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Abstract
Distributed Constraint Optimization (DCOP) is an

elegant formalism relevant to many areas in multia-
gent systems, yet complete algorithms have not been
pursued for real world applications due to perceived
complexity. To capably capture a rich class of com-
plex problem domains, we introduce the Distributed
Multi-Event Scheduling (DiMES) framework and design
congruent DCOP formulations with binary constraints
which are proven to yield the optimal solution. To ap-
proach real-world efficiency requirements, we obtain im-
mense speedups by improving communication structure
and precomputing best case bounds. Heuristics for gen-
erating better communication structures and calculat-
ing bound in a distributed manner are provided and
tested on systematically developed domains for meeting
scheduling and sensor networks, exemplifying the via-
bility of complete algorithms.

1. Introduction

In many large-scale multiagent applications, including
sensor nets, distributed spacecraft, disaster rescue sim-
ulations, and software personal assistants, agents must
attempt to optimize their joint performance. For exam-
ple, sensor agents must optimally schedule sensor re-
sources to maximize targets tracked, and personal as-
sistant agents must optimize their users’ time while
scheduling multiple meetings. Distributed constraint op-
timization (DCOP) [8] has emerged as a key formal-
ism for such settings where distributed agents, each with
control of some variables, try to optimize a global ob-
jective function, which is an aggregation of utility func-
tions, each constrained by the values of a subset of
variables. DCOP presents itself as a useful tool in do-
mains such as meeting scheduling, where an organiza-
tion wants to maximize the value of their employees’
time while maintaining the privacy of information such
as the relative importance of meetings or users’ sched-
ules. It is also appropriate in environments such as large-

scale distributed sensor networks where there may not
be a node with sufficient computing capability to cen-
tralize the task of finding optimal viewing decisions.

Despite its promise, two challenges must be addressed
for DCOP to advance as a viable approach for real-world
problems. First, while researchers have mapped specific
problems to DCOP [7], a systematic reusable frame-
work with congruent mappings to DCOP formulations
has not been developed. Without automated mappings,
the tedious process of modeling an environment, choos-
ing variable sets, and designing constraint utility func-
tions that yield the appropriate optimal solution would
have to be repeated for each problem domain. Second,
it is unclear if DCOPs obtained from concrete problems
will fall within a space where complete algorithms for
problems withNP complexity are fast enough to be uti-
lized.

This paper takes some key steps in addressing the
two challenges to DCOP raised above. We present the
DiMES (Distributed Multi-Event Scheduling) frame-
work which captures a rich class of real-world prob-
lems where multiple agents must generate a coor-
dinated schedule for execution of joint activities or
resource usage in service ofmultiple events. We then de-
sign three formulations that map DiMES into DCOP
and prove the congruency and optimality of our formu-
lations. When all constraints involve only two agents,
we can model DCOP as a graph where the nodes rep-
resent variables and constraint utility functions are
distributed as weights on edges between appropri-
ate variables. To address the efficiency of complete
algorithms, we present two key heuristics to im-
prove convergence: (i) While organizing distributed
constraint graphs as a tree is useful to eliminate the re-
strictive requirement of forcing a linear ordering over
all agents [13, 12], the precise impact of tree struc-
ture in DCOP remained uninvestigated. We present



a new technique to provide shallower trees and ex-
perimentally illustrate the speedups that result. (ii)
We also developed a new heuristic where a vari-
able cana priori compute best case bounds for the
subtree for which it is the root. These bounds, ob-
tained in adistributedmanner for all nodes in the tree,
expedite the evolution of the search by allowing for bet-
ter messaging to children and shifting a threshold
at the root that determines termination. Our algo-
rithmic improvements are demonstrated on ADOPT
[8], experimentally demonstrated to be the most ef-
ficient completeDCOP algorithm in a range of set-
tings. We show the effectiveness of our formulations
in both meeting scheduling and sensor network set-
tings where our twoconvergence catalystscombine to
provide orders of magnitude improvement in perfor-
mance.

2. Distributed Multi-Event Scheduling

We present a framework called DiMES (Distributed
Multi-Event Scheduling) for capturing fundamen-
tal characteristics of problems occurring in real-world
domains involvingjoint activities. We begin with a re-
source setR := {R1, . . . ,RN} of cardinality N where
Rn refers to the n-th resource and an event set
E := {E1, . . . ,EK} of cardinality K where Ek refers
to the k-th event. Let us consider the minimal ex-
pression for the time interval [Tearliest,Tlatest] over
which all events are to be scheduled. LetT ∈ �

be a natural number and∆ be a length such that
T · ∆ = Tlatest − Tearliest. We can then character-
ize the time domain by the setT := {1, . . . ,T} of car-
dinality T where the elementt ∈ T refers to the time
interval [Tearliest+ (t − 1)∆,Tearliest+ t∆]. Thus, a busi-
ness day from 8:00 AM to 6:00 PM partitioned into half
hour time slots would be represented byT = {1, . . . ,20}
where time slot eight would represent the inter-
val [11:30 AM, 12:00 PM]. Here, we implicitly assume
equal-length time slots, though this can be relaxed eas-
ily.

Let us characterize thek-th event with the tupleEk :=
(Ak, Lk; Vk) where Ak ⊂ R is the subset of resources
that are required by the event. The length of the event,
Lk ∈ T , is the number of contiguous time slots for
which the resourcesAk are needed. The heterogeneous
importance of an event to the resources it requires is de-
scribed in a value vectorVk whose length is the cardi-
nality of Ak. If Rn ∈ Ak, thenVk

n will be an element of
Vk which denotes the value per time slot to then-th re-
source for scheduling eventk. Each resource also has
a value for each time slot which characterizes its pref-
erence for keeping that resource unassigned during that

time slot. LetV0
n(t) : T → �+ denote then-th resource’s

valuation for keeping time slott free. The relative values
of various time slots for a particular resource reflects an
ordering of slots to be used for assignments of events in
E. These valuations allow agents to compare the relative
importance of events to other events and also to compare
the importance of the event to the value of the resource’s
time. We implicitly assume that a resource cannot sched-
ule two events simultaneously and the value of schedul-
ing an event is independent of the time the event is as-
signed. Though extensions to time varying rewards are
straightforward, our current framework reflects the idea
that the importance of events tend to be stationary and
temporal preferences generally emerge due to factors in
the resource’s schedule. LetVn := maxk∈{1,...,K} Vk

n be the
maximum value to then-th resource for scheduling any
event. A resource can eliminate a time slot from being
considered by setting the value for keeping the time slot
unassigned sufficiently high, i.e.V0

n(t) > Vn.

Given the framework discussed above, we now present
the scheduling problem we are considering. Let us de-
fine a scheduleS as a mapping from the event set to the
time domain whereS(Ek) ⊂ T denotes the time slots
committed for eventk. We assume that the event is not
disjoint, i.e., eventEk must be scheduled inLk contigu-
ous slots. This implies that all resources inAk must agree
to assign the time slotsS(Ek) to eventEk in order for the
event to be consideredscheduled, consequently allow-
ing the resources to obtain the utility for completing it.
A scheduling conflict occurs if two events with at least
one common resource are scheduled in a manner such
that assigned time slots overlap:S(Ek1) ∩ S(Ek2) , ∅,
for any k1, k2 ∈ {1, . . . ,K}, k1 , k2, Ak1 ∩ Ak2 , ∅.
An assignment ofS(Ek) = ∅ implies that eventEk is not
scheduled. This can occur either because the required re-
sources cannot agree on a common time due to schedul-
ing conflicts with higher reward events or that the re-
wards for the event is too low with respect to the value
of their unassigned time. To completely specify DiMES,
we need a metric to choose among the possible sched-
ules that have no conflicts.

Let us define the utility of a resource as the differ-
ence between the sum of the values from scheduled
events and the aggregate values of the time slots if they
were kept free. This measures the net gain between
the opportunity benefit and opportunity cost of schedul-
ing various events. The organization wants to maximize
the sum of utilities of all its resources as it represents
the best use of all assets within the team. Incorporat-
ing this naturally emerging global metric, we charac-
terize the fundamental problem in this general frame-



work as: maxS
{∑K

k=1
∑

n∈Ak

∑
t∈S(Ek)

(
Vk

n − V0
n(t)
)}

such

that S(Ek1) ∩ S(Ek2) = ∅ ∀k1, k2 ∈ {1, . . . ,K}, k1 ,
k2, Ak1 ∩ Ak2 , ∅. The DiMES problem isNP-Hard as
can be seen by mapping it from graphK-coloring.

3. DCOP Formulations for DiMES

Given a problem from a real domain captured by the
DiMES framework, we need an approach to obtain the
optimal solution. As we are optimizing a global objec-
tive with local restrictions (eliminating conflicts in re-
source assignment), DCOP [8] presents itself as a use-
ful and appropriate approach. A DCOP consists of a
variables setX = {x1, . . . xN} distributed among agents
where the variablexi takes a value from the finite dis-
crete domainDi . The goal is to choose values for vari-
ables to optimize a global objective function, which is
an aggregation of utility functions, each of which de-
pend on the values of a particular subset of variables in
X. If all the utility functions depend on exactly two vari-
ables, it can be modeled with a graph, where nodes rep-
resent variables and every utility function can be cap-
tured as an edge whose weight is determined by the val-
ues chosen by the nodes determining the edge. For each
edge (i, j) ∈ E, (whereE denotes a set of edges whose
endpoints belong to a set homeomorphic toX), we have
a function fi j (xi , x j) : Di × D j → �. Our goal is to
choose an assignmenta∗ ∈ A := D1×· · ·×DN, such that
a∗ = arg maxa∈A

∑
(i, j)∈E fi j

(
xi = ai , x j = a j

)
.

Our challenge is to convert a given DiMES problem into
a DCOP with binary constraints. We may then apply
existing (or improved) algorithms developed for DCOP
to obtain a solution. A DiMES problem is modeled by
events and valuations. A DCOP is composed of a vari-
able set and constraint utility functions. We developed
three DCOP formulations based on three unique con-
cepts for creating variable sets: time slots as variables
(TSAV), events as variables (EAV), and private events as
variables (PEAV). For each variable set, we constructed
constraint utility functions such that the optimal solution
of the resulting DCOP can be proven to be identical to
the optimal solution to the underlying DiMES problem.
Thus, given a quantification of events and valuations for
a problem rooted in the real world, there exist at least
three methods to directly obtain an optimal schedule.
Due to space limitations, we provide only the charac-
terization of variable sets for the TSAV and EAV formu-
lations. For PEAV, we provide a description of the vari-
able set, the explicit form of the constraint utility func-
tions, and a proof of congruency.

TSAV (Time Slots as Variables):This method reflects
a natural first step when considering scheduling issues.

Let us define a DCOP where a variablexn(t) represents
the n-th resource’st-th time slot. Thus, we haveN · T
variables. Each variable can a take on a value of the in-
dex of an event for which it is a required resource, or the
value “0” to indicate that no event will be assigned for
that particular time slot:xn(t) ∈ {0} ∪ {k ∈ {1, . . . ,K} :
Rn ∈ Ak}. It is natural to distribute the variables in a man-
ner such that{xn(1), . . . , xn(T)} belong to an agent rep-
resenting the schedule of then-th resource.

EAV (Events as Variables): We note that the graph
structure of TSAV grows as the time range considered
increases or the size of the time quantization interval de-
creases, leading to a denser graph. An alternate approach
is to consider the events as the decision variables. Let
us define a DCOP where the variablexk represents the
starting time for eventEk. Each of theK variables can
take on a value from the time slot range that is suffi-
ciently early to allow for the required length of the event
or “0” which indicates that an event is not scheduled:
xk ∈ {0,1, . . . ,T − Lk + 1}, k = 1, . . . ,K. If a vari-
ablexk takes on a valuet , 0, then it is assumed that for
all required resources of that event (∀n ∈ Ak), the time
slots{t, . . . , t + Lk − 1}must be assigned to the eventEk.
It would be logical to assign each variable/event to the
agent of one of the required resources for the event.

PEAV (Private Events as Variables):We note that in
EAV, if an agent is to make a decision for an event as a
variable, it must be endowed with both the authority to
make assignments for multiple resources as well as have
valuation information for all required resources. There
are settings where resources, though part of a team, are
unwilling or unable to cede this authority or informa-
tion. To address this, we consider a modification of EAV
that protects these interests. Let us define a set of vari-
ablesXk := {xk

n : n ∈ Ak}wherexk
n ∈ {0,1, . . . ,T−Lk+1}

denotes the starting time for eventEk in the schedule of
Rn which is a required resource for the event. Ifxk

n = 0,
then Rn is choosing not to scheduleEk. We then con-
struct a DCOP with the variable setX := ∪K

k=1Xk. Let us
now define a set̃Xn := {xk

m ∈ X : m = n} ⊂ X which
is the collection of variables pertaining to then-th re-
source. Clearly,|X̃n| > 0 ∀n, otherwise the resource is
not required in any event. If|X̃n| = 1, letXn := X̃n ∪ {x0

n}

wherex0
i ≡ 0 is a dummy variable. Otherwise,Xn := X̃n.

The DCOP partitions the variables inXn to an agent rep-
resenting then-th resource’s interests. Let all the vari-
ables withinXn (intra-agent links) be fully connected.
The addition of the dummy variable to setsXn with car-
dinality one is to ensure that intra-agent links exist for all
agents. This allows us to design constraint utility func-
tions where all valuation information is on internal links,



thus maintaining privacy. Inter-agent links exist between
the variables for all participants of a given event, i.e., all
the variables inXk are fully connected.

Given a particular variable set, our challenge is to con-
struct constraint utility functions such that when the re-
sulting DCOP is solved, we obtain a solution which
is congruent to the original DiMES problem. We have
created such functions and proved their equivalence for
all formulations. The resulting DCOP constraint graphs
from TSAV, EAV, and PEAV for a scenario with re-
sources{A, B,C,D,E, F} in a four-time-slot window,
where five events{E1, · · · ,E5} of duration one time slot
require the resources{AB,ACD,ADE, BC,EF}, respec-
tively are shown in Figure 1. Due to space limitations,
we only present the solution for PEAV.

Proposition 1 The DCOP formulation with pri-
vate events as variables, where the constraint be-
tween the variables xk1

n1
and xk2

n2
when xk1

n1
= t1 and

xk2
n2
= t2 takes on the utility

f (n1, k1, t1; n2, k2, t2) = −MI{n1,n2}I{k1=k2}I{t1,t2}

+ I{n1=n2}I{k1,k2} fintra(n1; k1, t1; k2, t2). (1)

where fintra(n; k1, t1; k2, t2) =
−M t1 , 0, t2 , 0, t1 ≤ t2 ≤ t1 + Lk1 − 1,

−M t1 , 0, t2 , 0, t2 ≤ t1 ≤ t2 + Lk2 − 1,

g(n; k1, t1; k2, t2) otherwise

and

g(n; k1, t1; k2, t2) =
1

|Xn| − 1

(
Zk1

n (t1) + Zk2
n (t2)

)
where Zki

n (ti) =
Lki∑
l=1

(
Vki

n − V0
n(ti + l − 1)

)
I{ti,0}

with M > NTVmax where N is the number of par-
ticipants, T is the number of time slots and Vmax =

maxk,n Vk
n, yields the optimal solution to the Distributed

Multi-Event Scheduling (DiMES) problem.

Proof. The first term in (1) characterizes that a penalty
of −M is assessed on an inter-agent link (n1 , n2) for
a common event (k1 = k2) for which the same starting
time is not selected (t1 , t2) by the connected resources.
The latter term in (1) addresses intra-agent constraints
(n1 = n2) between different events (k1 , k2) where the
link utility fintra(·) ensures that a penalty is incurred on
an intra-agent constraint if a scheduling conflict is cre-
ated. Otherwise, the utility gain for a resource assign-
ing a viable time for an event is uniformly distributed
among the outgoing intra-agent links as denoted ing(·).

Let us assume that a penalty is incurred on an inter-agent
constraint. This implies that the required resources for
a particular event could not agree on a common time to
start. Since the total utility gain (excluding penalties) for
holding an eventEk cannot exceed

∑
n∈Ak

∑Lk

t=1 Vmax ≤

NTVmax < M, there exists a solution for the DCOP
where the event is not scheduled which is at least as
good as that with the event scheduled. Let us now as-
sume that a penalty is incurred on an intra-agent link.
This implies that an agent has chosen starting times
for two events that causes the same time slot to be as-
signed to two events. By similar logic, the penaltyM
is sufficiently large such that by choosing not to sched-
ule one of the events and allowing all other agents to
choose not to schedule that event (thereby avoiding in-
curring an inter-agent penalty), we obtain a higher qual-
ity solution. The above analysis implies that the optimal
DCOP solution is void of assignments that would acti-
vate a penalty. Thus,xk

n = xk
m, ∀m,n ∈ Ak. Given Ek

and somen ∈ Ak, let us defineS(Ek) = ∅ if xk
n = 0, and

S(Ek) = {xk
n, . . . , x

k
n + Lk − 1} if xk

n , 0. Then, we have

S(Ek1) ∩ S(Ek2) = ∅ ∀k1, k2 ∈ {1, . . . ,K},

k1 , k2,A
k1 ∩ Ak2 , ∅. (2)

Otherwise, a penalty would have been assessed. The
global utility is then the sum of all intra-agent links de-
void of penalties (

∑
g(·)), which can be represented as

N∑
n=1

K∑
k=1

I{n∈Ak}

 1
|Xn| − 1

Zk
n(xk

n)

 K∑
k=1

I{n∈Ak}

 − 1


=

N∑
n=1

K∑
k=1

I{n∈Ak}Z
k
n(xk

n)

=

K∑
k=1

∑
n∈Ak

Lk∑
l=1

(
Vk

n − V0
n(xk

n + l − 1)
)
I{xk

n,0}

=

K∑
k=1

∑
n∈Ak

∑
t∈S(Ek)

(
Vk

n − V0
n(t)
)
.

The solution to the DCOP maximizes the previous ex-
pression, which when coupled with the no conflict con-
dition in (2) is identical to the DiMES problem.�

The constraint utility functions and proofs
of congruency for TSAV and EAV fol-
low similar reasoning and can be found at
http://pollux.usc.edu/∼maheswar/aamas04proofs.pdf.
We note that in practice instead of explicitly calcu-
lating Vmax which may not be knowable due to pri-
vacy, we would use an upper bound onVk

n given by the
system. Given events and values, we are able to con-
struct graphs and assign constraint link utilities from
which we can apply a DCOP algorithm and directly ob-
tain an optimal solution to the DiMES problem.



F

A B

C

E D

AB ACD

ADE

EF

BC

AB

ACD BCADE

EF

AB

BC

ACD

ACD

ADE

ADE

EF

A B

F

E D

C

TSAV

EAV PEAV

A

E

C

Figure 1. DCOP Constraint Graphs

4. Convergence Catalysts

To test the efficiency of our formulations, we used
ADOPT [8] as a base as it has been shown to be the
best available complete DCOP algorithm. Initial re-
sults when applying ADOPT “out of the box” to the
EAV, PEAV, and TSAV encodings illustrated the criti-
cal need to address the speed of convergence. To ame-
liorate these complexity issues, we developed two key
heuristics which produced significant speedups.

Communication Structure: The first heuristic involved
the communication aspect of the DCOP algorithm. The
ADOPT algorithm converts the constraint graph into a
DFS tree which is used as a hierarchy to communicate
value and cost messages. Though this broke away from
the commonly used chain communication structure with
linear ordering [12, 13], the best method to take advan-
tage of the parallelism introduced by trees remained an
open problem . The current method used to construct the
communication tree is an extension of a heuristic used in
linear ordering where the most constrained node (MCN)
is used as the metric to choose the root from a subgraph.

Initial experiments have shown that the depth of the tree
has a great effect on the rate of convergence to the op-
timal solution, and we hypothesize that the depth of the
tree is a key factor to be minimized. The rationale for
this can be seen when analyzing an exhaustive search for
which an additional level of depth increases the number
of solutions to be tested by a factor of the number of val-
ues available to the added variable. The MCN method
does not yield the minimum depth tree in many cases.
Since finding a minimum depth DFS tree is an NP-
Complete problem [2] and the benefits of tree depth are
unknowna priori, we propose a practical polynomial-
time heuristic to find shallower DFS trees. This new

heuristic is based on a method to find a minimum-depth
spanning tree, where the node that is closest to the mid-
point of the longest shortest path is used as a the root
from any given subgraph, hereby denoted as the MLSP
tree. The MLSP tree algorithm attempts to create the
greatest branching while guaranteeing that there are no
links between subtrees when all the links of the original
graph are mapped onto the tree. We propose that MLSP
is a superior metric for root selection as it attempts to
address tree depth while MCN does not. The key algo-
rithm in the recursive process to generate the MLSP tree
is outlined in Algorithm 1. The MLSP tree generation
heuristic is a polynomial-time algorithm asMLSPTree
is called at most once per node and each process within
it takes polynomial time. We note that we utilized cen-
tralized algorithms to generate both trees as we were in-
terested in investigating the effect of the communication
structure on performance. Designing an algorithm that
efficiently implements MLSP in a distributed manner is
still an open problem, but as polynomial-time algorithms
for distributed all-pairs shortest path identification exist
[4], we believe this is achievable.

Algorithm 1 MLSPTree (Parent, Graph, Tree)
1: MidNode= midpoint of longest shortest path inGraph
2: PossibleChildren= nodes inGraphconnected toParent
3: ClosestNode= node inPossibleChildrenthat is closest

to MidNode
4: ClosestNodeis set to be child ofParentin Tree
5: RemaningGraphs=Collection of connected graphs when

ClosestNodeand its links are removed fromGraph
6: for all S ubGraph∈ RemainingGraphsdo
7: Tree= MLSPTree (ClosestNode, S ubGraph, Tree)
8: end for
9: ReturnTree

Best Case BoundsADOPT and other DCOP algorithms
[8, 13] maintain best/worst-case bounds on solutions at
each node in order to limit their search and determine
termination at the root node (e.g., the best-case bound
is an upper bound when maximizing utilities, or a lower
bound when minimizing costs). The initial tightness of
these bounds greatly affects convergence when applying
ADOPT to real-world scenarios. This phenomenon does
not reveal itself in domains such as graph coloring where
the initial bounds are serendipitously as tight as possible
due to the structure of the problem. Our key idea to ex-
pedite the DCOP search was to devise a method to en-
dow each node witha priori information regarding best-
case bounds that are automatically pre-computed in a
distributedmanner. This induces speedup due to the fact
that the time spent during the evolution of the search
discovering a pre-computable level for bounds is elimi-
nated. In effect, a limited amount of preprocessing (one
message per node sent up the DFS tree) can significantly



cut the actual DCOP computation at run time.

To this end, we introduce thepassupheuristic to deter-
mine best-case bounds. Ifx is a node in a treeT, let Ax

be the set of all ancestors ofx, Dx be the set of all de-
scendants ofx, andCx ⊆ Dx be the set of all children
of x (where a child is a descendant who is one level be-
low x). Let fxy denote the constraint utility function be-
tween nodesx andy. The descendant node is responsi-
ble for the utility of a link and thus, the total utility from
a subtree with rootx is

Ux :=
∑
y∈Ax

fxy +
∑
z∈Dx

∑
y∈Az

fzy

=
∑
y∈Ax

fxy +
∑
z∈Cx

∑
y∈Az

fzy+
∑
z∈Cx

∑
q∈Dz

∑
y∈Aq

fqy

=
∑
y∈Ax

fxy +
∑
z∈Cx

Uz

Defining Tx = maxUx, we haveTx ≤ max
∑

y∈Ax
fxy +∑

z∈Cx
Tz, by the concavity of the max function. Thus,

best-case bounds (Tx) can be obtained throughout the
tree if each node calculates a bound on its own contri-
bution (max

∑
y∈Ax

fxy) adds it to bound messages from
its children (

∑
z∈Cx

Tz) and passes it up to its parent.
In our formulations,fxy = αxUnode

x + αyUnode
y , where

0 < αx, αy ≤ 1, and the maximum node contribution to
the utility, Unode

x can be bounded as follows:

TSAV : Unode
x ≤ max

k:n∈Ak

(
Vk

n − V0
n(t)
)

EAV : Unode
x ≤ max

t∈T

∑
n∈Ak

(
Vk

n − V0
n(t)
)

PEAV : Unode
x ≤ max

t∈T

(
Vk

n − V0
n(t)
)
.

Thus, by performing local maximizations, local aggre-
gations andpassups, best-case bounds can be obtained
a priori for all nodes in the tree. This helps convergence
in two ways: (i) the more obvious advantage is that
with better best-case bounds, we effectively begin with
a smaller search space as we eliminate all assignments
with solution quality between the old and new bounds.
(ii) the more subtle advantage is that when ADOPT calls
for each parent to partition its best-case bound among
its children during the dynamics of the search, the chil-
dren are able to respond more quickly to bad partitioning
assignments due to better knowledge of their best-case
bounds which results in more intelligent partitioning.
These effects combine to produce dramatic speedups as
shown in Section 5.

5. Experimental Results

Initial experiments were conducted on random graphs
with a handful of variables. Though they verified that
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Figure 2. Organizational Hierarchies
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Table 1. Meeting Scheduling Scenarios

our heuristics yield great speedups, we endeavored to
test our ideas on two complex real-world domains en-
coded in DiMES. Our work on the CALO project [1] for
developing a state-of-the-art personal assistant agent and
earlier work on sensor networks [7] gave us a solid foun-
dation upon which to create concrete scenarios. To that
end, we systematically developed formal models to gen-
erate test cases in both domains.

In the CALO team setting, we considered a multiple
meeting scheduling problem. CALO’s domain consists
of office settings with organizational hierarchies such as
the ones shown in Figure 2, where three types of meet-
ings need to be scheduled:group (GRP) meetings con-
sisting of a node in the org. chart and all its children,par-
ent to child(PTC) meetings, andsibling (SIB) meetings.
We investigated archetypical scenarios described in Ta-
ble 1. With all meetings taking one time slot, we consid-
ered an eight-time-slot schedule, and randomly gener-
ated valuations for each scenario. Our metric for perfor-
mance was the number of cycles [8], where one cycle is
defined as all agents receiving incoming messages, exe-
cuting local processing, and sending outgoing messages.
The cost of preprocessingpassupis equal to the depth
of the tree in cycles as listed in Table 2. The average
number of cycles after preprocessing to termination for
twenty five EAV tests per scenario and three PEAV tests
per scenario with various heuristics applied are shown
in Figures 3 and 4, respectively. We note that tests with
passupterminated in less than 1000 cycles for EAV cre-
ating miniscule bars in Figure 3.

A second domain that we considered was that of sen-
sor networks, for scenarios where we are given cor-
ridors composed of squares which indicate areas that
need to be observed. Sensors are located at each ver-
tex of a square. Sensors at all vertices of a particular
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Figure 4. PEAV for Meeting Scheduling

square must be focused on that square for it to be con-
sidered observed. Given a set of events (squares to be ob-
served) over some time horizon, the sensors (which can
observe at most one square) must choose which square
they are to observe in order to coordinate observation
of events with the highest rewards. The layouts consid-
ered are shown in Figure 5. In each scenario, the event
set was an observation of every square in the layout for
one time slot. Given an eight-time-slot calendar and ran-
domly generated valuations for twenty five runs of each
scenario, the convergence data under EAV is shown in
Figure 6. Table 2 shows the graph complexity and tree-
depth differences for scenarios with meeting schedul-
ing under EAV (MSE), meeting scheduling under PEAV
(MSP) and sensor networks under EAV (SNE). We note
that under EAV and PEAV, each variable can choose
among eight values (time slots).

CONSTRAINTS

MSE-1 MSE-2 MSE-3 MSE-4 MSP-1 MSP-2 MSP-3 MSP-4 SNE-1 SNE-2 SNE-3 SNE-4

8 10 12 12 16 16 10 16

16 17 17 17 16 17 11 19

5 7 5 6 14 18 22 22 11 10 5 6

5 6 4 5 10 13 12 14 8 8 5 5

VARIABLES

MCN TREE DEPTH

MLSP TREE DEPTH

21

43

25

47

47

122

47

123

Table 2. Graph Complexity and Tree Depths

SCENARIO 1 SCENARIO 2 SCENARIO 3 SCENARIO 4

Figure 5. Scenarios for Sensor Nets Domain
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We encountered two surprises by taking DCOP to real-
world settings: (i) Our expectation that ADOPT “out of
the box” would solve EAV problems within one hun-
dred cycles as it had done for graph coloring problems
with similar numbers of variables and constraints was
shattered when convergence times were on the order
of tens of thousands. This illustrated the existence of
fundamental differences between abstract (graph color-
ing) and concrete (meeting scheduling, sensor network)
problems. (ii) Our heuristics induced dramatic speedups
bringing intractable problems (MSP) into a tractable
space and tractable problems (MSE, SNE) into an ex-
peditious space of hundreds of cycles. This enabled us
to solve the largest known experiment (47 variables, 123
constraints) for complete DCOP.

In comparing formulations, we note that EAV outper-
formed PEAV by approximately one order of magnitude
when usingpassupin meeting scheduling scenarios.
When choosing formulations, a system designer would
weigh the qualitative benefits of PEAV (greater distri-
bution in variable control, less sharing of valuation in-
formation) against its convergence cost w.r.t. EAV. The
inefficiency of the TSAV formulation, which never ter-
minated for the simplest scenario under both heuristics,
is illustrated by an example where two agents attempt
to schedule two meetings in an eight-time-slot calen-
dar. For three runs with randomized valuations, EAV (14
cycles) outperformed PEAV (97 cycles) which outper-
formed TSAV (8450 cycles). This dramatic scale-up in



cycles for TSAV serves to illustrate that choosing a for-
mulation has a great impact on convergence and further-
more, creating an efficient congruent encoding is not a
trivial problem.

In verifying our heuristics, we note depth differences
between MCN and MLSP trees in all but two scenar-
ios where depths were equal. This verifies the effective-
ness of our heuristic for that purpose. Furthermore, we
see that shallower depths generally lead to faster con-
vergence. However, the fact that this is not a dominant
characteristic justifies a polynomial-time preprocessing
cost for likely speedup as opposed to investing in a non-
polynomial-time algorithm to find the absolute shallow-
est tree. Applying thepassupheuristic led to dramatic
improvements with both trees. No PEAV test terminated
within 72000 cycles withoutpassup. In combination,
our heuristics led to speedups of one to two orders of
magnitude. Full details of the experimental results can
be found athttp://teamcore.usc.edu/dcop.

6. Summary and Related Work

This paper addresses DCOP for real-world prob-
lems, specifically two concrete settings: schedul-
ing for teams of personal software assistant agents
[1, 10] and scheduling teams of sensor agents [7, 5].
Our key contributions were (i) designing three formu-
lations that automatically map the DiMES framework
into DCOP that are proven to be optimal, (ii) introduc-
ing two novel heuristics to speedup DCOP algorithms,
based on a new tree ordering technique and a dis-
tributed precomputation of best-case bounds, and (iii)
experimental investigation of the impact of our tech-
niques on systematically developed real-world domains
illustrating speedups of one to two orders of magni-
tude. The main conclusion is that complete algorithms
can indeed be viable options for real-world prob-
lems.

Complete algorithms outside ADOPT include SynchBB
[13] and SynchID [8]. Several incomplete algorithms
have been developed which sacrifice optimality for ef-
ficiency [14]. These algorithms could also be applied
to the formulations presented in this paper. Frameworks
have been developed for job shop scheduling [6, 9]
which incorporate the idea of precedence constraints.
Frameworks for meeting scheduling have been devel-
oped and studied where negotiation [11] and satisfac-
tion [3] were the primary metrics.
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