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LEARNING TO THINK MATHEMATICALLY: 

PROBLEM SOLVING, METACOGNITION, AND  

SENSE-MAKING IN MATHEMATICS 

 

THE SCOPE OF THIS CHAPTER 

The goals of this chapter are (a) to outline and substantiate a broad 
conceptualization of what it means to think mathematically,  (b) to summarize the 
literature relevant to understanding mathematical thinking and problem solving, and (c) 
to point to new directions in research, development and assessment consonant with an 
emerging understanding of mathematical thinking and the goals for instruction outlined 
here.   

The choice of the phrase "learning to think mathematically" in this chapter's title 
is deliberately broad.  Although the original charter for this chapter was to review the 
literature on problem solving and metacognition, those two literatures themselves are 
somewhat ill-defined and poorly grounded.   As the literature summary will make clear, 
problem solving has been used with multiple meanings that range from "working rote 
exercises" to "doing mathematics as a professional;" metacognition has multiple and 
almost disjoint meanings (e.g. knowledge about one's thought processes, self-regulation 
during problem solving) which make it difficult to use as a concept.  The chapter outlines 
the various meanings that have been ascribed to these terms, and discusses their role 
in mathematical thinking.  The discussion will not have the character of a classic 
literature review, which is typically encyclopedic in its references and telegraphic in its 
discussions of individual papers or results.  It will, instead, be selective and illustrative, 
with main points illustrated by extended discussions of pertinent examples.  

Problem solving has, as predicted in the 1980 Yearbook of the National Council 
of Teachers of Mathematics (Krulik, 1980, p. xiv), been the theme of the 1980's.  The 
decade began with NCTM's widely heralded statement, in its Agenda for Action, that 
"problem solving must be the focus of school mathematics" (NCTM, 1980, p.1).  It 
concluded with the publication of Everybody Counts (National Research Council, 1989) 
and the Curriculum and Evaluation Standards for School Mathematics (NCTM,  1989), 
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both of which emphasize problem solving.  One might infer, then,  that there is general 
acceptance of the idea that the primary goal of mathematics instruction should be to 
have students become competent problem solvers.  Yet, given the multiple 
interpretations of the term, the goal is hardly clear.  Equally unclear is the role that 
problem solving, once adequately characterized, should play in the larger context of 
school mathematics.  What are the goals for mathematics instruction, and how does 
problem solving fit within those goals? 

Such questions are complex.  Goals for mathematics instruction depend on one's 
conceptualization of what mathematics is, and what it means to understand 
mathematics.  Such conceptualizations vary widely.  At one end of the spectrum, 
mathematical knowledge is seen as a body of facts and procedures dealing with 
quantities, magnitudes, and forms, and relationships among them; knowing 
mathematics is seen as having "mastered" these facts and procedures.  At the other 
end of the spectrum, mathematics is conceptualized as the "science of patterns," an 
(almost) empirical discipline closely akin to the sciences in its emphasis on pattern-
seeking on the basis of empirical evidence.   

The author's view is that the former perspective trivializes mathematics, that a 
curriculum based on mastering a corpus of mathematical facts and procedures is 
severely impoverished -- in much the same way that an English curriculum would be 
considered impoverished if it focused largely, if not exclusively, on issues of grammar.  
He has, elsewhere, characterized the mathematical enterprise as follows. 

Mathematics is an inherently social activity, in which a community of 
trained practitioners (mathematical scientists) engages in the science of patterns 
— systematic attempts, based on observation, study, and experimentation, to 
determine the nature or principles of regularities in systems defined axiomatically 
or theoretically ("pure mathematics") or models of systems abstracted from real 
world objects ("applied mathematics").  The tools of mathematics are abstraction, 
symbolic representation, and symbolic manipulation.  However, being trained in 
the use of these tools no more means that one thinks mathematically than 
knowing how to use shop tools makes one a craftsman.  Learning to think 
mathematically means (a) developing a mathematical point of view — valuing the 
processes of mathematization and abstraction and having the predilection to 
apply them, and (b) developing competence with the tools of the trade, and using 
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those tools in the service of the goal of understanding structure — mathematical 
sense-making.  (Schoenfeld, forthcoming) 

This notion of mathematics has gained increasing currency as the mathematical 
community has grappled, in recent years, with issues of what it means to know 
mathematics and to be mathematically prepared for an increasingly technological world.  
The following quotation from Everybody Counts typifies the view, echoing themes in the 
NCTM Standards (NCTM, 1989) and Reshaping School Mathematics (National 
Research Council, 1990a). 

Mathematics is a living subject which seeks to understand patterns that 
permeate both the world around us and the mind within us.  Although the 
language of mathematics is based on rules that must be learned, it is important 
for motivation that students move beyond rules to be able to express things in the 
language of mathematics.  This transformation suggests changes both in 
curricular content and instructional style.  It involves renewed effort to focus on: 

• Seeking solutions, not just memorizing procedures; 

• Exploring patterns, not just memorizing formulas; 

• Formulating conjectures, not just doing exercises. 

As teaching begins to reflect these emphases, students will have 
opportunities to study mathematics as an exploratory, dynamic, evolving 
discipline rather than as a rigid, absolute, closed body of laws to be memorized.  
They will be encouraged to see mathematics as a science, not as a canon, and 
to recognize that mathematics is really about patterns and not merely about 
numbers. (National Research Council, 1989, p. 84)  

From this perspective, learning mathematics is empowering.  Mathematically 
powerful students are quantitatively literate.  They are capable of interpreting the vast 
amounts of  quantitative data they encounter on a daily basis, and of making balanced 
judgments on the basis of those interpretations.  They use mathematics in practical 
ways, from simple applications such as using proportional reasoning for recipes or scale 
models, to complex budget projections, statistical analyses, and computer modeling.  
They are flexible thinkers with a broad repertoire of techniques and perspectives for 
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dealing with novel problems and situations.  They are analytical, both in thinking issues 
through themselves and in examining the arguments put forth by others.   

This chapter is divided into three main parts, the first two of which constitute the 
bulk of the review.  Part I, "Toward an understanding of mathematical thinking," is 
largely historical and theoretical, having as its goals the clarification of terms like 
problem, problem solving, and doing mathematics.  It begins with "Immediate 
Background: Curricular trends in the latter 20th Century," a brief recapitulation of the 
curricular trends and social imperatives that produced the 1980's focus on problem 
solving as the major goal of mathematics instruction.  The next section,  "On problems 
and problem solving: Conflicting definitions," explores contrasting ways in which the 
terms problem and problem solving have been used in the literature, and the 
contradictions that have resulted from the multiple definitions and the epistemological 
stances underlying them.  "Enculturation and cognition" outlines recent findings 
suggesting the large role of cultural factors in the development of individual 
understanding.  "Epistemology, ontology, and pedagogy intertwined" describes current 
explorations into the nature of mathematical thinking and knowing, and the implications 
of these explorations for mathematical instruction.  Part I concludes with "Goals for 
instruction, and a pedagogical imperative." 

Part II, "A framework for understanding mathematical cognition," provides more 
of a classical empirical literature review.  "The framework" briefly describes an 
overarching structure for the examination of mathematical thinking that has evolved over 
the past decade.  It will be argued that all of these categories -- core knowledge, 
problem solving strategies, effective use of one's resources, having a mathematical 
perspective, and engagement in mathematical practices -- are fundamental aspects of 
thinking mathematically.  The sections that follow elaborate on empirical research within 
the categories of the framework.  "Resources" describes our current understanding of 
cognitive structures: the constructive nature of cognition, cognitive architecture, 
memory, and access to it.  "Heuristics" describes the literature on mathematical problem 
solving strategies.  "Monitoring and control" describes research related to the aspect of 
metacognition known as self-regulation.  "Beliefs and affects" considers individuals' 
relationships to the mathematical situations they find themselves in, and the effects of 
individual perspectives on mathematical behavior and performance.  Finally, "Practices" 
focuses on the practical side of the issue of socialization discussed in Part I, describing 
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instructional attempts to foster mathematical thinking by creating microcosms of 
mathematical practice. 

Part III, "Issues," raises some practical and theoretical points of concern as it 
looks to the future.  It begins with a discussion of issues and terms that need 
clarification, and of the need for an understanding of methodological tools for inquiry into 
problem solving.  It continues with a discussion of unresolved issues in each of the 
categories of the framework discussed in Part II, and concludes with a brief commentary 
on important issues in program design, implementation, and assessment.  The 
specification of new goals for mathematics instruction consonant with current 
understandings of what it means to think mathematically carries with it an obligation to 
specify assessment techniques -- means of determining whether students are achieving 
those goals.  Some preliminary steps in those directions are considered. 
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PART I 

TOWARD AN UNDERSTANDING OF "MATHEMATICAL THINKING" 

Immediate Background: Curricular trends in the latter 20th Century 

The American mathematics education enterprise is now undergoing extensive  
scrutiny, with an eye toward reform.  The reasons for the re-examination, and for a 
major overhaul of the current mathematics instruction system, are many and deep.   
Among them are the following. 

• Poor American showings on international comparisons of student competence.  
On objective tests of mathematical "basics" U.S. students score consistently 
near the bottom, often grouped with third world countries (International 
Association for the Evaluation of Educational Achievement, 1987; National 
Commission on Excellence in Education, 1983).  Moreover, the mathematics 
education infrastructure in the U.S. differs substantially from those of its Asian 
counterparts whose students score at the top.  Asian students take more 
mathematics, and have to meet much higher standards both at school and at 
home (Stevenson, Lee & Stigler, 1986). 

• Mathematics dropout rates.  From grade 8 on, America loses roughly half of the 
student pool taking mathematics courses.  Of the 3.6 million ninth graders 
taking mathematics in 1972, for example, fewer than 300,000 survived to take a 
college freshman mathematics class in 1976; 11,000 earned bachelors degrees 
in 1980, 2700 earned masters degrees in 1982, and only 400 earned 
doctorates in mathematics by 1986.   (National Research council, 1989; 
National Research Council, 1990a.) 

• Equity issues.  Of those who drop out of mathematics, there is a 
disproportionately high percentage of women and minorities.  The effect, in our 
increasingly technological society, is that women and minorities are 
disproportionately blocked access to lucrative and productive careers (National 
Research Council, 1989, 1990b; National Center of Educational Statistics, 
1988a). 
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• Demographics.  "Currently, 8 percent of the labor force consists of scientists or 
engineers; the overwhelming majority are White males.  But by the end of the 
century, only 15 percent of the net new labor force will be While males.  
Changing demographics have raised the stake for all Americans" (National 
Research Council, 1989, p. 19).  The educational and technological 
requirements for the work force are increasing, while prospects for more 
students in mathematics-based areas are not good (National Center of 
Educational Statistics, 1988b). 

The 1980's, of course, are not the first time that the American mathematics 
enterprise has been declared "in crisis."  A major renewal of mathematics and science 
curricula in the United States was precipitated on October 4, 1957 by the Soviet Union's 
successful launch of the space satellite Sputnik.  In response to fears of impending 
Soviet technological and military supremacy, scientists and mathematicians became 
heavily involved in the creation of new educational materials, often referred to 
collectively as the alphabet curricula (e.g. SMSG in mathematics, BSCS in biology, 
PSSC in physics).  In mathematics, the new math flourished briefly in the 1960's, and 
then came to be perceived of as a failure.  The general perception was that students 
had not only failed to master the abstract ideas they were being asked to grapple with in 
the new math, but that in addition they had failed to master the basic skills that the 
generations of students who preceded them in the schools had managed to learn 
successfully.  In a dramatic pendulum swing, the new math was replaced by the back to 
basics movement.  The idea, simply put, was that the fancy theoretical notions 
underlying the new math had not worked, and that we as a nation should make sure that 
our students had mastered the basics -- the foundation upon which higher order thinking 
skills were to rest.   

By the tail end of the 1970's it became clear that the back to basics movement 
was a failure.  A decade of curricula that focused on rote mechanical skills produced a 
generation of students who, for lack of exposure and experience, performed dismally on 
measures of thinking and problem solving.  Even more disturbing, they were no better at 
the basics than the students who had studied the alphabet curricula.  The pendulum 
began to swing in the opposite direction, toward "problem solving."  The first major call 
in that direction was issued by the National Council of Supervisors of Mathematics in 
1977.  It was followed by the National Council of Teachers of Mathematics' (1980) 
Agenda for Action, which had as its first recommendation that "problem solving be the 
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focus of school mathematics."  Just as back to basics was declared to be the theme of 
the 1970's, problem solving was declared to be the theme of the 1980's (See, e.g., 
Krulik, 1980).  Here is one simple measure of the turn-around.  In the 1978 draft 
program for the 1980 International Congress on Mathematics Education (ICME IV, 
Berkeley, California, 1980: see Zweng, Green, Kilpatrick, Pollak, & Suydam, 1983), only 
one session on problem solving was planned, and it was listed under "unusual aspects 
of the curriculum."  Four years later, problem solving was one of the seven main themes 
of the next International Congress (ICME V, Adelaide, Australia: See Burkhardt, Groves, 
Schoenfeld, & Stacey, 1988; Carss, 1986).  Similarly, "metacognition" was coined in the 
late 1970's, appeared occasionally in the mathematics education literature of the early 
1980's, and then with ever-increasing frequency through the decade.  Problem solving 
and metacognition, the lead terms in this article's title, are perhaps the two most 
overworked -- and least understood -- buzz words of the 1980's. 

This chapter suggests that, on the one hand, much of what passed under the 
name of problem solving during the 1980's has been superficial, and that were it not for 
the current "crisis," a reverse pendulum swing might well be on its way.  On the other 
hand, it documents that we now know much more about mathematical thinking, 
learning, and problem solving than during the immediate post-Sputnik years, and that a 
reconceptualization both of problem solving and of mathematics curricula that do justice 
to it is now possible.  Such a reconceptualization will in large part be based in part on 
advances made in the past decade: detailed understandings of the nature of thinking 
and learning, of problem solving strategies and metacognition; evolving conceptions of 
mathematics as the "science of patterns" and of doing mathematics as an act of sense-
making; and of cognitive apprenticeship and "cultures of learning." 

On problems and problem solving: Conflicting definitions 

In a historical review focusing on the role of problem solving in the mathematics 
curriculum, Stanic and Kilpatrick (1989, page 1) provide the following brief summary: 

Problems have occupied a central place in the school mathematics 
curriculum since antiquity, but problem solving has not.  Only recently have 
mathematics educators accepted the idea that the development of problem 
solving ability deserves special attention.  With this focus on problem solving has 
come confusion.  The term problem solving has become a slogan encompassing 
different views of what education is, of what schooling is, of what mathematics is, 
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and of why we should teach mathematics in general and problem solving in 
particular. 

Indeed, "problems" and "problem solving" have had multiple and often 
contradictory meanings through the years -- a fact that makes interpretation of the 
literature difficult.  For example, a 1983 survey of college mathematics departments 
(Schoenfeld, 1983) revealed the following categories of goals for courses that were 
identified by respondents as "problem solving" courses: 

• to train students to "think creatively" and/or "develop their problem solving 
ability" (usually with a focus on heuristic strategies); 

• to prepare students for problem competitions such as the Putnam examinations 
or national or international Olympiads; 

• to provide potential teachers with instruction in a narrow band of heuristic 
strategies; 

• to learn standard techniques in particular domains, most frequently in 
mathematical modeling; 

• to provide a new approach to remedial mathematics (basic skills) or to try to 
induce "critical thinking" or analytical reasoning" skills. 

The two poles of meaning indicated in the survey are nicely illustrated in two of 
Webster's 1979, p. 1434) definitions for the term "problem:" 

Definition 1: "In mathematics, anything required to be done, or requiring the doing 
of something." 

Definition 2: "A question... that is perplexing or difficult." 

Problems as routine exercises  

Webster's Definition 1, cited immediately above, captures the sense of the term 
problem as it has traditionally been used in mathematics instruction.  For nearly as long 
as we have written records of mathematics, sets of mathematics tasks have been with 
us -- as vehicles of instruction, as means of practice, and as yardsticks for the 
acquisition of mathematical skills.  Often such collections of tasks are anything but 
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problems in the sense of the second definition.  They are, rather, routine exercises 
organized to provide practice on a particular mathematical technique that, typically, has 
just been demonstrated to the student.  We begin this section with a detailed 
examination of such problems, focusing on their nature, the assumptions underlying 
their structure and presentation, and the consequences of instruction based largely, if 
not exclusively, in such problem sets.  That discussion sets the context for a possible 
alternative view. 

A generic example of a mathematics problem set, with antecedents that Stanic 
and Kilpatrick trace to antiquity, is the following excerpt from a late 19th century text, W. 
J. Milne's (1897) A Mental Arithmetic.  The reader may wish to obtain an answer to 
problem 52 by virtue of mental arithmetic before reading the solution Milne provides. 

FRACTIONS 

52. How much will it cost to plow 32 acres of land at $3.75 per acre? 

SOLUTION: -- $3.75 is 3/8 of $10.  At $10 per acre the plowing would cost 
$320, but since $3.75 is 3/8 of $10, it will cost 3/8 of $320, which is $120. 
Therefore, etc. 

53. How much will 72 sheep cost at $6.25 per head? 

54. A baker bought 88 barrels of flour at $3.75 per barrel.  How much did it 
all cost? 

55. How much will 18 cords of wood cost at $6.662/3 per cord? 

[These exercises continue down the page and beyond.] 

(Milne, 1897, page 7; cited in Kilpatrick & Stanic) 

The particular technique students are intended to learn from this body of text is 
illustrated in the solution of problem 52.  In all of the exercises, the student is asked to 
find the product (A x B), where A is given as a two-digit decimal that corresponds to a 
price in dollars and cents.  The decimal values have been chosen so that a simple ratio 
is implicit in the decimal form of A.  That is, A = r x C, where r is a simple fraction and C 
is a power of 10.  Hence (A x B) can be computed as r x (C x B).  Thus, working from 
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the template provided in the solution to problem 52, the student is expected to solve 
problem 53 as follows: 

(6.25 x 72) = ([5/8 x 10] x 72) = (5/8 x [10 x 72]) = (5/8 x 720) = 5 x 90 = 450. 

The student can obtain the solutions to all of the problems in this section of the text by 
applying this algorithm.  When the conditions of the problem are changed ever so 
slightly (e.g. in problems 52 to 60 the number C is 10, but in problem 61 it changes from 
10 to 100), students are given a "suggestion" to help extend the procedure they have 
learned: 

61.  The porter on a sleeping car was paid $37.50 per month for 16 
months.  How much did he earn? 

 SUGGESTION: -- $37.50 is 3/8 of $100. 

Later in this section we will examine, in detail, the assumptions underlying the 
structure of this problem set, and the effects on students of repeated exposure to such 
problem sets.  For now, we simply note the general structure of the section and the 
basic pedagogical and epistemological assumption underlying its design.   

Structure:  

(a) A task is used to introduce a technique;  

(b) The technique is illustrated; 

(c) More tasks are provided so that the student may practice the illustrated skills.  

Basic Assumption:  

At the end of having worked this cluster of exercises, the students will have a 
new technique in their mathematical tool kit.  Presumably, the sum total of such 
techniques (the curriculum) reflects the corpus of mathematics the student is 
expected to master; the set of techniques the student has mastered comprises 
the student's mathematical knowledge and understanding. 

Traditional Uses of "Problem Solving" (in the sense of tasks required to be 
done): Means to a focused end. 
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In their historical review of problem solving, Stanic and Kilpatrick (1989) identify 
three main themes regarding its usage.  In the first theme, which they call "problem 
solving as context," problems are employed as vehicles in the service of other curricular 
goals.  They identify five such roles that problems play: 

1. As a justification for teaching mathematics. "Historically, problem solving has 
been included in the mathematics curriculum in part because the problems provide 
justification for teaching mathematics at all. Presumably, at  least some problems 
related in some way to real-world experiences were included in the curriculum to 
convince students and teachers of the value of mathematics." (p. 13) 

2. To provide specific motivation for subject topics.  Problems are often used to 
introduce topics with the implicit or explicit understanding that "when you have learned 
the lesson that follows, you will be able to solve problems of this sort."  

3. As recreation.  Recreational problems are intended to be motivational, in a 
broader sense than in (2).  They show that "math can be fun" and that there are 
entertaining uses of the skills students have mastered. 

4. As a means of developing new skills.  Carefully sequenced problems can 
introduce students to new subject matter, and provide a context for discussions of 
subject matter techniques. 

5. As practice.  Milne's exercises, and the vast majority of school mathematics 
tasks, fall into this category.  Students are shown a technique, and then given problems 
to practice on, until they have mastered the technique. 

In all five of these roles, problems are seen as rather prosaic entities (recall 
Webster's definition 1) and are used as a means to one of the ends listed above.  That 
is, problem solving is not usually seen as a goal in itself, but solving problems is seen 
as facilitating the achievement of other goals.  "Problem solving" has a minimal 
interpretation: working the tasks that have been set before you. 

The second theme identified by Stanic and Kilpatrick (1989) is "problem solving 
as skill."  This theme has its roots in a reaction to Thorndike's work (e.g. Thorndike & 
Woodworth, 1901).  Thorndike's research debunked the simple notion of "mental 
exercise," in which it was assumed that learning reasoning skills in domains such as 
mathematics would result in generally improved reasoning performance in other 
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domains.  Hence if mathematical problem solving was to be important, it was not 
because it made one a better problem solver in general, but because solving 
mathematical problems was valuable in its own right.  This led to the notion of problem 
solving as skill -- a skill still rather narrowly defined (that is, being able to obtain 
solutions to the problems other people give you to solve), but worthy of instruction in its 
own right.  Though there might be some dispute on the matter, this author's perspective 
is that the vast majority of curricular development and implementation that went on 
under the name of "problem solving" in the 1980's was of this type. 

Problem solving is often seen as one of a number of skills to be taught in 
the school curriculum.  According to this view, problem solving is not necessarily 
seen as a unitary skill, but there is a clear skill orientation.... 

Putting problem solving in a hierarchy of skills to be acquired by students 
leads to certain consequences for the role of problem solving in the curriculum.... 
[D]istinctions are made between solving routine and nonroutine problems.  That 
is, nonroutine problem solving is characterized as a higher level skill to be 
acquired after skill at solving routine problems (which, in turn, is to be acquired 
after students learn basic mathematical concepts and skills).   (Stanic and 
Kilpatrick,1989, p. 15)  

It is important to note that, even though in this second interpretation problem 
solving is seen as a skill in its own right, the basic underlying pedagogical and 
epistemological assumptions in this theme are precisely the same as those outlined for 
Milne's examples in the discussion above.  Typically problem solving techniques (i.e. 
drawing diagrams, looking for patterns when n = 1,2,3,4,...) are taught as subject 
matter, with practice problems so that the techniques can be mastered. After receiving 
this kind of problem solving instruction (often a separate part of the curriculum), the 
students' "mathematical tool kit" is presumed to contain "problem solving skills" as well 
as the facts and procedures they have studied.  This expanded body of knowledge 
presumably comprises the students' mathematical knowledge and understanding. 

The third theme identified by Stanic and Kilpatrick (1989) is "problem solving as 
art."  This view, in strong contrast to the previous two, holds that real problem solving 
(that is, working problems of the "perplexing" kind) is the heart of mathematics, if not 
mathematics itself.  We now turn to that view, as expressed by some notable 
mathematicians and philosophers.  
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On problems that are problematic: Mathematicians' perspectives. 

As noted earlier, mathematicians are hardly unanimous in their conceptions of 
problem solving.  Courses in problem solving at the university level have goals that 
range from "remediation" and "critical thinking" to "developing creativity."  Nonetheless, 
there is a particularly mathematical point of view regarding the role that problems have 
in the lives of those who do mathematics. 

The unifying theme is that the work of mathematicians, on an ongoing basis, is 
solving problems -- problems of the "perplexing or difficult" kind, that is.  Halmos makes 
the claim simply.  As the title of his (1980) article announces, solving problems is "the 
heart of mathematics."   

What does mathematics really consist of? Axioms (such as the parallel 
postulate)? Theorems (such as the fundamental theorem of algebra)?  Proofs 
(such as Gödel's proof of undecidability)? Definitions (such as the Menger 
definition of dimension)? Theories (such as category theory)?  Formulas (such as 
Cauchy's integral formula)? Methods (such as the method of successive 
approximations)? 

Mathematics could surely not exist without these ingredients; they are all 
essential.  It is nevertheless a tenable point of view that none of them is at the 
heart of the subject, that the mathematician's main reason for existence is to 
solve problems, and that, therefore, what mathematics really consists of is 
problems and solutions. (Halmos, 1980, p. 519) 

Some famous mathematical problems are named as such, e.g. the "four color 
problem" (which when solved, became the four color theorem).  Others go under the 
name of hypothesis (e.g. the Riemann hypothesis) or conjecture (Goldbach's 
conjecture, that every even number greater than 2 can be written as the sum of two odd 
primes).  Some problems are motivated by practical or theoretical concerns oriented in 
the real world (applied problems), others by abstract concerns (e.g. what is the 
distribution of "twin primes?").  The ones mentioned above are the "big" problems, 
which have been unsolved for decades and whose solution earns the solvers significant 
notice.  But they differ only in scale from the problems encountered in the day-to-day 
activity of mathematicians. Whether pure or applied, the challenges that ultimately 
advance our understanding take weeks, months, and often years to solve.  This being 
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the case, Halmos argues, students' mathematical experiences should prepare them for 
tackling such challenges.  That is, students should engage in "real" problem solving, 
learning during their academic careers to work problems of significant difficulty and 
complexity.  

I do believe that problems are the heart of mathematics, and I hope that as 
teachers, in the classroom, in seminars, and in the books and articles we write, 
we will emphasize them more and more, and that we will train our students to be 
better problem-posers and problem solvers than we are. (Halmos, 1980, p. 524) 

The mathematician best known for his conceptualization of mathematics as 
problem solving, and for his work in making problem solving the focus of mathematics 
instruction, is Pólya.  Indeed, the edifice of problem solving work erected in the past two 
decades stands largely on the foundations of his work.  The mathematics education 
community is most familiar with Pólya's work through his (1945/1957) introductory 
volume How to solve it, in which he introduced the term "modern heuristic" to describe 
the art of problem solving, and his subsequent elaborations on the theme in the two 
volume sets Mathematics and plausible reasoning (1954) and Mathematical discovery 
(1962, 1965/1981).  In fact, Pólya's work on problem solving and "method" was 
apparent as early as the publication of his and Szegö's (1925) Problems and theorems 
in analysis.  In this section we focus on the broad mathematical and philosophical 
themes woven through Pólya's work on problem solving.  Details regarding the 
implementation of heuristic strategies are pursued in the research review. 

It is essential to understand Pólya's conception of mathematics as an activity.  As 
early as the 1920's, Pólya had an interest in mathematical heuristics, and he and Szegö 
included some heuristics (in the form of aphorisms) as suggestions for guiding students' 
work through the difficult problem sets in their (1925)  Aufgaben und Lehrsätze aus der 
Analysis I.  Yet the role of mathematical engagement -- of "hands on" mathematics, if 
you will -- was central in Pólya's view. 

General rules which could prescribe in detail the most useful discipline of 
thought are not known to us.  Even if such rules could be formulated, they could 
not be very useful... [for] one must have them assimilated into one's flesh and 
blood and ready for instant use.... The independent solving of challenging 
problems will aid the reader far more than the aphorisms which follow, although 
as a start these can do him no harm. ( Pólya and Szegö, 1925, preface, p. vii.) 
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Part of that engagement, according to Pólya, was the active engagement of 
discovery, one which takes place in large measure by guessing.  Eschewing the notion 
of mathematics as a formal and formalistic deductive discipline, Pólya argued that 
mathematics is akin to the physical sciences in its dependence on guessing, insight, 
and discovery.  

To a mathematician, who is active in research, mathematics may appear 
sometimes as a guessing game; you have to guess a mathematical theorem 
before you prove it, you have to guess the idea of the proof before you carry 
through all the details.  

To a philosopher with a somewhat open mind all intelligent acquisition of 
knowledge should appear sometimes as a guessing game, I think.  In science as 
in everyday life, when faced with a new situation, we start out with some guess.  
Our first guess may fall short of the mark, but we try it and, according to the 
degree of success, we modify it more or less.  Eventually, after several trials and 
several modifications, pushed by observations and led by analogy, we may arrive 
at a more satisfactory guess.  The layman does not find it surprising that the 
naturalist works this way.... And the layman is not surprised to hear that the 
naturalist is guessing like himself.  It may appear a little more surprising to the 
layman that the mathematician is also guessing.  The result of the 
mathematician's creative work is demonstrative reasoning, a proof, but the proof 
is discovered by plausible reasoning, by guessing.... 

Mathematical facts are first guessed and then proved, and almost every 
passage in this book endeavors to show that such is the normal procedure.  If the 
learning of mathematics has anything to do with the discovery of mathematics, 
the student must be given some opportunity to do problems in which he first 
guesses and then proves some mathematical fact on an appropriate level.  

(G. Pólya, Patterns of Plausible inference, pp. 158-160) 

For Pólya, mathematical epistemology and mathematical pedagogy are deeply 
intertwined.  Pólya takes it as given that for students to gain a sense of the 
mathematical enterprise, their experience with mathematics must be consistent with the 
way mathematics is done.  The linkage of epistemology and pedagogy is, as well, the 
major theme of this chapter.  The next section of this chapter elaborates a particular 
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view of mathematical thinking, discussing mathematics as an act of sense-making, 
socially constructed and socially transmitted.  It argues that students develop their 
sense of mathematics -- and thus how they use mathematics -- from their experiences 
with mathematics (largely in the classroom).  It follows that classroom mathematics 
must mirror this sense of mathematics as a sense-making activity, if students are to 
come to understand and use mathematics in meaningful ways.  

Enculturation and Cognition 

An emerging body of literature (see, e.g., Bauersfeld, 1979; Brown, Collins, & 
Duguid, 1989; Collins, Brown, and Newman, 1989; Lampert, in press; Lave, 1988; Lave, 
Smith, & Butler, 1989; Greeno, 1989; Resnick, 1989; Rogoff & Lave, 1984; Schoenfeld, 
1989a, in press; see especially Carraher's chapter XXX in this volume) conceives of 
mathematics learning as an inherently social (as well as cognitive) activity, an 
essentially constructive activity instead of an absorbtive one.   

By the mid-1980's, the constructivist perspective -- with roots in Piaget's work 
(e.g. Piaget, 1954), and with contemporary research manifestations such as the 
misconceptions literature (Brown & Burton, 1978; diSessa, 1983; Novak, 1987) -- was 
widely accepted in the research community as being well grounded.  Romberg and 
Carpenter (1986) stated the fact bluntly: "The research shows that learning proceeds 
through construction, not absorption" (p. 868).  The constructivist perspective pervades 
this Handbook as well: see, e.g., chapters XXX, XXX, XXX, and XXX.  However, the 
work cited in the previous paragraph extends the notion of constructivism from the 
"purely cognitive" sphere, where much of the research has been done, to the social 
sphere.  As such, it blends with some theoretical notions from the social literature.  
Resnick, tracing contemporary work to antecedents in the work of George Herbert Mead 
(1934) and Lev Vygotsky (1978), states the case as follows.  

Several lines of cognitive theory and research point toward the hypothesis 
that we develop habits and skills of interpretation and meaning construction 
though a process more usefully conceived of as socialization than instruction.   
(Resnick, 1989, p. 39) 

The notion of socialization as identified by Resnick [or, as we shall prefer to call 
it, enculturation -- entering and picking up the values of a community or culture] is 
central, in that it highlights the importance of perspective and point of view as core 
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aspects of knowledge.  The case can be made that a fundamental component of 
thinking mathematically is having a mathematical point of view -- seeing the world in 
ways like mathematicians do.   

[T]he reconceptualization of thinking and learning that is emerging from 
the body of recent work on the nature of cognition suggests that becoming a 
good mathematical problem solver -- becoming a good thinker in any domain -- 
may be as much a matter of acquiring the habits and dispositions of interpretation 
and sense-making as of acquiring any particular set of skills, strategies, or 
knowledge.  If this is so, we may do well to conceive of mathematics education 
less as an instructional process (in the traditional sense of teaching specific, well-
defined skills or items of knowledge), than as a socialization process.  In this 
conception, people develop points of view and behavior patterns associated with 
gender roles, ethnic and familial cultures, and other socially defined traits.  When 
we describe the processes by which children are socialized into these patterns of 
thought, affect, and action, we describe long-term patterns of interaction and 
engagement in a social environment.  (Resnick, 1989, p. 58) 

This "cultural" perspective is well grounded anthropologically, but it is relatively 
new to the mathematics education literature.  The main point, that point of view is a 
fundamental determinant of cognition, and that the community to which one belongs 
shapes the development of one's point of view, is made eloquently by Clifford Geertz. 

Consider... Evans-Pritchard's famous discussion of Azande witchcraft.  He 
is, as he explicitly says but no one seems much to have noticed, concerned with 
common-sense thought -- Zande common-sense thought -- as the general 
background against which the notion of witchcraft is developed.... 

Take a Zande boy, he says, who has stubbed his foot on a tree stump and 
developed an infection.  Tho boy says it's witchcraft.  Nonsense, says Evans-
Pritchard, out of his own common-sense tradition: you were merely bloody 
careless; you should have looked where you were going.  I did look where I was 
going; you have to with so many stumps about, says the boy -- and if I hadn't 
been witched I would have seen it.  Furthermore, all cuts do not take days to 
heal, but on the contrary, close quickly, for that is the nature of cuts.  But this one 
festered, thus witchcraft must be involved. 



Learning to think mathematically, Page 20 

Or take a Zande potter, a very skilled one, who, when now and again one 
of his pots cracks in the making, cries "witchcraft!"  Nonsense! says Evans-
Pritchard, who, like all good ethnographers, seems never to learn: of course 
sometimes pots crack in the making; it's the way of the world.  But, says the 
potter, I chose the clay carefully, I took pains to remove all the pebbles and dirt, I 
built up the clay slowly and with care, and I abstained from sexual intercourse the 
night before.  And still it broke.  What else can it be but witchcraft? (Geertz, 1985, 
p. 78) 

Geertz's point is that Evans-Pritchard and the African tribesmen agree on the 
"data" (the incidents they are trying to explain), but that their interpretations of what the 
incidents mean are radically different.  Each person's interpretation is derived from his 
own culture, and seems common-sensical.  The anthropologist in the West, and the 
Africans on their home turf, have each developed points of view consonant with the 
mainstream perspectives of their societies.  And, those culturally determined (socially 
mediated) views determine what sense they make of what they see. 

The same, it is argued, is true of members of "communities of practice," groups 
of people engaged in common endeavors within their own culture.  Three such groups 
include the community of tailors in "Tailors' Alley" in Monrovia, Liberia, studied by Jean 
Lave (in preparation), the community of practicing mathematicians, and the community 
that spends its daytime hours in schools.  In each case, the "habits and dispositions" 
(see the quotation from Resnick, above) of community members are culturally defined, 
and have great weight in shaping individual behavior.  We discuss the first two here, the 
third in the next section.  First, Lave's study (which largely inspired the work on cognitive 
apprenticeship discussed below) examined the apprenticeship system by which 
Monrovian tailors learn their skills.  Schoenfeld summarized Lave's perspective on what 
"learning to be a tailor" means, as follows. 

Being a tailor is more than having a set of tailoring skills.  It includes a way 
of thinking, a way of seeing, and having a set of values and perspectives.  In 
Tailors' Alley, learning the curriculum of tailoring and learning to be a tailor are 
inseparable: the learning takes place in the context of doing real tailors' work, in 
the community of tailors.  Apprentices are surrounded by journeymen and master 
tailors, from whom they learn their skills -- and among whom they live, picking up 
their values and perspectives as well.  These values and perspectives are not 
part of the formal curriculum of tailoring, but they are a central defining feature of 
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the environment, and of what the apprentices learn. The apprentice tailors are 
apprenticing themselves into a community, and when they have succeeded in 
doing so, they have adopted a point of view as well as a set of skills -- both of 
which define them as tailors.  [If this notion seems a bit farfetched, think of 
groups of people such as lawyers, doctors, automobile salesmen, or university 
professors in our own society.  That there are political (and other) stereotypes of 
these groups indicates that there is more to membership in any of these 
communities than simply possessing the relevant credentials or skills.]  
(Schoenfeld, 1989c, pp. 85-86) 

 Second, there is what might be called "seeing the world through the lens of the 
mathematician."  As illustrations, here are two comments made by the applied 
mathematician Henry Pollak. 

How many saguarro cacti more than 6 feet high are in the state of 
Arizona?  I read that the saguarro is an endangered species.  Developers tear 
them down when they put up new condominiums.  So when I visited Arizona 2 or 
3 years ago I decided to try an estimate.  I came up with 108.  Let me tell you 
how I arrived at that answer.  In the areas where they appear, saguarros seem to 
be fairly regularly spaced, approximately 50 feet apart.  That approximation gave 
me 102 to a linear mile, which implied 104 in each square mile.  The region where 
the saguarros grow is at least 50 by 200 miles.  I therefore multiplied 104 x 104 to 
arrive at my final answer.  I asked a group of teachers in Arizona for their 
estimate, and they were at a loss as to how to begin. (Pollak, 1987, pp. 260-261) 

If you go into a supermarket, you will typically see a number of checkout 
counters, one of which is labeled "Express Lane" for x packages or fewer.  If you 
make observations on x, you'll find it varies a good deal.  In my home town, the 
A&P allow 6 items; the Shop-Rite, 8; and Kings, 10.  I've seen numbers vary from 
5 to 15 across the country.  If the numbers vary that much, then we obviously 
don't understand what the correct number should be.  How many packages 
should be allowed in an express line?   (Pollak, 1987, pp. 260-261) 

Both of these excerpts exemplify the habits and dispositions of the 
mathematician.  Hearing that the saguarro is endangered, Pollak almost reflexively asks 
how many saguarro there might be; he then works out a crude estimate on the basis of 
available data.  This predilection to quantify and model is certainly a part of the 
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mathematical disposition, and is not typical of those outside mathematically oriented 
communities.  (Indeed, Pollak notes that neither the question nor the mathematical tools 
to deal with it seemed natural to the teachers he discussed it with.)  That disposition is 
even clearer in the second example, thanks to Pollak's language.  Note that Pollak 
perceives of the supermarket as a mathematical context -- again, hardly a typical 
perspective.  For most people, the number of items allowed in the express line is simply 
a matter of the supermarket's prerogative.  For Pollak, the number is a variable, and the 
task of determining the "right" value of that variable is an optimization problem.  The 
habit of seeing phenomena in mathematical terms is also part of the mathematical 
disposition. 

In short, Pollak sees the world from a mathematical point of view.  Situations that 
others might not attend to at all serve for him as the contexts for interesting 
mathematical problems.  The issues he raises in what to most people would be non-
mathematical contexts -- supermarket check-out lines and desert fields -- are inherently 
mathematical in character.  His language ("for x packages or fewer") is that of the 
mathematician, and his approaches to conceptualizing the problems (optimization for 
the supermarket problem, estimation regarding the number of cactus) employ typical 
patterns of mathematical reasoning.   There are, of course, multiple mathematical points 
of view.  For a charming and lucid elaboration of many of these, see Davis & Hersh 
(1981). 

Epistemology, Ontology, and Pedagogy Intertwined  

In short, the point of the literature discussed in the previous section is that 
learning is culturally shaped and defined: people develop their understandings of any 
enterprise from their participation in the "community of practice" within which that 
enterprise is practiced.  The "lessons" students learn about mathematics in our current 
classrooms are broadly cultural, extending far beyond the scope of the mathematical 
facts and procedures (the explicit curriculum) that they study.  As Hoffman (1989) points 
out, this understanding gives added importance to a discussion of epistemological 
issues.   Whether or not one is explicit about one's epistemological stance, he observes, 
what one thinks mathematics is will shape the kinds of mathematical environments one 
creates -- and thus the kinds of mathematical understandings that one's students will 
develop. 
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Here we pursue the epistemological-to-pedagogocal link in two ways.  First, we 
perform a detailed exegesis of the selection of "mental arithmetic" exercises from Milne 
(1897), elaborating the assumptions that underlie it, and the consequences of curricula 
based on such assumptions.  That exegesis is not derived from the literature, although it 
is consistent with it.  The author's intention in performing the analysis to help establish 
the context for the literature review, particularly the sections on beliefs and context.  
Second, we examine some issues in mathematical epistemology and ontology.  As 
Hoffman observes, it is important to understand what doing mathematics is, if one 
hopes to establish classroom practices that will help students develop the right 
mathematical point of view.  The epistemological explorations in this section establish 
the basis for the pedagogical suggestions that follow later in the chapter. 

On problems as practice: An exegesis of Milne's problem set 

The selection of exercises from Milne's Mental Arithmetic introduced earlier in 
this chapter has the virtue that it is both antiquated and modern: One can examine it "at 
a distance" because of its age, but one will also find its counterparts in almost every 
classroom around the country.  We shall examine it at length.   

Recall the first problem posed by Milne: "How much will it cost to plow 32 acres 
of land at $3.75 per acre?"  His solution was to convert $3.75 into a fraction of $10, as 
follows.  "$3.75 is 3/8 of $10.  At $10 per acre the plowing would cost $320, but since 
$3.75 is 3/8 of $10, it will cost 3/8 of $320, which is $120."  This solution method was 
then intended to be applied to all of the problems that followed.  

It is perfectly reasonable, and useful, to devote instructional time to the technique 
Milne illustrates.  The technique is plausible from a practical point of view, in that there 
might well be circumstances where a student could most easily do computations of the 
type demonstrated.  It is also quite reasonable from a mathematical point of view.  Being 
able to perceive A x B as (r x C) x B = r x (BC) when the latter is easier to compute, and 
carrying out the computation, is a sign that one has developed some understanding of 
fractions and of multiplicative structures; one would hope that students would develop 
such understandings in their mathematics instruction.  The critique that follows is not 
based in an objection to the potential value or utility of the mathematics Milne presents, 
but in the ways in which the topic is treated. 
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Issue 1: Face validity.  At first glance the technique illustrated in problem 52 
seems useful and the solutions to the subsequent problems appear appropriate.  As 
noted above, one hopes that students will have enough "number sense" to be able to 
compute 32 x $3.75 in the absence of paper and pencil.  However, there is the serious 
question as to whether one would really expect students to work the problems the way 
Milne suggests.  In a quick survey as this chapter was being written, the author asked 
four colleagues to solve problem 52 mentally.  Three of the four solutions did convert 
the ".75" in $3.75 to a fractional equivalent, but none of the four employed fractions in 
the way suggested by Milne.  The fourth avoided fractions altogether, but also avoided 
the standard algorithm. Here is what the four did. 

• Two of the people converted 3.75 into 33/4, and then applied the distributive 
law to obtain 

(33/4)(32) = (3 + 3/4)(32) = 96 + (3/4)(32) = 96 + 24 = 120. 

• One expressed 3.75 as (4 - 1/4), and then distributed as follows:  

(4 - 1/4)(32) =  128 - (1/4)(32) = 128 - 8 = 120. 

• One noted that 32 is a power of 2.  He divided and multiplied by 2's until the 
arithmetic became trivial: 

(32)(3.75) = (16)(7.5) = (8)(15) = (4)(30) =120. 

In terms of "mental economy," we note, each of the methods used is as easy to employ 
as the one presented by Milne.   

Issue 2: The examples are contrived to illustrate the mathematical technique at 
hand.  In real life one rarely if ever encounters unit prices such as $6.662/3. (We do, 
commonly, see prices such as "3 for $20.00.")  The numbers used in problem 55, and 
others, were clearly selected so that students could successfully perform the algorithm 
taught in this lesson.  On the one hand, choosing numbers in this way makes it easy for 
students practice the technique.  On the other hand, the choice makes the problem itself 
implausible.  Moreover, the problem settings (cords of wood, price of sheep, and so on) 
are soon seen to be window dressing designed to make the problems appear relevant, 
but which in fact have no real role in the problem.  As such, the artificiality of the 
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examples moves the corpus of exercises from the realm of the practical and plausible to 
the realm of the artificial.  

Issue 3: The epistemological stance underlying the use of such exercise sets.   In 
introducing Milne's examples we discussed the pedagogical assumptions underlying the 
use of such structured problem sets in the curriculum.  Here we pursue the ramifications 
of those assumptions. 

Almost all of Western education, particularly mathematics education and 
instruction, is based on a traditional philosophical perspective regarding epistemology, 
"the theory or science of the method or grounds of knowledge" (Oxford English 
Dictionary, page 884).  The fundamental concerns of epistemology regard the nature of 
knowing and knowledge.  "Know, in its most general sense, has been defined by some 
as 'to hold for true or real with assurance and on (what is held to be) an adequate 
objective foundation'" (Oxford English Dictionary, page 1549).  In more colloquial terms, 
the generally held view -- often unstated or implicit, but nonetheless powerful -- is that 
what we know is what we can justifiably demonstrate to be true; our knowledge is the 
sum total of what we know.  That is, one's mathematical knowledge is the set of 
mathematical facts and procedures one can reliably and correctly use.1 

A consequence of this perspective is that instruction has traditionally focused on 
the content aspect of knowledge.  Traditionally one defines what students ought to know 
in terms of chunks of subject matter, and characterizes what a student knows in terms 
of the amount of content that has been "mastered.2"  As natural and innocuous as this 
view of "knowledge as substance" may seem, it has serious entailments (see issue 4).  
From  this perspective, "learning mathematics" is defined as mastering, in some 
coherent order, the set of facts and procedures that comprise the body of mathematics.  
The route to learning consists of delineating the desired subject matter content as 

                                                

1Jim Greeno pointed out in his review of this chapter that most instruction gives short 
shrift to the "justifiably demonstrate" part of mathematical knowledge -- that it focuses 
on using techniques, with minimal attention to having students justify the procedures 
in a deep way.  He suggests that if demonstrating is taken in a deep sense, it might be 
an important curricular objective. 

2The longevity of Bloom's (1956) taxonomies, and the presence of standardized 
curricula and examinations, provides clear evidence of the pervasiveness of this 
perspective. 
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clearly as possible, carving it into bite-sized pieces, and providing explicit instruction 
and practice on each of those pieces so that students master them.  From the content 
perspective, the whole of a student's mathematical understanding is precisely the sum 
of these parts.   

Commonly, mathematics is associated with certainty; knowing it, with 
being able to get the right answer, quickly (Ball, 1988; Schoenfeld, 1985b; 
Stodolsky, 1985).  These cultural assumptions are shaped by school experience, 
in which doing mathematics means following the rules laid down by the teacher; 
knowing mathematics means remembering and applying the correct rule when 
the teacher asks a question; and mathematical truth is determined when the 
answer is ratified by the teacher.  Beliefs about how to do mathematics and what 
it means to know it in school are acquired through years of watching, listening, 
and practicing. (Lampert, in press, p. 5) 

These assumptions play out clearly in the selection from Milne.  The topic to be 
mastered is a particular, rather narrow technique.  The domain of applicability of the 
technique is made clear: Initially it applies to decimals that can be written as  
(a/b) x 10, and then the technique is extended to apply to decimals that can be written 
as (a/b) x 100.  Students are constrained to use this technique, and when they master it, 
they move on to the next.  And, experience with problem sets of this type is their sole 
encounter for many students. 

Issue 4: The cumulative effects of such exercise sets.  As Lampert notes, 
students' primary experience with mathematics -- the grounds upon which they build 
their understanding of the discipline -- is their exposure to mathematics in the 
classroom.  The impression given by this set of exercises, and thousands like it that 
students work in school, is that there is one right way to solve the given set of problems 
-- the method provided by the text or instructor.  As indicated in the discussion of Issue 
1, this is emphatically not the case; there are numerous ways to arrive at the answer.  
However, in the given instructional context only one method appears legitimate.  There 
are numerous consequences to repeated experiences of this type. 

One consequence of experiencing the curriculum in bite-size pieces is that 
students learn that answers and methods to problems will be provided to them; the 
students are not expected to figure out the methods by themselves.  Over time most 
students come to accept their passive role, and to think of mathematics as "handed 
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down" by experts for them to memorize (Carpenter, Lindquist, Matthews, & Silver, 1983; 
National Assessment of Educational Progress, 1983). 

A second consequence of the non-problematic nature of these "problems" is that 
students come to believe that in mathematics, (a) one should have a ready method for 
the solution of a given problem, and (b) the method should produce an  answer to the 
problem in short order (Carpenter et al., 1983; National Assessment of Educational 
Progress, 1983; Schoenfeld, 1988, 1989b).  In the 1983 National Assessment, about 
half of the students surveyed agreed with the statement "learning mathematics is mostly 
memorizing."  Three quarters of the students agreed with the statement "Doing 
mathematics requires lots of practice in following rules," and nine students out of ten 
with the statement "There is always a rule to follow in solving mathematics problems" 
(NAEP, 1983, pp. 27-28).  As a result of holding such beliefs, students may not even 
attempt problems for which they have no ready method, or may curtail their efforts after 
only a few minutes without success.   

More importantly, the methods imposed on students by teacher and texts may 
appear arbitrary and may contradict the alternative methods that the students have tried 
to develop for themselves.  For example, all of the problems given by Milne -- and more 
generally, in most mathematics -- can be solved in a variety of ways.  However, only 
one method was sanctioned by in Milne's text.  Recall in addition that some of the 
problems were clearly artificial, negating the "practical" virtues of the mathematics.  
After consistent experiences of this type, students may simply give up trying to make 
sense of the mathematics.  They may take the problems to be exercises of little 
meaning, despite their applied cover stories; they may come to believe that 
mathematics is not something they can make sense of, but rather something almost 
completely arbitrary (or at least whose meaningfulness is inaccessible to them) and 
which must thus be memorized without looking for meaning -- if they can cope with it at 
all (Lampert, in press; Stipek & Weisz, 1981; Tobias, 1978).  More detail is given in the 
section on belief systems. 

The mathematical enterprise 

Over the past two decades there has been a significant change in the face of 
mathematics (its scope and the very means by which it is carried out), and in the 
community's understanding of what it is to know and do mathematics.  A series of 
recent articles and reports (Hoffman, 1989; Everybody Counts (National Research 
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Council, 1989); Steen, 1988) attempts to characterize the nature of contemporary 
mathematics, and to point to changes in instructions that follow from the suggested 
reconceptualization.   The main thrust of this reconceptualization is to think of 
mathematics, broadly, as "the science of patterns." 

MATHEMATICS ... searching for patterns 

Mathematics reveals hidden patterns that help us understand the world 
around us.  Now much more than arithmetic and geometry, mathematics today is 
a diverse discipline that deals with data, measurements, and observations from 
science; with inference, deduction, and proof; and with mathematical models of 
natural phenomena, of human behavior, and of social systems. 

The cycle from data to deduction to application recurs everywhere 
mathematics is used, from everyday household tasks such as planning a long 
automobile trip to major management problems such as scheduling airline traffic 
or managing investment portfolios. The process of "doing" mathematics is far 
more than just calculation or deduction; it involves observation of patterns, testing 
of conjectures, and estimation of results.   

As a practical matter, mathematics is a science of pattern and order.  Its 
domain is not molecules or cells, but numbers, chance, form, algorithms, and 
change.  As a science of abstract objects, mathematics relies on logic rather than 
observation as its standard of truth, yet employs observation, simulation, and 
even experimentation as a means of discovering truth (Everybody Counts, p. 31). 

In this quotation there is a major shift from the traditional focus on the content 
aspect of mathematics discussed above (where attention is focused primarily on the 
mathematics one "knows"), to the process aspects of mathematics -- to what Everybody 
Counts calls calls doing mathematics.  Indeed, content is mentioned only in passing, 
while modes of thought are specifically highlighted in the first page of the section.  

In addition to theorems and theories, mathematics offers distinctive modes 
of thought which are both versatile and powerful, including modeling, abstraction, 
optimization, logical analysis, inference from data, and use of symbols.  
Experience with mathematical modes of thought builds mathematical power -- a 
capacity of mind of increasing value in this technological age that enables one to 
read critically, to identify fallacies, to detect bias, to assess risk, and to suggest 
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alternatives.  Mathematics empowers us to understand better the information-
laden world in which we live (Everybody Counts, pp. 31-32). 

One main change, then, is that there is a large focus on process rather than on 
mathematical content in describing both what mathematics is and what one hopes 
students will learn from studying it.  In this sense, mathematics appears much more like 
science than it would if one focused solely on the subject matter.  Indeed, the "science 
of patterns" may seem so broad a definition as to obscure the mathematical core 
contained therein.  What makes it mathematical is the domain over which the 
abstracting or patterning is done, and the choice of tools and methods typically 
employed.  To repeat from the introductory definition: mathematics consists of 
"systematic attempts, based on observation, study, and experimentation, to determine 
the nature or principles of regularities in systems defined axiomatically or theoretically 
("pure mathematics") or models of systems abstracted from real world objects ("applied 
mathematics").  The tools of mathematics are abstraction, symbolic representation, and 
symbolic manipulation." 

A second main change, reflected in the statement that "mathematics relies on 
logic rather than observation as its standard of truth, yet employs observation, 
simulation, and even experimentation as a means of discovering truth" reflects a 
growing understanding of mathematics as an empirical discipline of sorts, one in which 
mathematical practitioners gather "data" in the same ways that scientists do.  This 
theme is seen in the writings of Lakatos (1977, 1978), who argued that mathematics 
does not, as it often appears, proceed inexorably and inevitably by deduction from a 
small set of axioms; rather that the community of mathematicians decides what is 
"axiomatic," in effect making new definitions if the ones that have been used turn out to 
have untoward consequences.  A third change is that doing mathematics is increasingly 
coming to be seen as a social and collaborative act.  Steen's (1988) examples of major 
progress in mathematics:  in number theory (the factorization of huge numbers and 
prime testing, requiring collaborative networks of computers), in the Nobel Prize-winning 
application of the Radon Transform to provide the mathematics underlying the 
technology for computer assisted tomography (CAT) scans, and in the solution of some 
recent mathematical conjectures such as the four-color theorem, are all highly 
collaborative efforts.  Collaboration, on the individual level, is discussed with greater 
frequency in the "near mathematical" literature, as in these two excerpts from Albers 
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and Alexanderson's (1985) Mathematical People: Profiles and Interviews.  Peter Hilton 
lays out the benefits of collaboration as follows.  

First I must say that I do enjoy it.  I very much enjoy collaborating with 
friends.  Second, I think it is an efficient thing to do because ... if you are just 
working on your own [you may] run out of steam.... But with two of you, what 
tends to happen is that when one person begins to feel a flagging interest, the 
other one provides the stimulus.... The third thing is, if you choose people to 
collaborate with who somewhat complement rather than duplicate the 
contribution that you are able to make, probably a better product results.  (quoted 
in Albers & Alexanderson, 1985, P. 141).  

Persi Diaconis says the following.   

There is a great advantage in working with a great co-author.  There is 
excitement and fun, and it's something I notice happening more and more in 
mathematics.  Mathematical people enjoy talking to each other.... Collaboration 
forces you to work beyond your normal level.  Ron Graham has a nice way to put 
it.  He says that when you've done a joint paper, both co-authors do 75% of the 
work, and that's about right.... Collaboration for me means enjoying talking and 
explaining, false starts, and the interaction of personalities.  It's a great, great joy 
to me. (quoted in Albers & Alexanderson, 1985, pp. 74-75). 

For these individuals, and for those engaged in the kinds of collaborative efforts 
discussed by Steen, membership in the mathematical community is without question an 
important part of their mathematical lives.  However, there is an emerging 
epistemological argument suggesting that mathematical collaboration and 
communication have a much more important role than indicated by the quotes above.  
According to that argument, membership in a community of mathematical practice is 
part of what constitutes mathematical thinking and knowing.  Greeno notes that this idea 
takes some getting used to. 

The idea of a [collaborative] practice contrasts with our standard ways of 
thinking about knowledge. We generally think of knowledge as some content in 
someone's mind, including mental structures and procedures. In contrast, a 
practice is an everyday activity, carried out in a socially meaningful context in 
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which activity depends on communication and collaboration with others and 
knowing how to use the resources that are available in the situation... 

An important [philosophical and historical] example has been contributed 
by Kitcher (1984).  Kitcher's goal was to develop an epistemology of 
mathematics.  The key concept in his epistemology is an idea of a mathematical 
practice, and mathematical knowledge is to be understood as knowledge of 
mathematical practice.  A mathematical practice includes understanding of the 
language of mathematical practice, and the results that are currently accepted as 
established.  It also includes knowledge of the currently important questions in 
the field, the methods of reasoning that are taken as valid ways of establishing 
new results, and metamathematical views that include knowledge of general 
goals of mathematical research and appreciation of criteria of significance and 
elegance.  (Greeno, 1989, pp. 24-25) 

That is, "having a mathematical point of view" and "being a member of the 
mathematical community" are central aspects of having mathematical knowledge.  
Schoenfeld makes the case as follows. 

I remember discussing with some colleagues, early in our careers, what it 
was like to be a mathematician.  Despite obvious individual differences, we had 
all developed what might be called the mathematician's point of view -- a certain 
way of thinking about mathematics, of its value, of how it is done, etc.  What we 
had picked up was much more than a set of skills; it was a way of viewing the 
world, and our work.  We came to realize that we had undergone a process of 
acculturation, in which we had become members of, and had accepted the 
values of, a particular community.  As the result of a protracted apprenticeship 
into mathematics, we had become mathematicians in a deep sense (by dint of 
world view) as well as by definition (what we were trained in, and did for a living). 
(Schoenfeld, 1987, p. 213) 

The epistemological perspective discussed here dovetails closely with with the 
"enculturation" perspective discussed earlier in this chapter.  Recall Resnick's (1989) 
observation that "becoming a good mathematical problem solver -- becoming a good 
thinker in any domain -- may be as much a matter of acquiring the habits and 
dispositions of interpretation and sense-making as of acquiring any particular set of 
skills, strategies, or knowledge."  The critical observation in both the mathematical and 
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the school contexts is that one develops one's point of view by the process of 
acculturation, by becoming a member of the particular community of practice. 

Goals for instruction, and a pedagogical imperative 

For the past few years the Mathematical Association of America's Committee on 
the Teaching of Undergraduate Mathematics (forthcoming) has worked on compiling a 
Source book for college mathematic teaching.  The Source book begins with a 
statement of goals for instruction, which seem appropriate for discussion here. 

Goals for Mathematics Instruction 

Mathematics instruction should provide students with a sense of the discipline -- 
a sense of its scope, power, uses, and history.  It should give them a sense of 
what mathematics is and how it is done, at a level appropriate for the students to 
experience and understand.  As a result of their instructional experiences, 
students should learn to value mathematics and to feel confident in their ability to 
do mathematics. 

Mathematics instruction should develop students' understanding of important 
concepts in the appropriate core content (see Curriculum Recommendations from 
the MAA, below).  Instruction should be aimed at conceptual understanding 
rather than at mere mechanical skills, and at developing in students the ability to 
apply the subject matter they have studied with flexibility and resourcefulness.  

Mathematics instruction should provide students the opportunity to explore a 
broad range of problems and problem situations, ranging from exercises to open-
ended problems and exploratory situations.  It should provide students with a 
broad range of approaches and techniques (ranging from the straightforward 
application of the appropriate algorithmic methods to the use of approximation 
methods, various modeling techniques, and the use of heuristic problem solving 
strategies) for dealing with such problems. 

Mathematics instruction should help students to develop what might be called a 
"mathematical point of view" -- a predilection to analyze and understand, to 
perceive structure and structural relationships, to see how things fit together.  
(Note that those connections may be either pure or applied.)  It should help 
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students develop their analytical skills, and the ability to reason in extended 
chains of argument. 

Mathematics instruction should help students to develop precision in both written 
and oral presentation.  It should help students learn to present their analyses in 
clear and coherent arguments reflecting the mathematical style and 
sophistication appropriate to their mathematical levels.  Students should learn to 
communicate with us and with each other, using the language of mathematics. 

Mathematics instruction should help students develop the ability to read and use 
text and other mathematical materials.  It should prepare students to become, as 
much as possible, independent learners, interpreters, and users of mathematics.  
(Committee on the Teaching of Undergraduate Mathematics of the Mathematical 
Association of America, forthcoming, p. 2) 

In the light of the discussion from Everybody Counts, we would add the following 
to the second goal: Mathematics instruction should help students develop mathematical 
power, including the use of specific mathematical modes of thought which are both 
versatile and powerful, including modeling, abstraction, optimization, logical analysis, 
inference from data, and use of symbols. 

If these are plausible goals for instruction, one must ask what kinds of instruction 
might succeed at producing them.  The literature reviewed in this part of the chapter, in 
particular the literature on socialization and epistemology, produces what is in essence 
a pedagogical imperative:  

If one hopes for students to achieve the goals specified here -- in particular, to 
develop the appropriate mathematical habits and dispositions of interpretation 
and sense-making as well as the appropriately mathematical modes of thought -- 
then the communities of practice in which they learn mathematics must reflect 
and support those ways of thinking.  That is, classrooms must be communities in 
which mathematical sense-making, of the kind we hope to have students 
develop, is practiced. 
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PART II: A FRAMEWORK FOR EXPLORING 
 MATHEMATICAL COGNITION 

The Framework 

Part I of this chapter focused on the mathematical enterprise -- what Everybody 
Counts calls "doing" mathematics.  Here we focus on the processes involved in thinking 
mathematically, the psychological support structure for mathematical behavior.  The 
main focus of our discussion is on developments over the past quarter century.  It would 
seem short-sighted to ignore the past 2000 years of philosophy and psychology related 
to mathematical thinking and problem solving, however.  Thus we begin with a brief 
historical introduction (see Peters, 1962, or Watson, 1978, for detail) to establish the 
context for the discussion of contemporary work and explain why the focus, essentially 
de novo, is on the past few decades.  For ease of reference we refer to the enterprise 
under the umbrella label "psychological studies," including contributions from 
educational researchers, psychologists, social scientists, philosophers and cognitive 
scientists, among others.  General trends are discussed here, with details regarding 
mathematical thinking given in the subsequent sections. 

The roots of contemporary studies in thinking and learning can be traced to the 
philosophical works of Plato and Aristotle.  More directly, Descartes' (1952) Rules for 
the direction of the mind can be seen as the direct antecedents of Pólya's (1945, 1954, 
1981) prescriptive attempts at problem solving.  However, the study of mind and its 
workings did not turn into an empirical discipline until the late 19th century.  The origins 
of that discipline are usually traced to the opening of Wundt's laboratory in Leipzig, 
Germany, in 1879.  "Wundt was the first modern psychologist -- the first person to 
conceive of experimental psychology as a science. ... The methodological prescriptive 
allegiances of Wilhelm Wundt are similar to those of the physiologists from whom he 
drew inspiration. ... [H]e subscribed to methodological objectivism in that he attempted 
to quantify experience so that others could repeat his procedures... Since the 
combination of introspection and experiment was the method of choice, Wundt fostered 
empiricism" (Watson, 1978, p. 292).  Wundt (1904) and colleagues employed the 
methods of experimentation and introspection (self-reports of intellectual processes) to 
gather data about the workings of mind.  These methods may have gotten psychology 
off to an empirical start but they soon led to difficulties: Members of different laboratories 
reported different kinds of introspections (corresponding to the theories held in those 
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laboratories), and there were significant problems with both reliability and replicability of 
the research findings.   

American psychology's origins at the the turn of the century were more 
philosophical, tied to pragmatism and functionalism. William James is generally 
considered the first major American psychologist, and his (1890) principles of 
psychology as an exemplar of the American approach.  James' student, E. L. Thorndike, 
began with animal studies and moved to studies of human cognition.  Thorndike's work, 
in particular, had great impact on theories of mathematical cognition. 

One of the major rationales for the teaching of mathematics, dating back to Plato, 
was the notion of mental discipline.  Simply put, the idea is that those who are good at 
mathematics tend to be good thinkers; those who are trained in mathematics learn to be 
good thinkers.  As exercise and discipline train the body, the theory went, the mental 
discipline associated with doing mathematics trains the mind, making one a better 
thinker.  Thorndike's work challenged this hypothesis.  He offered experimental 
evidence (Thorndike & Woodworth, 1901) that transfer of the type suggested by the 
notion of mental discipline was minimal, and argued (Thorndike, 1924) that the benefits 
attributed to the study of mathematics were correlational: students with better reasoning 
skills tended to take mathematics courses. His research, based in animal and human 
studies, put forth the "law of effect," which says in essence "you get good at what you 
practice, and there isn't much transfer."  His "law of exercise" gave details of the ways 
(recency and frequency effects) learning took place as a function of practice.  As Peters 
(1963, p. 695) notes, "Few would object to the first, at any rate, of these two laws, as a 
statement of a necessary condition of learning; it is when they come to be regarded as 
sufficient conditions that uneasiness starts." 

Unfortunately, that sufficiency criterion grew and held sway for quite some time.  
On the continent, Wundt's introspectionist techniques were shown to be 
methodologically unreliable, and the concept of mentalism came under increasing 
attack.  In Russia, Pavlov (1924) achieved stunning results with conditioned reflexes, his 
experimental work requiring no concept of mind at all.  Finally, mind, consciousness, 
and all related phenomena were banished altogether by the behaviorists.  John Watson 
(1930) was the main exponent of the behaviorist stance, B. F. Skinner (1974) a zealous 
adherent.  The behaviorists were vehement in their attacks on mentalism, and provoked 
equally strong counter-reactions. 
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John Watson and other behaviorists led a fierce attack, not only on 
introspectionism, also on any attempt to develop a theory of mental operations.  
Psychology, according to the behaviorists, was to be entirely concerned with 
external behavior and not to try to analyze the workings of the mind that underlay 
this behavior:  

Behaviorism claims that consciousness is neither a definite nor a usable 
concept.  The behaviorist, who has been trained always as an 
experimentalist, holds further that belief in the existence of consciousness 
goes back to the ancient days of superstition and magic. (Watson, 1930, 
p. 2) 

... The behaviorist began his own conception of the problem of 
psychology by sweeping aside all medieval conceptions. He dropped from 
his scientific vocabulary all subjective terms such as sensation, 
perception, image, desire, purpose, and even thinking and emotion as 
they were subjectively defined.   (Watson, 1930, p. 5) 

The behaviorist program and the issues it spawned all but eliminated any serious 
research in cognitive psychology for 40 years.  The rat supplanted the human as 
the principal laboratory subject, and psychology turned to finding out what could 
be learned by studying animal learning and motivation.  (Anderson, 1985, p. 7). 

While behaviorism held center stage, alternate perspectives were in the wings.  
Piaget's work (e.g. Piaget, 1928, 1930, 1971), while rejected by his American 
contemporaries as being unrigorous, established the basis for the "constructivist 
perspective," the now well established position that individuals do not perceive the world 
directly, but that they perceive interpretations of it, interpretations mediated by the 
interpretive frameworks they have developed.  The Gestaltists, particularly Duncker, 
Hadamard, and Wertheimer, were interested in higher order thinking and problem 
solving.  1945 was a banner year for the Gestaltists.   Duncker's monograph On 
Problem Solving appeared in English, as did Hadamard's Essay on the psychology of 
invention in the mathematical field (which provides a detailed exegesis of Poincare's 
(1913) description of his discovery of the structure of Fuchsian functions), and 
Wertheimer's Productive Thinking, which includes Wertheimer's famous discussion of 
the "parallelogram problem" and an interview with Einstein on the origins of relativity 
theory.  These works all continued the spirit of Graham Wallas' (1926) The art of 
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thought, in which Wallas codified the four-step Gestalt model of problem solving: 
saturation, incubation, inspiration, verification.  The Gestaltists, especially Wertheimer, 
were concerned with structure and deep understanding.  Unfortunately their primary 
methodological tool was introspection, and they were vulnerable to attack on the basis 
of the methodology's lack of reliability and validity.  (They were also vulnerable because 
they had no plausible theory of mental mechanism, while the behaviorists could claim 
that stimulus-response chains were modeled on neuronal connections.)  To cap off 
1945, Pólya's How to solve it -- compatible with the Gestaltists' work, but more 
prescriptive, à la Descartes, in flavor -- appeared as well. 

The downfall of behaviorism and the renewed advent of mentalism, in the form of 
the information processing approach to cognition, began in the mid-1950's.  (See Newell 
& Simon, 1972, pages 873 ff. for detail.)  The development of artificial intelligence 
programs to solve problems, e.g. Newell & Simon's (1972) "General Problem Solver," 
hoist the behaviorists by their own petard.   

The simulation models of the 1950s were offspring of the marriage 
between ideas that had emerged from symbolic logic and cybernetics, on the one 
hand, and Würzburg and Gestalt psychology, on the other.  From logic and 
cybernetics was inherited the idea that information transformation and 
transmission can be described in terms of the behavior of formally described 
symbol manipulation systems.  From Würzburg and Gestalt psychology were 
inherited the ideas that long-term memory is an organization of directed 
associations and that problem solving is a process of directed goal-oriented 
search. (Simon, 1979, pp. 364-5) 

Note that the information processing work discussed by Simon met the 
behaviorists' standards in an absolutely incontrovertible way: Problem solving programs 
(simulation models, artificial intelligence programs) produced problem solving behavior, 
and all the workings of the program were out in the open for inspection.  At the same 
time, the theories and methodologies of the information processing school were 
fundamentally mentalistic -- grounded in the theories of mentalistic psychology, and 
using observations of humans engaged in problem solving to infer the structure of their 
(mental) problem solving strategies.  Though it took some time -- it was at least a 
decade before such work had an impact on mainstream experimental psychology 
(Simon, 1979), and as late as 1980 Simon and colleagues (Ericsson & Simon, 1980) 
were writing review articles hoping to "legitimize" the use of out loud problem solving 
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protocols -- an emphasis on cognitive processes emerged, stabilized, and began to 
predominate in psychological studies of mind. 

Early work in the information processing (IP) tradition was extremely narrow in  
focus, partly because of the wish to have clean, scientific results: For many, the only 
acceptable test of a theory was a running computer program that did what its author 
said it should.  Early IP work often focused on puzzle domains (e.g. the Tower of Hanoi 
problem and its analogues), with the rationale that in such simple domains one could 
focus on the development of strategies, and then later move to "semantically rich" 
domains.  As the tools were developed, studies moved from puzzles and games (e.,g. 
logic, cryptarithmetic,  and chess) to more open-ended tasks, focusing on textbook 
tasks in domains such as physics and mathematics (and later, in developing expert 
systems in medical diagnosis, mass spectroscopy, etc.).  Nonetheless, work in the IP 
tradition remained quite narrow for some time.  The focus was on the "architecture of 
cognition" (and machines): the structure of memory, of knowledge representations, 
knowledge retrieval mechanisms, and of problem solving rules. 

During the same time period (the first paper on metamemory by Flavell, 
Friedrichs, and Hoyt appeared in 1970; the topic peaked in the mid-to-late 1980's) 
"metacognition" became a major research topic.  Here too, the literature is quite 
confused.  In an early paper, Flavell characterized the term as follows: 

Metacognition refers to one's knowledge concerning one's own cognitive 
processes or anything related to them, e.g. the learning-relevant properties of 
information or data.  For example, I am engaging in metacognition... if I notice 
that I am having more trouble learning A than B; if it strikes me that I should 
double-check C before accepting it as a fact; if it occurs to me that I should 
scrutinize each and every alternative in a multiple-choice task before deciding 
which is the best one.... Metacognition refers, among other things, to the active 
monitoring and consequent regulation and orchestration of those processes in 
relation to the cognitive objects or data on which they bear, usually in the service 
of some concrete [problem solving] goal or objective.  (Flavell, 1976, p. 232) 

This kitchen-sink definition includes a number of categories which have since 
been separated into more functional categories for exploration: (a) individuals' 
declarative knowledge about their cognitive processes, (b) self-regulatory procedures, 
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including monitoring and "on-line" decision-making, (c) beliefs and affects3, and their 
effects on performance.  These subcategories are considered in the framework 
elaborated below. 

Finally, the tail end of the 1980's saw a potential unification of aspects of what 
might be called the cognitive and social perspectives on human behavior, in the theme 
of enculturation.  The minimalist version of this perspective is that learning is a social 
act, taking place in a social context; that one must consider learning environments as 
cultural contexts, and learning as a cultural act.  (The maximal version, yet to be 
realized theoretically, is a unification that allows one to see what goes on "inside the 
individual head," and "distributed cognition," as aspects of the same thing.)  Motivated 
by Lave's (1988, in preparation) work on apprenticeship, Collins, Brown and Newman 
(1989) abstracted common elements from productive learning environments in reading 
(Palincsar & Brown, 1984), writing (Scardamalia & Bereiter, 1983) and mathematics 
(Schoenfeld, 1985a).  Across the case studies they found a common, broad 
conceptualization of domain knowledge which included the specifics of domain 
knowledge, but also understanding of strategies and aspects of metacognitive behavior.  
In addition, they found that all three programs had aspects of "the culture of expert 
practice," in that the environments were designed to take advantage of social 
interactions to have students experience the gestalt of the discipline in ways 
comparable to the ways that practitioners do. 

In general, research in mathematics education followed a similar progression of 
ideas and methodologies.   Through the 1960's and 70's, correlational, factor-analytic 
and statistical "treatment A vs. treatment B" comparison studies predominated in the 
"scientific" study of thinking, learning, and problem solving.  By the mid-1970's, 
however, researchers expressed frustration at the limitations of the kinds of 
contributions that could, in principle, be made by such studies of mathematical behavior.  
For example, Kilpatrick (1978) compared the research methods prevalent in the United 
States at the time with the kinds of qualitative research being done in the Soviet Union 

                                                

3Through the early 1980's, the cognitive and affective literatures were separate and 
unequal.  The mid-1980's saw a rapprochement, with the notion of beliefs extending 
the scope of the cognitive inquiries to be at least compatible with those of the affective 
domain.  Since then, the "enculturation" perspective discussed in Part I has moved the 
two a bit closer. 



Learning to think mathematically, Page 40 

by Krutetskii (1976) and his colleagues.  The American research, he claimed, was 
"rigorous" but somewhat sterile: in the search for experimental rigor, researchers had 
lost touch with truly meaningful mathematical behavior.  In contrast, the soviet studies of 
mathematical abilities were decidedly unrigorous, if not unscientific -- but they focused 
on behavior and abilities that had face validity as important aspects of mathematical 
thinking.  Kilpatrick suggested that the research community might do well to broaden the 
scope of its inquiries and methods. 

Indeed, researchers in mathematics education turned increasingly to "process-
oriented" studies in the late 1970's and 1980's.  Much of the process-oriented research 
was influenced by the trends in psychological work described above, but it also had its 
own special character.  As noted above, psychological research tended to focus on 
"cognitive architecture:" studies of the structure of memory, of representations, etc.  
From a psychological point of view, mathematical tasks were attractive as settings for 
such research because of their (ostensibly) formal, context-independent nature.  That is, 
topics from literature or history might be "contaminated" by real-world knowledge, a fact 
that would make it difficult to control precisely what students brought to, or learned in, 
experimental settings.  But purely formal topics from mathematics (e.g. the algorithm for 
base 10 addition and subtraction, or the rules for solving linear equations in one 
variable) could be taught as purely formal manipulations, and thus one could avoid the 
difficulties of "contamination."  In an early information processing study of problem 
solving, for example, Newell and Simon (1972) analyzed the behavior of students 
solving problems in symbolic logic.  From their observations, they abstracted successful 
patterns of symbol manipulation and wrote them as computer programs.  However, 
Newell and Simon's sample explicitly excluded any subjects who knew the meanings of 
the symbols (e.g. that "P → Q" means "if P is true, then Q is true"), because their goal 
was to find productive modes of symbol manipulation without understanding -- since the 
computer programs they intended to write wouldn't be able to reason on the basis of 
those meanings.  That is, their goal was to find successful symbol manipulations without 
understanding.  In contrast, of course, the "bottom line" for most mathematics educators 
is to have students develop an understanding of the procedures and their meanings.  
Hence the IP work took on a somewhat different character when adapted for the 
purposes of mathematics educators. 

The state of the art in the early and late 1980's respectively can be seen in two 
excellent summary volumes, Silver's (1985) Teaching and learning mathematical 
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problem solving: Multiple research perspectives and Charles and Silver's (1988) The 
teaching and assessing of mathematical problem solving. Silver's volume was derived 
from a conference held in 1983, which brought together researchers from numerous 
disciplines to discuss results and directions for research in problem solving. Some 
confusion, a great deal of diversity, and a flowering of potentially valuable perspectives 
are evident in the volume.  There was confusion, for example, about baseline definitions 
of "problem solving."  Kilpatrick (1985), for example, gave a range of definitions and 
examples that covered the spectrum discussed in Part I of this chapter.  And either 
explicitly or implicitly, that range of definitions was exemplified in the chapters of the 
book.  At one end of the spectrum, Carpenter (1985) began his chapter with a 
discussion of the following problem: "James had 13 marbles.  He lost 8 of them.  How 
many marbles does he have left?"  Carpenter notes that "such problems frequently are 
not included in discussions of problem solving because they can be solved by the 
routine application of a single arithmetic operation. A central premise of this paper is 
that the solutions of these problems, particularly the solutions of young children, do in 
fact involve real problem solving behavior" (page 17).  Heller and Hungate (1985) 
implicitly take their definition of "problem solving" to mean "being able to solve the 
exercises at the end of a standard textbook chapter," as does Mayer.  At the other end 
of the spectrum, "the fundamental importance of epistemological issues (e.g. beliefs, 
conceptions, misconceptions) is reflected in the papers by Jim Kaput, Richard Lesh, 
Alan Schoenfeld, and Mike Shaughnessy. (p. ix.)" Those chapters took a rather broad 
view of problem solving and mathematical thinking.  Similarly, the chapters reveal a 
great diversity of methods and their productive application to issues related to problem 
solving.  Carpenter's chapter presents detailed cross-sectional data on children's use of 
various strategies for solving word problems of the type discussed above.  Heller and 
Hungate worked within the "expert-novice" paradigm for identifying the productive 
behavior of competent problem solvers and using such behavior as a guide for 
instruction for novices.  Mayer discussed the application of schema theory, again within 
the expert-novice paradigm.  Kaput discussed fundamental issues of representation and 
their role in understanding, Shaughnessy misconceptions, Schoenfeld the roles of 
metacognition and beliefs.  Alba Thompson (1985) studied teacher beliefs and their 
effects on instruction.  And so on, with great diversity.  There was similar diversity in 
methodology: experimental methods, expert-novice studies, clinical interviews, protocol 
analyses, and classroom observations among others.  The field had clearly flowered, 
and there was a wide range of new work.   
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The Charles and Silver volume (1988) reflects a maturing of the field, and 
continued progress.  By the end of the decade most of the methodologies and 
perspectives tentatively explored in the Silver volume had been explored at some 
length, with the result that they had been contextualized in terms of just what they could 
offer in terms of explaining mathematical thinking.  For example, the role of information 
processing approaches and the expert-novice paradigm could be seen as providing 
certain kinds of information about the organization and growth of individual knowledge -- 
but also as illuminating only one aspect of a much larger and more complex set of 
issues.  With more of the methodological tools in place, it became possible to take a 
broad view once again -- focusing, for example, on history (the Stanic and Kilpatrick 
chapter discussed above) and epistemology as grounding contexts for explorations into 
mathematical thinking.  In the Charles and Silver volume one sees the theme of social 
interactions and enculturation emerging as central concerns, while in the earlier Silver 
volume such themes were noted but put aside as "things we aren't really ready to deal 
with."  What one sees is the evolution of overarching frameworks, such as cognitive 
apprenticeship, that deal with individual learning in a social context.  That social theme 
is explored in the work of Greeno (1989), Lave, Smith & Butler (1989), and Resnick 
(1989), among others.   There is not at present anything resembling a coherent 
explanatory frame -- that is, a principled explanation of how the varied aspects of 
mathematical thinking and problem solving fit together.  However, there does appear to 
be an emerging consensus about the necessary scope of inquiries into mathematical 
thinking and problem solving.  Although the fine detail varies (e.g. Collins, Brown, & 
Newman (1989) subsume the last two categories under a general discussion of 
"culture;" Lester, Garofalo, & Kroll (1989) subsume problem solving strategies under the 
knowledge base, while maintaining separate categories for belief and affect), there 
appears to be general agreement on the importance of these five aspects of cognition: 

• The knowledge base 
• Problem solving strategies 
• Monitoring and control 
• Beliefs and affects 
• Practices. 

These five categories provide the framework employed in the balance of the review.   

The knowledge base 
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Research on human cognitive processes over the past quarter century has 
focused on the organization of, and access to, information contained in memory.  In the 
crudest terms, the underlying issues have been: how is information organized and 
stored in the head; what comprises understanding; and how do individuals have access 
to relevant information?  The mainstream idea is that humans are information 
processors, and that in their minds humans construct symbolic representations of the 
world.  According to this view, thinking about and acting in the world consist respectively 
of operating mentally on those representations, and taking actions externally that 
correspond to the results of our minds' internal workings.  While these are the 
mainstream positions -- and the ones elaborated below -- it should be noted that all of 
them are controversial.  There is, for example, a theoretical stance regarding distributed 
cognition (Pea, 1989) which argues that it is inappropriate to locate knowledge "in the 
head" -- that knowledge resides in communities and their artifacts, and in interactions 
between individuals and their environments (which include other people).  The related 
concept of situated cognition (see, e.g., Barwise & Perry, 1983; Brown, Collins, & 
Duguid, 1989; Lave & Wenger, 1989) is based on the underlying assumption that 
mental representations are not complete and that thinking exploits the features of the 
world in which one is embedded, rather than operating of abstractions of it.  Moreover, 
even if one accepts the notion of internal cognitive representation, there are multiple 
perspectives regarding the nature and function of representations (See, e.g., Janvier, 
1987, for a collection of papers regarding perspectives on representations in 
mathematical thinking.  For a detailed elaboration of such issues within the domain of 
algebra, see Wagner & Kieran, 1989, especially the chapter by Kaput), or what 
"understanding" might be.  (For a detailed elaboration of such themes with regard to 
elementary mathematics, see Putnam, Lampert, & Peterson, 1989.)  Hence the sequel 
presents what might be considered "largely agreed upon" perspectives. 

Suppose a person finds him or herself in a situation that calls for the use of 
mathematics, either for purposes of interpretation (mathematizing) or problem solving.  
In order to understand the individual's behavior -- e.g. which options are pursued, in 
which ways -- one needs to know what mathematical tools the individual has at his or 
her disposal.  Simply put, the issues related to the individual's knowledge base are: 
What information relevant to the mathematical situation or problem at hand does he or 
she possess, and how is that information accessed and used? 
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Although these two questions appear closely related they are, in a sense, almost 
independent.  By way of analogy, consider the parallel questions with regard to the 
contents of a library:  What's in it, and how do you gain access to the contents?  The 
answer to the first question is contained in the catalogue: a list of books, records, tapes, 
and other things the library possesses.  It's the contents that interest you if you have a 
particular problem, or need particular resources.  How the books get catalogued, or how 
you gain access to them, is somewhat irrelevant (especially if the ones you want aren't 
in the catalogue).  On the other hand, once you are interested in finding and using 
something listed in the catalogue, the situation changes.  How the library actually works 
becomes critically important: Procedures for locating a book on the shelves, taking it to 
the desk, and checking it out must be understood.  Note, incidentally, that these 
procedures are largely independent of the contents of the library.  One would follow the 
same set of procedures for accessing any two books in the general collection. 

The same holds for assessing the knowledge base an individual brings to a 
problem solving situation.  In analyses of problem solving performance, for example, the 
central issues most frequently deal with what individuals know (the contents of 
memory), and how that knowledge is deployed.  In assessing decision-making during 
problem solving, for instance, one needs to know what options problem solvers had 
available.  Did they fail to pursue particular options because they overlooked them, or 
because they didn't know of their existence? In the former case the difficulty might be 
metacognitive, or of not seeing the right "connections;" in the latter case, it is a matter of 
not having the right tools.  From the point of view of the observer or experimenter trying 
to understand problem solving behavior, then, a major task is the delineation of the 
knowledge base of individuals who confront the given problem solving tasks.  It is 
important to note that in this context, that knowledge base may contain things that are 
not true.  Individuals bring misconceptions and misremembered facts to problem 
situations, and it is essential to understand that those are the tools they work with.   
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The knowledge inventory (memory contents) 

Broadly speaking, aspects of the knowledge base relevant for competent 
performance in a domain include: informal and intuitive knowledge about the domain; 
facts, definitions, and the like; algorithmic procedures; routine procedures; relevant 
competencies; and knowledge about the rules of discourse in the domain.4  Consider, 
for example, the resources an individual might bring to the following problem. 

P

Your are given two intersecting straight lines and a point P 

marked on one of them, as in the figure below.  Show how to 

construct, using straightedge and compass, a circle that is 

tangent to both lines and that has the point P as its point of 

tangency to one of the lines.

Problem

     

Informal knowledge an individual might bring to the problem includes general 
intuitions about circles and tangents, and notions about "fitting tightly" that correspond to 
tangency.  It also includes perceptual biases, such as a strong predilection to observe 
the symmetry between the points of tangency on the two lines.  (This particular feature 
tends to become less salient, and ultimately negligible, as the vertex angle is made 
larger.)  Of course, Euclidean geometry is a formal game; these informal 
understandings must be exploited within the context of the rules for constructions.  As 
noted above, the facts, definitions, and algorithmic procedures the individual brings to 
the problem situation may or may not be correct; they may be held with any degree of 
confidence from absolute (but possibly incorrect) certainty to great unsureness.  Part of 
this aspect of the knowledge inventory is outlined in Table 1. 

                                                

4This discussion is abstracted from pages 54-61 of Schoenfeld, 1985a.  
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Part of the Inventory of an Individual's Resources for working the Construction Problem

Degree of Knowledge of facts and procedures

Does the student:

a. know nothing about

b. know about the 

    existence of, but

    nothing about the

    details of

c. partially recall or

    suspect the details, 

    but with little certainty

d. confiently believe

The tangent to a circle is 

   perpendicular to the radius 

   drawn to the point of 

   tangency (true)

Any  two constructible loci 

   suffice to determine the 

   location of a point (true with 

   qualifications)

The center of an inscribed 

   circle in a triangle lies at 

   the intersection of the 

   medians (false)

A (correct) procedure  for 

   bisecting an angle

A (correct) procedure for

    dropping a perpendicular

   to a line from a point 

An (incorrect) procedure for

    erecting a perpendicular 

    to a line through a given

    point on that line

 

Table 1 

Routine procedures and relevant competencies differ from facts, definitions, and 
algorithmic procedures in that they are somewhat less cut-and-dried.  Facts are right or 
wrong, and algorithms, when applied correctly, are guaranteed to work; routine 
procedures are likely to work, but with no guarantees.  For example, the problem above, 
although stated as a construction problem, is intimately tied to a proof problem.  One 
needs to know what properties the desired circle has, and the most direct way of 
determining them is to prove that in a figure including the circle (see Figure 1), PV and 
QV are the same length, and CV bisects angle PVQ. 

P

    
Q

C V

 

Figure 1.  The desired configuration 

The relevant proof techniques are not algorithmic, but they are somewhat routine.  
People experienced in the domain know that one should to seek congruent triangles, 
and that it is appropriate to draw in the line segments CV, CP and CQ; moreover, that 
one of the standard methods for proving triangles congruent (SSS, ASA, AAS, or 
hypotenuse-leg) will probably be used, and that this knowledge should drive the search 
process.  We note that all of the comments made in the discussion of Table 1 regarding 
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the correctness of resources, and the degree of certainty with which they are held, apply 
to relevant procedures and routine competencies:  What "counts" is what the individual 
holds to be true.  Finally, we note the importance of understanding the rules of 
discourse in the domain.  As noted above, Euclidean geometry is a formal game; one 
has to play by certain rules.  For example, you can't "line up" a tangent by eye, or 
determine the diameter of a circle by sliding a ruler along until you get the largest chord.  
While such procedures may produce the right values empirically, they are proscribed in 
the formal domain.  People who understand this will behave very differently from those 
who don't. 

Access to resources (the structure of memory) 

We now turn to the issue of how the contents of memory are organized, 
accessed, and processed.  Figure 2, taken from Silver (1987), provides the overarching 
structure for the discussion.  See Norman (1970) or Anderson (1983) for general 
discussions. 

MATH 

KNOWLEDGE

META-

COGNITIVE

KNOWLEDGE

Beliefs 

about:

-math

-self

REAL-

WORLD

KNOWLEDGE

LONG-TERM 

  MEMORY

META-

LEVEL 

PROCESSES:

 -planning

 -monitoring

 -evaluation

MENTAL

REPRESEN-

TATIONS

WORKING

M E M O R Y

STIMULI

 -visual

 -auditory

 -tactile

SENSORY

BUFFERPROBLEM

T A S K

ENVIRONMENT

OUTPUT

 

Figure 2 
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Here, in brief, are some of the main issues brought to center stage by Figure 2.  
First is the notion that human beings are information processors, acting on the basis of 
their coding of stimuli experienced in the world.  That is, one's experiences -- visual, 
auditory, tactile -- are registered in sensory buffers and then (if they are not ignored) 
converted into the forms in which they are employed in working and long-term memory.  
The sensory buffer (also called iconic memory, for much of its content is in the forms of 
images) can register a great deal of information, but hold it only briefly.  Some of that 
information will be lost, other of it transmitted to working memory (You can take in a 
broad scene perceptually, but only reproduce a small percentage of it.).  Speaking 
loosely, working or short-term memory is where "thinking gets done."  Working memory 
receives its contents from two sources, the sensory buffer and long-term memory.   

The most important aspect of working or short-term memory (STM) is its limited 
capacity.  Pioneering research by Miller (1956) indicated that, despite the huge amount 
of information humans can remember in general, they can only keep about seven 
"chunks" of information in short-term memory, and operate on them.  For example, the 
reader, unless specially trained, will find it nearly impossible to find the product 637 and 
829 mentally; the number of subtotals one must keep track of is too large for STM to 
hold.  In this arithmetic example, the pieces of information in STM are relatively simple.  
Each of the 7±2 chunks in STM can, however, be quite complex: As Simon (1980) 
points out,  

A chunk is any perceptual configuration (visual, auditory, or what not) that 
is familiar and recognizable.  For those of us who know the English language, 
spoken and printed words are chunks... For a person educated in Japanese 
schools, any one of several thousand Chinese ideograms is a single chunk (and 
not just a complex collection of lines and squiggles), and even many pairs of 
such ideograms constitute single chunks.  For an experienced chess player, a 
"fianchettoed castled Black King's position" is a chunk, describing the respective 
locations of six or seven of the Black pieces (Simon, 1980, p. 83) 

In short, the architecture of STM imposes severe constraints on the kinds and 
amount of mental processing people can perform.  The operation of chunking -- by 
which one can have compound entities in the STM slots -- only eases the constraints 
somewhat. "Working memory load" is indeed a serious problem, when people have to 
keep multiple ideas in mind during problem solving.  It also suggests that for "knowledge 
rich" domains -- chess a generic example (see below), but mathematics certainly one as 
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well -- there are severe limitations to the amount of "thinking things out" that one can do; 
the contents of the knowledge base are critically important. 

Long term memory  (LTM) is an individual's permanent knowledge repository.   
Details of its workings are still very much open to question and too fine-grained for this 
discussion, but a general consensus appears to be that some sort of "neural network" 
representation, graphs whose vertices (nodes) represent chunks in memory and whose 
links represent connections between those chunks, is appropriate.  Independent of 
these architectural issues, the fundamental issues have to do with the nature of 
knowledge and the organization of knowledge for access (i.e., to be brought into STM) 
and use. 

Before turning to issues of organization and access, one should note a long-
standing distinction between two types of knowledge, characterized by Ryle (1949) 
respectively as "knowing that" and "knowing how."  More modern terminology, employed 
by Anderson (1976), is that of "declarative" and "procedural" knowledge respectively.  
The relationship between the two is not clear-cut; see Hiebert (1985) for a set of 
contemporary studies exploring the connections between them. 

One of the domains in which the contents of memory has been best elaborated is 
chess.  de Groot (1965) explored chess masters' competence, looking for explanations 
such as "spatial ability" to explain their ability to "size up" a board rapidly and play 
numerous simultaneous games of chess.  He briefly showed experts and novices typical 
midgame positions, and asked them to recreate the positions on nearby chess boards.  
The masters' performance was nearly flawless, the novices’ quite poor.  However, when 
the two groups were asked to replicate positions where pieces had been randomly 
placed on the chess boards, experts did no better than novices; and when they were 
asked to replicate positions that were almost standard chess positions, the masters 
often replicated the standard positions -- the ones they expected to see.  That is, the 
experts had "vocabularies" of chess positions, some 50,000 well-recognized 
configurations, which they recognized and to which they responded automatically.  
These vocabularies formed the base (but not the whole) of their competence. 

The same, it is argued, holds in all domains, including mathematics.  Depending 
on the knowledge architecture invoked, the knowledge chunks may be referred to as 
scripts (Schank & Abelson, 1977), frames (Minsky, 1975), or schemata (Hinsley, Hayes, 
& Simon, 1977).  Nonetheless, the basic underlying notion is the same: people abstract 
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and codify their experiences, and the codifications of those experiences shape what 
people see and how they behave when they encounter new situations related to the 
ones they have abstracted and codified.  The Hinsley, Hayes, & Simon study is generic 
in that regard.   In one part of their work, for example, they read the first few words of a 
problem statement to subjects, and asked the subjects to categorize the problem: to say 
what information the expected the problem to provide, and what they were likely to be 
asked. 

[A]fter hearing the three words "a river steamer' from a river current problem, one 
subject said, "It's going to be one of those river things with upstream, 
downstream, and still water.  You are going to compare times upstream and 
downstream -- or if the time is constant, it will be distance." ...After hearing five 
words of a triangle problem, one subject said, "this may be something about 'how 
far is he from his goal' using the Pythagorean theorem." (Hinsley et al., 1977, p. 
97). 

The Hinsley, Hayes, and Simon findings were summed up as follows. 

(1) People can categorize problems into types... 

(2) People can categorize problems without completely formulating them for 
solution.  If the category is to be used to cue a schema for formulating a 
problem, the schema must be retrieved before formulation is complete. 

(3) People have a body of information about each problem type which is 
potentially useful in formulating problems of that type for solutions... directing 
attention to important problem elements, making relevance judgments, 
retrieving information concerning relevant equations, etc.   

(4) People use category identifications to formulate problems in the course of 
actually solving them.  (Hinsley et al., 1977, p. 92). 

In sum, the  findings of work in domains such as chess and mathematics point 
strongly to the importance and influence of the knowledge base.  First, it is argued that 
expertise in various domains depends of having access to some 50,000 chunks of 
knowledge in LTM.  Since it takes some time (perhaps 10 seconds of rehearsal for the 
simplest items) for each chunk to become embedded in LTM, and longer for knowledge 
connections to be made, that is one reason expertise takes as long as it does to 
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develop.  Second, a lot of what appears to be strategy use is in fact reliance on well-
developed knowledge chunks of the type "in this well-recognized situation, do the 
following."  Nonetheless, it is important not to overplay the roles of these knowledge 
schemata, for they do play the role of vocabulary -- the basis for routine performance in 
familiar territory.  Chess players, when playing at the limit of their own abilities, do rely 
automatically on their vocabularies of  chess positions, but also do significant 
strategizing.  Similarly, mathematicians have immediate access to large amounts of 
knowledge, but also employ a wide range of strategies when confronted with problems 
beyond the routine (and those, of course, are the problems mathematicians care about.)   
However, the straightforward suggestion that mathematics instruction focus on problem 
schemata does not sit well with the mathematics education community, for good reason.  
As noted in the historical review, IP work has tended to focus on performance but not 
necessarily on the underlying understandings that support it.  Hence a reliance on 
schemata in crude form -- "when you see these features in a problem, use this 
procedure" -- may produce surface manifestations of competent behavior.  However, 
that performance may, if not grounded in an understanding of the principles that led to 
the procedure, be error-prone and easily forgotten.  Thus many educators would 
suggest caution when applying research findings from schema theory.  For an 
elaboration of the underlying psychological ideas and the reaction from mathematics 
education, see the papers by Mayer (1985) and Sowder (1985). 

Problem solving strategies (heuristics) 

Discussions of problem solving strategies in mathematics, or heuristics, must 
begin with Pólya.  Simply put, How to Solve It  (1945) planted the seeds of the problem 
solving "movement" that flowered in the 1980's:  Open the 1980 NCTM yearbook 
(Krulik, 1980) randomly, and you are likely to find Pólya invoked, either directly or by 
inference in the discussion of problem solving examples.  The Yearbook begins by 
reproducing the How to Solve it problem solving plan on its fly leaf, and continues with 
numerous discussions of how to implement Pólya-like strategies in the classroom.  Nor 
has Pólya's influence been limited to mathematics education.  A cursory literature 
review found his work on problem solving cited in American Political Science Review, 
Annual Review of Psychology, Artificial Intelligence, Computers and Chemistry, 
Computers and Education, Discourse Processes, Educational Leadership, Higher 
Education,  and Human Learning, to name just a few. Nonetheless, a close examination 
reveals that while his name is frequently invoked, his ideas are often trivialized.  Little 
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that goes in the name of Pólya also goes in the spirit of his work.  Here we briefly follow 
two tracks: research exploring the efficacy of heuristics, or problem solving strategies, 
and the "real world" implementation of problem solving instruction. 

Making heuristics work 

The scientific status of heuristic strategies such as those discussed by Pólya in 
How to Solve It -- strategies in his "short dictionary of heuristic" such as (exploiting) 
analogy, auxiliary elements, decomposing and recombining, induction, specialization, 
variation, working backwards -- has been problematic, although the evidence appears to 
have turned in Pólya's favor over the past decade.   

There is no doubt that Pólya's accounts of problem solving have face validity, in 
that they ring true to people with mathematical sophistication.  Nonetheless, through the 
1970's there was little empirical evidence to back up the sense that heuristics could be 
used as vehicles to enhanced problem solving.  For example, Wilson (1967) and Smith 
(1973) found that the heuristics that students were taught did not, despite their 
ostensible generality, transfer to new domains.  Studies of problem solving behaviors by 
Kantowski (1977), Kilpatrick (1967), and Lucas (1974) did indicate that students' use of 
heuristic strategies was positively correlated with performance on ability tests, and on 
specially constructed problem solving tests; however, the effects were relatively small.  
Harvey and Romberg (1980), in a compilation of dissertation studies in problem solving 
over the 1970's, indicated that the teaching of problem solving strategies was 
"promising" but had yet to pan out.  Begle (1979, pp. 145-146) have the following 
pessimistic assessment of the state of the art as of 1979: 

A substantial amount of effort has gone into attempts to find out what 
strategies students use in attempting to solve mathematical problems... No clear-
cut directions for mathematics education are provided by the findings of these 
studies.  In fact, there are enough indications that problem solving strategies are 
both problem- and student-specific often enough to suggest that finding one (or 
few) strategies which should be taught to all (or most) students are far too 
simplistic. 

In other fields such as artificial intelligence, where significant attention was given 
to heuristic strategies, strategies of the type described by Pólya were generally ignored 
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(see, e.g., Groner, Groner & Bischof, 1983; Simon, 1980).  Newell, in summing up 
Pólya's influence, states the case as follows. 

This chapter is an inquiry into the relationship of George Polya's work on 
heuristic to the field of artificial intelligence (hereafter, AI).  A neat phrasing of its 
theme would be Polya revered and Polya ignored.  Polya revered, because he is 
recognized in AI as the person who put heuristic back on the map of intellectual 
concerns.  But Polya ignored, because noone in AI has seriously built on his 
work.... 

Everyone in AI, at least that part within hailing distance of problem solving 
and general reasoning, knows about Polya.  They take his ideas as provocative 
and wise.  As Minsky (1961) states, "And everyone should know the work of 
Polya on how to solve problems."  But they also see his work as being too 
informal to build upon.  Hunt (1975) has said "Analogical reasoning is potentially 
a very powerful device.  In fact, Polya [1954] devoted one entire volume of his 
two volume work to the discussion of the use of analogy and induction in 
mathematics.   Unfortunately, he presents ad hoc examples but no general rules. 
[p. 221]." 

The 1980's have been kinder to heuristics à la Pólya.  In short, the critique of the 
strategies listed in How to Solve It and its successors is that the characterizations of 
them were descriptive rather than prescriptive.  That is, the characterizations allowed 
one to recognize the strategies when they were being used.  However, Pólya's 
characterizations did not provide the amount of detail that would enable people who 
were not already familiar with the strategies to be able to implement them.  Consider, for 
example, an ostensibly simple strategy such as "examining special cases5:"  

  To better understand an unfamiliar problem, you may wish to exemplify the 
problem by considering various special cases.  This may suggest the direction of, 
of perhaps the plausibility of, a solution. 

Now consider the solutions to the following three problems. 

                                                

5This discussion is taken from pp. 288-290 of Schoenfeld (1987, December). 
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Problem 1.  Determine a formula in closed form for the series 

n  
Σ    k/(k+1)! 
i=1  

Problem 2.  Let P(x) and Q(x) be polynomials whose coefficients are the same 
but in "backwards order:" 

P(x) = a0 + a1x + a2x2 + ... anxn , and  

Q(x) = an + an-1x + an-2x2 + ... a0xn. 

What is the relationship between the roots of P(x) and Q(x)? Prove your 
answer. 

Problem 3.  Let the real numbers a0 and a1 be given. Define the sequence {an} 
by 

an = 1/2 (an-2 + an-1)  for each n ≥ 2. 

Does the sequence {an} converge? If so, to what value? 

Details of the solutions will not be given here.  However, the following 
observations are important.  For problem 1, the special cases that help are examining 
what happens when where the integer parameter, n,  takes on the values 1, 2, 3, . . . in 
sequence; this suggests a general pattern that can be confirmed by induction. Yet trying 
to use special cases in the same way on the second problem may get one into trouble: 
Looking at values n = 1, 2, 3, . . .  can lead to a wild goose chase.  The "right" special 
cases of P(x) and Q(x) to look at for problem 2 are easily factorable polynomials. 
Considering P(x) = (2x + 1) (x + 4) (3x - 2), for example, leads to the discovery that its 
"reverse" can be  factored without difficulty.  The roots of P and Q are easy to compare, 
and the result (which is best proved another way) becomes obvious.  And again, the 
special cases that simplify the third problem are different in nature.  Choosing the values 
a0=0 and a1=1 allows one to see what happens for the sequence that those two values 
generate. The pattern in that case suggests what happens in general, and (especially if 
one draws the right picture!) leads to a solution of the original problem. 
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Each of these problems typifies a large class of problems, and exemplifies a 
different special cases strategy.  We have: 

Strategy 1.  When dealing with problems in which an integer parameter n plays a 
prominent role, it may be of use to examine values of n = 1, 2, 3, . . . in 
sequence, in search of a pattern. 

Strategy 2. When dealing with problems that concern the roots of polynomials, it 
may be of use to look at easily factorable polynomials.   

Strategy 3.  When dealing with problems that concern sequences or series that 
are constructed recursively, it may be of use to try initial values of 0 and 1 -- if 
such choices don't destroy the generality of the processes under investigation. 

Needless to say, these three strategies hardly exhaust "special cases."  At this 
level of analysis -- the level of analysis necessary for implementing the strategies -- one 
could find a dozen more.  This is the case for almost all of Pólya's strategies.  The 
indications are (see, e.g., Schoenfeld, 1985a) that students can learn to use these more 
carefully delineated strategies. 

Generally speaking, studies of comparable detail have yielded similar findings.  
Silver (1979, 1981), for example, showed that "exploiting related problems" is much 
more complex than it first appears.  Heller and Hungate (1985), in discussing the 
solution of (routine) problems in mathematics and science, indicate that attention to fine-
grained detail, of the type suggested in the AI work discussed by Newell (1983), does 
allow for the delineation of learnable and usable problem solving strategies.  Their 
recommendations, derived from detailed studies of cognition: (a) Make tacit processes 
explicit (b) get students talking about processes; (c) provide guided practice; (d) ensure 
that component procedures are well learned; and (e) emphasize both qualitative 
understanding and specific procedures, appear to apply well to heuristic strategies as 
well as to the more routine techniques Heller and Hungate discuss.  Similarly, Rissland's 
(1985) "tutorial" on AI and mathematics education points to parallels, and to the kinds of 
advances that can be made with detailed analyses of problem solving performance.  
There now exists the base knowledge for the careful, prescriptive characterization of 
problem solving strategies. 

"Problem Solving" in school curricula 
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In classroom practice, unfortunately, the rhetoric of problem solving has been 
seen more frequently than its substance.  The following are some summary statements 
from the Dossey, Mullis, Lindquist, & Chambers, (1988) Mathematics report card.    

Instruction in mathematics classes is characterized by teachers explaining 
material, working problems at the board, and having students work mathematics 
problems on their own -- a characterization that has not changed across the 
eight-year period from 1978 to 1986. 

Considering the prevalence of research suggesting that there may be 
better ways for students to learn mathematics than listening to their teachers and 
then practicing what they have heard in rote fashion, the rarity of innovative 
approaches is a matter for true concern.  Students need to learn to apply their 
newly acquired mathematics skills by involvement in investigative situations, and 
their responses indicate very few activities to engage in such activities.  (Dossey 
et al., 1988, p. 76). 

According to the Mathematics report card, there is a predominance of textbooks, 
workbooks, and ditto sheets in  mathematics classrooms; lessons are generically of the 
type Burkhardt (1988) calls the "exposition, examples, exercises" mode.  Much the 
same is true of lessons that are supposedly about problem solving.  In virtually all 
mainstream texts, "problem solving" is a separate activity and highlighted as such.  
Problem solving is usually included in the texts in one of two ways.  First, there may be 
occasional "problem solving" problems sprinkled through the text (and delineated as 
such), as rewards or recreations.  The implicit message contained in this format is "You 
may take a breather from the real business of doing mathematics, and enjoy yourself for 
a while."  Second, many texts contain "problem solving" sections in which students are 
given drill-and-practice on simple versions of the strategies discussed in the previous 
section.  In generic textbook fashion, students are shown a strategy (say "finding 
patterns" by trying values of n = 1,2,3,4 in sequence and guessing the result in general), 
given practice exercises using the strategy, given homework using the strategy, and 
tested on the strategy.  Note that when the strategies are taught this way, they are no 
longer heuristics in  Pólya's sense; they are mere algorithms.  Problem solving, in the 
spirit of Pólya, is learning to grapple with new and unfamiliar tasks, when the relevant 
solution methods (even if only partly mastered) are not known.  When students are 
drilled in solution procedures as described here, they are not developing the broad set 
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of skills Pólya and other mathematicians who cherish mathematical thinking have in 
mind. 

Even with good materials (and more problem sources are becoming available: 
see, e.g., Groves & Stacey, 1984; Mason, Burton, & Stacey, 1982; Shell Centre, 1984), 
the task of teaching heuristics with the goal of developing the kinds of flexible skills 
Pólya describes is a sometimes daunting task.  As Burkhardt notes, teaching problem 
solving is 

harder for the teacher... 

mathematically - the teachers must perceive the implications of the students' 
different approaches, whether they may be fruitful and, if not, what might make 
them so.  

pedagogically - the teacher must decide when to intervene, and what 
suggestions will help the students while leaving the solution essentially in their 
hands, and carry this through for each student, or group of students, in the class. 

personally - the teacher will often be in the position, unusual for mathematics 
teachers and uncomfortable for many, of not knowing; to work well without 
knowing all the answers requires experience, confidence, and self-awareness. 
(Burkhardt, 1988, p. 18) 

That is, true problem solving is as demanding on the teacher as it is on the 
students -- and far more rewarding, when achieved, than the pale imitations of it in most 
of today's curricula. 

Self-regulation, or monitoring and control 

Self-regulation or monitoring and control is one of three broad arenas 
encompassed under the umbrella term metacognition.  For a broad historical review of 
the concept, see Brown (1987).  In brief, the issue is one of resource allocation during 
cognitive activity and problem solving.  We introduce the notion with some generic 
examples. 

As you read some expository text, you may reach a point at which your 
understanding becomes fuzzy; you decide to either reread the text or stop and work out 
some illustrative examples to make sure you've gotten the point.  In the midst of writing 
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an article, you may notice that you've wandered from your intended outline.  You may 
scrap the past few paragraphs and return to the original outline, or you may decide to 
modify it on the basis of what you've just written.  Or, as you work a mathematical 
problem you may realize that the problem is more complex than you had thought at first.  
Perhaps the best thing to do is start over, and make sure that you've fully understood it.  
Note that at this level of description, the actions in all three domains -- reading, writing, 
and mathematics -- is much the same.  In the midst of intellectual activity ("problem 
solving," broadly construed), you kept tabs on how well things were going.  If things 
appeared to be proceeding well, you continued along the same path; if they appeared to 
be problematic, you took stock and considered other options.  Monitoring and assessing 
progress "on line," and acting in response to the assessments of on-line progress, are 
the core components of self-regulation. 

During the 1970's, research in at least three different domains  -- the 
developmental literature, artificial intelligence, and mathematics education -- converged 
on self-regulation as a topic of importance.  In general, the developmental literature 
shows that as children get older, they get better at planning for the tasks they are asked 
to perform, and better at making corrective judgments in response to feedback from 
their attempts.  [Note: such findings are generally cross-sectional, comparing the 
performance of groups of children at different age levels; studies rarely follow individual 
students or cohort groups through time.]  A mainstream example of such findings is 
Karmiloff-Smith's (1979) study of children, ages four through nine, working on the task 
of constructing a railroad track.  The children were given pieces of cardboard 
representing sections of a railroad track and told that they needed to put all of the 
pieces together to make a complete loop, so that the train could go around their 
completed track without ever leaving the track.  They were rehearsed on the problem 
conditions until it was clear that they knew all of the constraints they had to satisfy in 
putting the tracks together.  Typically the four- and five-year old children in the study 
jumped right into the task, picking up sections of the track more or less at random and 
lining them up in the order in which they picked them up.  They showed no evidence of 
systematic planning for the task, or execution of it.  The older children in the study, ages 
eight and nine, engaged in a large amount of planning before engaging in the task.  
They sorted the track sections into piles (e.g. straight and curved track sections)  and 
chose systematically from the piles (e.g. alternating curved and straight sections, or two 
straight and two curved in sequence) to build the track loops.  They were, in general, 
more effective and efficient at getting the task done.  In short, the ability and predilection 
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to plan, act according to plan, and take on line feedback into account in carrying out a 
plan seem to develop with age. 

Over roughly the same time period, researchers in artificial intelligence came to 
recognize the necessity for "executive control" in their own work.  As problem solving 
programs (and expert systems) became increasingly complex, it became clear to 
researchers in AI that "resource management" was an issue.  Solutions to the resource 
allocation problem varied widely, often dependent on the specifics of the domain in 
which planning or problem solving was being done.  Sacerdoti (1974), for example, was 
concerned with the time sequence in which plans are executed -- an obvious concern if 
you try to follow the instructions "put your socks and shoes on" or "paint the ladder and 
paint the ceiling" in literal order.  His architecture, NOAH (for Nets Of Action 
Hierarchies), was designed to help make efficient planning decisions that would avoid 
execution roadblocks.  NOAH's plan execution was top-down, fleshing out plans from 
the most general level downward, and only filling in specifics when necessary.  Alternate 
models, corresponding to different domains were bottom-up; and still others, most 
notably the Hayes-Roths' (1979) "Opportunistic Planning model," or OPM, was 
heterarchical -- somewhat top-down in approach, but also working at the local level 
when appropriate.  In many ways, the Hayes-Roths' work paralleled emerging work in 
mathematical problem solving.  The task they gave subjects was to prioritize and plan a 
day's errands.  Subjects were given a schematic map of a (hypothetical) city and list of 
tasks that should, if possible, be achieved that day.  The tasks ranged from trivial and 
easily postponed (e.g. ordering a book) to essential (picking up medicine at the 
druggist).  There were too many tasks to be accomplished, so the problem solver had to 
both prioritize the tasks and find reasonably efficient ways of sequencing and achieving 
them.  The following paragraph summarizes the Hayes-Roths' findings, and stands in 
contrast to the generically clean and hierarchical models typifying the AI literature. 

[P]eople's planning activity is largely opportunistic.  That is, at each point in the 
process, the planner's current decisions and observations suggest various 
opportunities for plan development.  The planner's subsequent decisions follow 
up on selected opportunities.  Sometimes these decision processes follow an 
orderly path and produce a neat top-down expansion.... However, some 
decisions and observations might suggest less orderly opportunities for plan 
development.  For example, a decision about how to conduct initial planned 
activities might illuminate certain constraints on the planning of later activities and 
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cause the planner to refocus attention on that phase of the plan.  Similarly, 
certain low-level refinements of a previous, abstract plan might suggest an 
alternative abstract plan to replace the original one. (Hayes-Roth & Hayes-Roth, 
1979, p. 276.) 

Analogous findings were accumulating in the mathematics education literature.  
In the early 1980's, Silver (1982) and Silver, Branca, and Adams (1980), and Garofalo 
and Lester (1985) pointed out the usefulness of the construct for mathematics 
educators; Lesh (1983, 1985) focused on the instability of students' conceptualizations 
of problems and problem situations, and of the consequences of such difficulties.  
Speaking loosely, all of these studies dealt with the same set of issues regarding 
effective and resourceful problem solving behavior.  Their results can be summed up as 
follows: it's not just what you know; it's how, when, and whether you use it.  Here we 
focus on two sets of studies designed to help students develop self-regulatory skills 
during mathematical problem solving.  The studies were chosen for discussion because 
of (a) the explicit focus on self-regulation in both (b) the amount of time each devoted to 
helping students develop such skills, and (c) the detailed reflections on success and 
failure in each. 

Schoenfeld's (1985a, 1987) problem solving courses at the college level have as 
one of their major goals the development of executive or control skills.  Here is a brief 
summary, adapted from Schoenfeld (1989d.) 

The major issues are illustrated in Figures 3 and 4.  Figure 3 shows the graph of 
a problem solving attempt by a pair of working as a team.  The students read the 
problem, quickly chose an approach to it, and pursued that approach.  They kept 
working on it, despite clear evidence that they were not making progress, for the full 
twenty minutes allocated for the problem session.  At the end of the twenty minutes they 
were asked how that approach would have helped them to solve the original problem.  
They couldn't say.   
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Fig. 3.  Time-line graph of a typical student attempt to 

             solve a non-standard problem.  

The reader may not have seen this kind of behavior too often.  Such behavior 
does not generally appear when students work routine exercises, since the problem 
context in that case tells the students which techniques to use.   (In a unit test on 
quadratic equations, for example, students know that they'll be using the quadratic 
formula.)  But when students are doing real problem solving, working on unfamiliar 
problems out of context, such behavior more reflects the norm than not.  In Schoenfeld's 
collection of (more than a hundred) videotapes of college and high school students 
working unfamiliar problems, roughly sixty percent of the solution attempts are of the 
"read, make a decision quickly, and pursue that direction come hell or high water" 
variety.  And that first, quick, wrong decision, if not reconsidered and reversed, 
guarantees failure. 
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Fig. 4.  Time-line graph of a mathematician working a 

            difficult problem  

Figure 4, which stands in stark contrast to Figure 3, traces a mathematics faculty 
member's attempt to solve a difficult two-part problem. The first thing to note is that the 
mathematician spent more than half of his allotted time trying to make sense of the 
problem.  Rather than committing himself to any one particular direction, he did a 
significant amount of analyzing and (structured) exploring -- not spending time in 
unstructured exploration or moving into implementation until he was sure he was 
working in the right direction.  Second, each of the small inverted triangles in Figure 4 
represents an explicit comment on the state of his problem solution, for example "Hmm. 
I don't know exactly where to start here" (followed by two minutes of analyzing the 
problem) or "OK. All I need to be able to do is [a particular technique] and I'm done" 
(followed by the straightforward implementation of his problem solution).  It is interesting 
that when this faculty member began working the problem he had fewer of the facts and 
procedures required to solve the problem readily accessible to him than did most of the 
students who were recorded working the problem.  And, as he worked through the 
problem the mathematician generated enough potential wild goose chases to keep an 
army of problem solvers busy.  But he didn't get deflected by them.  By monitoring his 
solution with care -- pursuing interesting leads, and abandoning paths that didn't seem 
to bear fruit -- he managed to solve the problem, while the vast majority of students did 
not. 

The general claim is that these two illustrations are relatively typical of adult 
student and "expert" behavior on unfamiliar problems.  For the most part, students are 



Learning to think mathematically, Page 63 

unaware of or fail to use the executive skills demonstrated by the expert.  However, it is 
the case that such skills such can be learned as a result of explicit instruction that 
focuses on metacognitive aspects of mathematical thinking.  That instruction takes the 
form of "coaching," with active interventions as students work on problems.   

Roughly a third of the time in Schoenfeld's problem solving classes is spent with 
the students working problems in small groups.  The class divides into groups of three 
or four students and works on problems that have been distributed, while the instructor 
circulates through the room as "roving consultant."  As he moves through the room he 
reserves the right to ask the following three questions at any time: 

What (exactly) are you doing? 
 (Can you describe it precisely?) 

Why are you doing it? 
 (How does it fit into the solution?) 

How does it help you? 
 (What will you do with the outcome when you obtain it?) 

He begins asking these questions early in the term. When he does so the 
students are generally at a loss regarding how to answer them.  With the recognition 
that, despite their uncomfortableness, he is going to continue asking those questions, 
the students begin to defend themselves against them by discussing the answers to 
them in advance.  By the end of the term this behavior has become habitual.  (Note, 
however, that the better part of a semester is necessary to obtain  such changes.) 

The results of these interventions are best illustrated in Fig. 5, which summarizes 
a pair of students' problem attempt after the problem solving course.  After reading the 
problem they jumped into one solution attempt which, unfortunately, was based on an 
unfounded assumption.  They realized this a few minutes later, and decided to try 
something else.  That choice too was a bad one, and they got involved in complicated 
computations that kept them occupied for eight and a half minutes.  But at that point 
they stopped once again.  One of the students said "No, we aren't getting anything 
here... [What we're doing isn't justified]... Let's start all over and forget about this."  They 
did, and found a solution in short order.   
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Fig. 5.  Time-line graph of two students working a 

             problem after the problem solving course.  

The students' solution is hardly expert-like in the standard sense, since they 
found the "right" approach quite late in the problem session.  Yet in many ways their 
work resembled the mathematician's behavior illustrated in Fig. 4 far more than the 
typical student behavior illustrated in Fig. 3.  The point here is not that the students 
managed to solve the problem, for to a significant degree solving non-standard 
problems is a matter of luck and prior knowledge.  The point is that, by virtue of good 
self-regulation, the students gave themselves the opportunity to solve the problem.  
They curtailed one possible wild goose chase shortly after beginning to work on the 
problem, and truncated extensive computations half-way through the solution.  Had they 
failed to do so (and they and the majority of their peers did fail to do so prior to the 
course), they never would have had the opportunity to pursue the correct solution they 
did find.  In this, the students' behavior was expert-like.  And in this, their solution was 
also typical of post-instruction attempts by the students. In contrast to the 60% of the 
"jump into a solution attempt and pursue it no matter what" attempts prior to the course, 
fewer than 20% of the post-instruction solution attempts were of that type.  There was a 
concomitant increase in problem solving success. 

At the middle school level, Lester, Garofalo & Kroll (1989, June) recently 
completed a major research and intervention study "designed to study the role of 
metacognition (i.e. the knowledge and control of cognition) in seventh graders' 
mathematical problem solving" (p. v).  The goal of the instruction, which took place in 
one "regular" and one "advanced" seventh grade mathematics class, was to foster 
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students' metacognitive development.  Ways of achieving this goal were to have the 
teacher (a) serve as external monitor during problem solving, (b) encourage discussion 
of behaviors considered important for the internalization of metacognitive skills, and (c) 
model good executive behavior. Table 2 delineates the teacher behaviors stressed in 
the instruction.  The total instruction time focusing on metacognition in the experiment 
was 16.1 hours spread over 12 weeks of instruction, averaging slightly more than 1/3 
(35.7%) of the mathematics classroom time during the instructional period. 

 
__________________________________________________________ 

 
Teaching actions for problem solving 

__________________________________________________________ 
   
 Teaching Action Purpose 
 BEFORE 
 
1. Read the problem... Discuss words or  Illustrate the importance of reading 
     phrases students may not understand carefully; focus on special vocabulary 
 
2. Use whole-class discussion to focus on Focus on important data, clarification 
     importance of understanding the problem process 
 
3. (Optional) Whole-class discussion of  Elicit ideas for possible ways to solve  
     possible strategies to solve a problem the problem 
 
 DURING 
 
4. Observe and question students to  Diagnose strengths and weaknesses 
     determine where they are  
 
5. Provide hints as needed Help students past blockages 
 
6. Provide problem extensions as needed Challenge early finishers to generalize 
 
7. Require students who obtain a solution Require students to look over their work  
     to "answer the question" and make sure it makes sense 
  
 AFTER 
 
8. Show and discuss solutions Show and name different strategies 
 
9. Relate to previously solved problems Demonstrate general applicability of 
     or have students solve extensions problem solving strategies 
 
10. Discuss special features, e.g. pictures Show how features may influence approach 

__________________________________________________________ 
Table 2 (Adapted from Lester, Garofalo, & Kroll, 1989, P. 26) 
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The instruction included both "routine" and "non-routine" problems.  An example 
of a routine problem designed to give students experience in translating verbal 
statements into mathematical expressions was as follows. 

Laura and Beth started reading the same book on Monday.  Laura read 19 pages 
a day and Beth read 4 pages a day.  What page was Beth on when Laura was on 
page 133? 

The non-routine problems used in the study included "process problems" 
(problems for which there is no standard algorithm for extracting or representing the 
given information) and problems with either superfluous or insufficient information.  The 
instruction focused on problems amenable to particular strategies (guess-and-check, 
working backwards, looking for patters) and included games for whole-group activities.  
Assessment data and tools employed before, during, and after the instruction included 
written tests, clinical interviews, observations of individual and pair problem-solving 
sessions, and videotapes of the classroom instruction.  Some of the main conclusions 
drawn by Lester et al. were as follows. 

• There is a dynamic interaction between the mathematical concepts and 
processes (including metacognitive ones) used to solve problems using those 
concepts.  That is, control processes and awareness of cognitive processes 
develop concurrently with an understanding of mathematical concepts.   

• In order for students' problem solving performance to improve, they must attempt 
to solve a variety of types of problems on a regular basis and over a prolonged 
period of time. 

• Metacognition instruction is most effective when it takes place in a domain 
specific context. 

• Problem-solving instruction, metacognition instruction in  particular, is likely to be 
most effective when it is provided in a systematically organized manner under the 
direction of the teacher. 

• It is difficult for the teacher to maintain the roles of monitor, facilitator, and model 
in the face of classroom reality, especially when the students are having trouble 
with basic subject matter. 
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• Classroom dynamics regarding small-group activities are not as well understood 
as one would like, and facile assumptions that "small group interactions are best" 
may not be warranted.  The issue of "ideal" class configurations for problem 
solving lessons needs more thought and experimentation. 

•  Assessment practices must reward and encourage the kinds of behaviors we 
wish students to demonstrate. 

(Lester, Garofalo, & Kroll, 1989, pp. 88-95) 

To sum up the results of these this section in brief: Developing self-regulatory 
skills in complex subject-matter domains is difficult.  It often involves "behavior 
modification," unlearning inappropriate control behaviors developed through prior 
instruction.  Such change can be catalyzed, but it requires a long period of time, with 
sustained attention to both cognitive and metacognitive processes.  The task of creating 
the "right" instructional context, and providing the appropriate kinds of modeling and 
guidance, is challenging and subtle for the teacher.  The two studies cited point to some 
effective teacher behaviors, and to classroom practices, that foster the development of 
self-regulatory skills.  However, these represent only a beginning.  They document the 
teaching efforts of established researchers who have, themselves, the luxury to reflect 
on such issues and prepare instruction devoted to them.  Making the move from such 
"existence proofs" (problematic as they are) to standard classrooms will require a 
substantial amount of conceptualizing and pedagogical engineering.  

Beliefs and Affects 

Once upon a time there was a sharply delineated distinction between the 
cognitive and affective domains, as reflected in the two volumes of Bloom's (1956) 
Taxonomies.  Concepts such as mathematics anxiety, for example, clearly resided in 
the affective domain and were measured by questionnaires dealing with how the 
individual feels about mathematics (see, e.g., Suinn,  Edie, Nicoletti, & Spinelli, 1972); 
concepts such as mathematics achievement and problem solving resided within the 
cognitive domain, and were assessed by tests focusing on subject matter knowledge 
alone.  As our vision gets clearer, however, the boundaries between those two domains 
become increasingly blurred.   
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Given the space constraints, to review the relevant literature or even try to give a 
sense of it would be an impossibility.  Fortunately, one can point to chapter XXXX in this 
Handbook and to volumes such as McLeod and Adams' (1989) Affect and mathematical 
problem solving: A new perspective as authoritative starting points for a discussion of 
affect.  Beliefs -- to be interpreted as "an individual's understandings and feelings that 
shape the ways that the individual conceptualizes and engages in mathematical 
behavior" -- will receive a telegraphic discussion.  The discussion will take place in three 
parts: student beliefs, teacher beliefs, and general societal beliefs about doing 
mathematics.  There is a fairly extensive literature on the first, a moderate but growing 
literature on the second, and a small literature on the third.  Hence length of discussion 
does not correlate with the size of the literature base. 

Student beliefs 

As an introduction to the topic, we recall Lampert's commentary: 

Commonly, mathematics is associated with certainty; knowing it, with 
being able to get the right answer, quickly (Ball, 1988; Schoenfeld, 1985b; 
Stodolsky, 1985).  These cultural assumptions are shaped by school experience, 
in which doing mathematics means following the rules laid down by the teacher; 
knowing mathematics means remembering and applying the correct rule when 
the teacher asks a question; and mathematical truth is determined when the 
answer is ratified by the teacher.  Beliefs about how to do mathematics and what 
it means to know it in school are acquired through years of watching, listening, 
and practicing.  (Lampert, in press, p. 5) 

  An extension of Lampert's list, including other student beliefs delineated in the 
sources she cites, is given in Table 3. 
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________________________________________________________ 

Typical student beliefs about the nature of mathematics 

• Mathematics problems have one and only one right answer. 

• There is only one correct way to solve any mathematics problem -- usually the 
rule the teacher has most recently demonstrated to the class. 

• Ordinary students cannot expect to understand mathematics; they expect 
simply to memorize it, and apply what they have learned mechanically and 
without understanding.  

• Mathematics is a solitary activity, done by individuals in isolation. 

• Students who have understood the mathematics they have studied will be able 
to solve any assigned problem in five minutes or less. 

• The mathematics learned in school has little or nothing to do with the real 
world.  

• Formal proof is irrelevant to processes of discovery or invention. 

 _______________________________________________________ 

Table 3 

The basic arguments regarding student beliefs were made in part I.  As an 
illustration, we point to the genesis and consequences of one belief, regarding the 
amount of time students believe that it is appropriate to spend working mathematics 
problems.  The data come from year-long observations of high school geometry 
classes.   

Over the period of a full school year, none of the students in any of the 
dozen classes we observed worked mathematical tasks that could seriously be 
called problems.  What the students worked were exercises: tasks designed to 
indicate mastery of relatively small chunks of subject matter, and to be completed 
in a short amount of time.  In a typical five-day sequence, for example, students 
were given homework assignments that consisted of 28, 45, 18, 27, and 30 
"problems" respectively. ... [A particular] teacher's practice was to have students 
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present solutions to as many of the homework problems as possible at the board.  
Given the length of his assignments, that means that he expected the students to 
be able to work twenty or more "problems" in a fifty-four minute class period.  
Indeed, the unit test on locus and construction problems (a uniform exam in Math 
10 classes at the school) contained twenty-five problems -- giving students an 
average two minutes and ten seconds to work each problem.  The teacher's 
advice to the students summed things up in a nutshell:  "You'll have to know all 
your constructions cold so you don't spend a lot of time thinking about them." 
[emphasis added.]... 

In sum, students who have finished a full twelve years of mathematics 
have worked thousands upon thousands of "problems" -- virtually none of which 
were expected to take the students more than a few minutes to complete.  The 
presumption underlying the assignments was as follows:  If you understand the 
material, you can work the exercises.  If you can't work the exercises within a 
reasonable amount of time, then you don't understand the material.  That's a sign 
that you should seek help. 

Whether or not the message is intended, students get it.  One of the open-
ended items on our questionnaire, administered to students in twelve high school 
mathematics classes in grades 9 through 12, read as follows: "If you understand 
the material, how long should it take to answer a typical homework problem?  
What is a reasonable amount of time to work on a problem before you know it's 
impossible?"   Means for the two parts of the question were 2.2 minutes (n=221) 
and 11.7 minutes (n = 227), respectively.  (Schoenfeld, Spring 1988, pp. 159-
160.) 

Unfortunately, this belief has a serious behavioral corollary.  Students with the 
belief will give up working on a problem after a few minutes of unsuccessful attempts, 
even though they might have solved it had they persevered. 

There are parallel arguments regarding the genesis and consequences of the 
each of the beliefs listed in Table 3.  Recall, for example, the discussion of the artificial 
nature of Milne's mental arithmetic problems in Part I of this chapter.  It was argued that, 
after extended experience with "cover stories" for problems that are essentially 
algorithmic exercises, students come to ignore the cover stories and focus on the 
"bottom line:" performing the algorithm and writing down the answer.  That kind of 
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behavior produced an astonishing and widely quoted result on the third National 
Assessment of Educational Progress (NAEP,1983), when a plurality of students who 
performed the correct numerical procedure on a problem ignored the cover story for the 
problem and wrote that the number of buses requires for a given task was "31 
remainder 12."  In short: 

1.  Students abstract their beliefs about formal mathematics -- their sense of their 
discipline -- in large measure from their experiences in the classroom. 

2.  Students' beliefs shape their behavior in ways that have extraordinarily 
powerful (and often negative) consequences. 

Teacher beliefs 

Belief structures are important not only for students, but for teachers as well.  
Simply put, a teacher's sense of the mathematical enterprise determines the nature of 
the classroom environment that the teacher creates.  That environment, in turn, shapes 
students' beliefs about the nature of mathematics.  We briefly cite two studies that 
provide clear documentation of this point.  Cooney (1985) discussed the classroom 
behavior of a beginning teacher who professed a belief in "problem solving."  At bottom, 
however, this teacher felt that giving students "fun" or non-standard problems to work on 
-- his conception of problem solving -- was, although recreational and motivational, 
ultimately subordinate to the goal of having students master the subject matter he was 
supposed to cover.  Under the pressures of content coverage, he sacrificed his 
(essentially superficial) problem solving goals for the more immediate goals of drilling 
his students on the things they would be held accountable for. 

Thompson (1985) presents two case studies demonstrating the ways that 
teacher beliefs play out in the classroom.  One of her informants was named Jeanne. 

Jeanne's remarks revealed a view of the content of mathematics as fixed 
and predetermined, as dictated by the physical world.  At no time during either 
the lessons [Thompson observed] of the interviews did she allude to the 
generative processes of mathematics.  It seemed apparent that she regarded 
mathematics as a finished product to be assimilated.... 

Jeanne's conception of mathematics teaching can be characterized in 
terms of her view of her role in teaching the subject matter and the students' role 
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in learning it.  Those were, in gross terms, that she was to disseminate 
information, and that her students were to receive it.  (Thompson, 1985, p. 286). 

These beliefs played out in Jeanne's instruction.  The teacher's task, as she saw 
it, was to present the lesson planned, without digressions or inefficient changes.  Her 
students experienced the kind of rigid instruction that leads to the development of some 
of the student beliefs described above. 

Thompson's second informant was named Kay.  Among Kay's beliefs about 
mathematics and pedagogy: 

• Mathematics is more a subject of ideas and mental processes than a subject of 
facts. 

• Mathematics can be best understood by rediscovering its ideas. 

• Discovery and verification are essential processes in mathematics. 

• The main objective of the study of mathematics is to develop reasoning skills 
that are necessary for solving problems. ... 

• The teacher must create and maintain an open and informal classroom 
atmosphere to insure the students' freedom to ask questions and explore their 
ideas. ... 

• The teacher should encourage students to guess and conjecture and should 
allow them to reason things on their own rather than show them how to reach 
a solution or an answer. ... 

• The teacher should appeal to students' intuition and experiences when 
presenting the material in order to make it meaningful. 

(Thompson, 1985, pp. 288-290) 

Kay's pedagogy was consistent with her beliefs, and resulted in a classroom 
atmosphere that was at least potentially supportive of the development of her students' 
problem solving abilities.   

One may ask, of course, where teachers obtain their notions regarding the nature 
of mathematics and of the appropriate pedagogy for mathematics instruction.  Not 



Learning to think mathematically, Page 73 

surprisingly, Thompson notes: "There is research evidence that teachers' conceptions 
and practices, particularly those of beginning teachers, are largely influenced by their 
schooling experience prior to entering methods of teaching courses."  Hence teacher 
beliefs tend to come home to roost in successive generations of teachers, in what may 
for the most part be a vicious pedagogical/epistemological circle.   

 Societal beliefs 

Stigler & Perry (1989) report on a series of cross-cultural studies that serve to 
highlight some of the societal beliefs in the United States, Japan, and China regarding 
mathematics. 

[T]here are large cultural differences in the beliefs held by parents, 
teachers, and children about the nature of mathematics learning. These beliefs 
can be organized into three broad categories: beliefs about what is possible, (i.e., 
what children are able to learn about mathematics at different ages); beliefs 
about what is desirable (i.e., what children should learn); and beliefs about what 
is the best method for teaching mathematics (i.e., how children should be taught).  
(Stigler & Perry, 1989, p. 196) 

Regarding what is possible, the studies indicate that people in the U.S. are much 
more likely than the Japanese to believe that innate ability (as opposed to effort) 
underlies children's success in mathematics.  Such beliefs play out in important ways.  
First, parents and students who believe "either you have it or you don't" are much less 
likely to encourage students to work hard on mathematics than those who believe "you 
can do it if you try."  Second, our nation's textbooks reflect our uniformly low 
expectations of students: "U.S. elementary textbooks introduce large numbers at a 
slower pace than do Japanese, Chinese, or Soviet textbooks, and delay the introduction 
of regrouping in addition and subtraction considerably longer than do books in other 
countries" (Stigler & Perry, 1989, p. 196).  Regarding what is desirable, the studies 
indicate that -- despite the international comparison studies -- parents in the U.S. 
believe that reading, not mathematics, needs more emphasis in the curriculum.  And 
finally, on methods: 

Those in the U.S., particularly with respect to mathematics, tend to assume that 
understanding is equivalent to sudden insight.  With mathematics, one often 
hears teachers tell children that they "either know it or they don't," implying that 
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mathematics problems can either be solved quickly or not at all. ... In Japan and 
China, understanding is conceived of as a more gradual process, where the more 
one struggles the more one comes to understand.  Perhaps for this reason, one 
sees teachers in Japan and China pose more difficult problems, sometimes so 
difficult that the children will probably not be able to solve them within a single 
class period. (Stigler & Perry, 1989, p. 197) 

In sum: whether acknowledged or not, whether conscious or not, beliefs shape 
mathematical behavior.  Beliefs are abstracted from one's experiences and from the 
culture in which one is embedded.  This leads to the consideration of mathematical 
practice. 

Practices 

As an introduction to this section we recall Resnick's comments regarding 
mathematics instruction:  

Becoming a good mathematical problem solver -- becoming a good thinker in any 
domain -- may be as much a matter of acquiring the habits and dispositions of 
interpretation and sense-making as of acquiring any particular set of skills, 
strategies, or knowledge.  If this is so, we may do well to conceive of 
mathematics education less as an instructional process (in the traditional sense 
of teaching specific, well-defined skills or items of knowledge), than as a 
socialization process.  (Resnick, 1989, p. 58) 

The preceding section on beliefs and affects described some of the unfortunate 
consequences of entering the wrong kind of mathematical practice -- the practice of 
"school mathematics."  Here we examine some positive examples.  These classroom 
environments, designed to reflect selected aspects of the mathematical community, 
have students interact (with each other and the mathematics) in ways that promote 
mathematical thinking.  We take them in increasing grade order. 

Lampert (in press) explicitly invokes a Pólya-Lakatosian epistemological 
backdrop for her fifth-grade lessons on exponentiation, deriving pedagogical practice 
from that epistemological stance.  She describes: 

... a research and development project in teaching designed to examine whether 
and how it might be possible to bring the practice of knowing mathematics in 
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school closer to what it means to know mathematics within the discipline by 
deliberately altering the roles and responsibilities of teacher and students in 
classroom discourse.... A [representative] case of teaching and learning about 
exponents derived from lessons taught in the project is described and interpreted 
from mathematical, pedagogical, and sociolinguistic perspectives.  To change the 
meaning of knowing and learning in school, the teacher initiated and supported 
social interactions appropriate to making mathematical arguments in response to 
students' conjectures.  The activities in which students engaged as they asserted 
and examined hypotheses about the mathematical structures that underlie their 
solutions to problems are contrasted with the conventional activities that 
characterize school mathematics. (Lampert, in press, p. 1). 

Lampert describes a series of lessons on exponents, in which students first found 
patterns of the last digits in the squares of natural numbers and then explored the last 
digits of large numbers -- e.g. what is the last digit of 75?  In the process of classroom 
discussion, students found patterns, made definitions, reasoned about their claims, and 
ultimately defended their claims on mathematical grounds.  At one point, for example, a 
student named Sam asserted flatly that the last digit of 75 is a 7, while others claimed 
that it as 1 or 9.   

[Lampert] said: "You must have a proof in mind, Sam, to be so sure," and then I 
asked, "Arthur, why do you think it's a 1?"... 

[T]he students attempted to resolve the problem of having more than one 
conjecture about what the last digit in seven to the fifth power might be.  [The 
discussion] was a zig-zag between proofs that the last digit must be 7 and 
refutations of Arthur's and Sarah's alternative conjectures.  The discussion 
ranged between observations of particular answers and generalizations about 
how exponents -- and numbers more generally -- work. Students examined their 
own assumptions and those of their classmates. I assumed the role of manager 
of the discussion and sometimes participated in the argument, refuting a 
student's assertion. ... 

At the end of the lesson, in which  the class explored simple ways of looking at 
the last digits of 78 and 716,  



Learning to think mathematically, Page 76 

some students were verging on declaring an important law of exponents: (na)(nb) 
= na+b, which they would articulate more fully, and prove the legitimacy of, in the 
next few classes.  They were also beginning to develop a modular arithmetic of 
"last digits" to go with different base numbers, leading them into further 
generalizations about the properties of exponents. (Lampert, in press, pp. 32-34.) 

Note that Lampert did not "reveal truth," but entered the dialogue as a 
knowledgeable participant -- a representative of the mathematical community who was 
not an all-knowing authority but rather one who could ask pointed questions to help 
students arrive at the correct mathematical judgments.  Her pedagogical practice, in 
deflecting undue authority from the teacher, placed the burden of mathematical 
judgment (with constraints) on the shoulders of the students. 

Balacheff (1987) exploits social interactions in a different way, but with similar 
epistemological goals.  He describes a series of lessons for seventh graders, concerned 
with the theorem that "the sum of the angles of a triangle is 180°."  The lessons begin 
with the class divided into small groups.  Each group is given a work sheet with a copy 
of the same triangle, and asked to compute the sum of its angles.  The groups then 
report their answers, which vary widely -- often from as little as 100° to as much as 
300°!  Since the students know they had all measured the same triangle, this causes a 
tension that must be resolved; they work on it until all students agree on a value.  
Balacheff then hands out a different triangle to each group, and has the group 
conjecture the sum of the angles of its triangle before measuring it.  Groups compare 
and contrast their results, and repeat the process with each other's triangles. The 
conflicts within and across groups, and the discussions that result in the resolutions of 
those conflicts, make the relevant mathematical issues salient and meaningful to the 
students, so that they are intellectually prepared for the theoretical discussions (of a 
similar dialectical nature) that follow. 

In a classic study that is strikingly contemporary in its spirit, Fawcett (1938) 
describes a two-year long course in plane geometry he taught at the Ohio State 
laboratory school in the 1930's.  Fawcett's goals were that students develop a good 
understanding of the subject matter of geometry, the right epistemological sense about 
the mathematics, and a sense of the applicability of the reasoning procedures that they 
had learned in geometry to situations outside of the mathematics classroom.  In order 
for this to happen, he believed, (1) the students had to engage in doing mathematics in 
a way consistent with his mathematical epistemology, (2) the connections between 
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mathematical reasoning in  the formal context of the classroom and mathematical 
reasoning outside of it would have to be made explicit, and (3) the students would need 
to reflect both on their doing of mathematics and on the connections between the 
reasoning in both contexts. 

For example, the issue of definition is important in mathematics.  Fawcett pointed 
out that definitions have consequences: in his school, for example, there was an award 
for the "best teacher."  Many students favored the librarian -- but was the librarian a 
teacher?  Or, he used sports as an analogy.  In baseball, for example, there might be 
varying definitions of "foul ball" (is a fly ball that hits the foul pole fair or foul?) -- but once 
one sets the rules, the game can be played with consistency.  After such discussions, 
Fawcett notes "[n]o difficulty was met in leading the pupils to realize that these rules 
were nothing more than agreements which a group of interested people had made and 
that they implied certain conclusions" (p.33).  In the mathematical domain, he had his 
students debate the nature and usefulness of various definitions.  Rather than provide 
the definition of "adjacent angle," for example, he asked the class to propose and 
defend various definitions.  The first was "angles that share a common side," which was 
ruled out by Fig. 6a.  A second suggestion, "angles that share a common vertex,"  was 
ruled out by Fig. 6b.  "Angles that share a common side and a common vertex" had a 
good deal of support, until it was ruled out by Fig. 6c.  Finally the class agreed upon a 
mathematically correct definition. 

A

B
C D E

F

a. two angles that share

     a common side

b. two angles that share

     a common vertex

c. two angles that share

     a common side and

     a common vertex

Figure 6.  Examples used to examine different definitions of "adjacent angles."  

To recall a statement on the nature of mathematical doing by Pólya , "To a 
mathematician who is active in research, mathematics may appear sometimes as a 
guessing game; you have to guess a mathematical theorem before you prove it, you 
have to guess the idea of a proof before you carry through all the details" (Patterns of 
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plausible inference, p. 158).  Fawcett's class was engineered along these lines.  He 
never gave assignments of the following form: 

Prove that the diagonals of a parallelogram bisect each other but are not 
necessarily mutually perpendicular; prove that the diagonals of a rhombus are 
mutually perpendicular in addition. 

Instead, he would pose the problems in the following form. 

1.  Consider the parallelogram ABCD in Fig. 7a, with diagonals AC and BD.  
State all the properties of the figure that you are willing to accept.  Then, give 
a complete argument justifying why you believe your assertions to be correct. 

2.  Suppose you assume in addition that AB = BC, so that the quadrilateral ABCD 
is a rhombus (Fig. 7b). State all  the additional properties of the figure that you 
are willing to accept.  Then, give a complete argument justifying why you 
believe your additional assertions to be correct. 

A

B C

D A

B C

D

a. ABCD is a parallelogram. What do

   you think must be true?

b.  ABCD is a rhombus.  What else do

     you think must be true?

Fig. 7.  The kinds of questions Fawcett asked  

Needless to say, different students had different opinions regarding what they 
would accept as properties of the figures.  Fawcett had students representing the 
different positions argue their conclusions -- that is, a claim about a property of either 
figure had to be defended mathematically.  The class (with Fawcett serving as an 
"especially knowledgeable member" but not as sole authority) served as "jury."  Class 
discussions included not only what was right and wrong (i.e. does a figure have a given 
property?), but also reflections on the nature of argumentation itself: are inductive proofs 
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always valid; are converses always true, and so on.  In short, Fawcett's students were 
acting like mathematicians, at the limits of their own community's (i.e. the classroom's) 
knowledge. 

We continue with two examples at the college level.  Alibert and his colleagues 
(Alibert, 1988) have developed a calculus course at Grenoble based on the following 
principles: 

1.  Coming to grips with uncertainty is major part of the learning process. 

2.  A major role of proofs (the product of  "scientific debate") is to convince first 
oneself, and then others, of the truth of a conjecture. 

3.  Mathematical tools can evolve meaningfully from the solution of complex 
problems, often taken from the physical sciences. 

4.  Students should be induced to reflect on their own thought processes. 

Their course, based on these premises, introduces major mathematics topics 
with significant problems from the physical sciences (e.g. the Riemann integral is 
introduced and motivated by a problem asking students to determine the gravitational 
attraction exerted by a stick on a marble).  While in typical calculus classes the historical 
example would soon be abandoned and the subject matter would be presented in cut-
and-dried fashion, the Grenoble course is true to its principles.  The class, in a debate 
resembling that discussed in the examples from Lampert and Fawcett, formulates the 
mathematical problem and resolves it (in the sense of the term used by Mason, Burton, 
& Stacey, 1982) by a discussion in which ideas spring from the class and are nurtured 
by the instructor, who plays a facilitating and critical rather than show-and-tell role.   

According to Alibert, experiences of this type result in the students' coming to 
grips with some fundamental mathematical notions. After the course, 

Their conceptions of mathematics are interesting -- and important for their 
learning.  A large majority of the students answer the ... question ["what does 
mathematics mean to you?"] at an epistemological level; their "school" 
epistemology has almost disappeared. (Alibert, 1988, p. 35). 

Finally, Schoenfeld's problem solving courses at the college level have many of 
the same attributes.  As in Fawcett's case, no problems are posed in the "prove that" 
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format; all are "what do you think is true, and why?" questions.  Schoenfeld 
(forthcoming) explicitly deflects teacher authority to the student community, both in 
withholding his own understandings of problem solutions (many problems the class 
works on for days or weeks are problems for which he could present a 10-minute lecture 
solution) and developing in the class the critical sense of mathematical argumentation 
that leads it, as a community, to accept or reject on appropriate mathematical grounds 
the proposals made by class members. 

For example, in a discussion of the Pythagorean theorem (Schoenfeld, in press, 
forthcoming) Schoenfeld posed the problem of finding all solutions in integers to the 
equation a2 + b2 = c2.  There is a known solution, which he did not present.  The class 
made a series of observations, among them: 

1.  Multiples of known solutions (e.g. the {6,8,10} right triangle as a multiple of the 
{3,4,5})  are easy to obtain, but of no real interest. The class would focus on 
triangles whose sides were relatively prime. 

2.  The class observed, conjectured, and proved that in a relatively prime 
solution, the value of c is always odd. 

3.  Students observed that in all the cases of relatively prime solutions they knew 
-- e.g. {3,4,5}, (5,12,13}, {7,24,25}, {8,15,17}, {12,35,37} -- the larger leg (b) 
and the hypotenuse (c) differed by either 1 or 2.  They conjectured that there 
are infinitely many triples in which b and c differ by 1 and by 2, and no others. 

4.  They proved that there are infinitely many solutions where b and c differ by 1, 
and also infinitely many solutions where b and c differ by 2; they proved there 
are no solutions where b and c differ by 3.  At that point a student asked if, 
should the pattern continue (i.e. if they could prove their conjecture), they 
would have a publishable theorem. 

Of course, the answer to the student's question was no.  First, the conjecture was 
wrong: there is, for example, the {20,21,29} triple.  Second, the definitive result -- all 
Pythagorean triples are of the form {M2-N2, 2MN, M2+N2} -- is well known and long 
established within the mathematical community. But to dismiss the students' results is to 
do them a grave injustice.  In fact, all three of the results proved by the students in (4) 
above were new to the instructor.  The students were doing mathematics, at the 
frontiers of their community's knowledge. 
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In all of the examples discussed in this section, classroom environments were 
designed to be consonant with the instructors' epistemological sense of mathematics as 
an ongoing, dynamic discipline of sense-making through the dialectic of conjecture and 
argumentation.  In all, the authors provide some anecdotal and some empirically 
"objective" documentations of success.  Yet, the existence of these positive cases 
raises far more questions that it answers.  The issues raised here, and in general by the 
research discussed in this chapter, are the focus of discussion in the next section. 

 

PART III: ISSUES 

We conclude with an assessment of the state of the art in each of the areas 
discussed in this paper, pointing to both theoretical and practical issues that need 
attention and clarification.  Caveat lector: The comments made here reflect the opinions 
of the author, and may be shared to various degrees by the research community at 
large.   

This chapter has focused on an emerging conceptualization of mathematical 
thinking based on an alternative epistemology in which the traditional conception of 
domain knowledge plays an altered and diminished role, even when it is expanded to 
include problem solving strategies.  In this emerging view metacognition, belief, and 
mathematical practices are considered critical aspects of thinking mathematically.  But 
there is more.  The person who thinks mathematically has a particular way of seeing the 
world, of representing it, of analyzing it.  Only within that overarching context do the 
pieces -- the knowledge base, strategies, control, beliefs, and practices -- fit together 
coherently.  We begin the discussion with comments on what it might mean for the 
pieces to fit together. 

A useful idea for helping to analyze and understand complex systems is that of a 
nearly decomposable system.  The idea is that one can make progress in understanding 
a large and complex system by carefully abstracting from it subsystems for analysis, 
and then combining the analyses of the subsystems into an analysis of the whole.  The 
study of human physiology provides a familiar example.  Significant progress in our 
understanding of physiology has been made by conducting analyses of the circulatory 
system, the respiratory system, the digestive system, and so on.  Such analyses yield 
tremendous insights, and help to move us forward in understanding human physiology 
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as a whole.  However, insights at the subsystem level alone are insufficient:  
Interactions among the subsystems must be considered, and the whole is obviously 
much more than the sum of its parts.  

One can argue, I think convincingly, that the categories in the framework 
identified and discussed in Part II of this chapter provide a coherent and relatively 
comprehensive near decomposition of mathematical thinking (or at least, mathematical 
behavior).  The individual categories cohere, and within them (to varying degrees of 
success) research has produced some ideas regarding underlying mechanisms.  But 
the research community understands little about the interactions among the categories, 
and less about how they come to cohere -- in particular how an individual's learning in 
all of those categories fits together to give the individual's sense of the mathematical 
enterprise, his or her "mathematical point of view."  My own bias is that the key to this 
problem lies in the study of enculturation, of entry into the mathematical community.  For 
the most part, people develop their sense of any serious endeavor -- be it their religious 
beliefs, their attitude toward music, their identities as professionals or workers, their 
sense of themselves as readers (or non-readers), or their sense of mathematics -- from 
interactions with others.  And if we are to understand how people develop their 
mathematical perspectives, we must look at the issue in terms of the mathematical 
communities in which students live, and the practices that underlie those communities.  
The role of interactions with others will be central in understanding learning, whether it 
be understanding how individuals come to grips with the specifics of the domain (see, 
e.g., Moschkovich, 1989; Newman, Griffin, & Cole, 1989; Schoenfeld, Smith & Arcavi, 
forthcoming) or more broad issues about developing perspectives and values (see, e.g. 
Lave & Wenger, 1989; Schoenfeld, 1989c, forthcoming).  This theme will be explored a 
bit more in the section on  practices.  We now proceed with a discussion of issues 
related to research, instruction, and assessment. 

Fundamental issues remain unaddressed or unresolved in the general area of 
problem solving and in each of the particular areas addressed in Part II of this chapter.  
To begin, the field needs much greater clarity on the meanings of the term "problem 
solving."  The term has served as an umbrella under which radically different types of 
research have been conducted.  At minimum there should be a de facto requirement 
(now the exception rather than the rule) that every study or discussion of problem 
solving be accompanied by an operational definition of the term and examples of what 
the author means -- whether it be working the exercises at the end of the chapter, 
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scoring well on the Putnam exam, or "developing a mathematical point of view and the 
tools to go with it" as discussed in this chapter.  Although one is loath to make 
recommendations that may result in jargon proliferation, it seems that the time is 
overdue for the field to undertake some form of consensus definitions about various 
aspects of problem solving.  Great confusion arises when the same term refers to a 
multitude of sometimes contradictory and typically underspecified behaviors. 

Along the same general lines, much greater clarity is necessary with regard to 
research methods.  It is generally accepted that all research methodologies (a) address 
only particular aspects of problem solving behavior, leaving others unaddressed; (b) 
cast some behaviors into high relief, allowing for a close analysis of those; and (c) either 
obscure or distort other behaviors.  The researchers' tool kit is expanding, from the 
collection of mostly statistical and experimental techniques largely employed through 
the 1970's (comparison studies, regression analyses, and so on) to the broad range of 
clinical, protocol analysis, simulation and computer modeling methods used today.  
Such methods are often ill- or inappropriately used.  Those we understand well should, 
perhaps, come with "user's guides" of the following type: "this method is suited for 
explorations of A, B, and C, with the following caveats; it has not proven reliable for 
explorations of D, E, and F."  Here is one example, as a case in point:   

The protocol parsing scheme used to produce figures 3, 4, and 5 in this chapter 
(See Schoenfeld, 1985a), which analyzed protocols gathered in non-interventive 
problem solving sessions, is appropriate for documenting the presence or 
absence of executive decisions in problem solving, and demonstrating the 
consequences of those executive decisions.  However, it is likely to be useful 
only on problems of Webster's type 2 -- "perplexing or difficult" problems, in 
which individuals must make difficult choices about resource allocation.  (Control 
behavior is unlikely to be necessary or relevant when individuals are working 
routine or algorithmic exercises.)  Moreover, the method reveals little or nothing 
about the mechanisms underlying successful or unsuccessful monitoring and 
assessment.  More interventive methods will almost certainly be necessary to 
probe, on the spot, why individuals did or did not pursue particular options during 
problem solving.  These, of course, will disturb the flow of problem solutions; 
hence the parsing method will no longer be appropriate for analyzing those 
protocols. 
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Indeed, a contemporary guide to research methods would be a useful tool for the 
field. 

With regard to resources (domain knowledge), the two main issues that require 
attention are (a) finding adequate descriptions and representations of cognitive 
structures, and (b) elaborating the dynamic interaction between resources and other 
aspects of problem solving behavior as people engage in and with mathematics.  Over 
the past decade researchers have developed some careful and fine-grained 
representations of mathematical structures, but the field still has a way to go before 
there is a strong congruence between the ways we describe knowledge structures and 
our sense of how such structures work phenomenologically.  And, we still lack a good 
sense of how the pieces fit together.  How do resources interact with strategies, control, 
beliefs, and practices? 

Much of the theoretical work with regard to problem solving strategies has 
already been done; the remaining issues are more on the practical and 
implementational levels.  The spade work for the elaboration of problem solving 
strategies exists, in that there is a blueprint for elaborating strategies.  It has been 
shown that problem solving strategies can be described, in detail, at a level that is 
learnable.  Following up on such studies, we now need careful controlled data on the 
nature and amount of training, over what kinds of problems, that results in the 
acquisition of particular strategies (and how far strategy acquisition transfers).  That is a 
demanding task, but not a theoretically difficult one.   

We have made far less progress with regard to control.  The importance of the 
idea has been identified and some methodological tools have been developed for 
charting control behaviors during problem solving.  Moreover, research indicates that 
students (at least at the advanced secondary and college level) can be taught to 
develop productive control behaviors, although only in extended instruction that, in 
effect, amounts to behavior modification.  There remain some fundamental issues, such 
as the following  two. 

First, mechanism.  We lack an adequate characterization of control.  That is, we 
do not have good theoretical models of what control is, and how it works.  We do not 
know, for example, whether control is domain-independent or domain-dependent, and 
what the mechanisms tying control decisions to domain knowledge might be.  Second, 
development.  We know that in some domains, children can demonstrate astonishingly 
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subtle self-regulatory behaviors -- e.g. in social situations, where they pick up behavioral 
and conversational cues regarding whether and how to pursue particular topic of 
conversation with their parents.  How and when do children develop such skills in the 
social domain?  How and when do they develop (or fail to develop) the analogous skills 
in the domain of mathematics?  Are the apparent similarities merely apparent, or do 
they have a common base in some way?  We have barely a clue regarding the answers 
to all of these questions. 

The arena of  beliefs and affects is re-emerging as a focus of research, and it 
needs concentrated attention.  It is basically under-conceptualized, and it stands in need 
both of new methodologies and new explanatory frames.  The older measurement tools 
and concepts found in the affective literature are simply inadequate; they are not at a 
level of mechanism and most often tell us that something happens without offering good 
suggestions as to how and why.  Recent work on beliefs points to issues of importance 
that straddle the cognitive and affective domains, but much of that work is still at the 
"telling good stories" level rather than the level of providing solid explanations.  Despite 
some theoretical advances in recent years and increasing interest in the topic, we are 
still a long way from either (a) having unifying perspectives that allow for the meaningful 
integration of cognition and affect, or (b) understanding, if such unification is not 
possible, why it is not. 

Issues regarding practices and the means by which they are learned -- 
enculturation -- may be even more problematic.  Here, in what may ultimately turn out to 
be one of the most important arenas for understanding the development of 
mathematical thinking, we seem to know the least.  The importance of enculturation has 
now been recognized, but the best we can offer thus far in explication of it is a small 
number of well-described case studies.  Those studies, however, give only the barest 
hints at underlying mechanisms .  On the one hand, the tools available to cognitivists 
have yet to encompass the kinds of social issues clearly relevant for studies of 
enculturation -- e.g. how one picks up the biases and perspectives common to members 
of a particular subculture.  On the other hand, extant theoretical means for discussing 
phenomena such as enculturation do not yet operate at the detailed level that results in 
productive discussions of what people learn (e.g. about mathematics) and why.  There 
are hints regarding theoretical means for looking at the issue, such as Lave and 
Wenger's (1989) concept of "legitimate peripheral participation." Roughly, the idea is 
that by sitting on the fringe of a community, one gets a sense of the enterprise; as one 
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interacts with members of the community and becomes more deeply embedded in it, 
one learns its language and picks up its perspectives as well.  It remains to be seen, 
however, how such concepts will be developed and whether they will be up to the task. 

Turning to practical issues, one notes that there is a host of unsolved and largely 
unaddressed questions dealing with instruction and assessment.  It appears that as a 
nation we will be moving rapidly in the direction of new curricula, some of them very 
much along the lines suggested in this chapter.  At the national level, Everybody Counts 
(National Research Council, 1989) represents the Mathematical Sciences Education 
Board's attempt to focus discussion on issues of mathematics education.  Everybody 
Counts makes the case quite clearly that a perpetuation of the status quo is a recipe for 
disaster, and it calls for sweeping changes.  The NCTM Standards (National Council of 
Teachers of Mathematics,1989) reflects an emerging national consensus that all 
students should study a common core of material for (a minimum of) three years in 
secondary school; Reshaping School mathematics (National Research Council, 1990a) 
supports the notion of a three-year common core and provides a philosophical rationale 
for a curriculum focusing on developing students' mathematical power.  With such 
national statements as a backdrop, some states are moving rapidly toward the 
implementation of such curricula.  In California, for example, the 1985 Mathematics 
Framework (California State Department of education, 1985) claimed that "mathematical 
power, which involves the ability to discern mathematical relationships, reason logically,  
and use mathematical techniques effectively, must be the central concern of 
mathematics education" (page 1).  Its classroom recommendations were that the 
teacher 

•  Model problem-solving behavior whenever possible, exploring and 
experimenting along with students.  

• Create a classroom atmosphere in which all students feel comfortable trying 
out ideas.   

•  Invite students to explain their thinking at all stages of problem solving. 

•  Allow for the fact that more than one strategy may be needed to solve a given 
problem and that problems may require original approaches. 

•  Present problem situations that closely resemble real situations in their 
richness and complexity so that the experience that students gain in the 
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classroom will be transferable. (California State Department of education, 
1985, p. 14.) 

The 1991 Mathematics framework (California State Department of education, 
forthcoming), currently in draft form, builds on this foundation and moves significantly 
further in the directions suggested in this chapter.  It recommends that lessons come in 
large coherent chunks; that curricular units be anywhere from two to six weeks in length, 
motivated by meaningful problems and integrated with regard to subject matter (e.g. 
containing problems calling for the simultaneous use of algebra and geometry -- rather 
than having geometry taught as a separate subject, as if algebra did not exist); that 
students engage in collaborative work, often on projects that take days and weeks to 
complete.  Pilot projects for a radically new secondary curriculum, implementing these 
ideas for grades 9-11, began in selected California schools in September 1989. 

The presence of such projects, and their potential dissemination, raises 
significant practical and theoretical issues.  For example, what kinds of teacher 
knowledge and behavior are necessary to implement such curricula on a large scale?  
One sees glimmers of ideas in the research (see, e.g., Grouws & Cooney, 1989 for an 
overview), but in general, conceptions of how to teach for mathematical thinking have of 
necessity lagged behind our evolving conceptions of what it is to think mathematically.  
There are some signs of progress.  For example, a small body of research (see, e.g. 
Peterson, Fennema, Carpenter, & Loef, 1989) suggests that with the appropriate in-
service experiences (on the order of weeks of intensive study, not 1-day workshops), 
teachers can learn enough about student learning to change their classroom behavior.  
Much more research on teacher beliefs -- how they are formed, how they can be made 
to evolve -- is necessary.  So is research at the systemic level: what changes in school 
and district structures are likely to provide teachers with the support they need to make 
the desired changes in the classroom? 

We conclude with a brief discussion of what may be the single most potent 
systemic force in motivating change: assessment.  Everybody Counts (page 69) states 
the case succinctly: "What is tested is what gets taught. Tests must measure what is 
most important."  To state the case bluntly, current assessment measures (especially 
the standardized multiple choice tests favored by many administrators for 
"accountability") deal with only a minuscule portion of the skills and perspectives 
encompassed by the phrase mathematical power and discussed in this chapter.  The 
development of appropriate assessment measures, at both the individual and the school 
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or district levels, will be a very challenging practical and theoretical task.  Here are a few 
of the relevant questions: 

What kinds of information can be gleaned from "open-ended questions," and 
what kinds of scoring procedures are (a) reliable, (b) informative both to those who do 
the assessing and those who are being tested?  Here is one example of an interesting 
question type, taken from A question of thinking (California State Department of 
Education, 1989). 

Imagine you are talking to a student in your class on the telephone and want the 
student to draw some figures.  [They might be part of a homework assignment, 
for example].  The other student cannot see the figures.  Write a set of directions 
so that the other student can draw the figures exactly as shown below. 

 

To answer this question adequately, one must both understand the geometric 
representation of the figures and be able to communicate using mathematical language.  
Such questions, while still rather constrained, clearly focus on goals other than simple 
subject matter "mastery."  A large collection of such items would, at minimum, push the 
boundaries of what is typically assessed.  But such approaches are only a first step.  
Two other approaches currently being explored (by the California Assessment Program, 
among others) include the following. 

Suppose the student is asked to put together a portfolio representing his or her 
best work in mathematics.  How can such portfolios be structured to give the best sense 
of what the student has learned?  What kind of entries should be included (e.g. "the 
problem I am proudest of having solved," a record of a group collaborative project, a 
description of the student's role in a class project, etc.) and how can they be evaluated 
fairly? 
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How can one determine the kinds of collaborative skills learned by students in a 
mathematics program?  Suppose one picks four students at random from a 
mathematics class toward the end of the school year, gives them a difficult open-ended 
problem to work on, and videotapes what the students do as they work on the problem 
for an hour.  What kinds of inferences can one make, reliably, from the videotape?  One 
claim is that a trained observer can determine within the first few minutes of watching 
the tape whether the students have had extensive experience in collaborative work in 
mathematics.  Students who have not had such experiences will most likely find it 
difficult to coordinate their efforts, while those who have often worked collaboratively will 
(one hopes!) readily fall into certain kinds of cooperative behaviors.  Are such claims 
justified?  How can one develop reliable methods for testing them?  Another claim is 
that students' fluency at generating a range of approaches to deal with difficult problems 
will provide information about the kinds of instruction they have received, and their 
success at the strategic and executive aspects of mathematical behavior.   But what 
kinds of information, and how reliable the information might be, is very much open to 
question. 

In sum, the imminent implementation of curricula with ambitious pedagogical and 
philosophical goals will raise a host of unavoidable and fundamentally difficult 
theoretical and practical issues.  It is clear that we have our work cut out for us -- but 
also that progress over the past decade gives us at least a fighting chance for success.
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