij open intervals with rational endpoints. We
claim that the representation V = ∪jI0j exhibits V as an admissible open set. To see this,
let us consider a closed box [a, b]q, with [a, b]0q ⊂ V . Then [a, b]q ⊂ U . Indeed,

(U ∪ (a, b)) ∩Q = V

so (a, b)q ⊂ U by maximality of U , and a, b ∈ U because a, b ∈ V . By compactness of
[a, b]q, we have [a, b]q ⊂ ∪Nk=1Ijk for some j1, . . . , jN . Then we have

[a, b]0q ⊂ ∪Nk=1I
0
jk
,

which gives the required finite subcover, and completes the proof.

The case n > 1: a counterexample
Now, for n > 1 we will give an example of an open set V ⊂ Rn, such that V 0 ⊂ Qn is not
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an admissible open set. First, we give the example for the case n = 2. In the last instance,
the fact that ∂[a, b] ⊂ V in the case n = 1 (refer to the proof of the above Proposition
1.3.2) is the key fact that fails in dimension greater that 1, as we will clarify in the end.
Let V be the region

(0,
√

2) + {y < |x|} ⊂ R2.

We claim that V 0 is not admissible. Indeed, consider the closed rational box

B

V

P

Figure 1: V = P + {y < |x|} ⊂ R2, with P = (0,
√

2). B = [0, 1]× [0, 2].

B := ([0, 1]× [0, 2])0 ⊂ V 0.

There cannot be a finite collection of open rational boxes I1, . . . , IN ⊂ V 0, covering B, as
for any such collection, we can argue the following way. There exists some rational number
r >
√

2, such that the point (0, r) is in B but (0, r) is not contained in I1∪· · ·∪IN . Indeed, if
the left edge of Ij has nonnegative x-coordinate, or if the top edge has y-coordinate smaller
than

√
2, then (0, r) /∈ Ij . The only other possibility for Ij ⊂ U is that the bottom edge

has y-coordinate greater than
√

2. Let m be the minimum of the y-coordinates of the
bottom edges of all such boxes in our finite collection, and choose r ∈ (

√
2,m) ∩Q, such

that the point (0, r) of Q2 is contained in B. We have

(0, r) /∈ I1 ∪ · · · ∪ IN ,

as desired. This shows that V 0 is not admissible. The case n > 2 is constructed from the
case n = 2 taking U := (V × Rn−2)0, and we automatically have that U ⊂ Qn is not
admissible.

Amusingly, an analogous counterexample in the rigid analytic case also seems to require
n ≥ 2: see [Con, Ex. 2.2.12].

Final remarks
In fact, all that is needed to produce such non admissible open U ⊂ Qn lies in the following:
Proposition 1.3.3 Let C in Rn be a closed subset satisfying the following properties.
(1) C ∩Qn is dense in C.
(2) There exists a closed rational box B ⊂ Rn such that
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(a) B ∩ C 6= ∅.
(b) B ∩ C ∩Qn = ∅.

Then U := (Rn \ C)0 is non-admissible.
We remark that such couple (C,B) cannot exist in the case n = 1.

Proof. Suppose U is admissible. We have B0 ⊂ U by (2.b), and B0 ⊂ ∪mi=1Ii by assump-
tion, for open rational boxes Ii ⊂ U .
Let x ∈ B ∩ C, which exists by (2.a). There exists a sequence of points with rational
coordinates {qn}n≥0 contained in B, and converging to x in Rn. By Bolzano-Weierstrass,
up to renumbering indexes and extracting a subsequence, we can assume {qn} is contained
in the closure in Rn of one of the Ii’s. Call such closure B′, which, therefore, contains x.

We claim x ∈ B′ ∩ C is an isolated point in B′ ∩ C.

Step 1 First, we show x cannot lie in the interior of B′. If not so, there exists an open
subset W ⊂ B′ in Rn, containing x. Then W ∩ C is nonempty, and hence is open in C.
Since C ∩Qn is dense in C by property (1), W ∩C ∩Qn must be nonempty, thus implying
that B′ ∩Qn is not contained in U . A contradiction.

Step 2 x is, thus, contained in the boundary of B′. If it is not an isolated point in
B′ ∩ C, there exists another point x′ ∈ B′ ∩ C with the property that the whole segment
Lxx′ with endpoints x and x′ is still contained in B′ ∩C. By density of Q in R, and since
x′, likewise x, must be contained in the boundary of B′, C ∩B′ ∩Qn would be nonempty,
which, again, contradicts the fact that B′ ∩Qn ⊂ U .

We can, therefore, shrink B′ in such a way that B′ ∩ C = {x}. Notice that we can
substitute B with B′, and we are reduced to the case B∩C = {x}, and C is convex, as all
that matters is C in a neighbourhood of x. The same argument proposed above for n = 2
now establishes that B0 cannot be covered by finitely many open rational boxes in U .
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