
Introduction and Evaluation of Martlet, a Scientific
Workflow Language for Abstracted Parallelisation

Daniel Goodman
Oxford University Computing Laboratory

Parks Road, Oxford,
OX1 3QD, UK

Daniel.Goodman@comlab.ox.ac.uk

ABSTRACT
The workflow language Martlet described in this paper im-
plements a new programming model that allows users to
write parallel programs and analyse distributed data with-
out having to be aware of the details of the parallelisation.
Martlet abstracts the parallelisation of the computation and
the splitting of the data through the inclusion of constructs
inspired by functional programming. These allow programs
to be written as an abstract description that can be adjusted
automatically at runtime to match the data set and available
resources. Using this model it is possible to write programs
to perform complex calculations across a distributed data
set such as Singular Value Decomposition or Least Squares
problems, as well as creating an intuitive way of working
with distributed systems

Having described and evaluated Martlet against other func-
tional languages for parallel computation, this paper goes on
to look at how Martlet might develop. In doing so it covers
both possible additions to the language itself, and the use of
JIT compilers to increase the range of platforms it is capable
of running on.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tion—Concurrent, distributed, and parallel languages; D.3.3
[Programming Languages]: Language Constructs and
Features—Abstract data types, Concurrent programming struc-
tures, Control structures, Procedures, functions and subrou-
tines

General Terms
Algorithms, Design, Languages

Keywords
Martlet, workflow, e-Science, abstraction, parallel comput-
ing, distributed computing, scientific computing

1. INTRODUCTION
The workflow language Martlet [11] described in this pa-

per implements a new programming model that allows users

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2007, May 8–12, 2007, Banff, Alberta, Canada.
ACM 978-1-59593-654-7/07/0005.

to write parallel programs and analyse distributed data with-
out having to be aware of the details of the parallelisation.
It abstracts the parallelisation of the computation and the
splitting of the data through the inclusion of constructs in-
spired by functional programming. These allow programs to
be written as an abstract description that can be adjusted
to match the data set and available resources automatically
at runtime. While this programming model adds some re-
strictions to the way programs can be written, it is possible
to perform complex calculations across a distributed data
set such as Singular Value Decomposition or Least Squares
problems, and it creates an intuitive way of working with
distributed systems. This allows inexperienced users to take
advantage of the power of distributed computing resources,
and reduces the workload on experienced distributed pro-
grammers.

Existing workflow languages such as BPEL[2], Pegasus [9]
and Taverna/Scufl [13] allow the chaining together of com-
putational functions to provide additional functions. They
have a variety of supporting tools and are compatible with
a wide range of different middlewares, databases and sci-
entific equipment. However, they all implement the same
imperative programming model where a known number of
data inputs are mapped to computational resources and ex-
ecuted with the standard imperative constructs, taking ad-
vantage of the potential for parallelisation where possible.
As they only take a known number of inputs, none of them
are able to describe a generic workflow in which the number
of inputs is unknown, which the middleware can then adapt
to perform the described function at runtime once the final
number of inputs is known.

While applicable to a wide range of projects, including the
Oxford e-Research Centre’s Campus Grid [18], Martlet was
originally created in response to some of the problems faced
in the distributed analysis of data generated by the Cli-
matePrediction.net1[6, 15] project. ClimatePrediction.net is
a distributed computing project inspired by the success of
the SETI@home2[1] project. Users download a model of
the Earth’s climate and run it for approximately fifty model
years with a range of perturbed control parameters before
returning results read from their model to one of the many
upload servers.

The output of these models creates a data set that is dis-
tributed across many servers in a well-defined fashion. This
data set is too big to transport to a single location for anal-

1http://www.climateprediction.net
2http://setiathome.ssl.berkeley.edu



ysis, so it must be worked on in a distributed manner if a
user wants to analyse more than a small subset of the data.

In order to derive results, it is intended that users will
submit analysis functions to the servers holding the data
set. As this data set provides a resource for many people, it
would be unwise to allow users to submit arbitrary source
code to be executed. In addition, users are unable to as-
certain how many servers are spanned by a given subset of
this data that they wish to analyse, and nor should they
care. Their interest is in the information they can derive
from the data, not how it is stored. These requirements
mean a trusted workflow language is required as an inter-
mediate step, allowing the construction of analysis functions
from existing components, and abstracting the distribution
of the data from the user.

Section 2 describes in more detail the style of problem
Martlet is designed to address, and why existing languages
are not sufficient, before going on to describe Martlet in
Section 3 and, Section 4. In Section 5 we look briefly at the
middleware constructed as a proof of concept for this model.
We then compare Martlet to other technologies in Section 6,
and look at how this work might progress in Section 7, before
concluding in Section 8.

2. EXAMPLE PROBLEM
An example of a situation where the level of abstraction

described in this paper is required is the average tempera-
ture of a given set of returned climate models. If this data
spans a servers, this calculation can be described in a way
that could be used for distributed computing as:

y0 =
Pn1−1

i=0
xi

z0 = n1

y1 =
Pn2−1

i=n1
xi

z1 = n2 − n1

...
...
ya−1 =

Pna−1

i=na−1
xi

za−1 = na − na−1

x =
Pa−1

i=0
yi

Pa−1

i=0
zi

where x0...xn−1 are the individual runs partitioned across
the a servers. y0 through ya−1 then store the sum of the
runs on each server, and z0 through za−1 stores how many
runs each sum represents. So each subset of the data set has
a computation performed on it, with the results then being
used by a final computation to produce the overall average.
Each of these computations could occur on a different com-
puting resource.

To write this in an existing workflow language in such a
way that it is properly executed in parallel, the user must
first find out how many servers their required subset of data
spans. Only once this value is known can the workflow be
written, and if the value of a changes the workflow must be
rewritten. The only alternative is that the user himself must
write the code to deal with the segregated data. It is not
a good idea to ask this of the user since it adds complexity
to the system that the user does not want and may not be
able to deal with, as well as greatly increasing the potential
for the insertion of errors into the process. In addition,
workflow languages are not usually sufficiently descriptive
for a user to be able to describe what to do with an unknown

number of inputs, so it is not possible to just produce a
library for most languages. This problem is removed with
Martlet, by making such abstractions a fundamental part of
the language.

3. INTRODUCING MARTLET
Our workflow language Martlet supports most of the com-

mon constructs of the existing workflow languages. In ad-
dition to these, it also has constructs inspired by inductive
constructs of functional programming languages [5]. These
are used to implement a new programming model where
functions are submitted in an abstract form and are only
converted into a concrete function that can be executed
when provided with concrete data structures at runtime.
This hides from the user the parallel nature of the execution
and the distribution of the data they wish to analyse.

We chose to design a new language rather than extend-
ing an existing one because the widely used languages are
already sufficiently complex that an extension for our pur-
poses would quickly obfuscate the features we are aiming
to explore. Moreover, at the time the decision was taken,
there were no suitable open-source workflow language im-
plementations to adapt. It is hoped that in due course the
ideas developed in this language will be added into other
languages.

The inspiration for this programming model came from
functional programming languages where it is possible to
write extremely concise powerful functions based on recur-
sion. The reverse of a list of elements for instance can be
defined in Haskell [5] as:

reverse [] = []

reverse (x:xs) = reverse xs ++ [x]

This simply states that if the list is empty, the function
will return an empty list, otherwise it will take the first
element from the list and turn it into a singleton list. Then
it will recursively call reverse on the rest of the list and
concatenate the two lists back together. The importance
of this example is the explicit separation between the base
case and the inductive case. Using these ideas it has been
possible to construct a programming model and language
that abstracts the level of parallelisation of the data away
from the user, leaving the user to define algorithms in terms
of a base case and an inductive case.

Along with the use of functional programming constructs,
two classes of data structure, local and distributed, were cre-
ated. Local data structures are stored in a single piece;
distributed data structures are stored in an unknown num-
ber of pieces spanning an unknown number of machines.
Distributed data structures can be considered as a list of
references to local data structures. These two classes of
data structure allow the functional constructs to take a set
of distributed and local data structures, and functions that
perform operations on local data structures. These are then
used as a base case and an inductive case to construct a
workflow where the base function gets applied to all the local
data structures referenced in the distributed data structures,
before the inductive function is used to reduce these partial
results to a single result. So, for example, the distributed av-
erage problem looked at in Section 2, taking the distributed
matrix A and returning the average in a column vector B,
could be written in Martlet as the function in Figure 1.



// Declare URI abbreviations in order to improve the script readability

define

{

uri1 = baseFunction:system:http://cpdn.net:8080/Martlet;

}

proc(A,B)

{

// Declare the required temporary variables for the computation. Y

// and Z are used to represent the two sets of values Yi and Zi in

// the example equations. ZTotal will hold the sum of all the Zi’s.

Y = new dismatrix(A);

Z = new disinteger(A);

ZTotal = new integer(B);

// The base case where each Yi and Zi is calculated, and recorded in

// Y and Z respectively. The map construct results in each Zi and Yi

// being calculated independently and in parallel.

map

{

matrixSum:uri1(A,Y);

matrixCardinality:uri1(A,Z);

}

// The inductive case, where we sum together the distributed Yi’s

// and Zi’s into B and ZTotal respectively.

tree((YL,YR)\Y -> B, (ZL,ZR)\Z -> ZTotal)

{

matrixSumToVector:uri1(YL,YR,B);

IntegerSum:uri1(ZL,ZR,ZTotal);

}

// Finally we divide through B with ZTotal to finish computing the

// average of A storing the result in B.

matrixDivide:uri1(B,ZTotal,B);

}

Figure 1: Function for computing the average of a matrix A split across an unknown number of servers. The

syntax and semantics of this function are explained in Section 4.



Due to this language being developed for large scale dis-
tributed computing on huge data sets, the data is passed by
reference. In addition to data, functions are also passed by
reference. This means that functions are first class values
that can be passed into and used in other functions, allowing
the workflows to be more generic.

4. SYNTAX AND SEMANTICS
To allow the global referencing of data and functions, both

are assigned URIs. The inclusion of these in scripts would
make them very hard to read and would increase the poten-
tial for user errors. These problems are overcome using two
techniques. First, local names are used for variables in the
procedure, so allowing the URIs for data to only be entered
when the procedure is invoked. This means that in the pro-
cedure itself all variable names are short, and can be made
relevant to the data they represent. Second, a define block
is included at the top of each procedure where the program-
mer can add abbreviations for parts of the URI. This works
because the URIs have a logical pattern set by whom the
function or data belongs to and the server it exists on. As
a result the URIs in a given process are likely to have much
in common.

The description of the process itself starts with the key-
word “proc”, followed by a list of arguments that are passed
to the procedure. There must be at least one argument due
to the stateless nature of processes. While additional syntax
describing the read-write nature of the arguments could im-
prove readability, it is not included, as it would also prevent
certain patterns of use. This may change in future variants
of the language as discussed in Section 7. Finally there is
a list of statements in between a pair of curly braces, much
like C. These statements are executed sequentially when the
program is run.

There are two types of statement: normal statements and
expandable statements. The difference between the two is
the way they behave when the process is executed. At run-
time an expand call is made to the data structure repre-
senting the abstract syntax tree. This call makes it adjust
its shape to suit the set of concrete data references it has
been passed. Normal statements only propagate the expand
call through to any children they have, whereas expandable
statements adjust the structure of the tree to match the
specific data set it is required to operate on.

4.1 Normal Statements
As the language currently stands, there are six different

types of normal statement. These are sequential compo-
sition, asynchronous composition, if-else, while, temporary
variable creation, and process calls. Their syntax is:

Sequential Composition is marked by the keyword seq

signalling the start of a list of statements that need to be
called sequentially. Although the seq keyword can be used
at any point where a statement would be expected, in most
places sequential composition is implicit. The only location
that this construct really is required is when one wants to
create a function in which a set of sequential lists of state-
ments were run concurrently by an asynchronous composi-
tion. An example of this is shown in Figure 2.

Asynchronous Composition is marked by the keyword
async and encompasses a set of statements. When this is

async{
seq{

function1(A,B,C);

function2(A,B);

function3(B,C);

}

seq{
function4(D,E);

function1(D,E,F);

function5(E,F);

}
}

Figure 2: seq used to run two sequential sets of op-

erations asynchronously.

executed each statement in the set is started concurrently.
The asynchronous statement only terminates when all the
sub-statements have returned.

In order to prevent race conditions it is necessary that
no process uses a variable concurrently with a process that
writes to the variable. This is enforced by the middleware
at runtime.

if-else & while are represented and behave the same as
they would in any other procedural language. There is a
test and then a list of statements.

Temporary Variables can be created by statements that
look like

identifier = new type(identifier);

The identifier on the left hand side of the equality is the
name of the new variable. The type on the right is the type
of the variable, and the identifier on the right is a currently
existing data structure used to determine the level of paral-
lelisation required for the new variable. For example if the
statement was

A = new DisMatrix(B);

this will create a distributed matrix A that is split into
the same number of pieces as B. The type field is required as
there is no constraint that the type of A is the same as the
type of B. This freedom is required as there is no guarantee
that a distributed data structure of the right type is going
to appear at this stage in the procedure, as was the case in
the average calculation example in Figure 1.

Process calls fall into one of two categories. They can
either be statically named in the function with a URI, or
are passed in as a reference at runtime. Both appear as an
identifier and a list of arguments.

4.2 Expandable Statements
The are four expandable statements, map, foldr, foldl

and tree. Each of these has a functional programming
equivalent. Expandable statements do not propagate the
call to expand to their children and must have been ex-
panded before the function can be computed. This means



async

seq

f1(A1)

f2(A1, B1)

seq

f1(A2)

f2(A2, B2)

seq

f1(A3)

f2(A3, B3)

Figure 3: The abstract syntax tree for the example

map statement after expand has been called setting

A = [A1, A2, A3] and B = [B1, B2, B3].

that on any given path between the root and a leaf, there
must be at most one expandable statement.

map is equivalent to map in functional programming where
it takes a function f and a list, and applies this function to
every element in the list. This is shown below in Haskell:

map f [] = []

map f (x:xs) = (f x):(map f xs)

Map in Martlet encompasses a list of statements as shown
in the example below. Here function calls f1 and f2 are
implicitly joined in a sequential composition to create the
function represented by f in the Haskell definition. The list
is created by distributed values A and B. While in its unex-
panded abstract form, this example maps onto the abstract
syntax tree also shown below.

map

{
f1(A);

f2(A,B);

}

map seq

f1(A)

f2(A, B)

When this is expanded, it looks at the distributed data
structures it has been passed and creates a copy of these
statements to run independently on each piece of the dis-
tributed data structure as shown in Figure 3.

Due to the use of an asynchronous statement in this trans-
formation, no local value that is passed into the map state-
ment can be written to. However local values created within
the map node can be written to.

foldr is a way of applying a function and an accumulator
value to each element of a list. This is defined in Haskell as:

seq

seq

f1(A3, C)

f2(B3, C)

seq

f1(A2, C)

f2(B2, C)

seq

f1(A1, C)

f2(B1, C)

Figure 4: The abstract syntax tree for the example

foldr statement after expand has been called setting

A = [A1, A2, A3] and B = [B1, B2, B3].

foldr f e [] = e

foldr f e (x: xs) = f x (foldr f e xs)

This means that the elements of a list xs = [1,2,3,4,5]

can be summed by the statement; foldr (+) 0 xs which
evaluates to 1+(2+(3+(4+(5+0))))

Foldr statements are constructed from the foldr keyword
followed by a list of one or more statements which repre-
sent f. An example is shown below with its corresponding
abstract syntax tree.

foldr

{
f1(A,C);

f2(B,C);

}

foldr seq

f1(A,C)

f2(B,C)

When this function is expanded this is replaced by a se-
quential statement that keeps any non-distributed arguments
constant and calls f repeatedly on each piece of the dis-
tributed arguments as shown in Figure 4.

foldl is the mirror image of foldr so the Haskell example
would now evaluate to ((((0+1)+2)+3)+4)+5

The syntax tree in Martlet is expanded in almost exactly
the same way as foldr. The only difference is the function
calls from the sequential statement are in reverse order, see
Figure 5. The only time that there is any reason to choose
between foldl and foldr is when f is not commutative.

tree is a more complex statement type. It constructs a bi-
nary tree with a part of the distributed data structure at
each leaf, and the function f at each node. When executed,
unlike the folds, this is able to take advantage of the poten-
tial for parallel computation. A Haskell equivalent is:



seq

seq

f1(A1, C)

f2(B1, C)

seq

f1(A2, C)

f2(B2, C)

seq

f1(A3, C)

f2(B3, C)

Figure 5: The abstract syntax tree after a foldl with

the same structure as the foldr example has been ex-

panded with concrete arguments A = [A1, A2, A3] and

B = [B1, B2, B3]. Note the reversal of the ordering of

the distributed arguments compared with foldr

tree f [x] = x

tree f (x:y:ys) = f (tree f xs’) (tree f ys’)

where (xs’,ys’) = split (x:y:ys)

split is not defined here since the shape of the tree is not
part of the specification. It will however always split the list
so that neither is empty.

Unlike the other expandable statements, each node in a
tree takes 2n inputs from n distributed data structures, and
produces n outputs. As there is insufficient information in
the structure to construct the mappings of values between
nodes within the tree, the syntax requires the arguments
that the statements use to be declared in brackets above the
function so as to provide this additional information.

Non-distributed constants and processes used in f are
simply denoted as a variable name. The relationship be-
tween distributed inputs and the outputs of f are encoded
as (XLeft,XRight)\X->A, where XLeft and XRight are two
arguments drawn from the distributed input X that f will
use as input. The output will then be placed in A and can
be used as an input from X at the next level in the tree.

Consider a function that uses a method sum passed into
the statement as s, a distributed argument X as input and
outputs the result to the non-distributed argument A. This
could be written as:

tree((XL,XR)\X -> A)

{

s(A,XL,XR);

}

tree s(A, XL, XR)

When this is expanded, it uses sequential, asynchronous
and temporary variables in order to construct the tree as
shown in Figure 6. Because of the use of asynchronous state-
ments any value that is written to must be passed in as either
an input or an output.

4.3 Example
If the Martlet function to calculate averages from the ex-

ample in Figure 1 where submitted it would produce the
abstract syntax tree shown in Figure 7. This can then be
expanded using the techniques show here to produce con-
crete functions for different concrete datasets, so allowing
the user to generate averages from many differently parti-
tioned datasets with just this one workflow.

5. MIDDLEWARE
To allow the testing, evaluation and use of this language

and programming model, a supporting middleware has been
constructed [12] using web services supported by Apache
Axis [3] and Jakarta Tomcat [4]. This supporting platform
was chosen in order to leave open the option of migrating to
the Open Middleware Infrastructure Institutes [14] platform
if desirable in the future.

The middleware consists of three logical elements, Data
Stores, Data Processors and Process Coordinators. These
elements can be grouped together at will, creating a struc-
ture in many ways similar to that used by the MONET [16]
project. An example of a possible grouping is shown in Fig-
ure 8.

Data Stores provide a set of methods for accessing the
data stored at a given location. This unit is delib-
erately lightweight and only capable of generating a
data structure from stored data.

Data Processors ingest, store and run expanded Martlet
abstract syntax trees on datasets, which they either
have locally or retrieve from another data processor or
a data store.

Process Coordinators are the only component that users
interact with. They handle access to the rest of the
middleware. This is where the generic trees that rep-
resent submitted functions are expanded to fit the ar-
guments on which the function has been called before
they are broken up and scheduled across the data pro-
cessors. Process Coordinators are the only component
to have any knowledge of other nodes in the system.

These three elements use SOAP [17] to send control sig-
nals and small data structures, while an out of band system,
currently SFTP, is used to transfer large data structures. In
addition each server publishes information about its con-
figuration and available operations for other parts of the
middleware to read.

6. EVALUATION
As we have found no projects with a similar approach

aimed at a similar style of environment, a direct compar-
ison with other projects has not been possible. As such,
in this section we will look at how Martlet compares with
other functional coordination languages, namely Functional
Skeletons [7] and Map-Reduce [8]. These are two pieces of
work using functional constructs to abstract the complexity
of distributed systems.

6.1 Functional Skeletons
Functional skeletons are used for programming clusters,

and parallel machines, where as the name suggests they



create A1, A2 seq

async

create A3, A4 seq

async

s(A3, X1, X2)

s(A4, X3, X4)

s(A1, A3, A4)

create A5 seq

s(A5, X5, X6)

s(A2, X7, A5)

s(A,A1, X2)

Figure 6: When the tree function from the end of Section 4.2 is expanded with X = [X1, X2, X3, X4, X5, X6, X7],
this is one of the possible trees that could be generated.

create Y, Z, ZTotal seq

map seq

MatrixSum(A,Y)

MatrixCardinality(A,Z)

tree seq

MatrixSumToVector(YL,YR,B)

IntegerSum(ZL,ZR,ZTotal)

MatrixDivide(B,ZTotal,B)

Figure 7: The abstract syntax tree representing the generic work-flow to compute the average introduced in

Figure 1.

Server 1

Process Coordinator

Data Processor

Server 2

Process Coordinator

Server 3

Data Processor

Data Store

Server 4

Data Processor

Data Store

Server 5

Data Processor

Figure 8: An example of how five servers could be configured. Note that more than one Process Coordinator

can use each Data Store and Data Processor and the Process Coordinator does not need to know about all

available servers.



provide a framework on which programs can then be con-
structed. The idea is that when a program is ported to a
different architecture, the corresponding skeletons will have
already been constructed, and all that will be required is for
the code to be recompiled before it can be executed. The
critical difference between this work and Martlet is that here
the pre-constructed skeletons are changed not to match the
data, which changes from execution to execution, but to
match the architecture, which is static for extended periods
of time. As a result skeletons tend to be very static, requir-
ing significant user input to construct. This makes skele-
tons, while interesting and a potentially valuable source of
inspiration, not directly applicable to our target problem
domain.

6.2 Map-Reduce
Independently developed at the same time as Martlet,

Map-Reduce is one of the programming models created for
programmers writing parallel applications at Google. This,
like Martlet, uses functional constructs to abstract the par-
allelisation. Users specify three functions, one to be mapped
over the raw data, one to partition this output into pieces
for the next step, and one to be mapped over the output
of the first two functions, reducing it to a set of results.
Google’s implementation of this model is an api that works
with the Google File System [10] allowing parallel calcula-
tions on data, while abstracting the complexity of the data
storage and processing.

While highly successful, this model is aimed at the internal
work of Google programmers, and is not appropriate for the
environment targeted by this project for a range of reasons.
Its rigid structure expects the user to write code in a fine-
grained programming language such as C++, and again the
model requires that the user supply information about the
architecture that they wish to execute over. It also has issues
with the amount of network traffic generated between the
completion of the map stage and the start of the reduce
stage, even in an environment such as Google.

However it is interesting to compare the algorithms that
can be run using Map-Reduce and the algorithms that can
be run using Martlet. In Google’s paper on Map-Reduce [8],
three algorithms are discussed, a distributed grep, a dis-
tributed word count, and a distributed sort. Of these Mart-
let is able to describe both the grep, and the word count.
However, there is currently no construct for partitioning
and sorting data from one distributed data structure into
another, as occurs in the phase between the map and the
reduce step in Map-Reduce, as such it is not possible to im-
plement sorting in Martlet. This is due to the fact that in
a sort the answer size is equal to the input size, and the
parallel prefix style reduction performed by Martlet’s tree
construct limits the final output to the size that can fit on
a single machine.

One of the analysis operations which is desired by Cli-
matePrediction.net and possible with Martlet is a Singular
Value Decomposition returning the leading p vectors. This
cannot be done efficiently using the Map-Reduce model as
there are a fixed number of steps, one map and one reduce
in any individual Map-Reduce. As such, while it is possible
to chain together many map-reduces, it is not possible to
perform a parallel prefix style reduction, so preventing such
algorithms from being described.

7. FUTURE WORK
In this section we look to the future, and examine both

ways in which Martlet could be applicable to existing mid-
dleware, and how Martlet itself might develop to better fit
potential use cases.

7.1 Building on other workflow engines
At runtime, when concrete values have been provided, the

abstract functions are converted into concrete functions for
execution. These concrete functions then contain only oper-
ations that are supported by a range of other languages. As
such, one possible development would be to provide a means
by which these could be executed on existing middleware.
This could be achieved by cutting back the middleware to
just the Data Stores and the Process Coordinator. These
could then sit on top of existing workflow engines as a layer
supporting the construction of distributed data structures
and the submission of abstract functions. This would allow
Martlet functions to be run on a wide range of middleware,
in conjunction with a wide range of existing projects.

One of the neater ways to provide an interface between
these layers is through the construction of a set of Just In
Time (JIT) compilers for different workflow languages. If
JIT compilers were used the Process Coordinator would,
instead of scheduling tasks across many machines, just pro-
duce an XML document describing the concrete task. The
JIT compliers would then perform an XML transformation
to produce the language of choice, which could then be sub-
mitted. This would allow compilers for a range of languages
to be easily produced, allowing this layer to be placed on top
of a wide range of existing resources with minimal effort, ex-
tending their use without affecting their existing functional-
ity. Such an extension would not only allow Martlet to pro-
vide extended functionality to a wide range of distributed
computing applications, but also allow Martlet users to draw
on all the work that has gone into these existing workflow
projects.

This also provides the possibility to use Martlet in a new
scenario. While Martlet was constructed to allow functions
to be run on arbitrarily partitioned data, it achieves this by
partitioning the function into smaller functions at runtime.
Therefore if the data is in a form that can be automatically
partitioned, and the function is written in Martlet, then
like in Map-Reduce, a job can be split into lots of smaller
jobs. This provides two benefits. First it provides another
means for big jobs to be made parallel in environments such
as clusters and Condor Pools. Second, and probably more
importantly, with eScience projects trying to make clusters
and Condor Pools online resources, it creates a means by
which the function can automatically have the number of
processors it needs adjusted. This then makes scheduling of
jobs on these resources such that all processors are in use
easier, so improving performance.

7.2 Possible additions and variations
The difficulty Martlet has performing sorts on very large

data sets raises the question of how Martlet might develop
to overcome these and other restrictions. The three main
points for possible development are:

• The addition new of constructs to allow classes of algo-
rithm which are currently unavailable. However many
constructs, such as the step between the Map and the



Reduce in Map-Reduce may, while required for sort-
ing, be inappropriate for the highly distributed envi-
ronments this project is aimed at, as they encourage
people to write network intensive code.

• The addition of extra constraints on function construc-
tion in order to make them easier to read and less
likely to contain errors, for example type information
on function headers. While the addition of a type sys-
tem would make functions easier to read and help pre-
vent functions being partially evaluated before failing,
it would also need to be able to describe generics and
type hierarchies if it were not to limit the general na-
ture of the language. Other possible additions such
as flags to show if a parameter is an input, a result,
or both, would, while improving the readability, re-
strict the classes of algorithm available. More thought
and experience about how Martlet is going to be used
is needed before decisions on such additions can be
made.

• The ability to embed other languages into Martlet
scripts in addition to making function calls through
predefined functions would extend the ability to ex-
press domain specific information. This would remove
the need to decide in advance which domain specific
jobs will be supported, and will ease the integration of
Martlet constructs into other languages. While appli-
cable to the stand-alone middleware, this would really
come into its own if Martlet were running via a JIT
compiler on top of a middleware that already supports
the embedded language. It does bring with it issues of
relating to the amount of power given to the user, and
therefore raises the possibility of different variants of
Martlet.

8. CONCLUSIONS
In this paper we have introduced a language, Martlet and

programming model that uses functional constructs and, two
classes of data structure (local and distributed). Using these
constructs and structures, Martlet is able to abstract from
users the complexity of creating parallel processes over dis-
tributed data and computing resources. This allows users
simply to think about the functions they want to perform
and does not require them to worry about the implementa-
tion details.

While we have not been able to perform a direct compar-
ison with other projects, this work is currently being tested
with data from the ClimatePrediction.net project with favour-
able results and will hopefully be deployed on all our servers
over the course of the next year allowing testing on a huge
data set. In addition we are also looking towards using JIT
compilers to deploy on OeRC’s Campus Grid.

Using Martlet, it has been possible to describe a wide
range of algorithms, including algorithms for performing
Singular Value Decomposition, North Atlantic Oscillation
and Least Squares. While this model restricts some algo-
rithms, there are new algorithms such as the one used to
perform an SVD, that has been developed to work with this
new programming model. This raises the interesting possi-
bility of a whole set of new algorithms just waiting to be
discovered once people start to think about programming in
this new way.

While this work is perfectly viable both through its stand
alone middleware, and through the use of JIT compilers,
hopefully the ideas in Martlet will then be absorbed into the
next generation of workflow languages. This will allow both
existing and future languages to deal with a type of problem
that thus far has not been addressed, but will become ever
more common as we generate larger and larger data sets.

9. ACKNOWLEDGMENTS
This work is funded by the Natural Environmental Re-

search Council. The author would like to thank Dr Andrew
Martin and ClimatePrediction.net for all their help, as well
as the reviewers for their feed back.

10. REFERENCES
[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,

and D. Werthimer. Seti@home: an experiment in
public-resource computing. Commun. ACM,
45(11):56–61, 2002.

[2] T. Andrews, F. Curbera, H. Doholakia, Y. Goland,
J. Kiein, F. Leymann, K. Liu, D. Roller, D. Smitth,
S. Thatte, I. Trickovic, and S. Weerwarana.
BPEL4WS. Technical report, BEA Systems, IBM,
Microsoft, SAP AG and Siebel Systems, 2003.

[3] Apache Software Foundation. Apache Axis, 2005.
URL: http://ws.apache.org/axis/.

[4] Apache Software Foundation. The Apache Jakarta
Project, 2005. URL:
http://jakarta.apache.org/tomcat/.

[5] R. Bird. Introduction to Functional Programming
using Haskell. Prentice Hall, second edition, 1998.

[6] C. Christensen, T. Aina, and D. Stainforth. The
challenge of volunteer computing with lengthy climate
modelling simulations. In Proceedings of the 1st IEEE
Conference on e-Science and Grid Computing,
Melbourne, Australia, December 2005.

[7] J. Darlington, A. J. Field, P. G. Harrison, P. H. J.
Kelly, D. W. N. Sharp, Q. Wu, and R. L. While.
Parallel programming using skeleton functions. In
A. Bode, M. Reeve, and G. Wolf, editors, PARLE ’93:
Parallel Architectures and Languages Europe, pages
146–160, Berlin, DE, 1993. Springer-Verlag.

[8] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Technical report,
Google Inc, December 2004.

[9] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman.
Pegasus: Planning for execution in grids. Technical
report, Information Sciences Institute, 2002.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The
google file system. In SOSP ’03: Proceedings of the
nineteenth ACM symposium on Operating systems
principles, pages 29–43, New York, NY, USA, 2003.
ACM Press.

[11] D. Goodman. Martlet; a scientific work-flow language
for abstracted parallisation. In S. J. Cox, editor,
Proceedings of the UK e-Science All Hands Meeting
2006. National e-Science Centre, National e-Science
Centre, September 2006.

[12] D. Goodman and A. Martin. Scientific middleware for
abstracted parallelisation. Technical Report RR-05-07,
Oxford University Computing Lab, November 2005.



[13] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: a tool for the
composition and enactment of bioinformatics
workflows. Bioinformatics, 20(17):3045–3054, 2004.

[14] OMII. The omii product roadmap. Technical report,
OMII, 2004. URL:
http://www.omii.ac.uk/roadmap.htm.

[15] D. Stainforth, J. Kettleborough, A. Martin,
A. Simpson, R. Gillis, A. Akkas, R. Gault, M. Collins,
D. Gavaghan, and M. Allen. Climateprediction.net:
Design principles for public-resource modeling
research. In 14th IASTED International Conference
Parallel and Distributed Computing and Systems, Nov
2002.

[16] The MONET Consortium. Monet architecture
overview. Technical report, The MONET Consortium,
2003. URL: http://monet.nag.co.uk/cocoon/monet/.

[17] W3C. Simple Object Access Protocol (SOAP) 1.2,
2003. URL: http://www.w3c.org/TR/SOAP.

[18] D. C. H. Wallom and A. E. Trefethen. Oxgrid, a
campus grid for the university of oxford. In S. J. Cox,
editor, Proceedings of the UK e-Science All Hands
Meeting 2006. National e-Science Centre, National
e-Science Centre, September 2006.


