
���������	��
��������
����	�����	������� ������������� �������� ��!���

"$#$%'&)(+*�,$-.*�/102-�354)056�7 -8*:9�;�;)4=<+*�/?>@*�A *�B$C'(ED�A 7 FHG'/?,�7IDJ#$%'&�;$%LK@"�"M#�NO4QP8RS"$;�TU9L%WVMK #2"�R'V)4=XZY\[�P8R]"$;�TJ9L%'VZK &�9�N$%

 Using Value Semantic
Abstractions to Guide Strongly

Typed Library Design
B. Gomes, D. Stoutamire, B. Weissman and J. Feldman

TR-97-061

December 1997

Abstract

This report addresses typing problems that arise when modelling simple mathematical entities in
strongly typed languages such as Sather, which are eliminated by a proper distinction between
mutable and immutable abstractions. We discuss the reasons why our intuition leads us astray, and
provide a solution using statically type-safe specialization through constrained overloading. We also
discuss the type relationships between mutable and immutable classes and the notion of freezing
objects.

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 2

1.0 Introduction

When modelling mathematical entities - such as triangles and polygons,
sets and bags, integers and complex numbers - in object oriented lan-
guages, confusion often arises as to the nature of the typing relationships
between these entities. Inspite of the clean is-a relationships between
these entities they do not appear to be substitutable. In strongly (stati-
cally) typed languages, violations of substitutabilty often manifest them-
selves as problems in type-conformance. These violations have, in part,
been responsible for the ever-present co- vs. contravariance debate.

Behind the co- vs. contravariance debate, and object-oriented programming as a whole,
is the notion that humans think naturally in terms of objects and, therefore, that the use
of this metaphor is an aid in modelling systems when programming. However, it super-
ficially appears that when we map mathematical objects, which we understand quite
well, using the object oriented metaphor, many of our intuitive categoriza-
tions and inferences from the world of mathematics break down.

This report presents a non-theoretical description of the problem of this
error in intuition, its consequences, and solutions. The theory behind these
relationships is described in [Cas95] but the degree of formalism obscures
what is basically a simple, but important, point. Our own views arose inde-
pendantly from these theoretical considerations, during the very practical
exercise of designing the Sather libraries in a type-safe manner.

In short, this report provides a detailed answer to question 21.8 from the
C++ FAQ by Marshall Cline, from “www.cis.ohio-state.edu/hypertext/faq/
usenet/C++-faq”:

But I have a Ph.D. in Mathematics, and I’m sure a Circle is a kind of an
Ellipse! Does this mean Marshall Cline is stupid? Or that C++ is stupid?
Or that OO is stupid?

Similar comments may be found in [Mar96] regarding squares and rectan-
gles and in [Mey96] regarding rectangles and polygons.

Section3.0 describes how the problem arises from a basic error in model-
ling mathematical objects in standard object oriented languages. Avoiding
the error involves the use of abstract data types with immutable semantics,
along with the judicious use of specialization. Subsequent sections
explore the relationship between data types with mutable and immutable
semantics, and the nature of the overloading rules needed to support spe-
cialization. Along the way, the dangers of poor naming and the importance
of right subtyping are addressed.

Acknowledgements
Many thanks to Welf Lowe and Wolf Zimmerman for helpful comments
on this report.

1.1 Conformance and Substitutability

The notion of substitutability is central to our discussion. By substitutabil-
ity we mean that objects of type A may be safely replaced by objects of
any subtype of A [Lis88], [Mar96] . Complete substitutability only occurs
if the semantics of the subtype are substitutable for the semantics of the

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 3

supertype. A portion of the method semantics may be expressed through
the method signatures and type checked. However, in order to understand
whether a method is truly substitutable for the corresponding method in a
supertype, we sometimes need to consider more details of the method
semantics. Additonal semantic information may be expressed through
method pre- and post- conditions.

Note that we are not concerned so much with the actual expression of pre-
and post-conditions in the language or libraries; rather, we use them as an
aide in understanding the semantics of a method and/or a class, and thus
in addressing the issue of substitutability.

Pre conditions
The preconditions of a method are the set of conditions that must be met to
permit the method to execute correctly. The preconditions essentially
capture what the method expects to be true when it is called - a violation of
the precondition denotes a bug in the client of the method [Mey94].

In order to ensure substitutablity of a subtype for its supertype, the meth-
ods in the subtype must execute correctly whenever the preconditions for
the supertype method are met. Thus, the preconditions of the subtype
must be implied by the preconditions of the supertype. Substitutability
requires that when a class SUB_FOO with methodSUB_FOO::bar subtypes
from a classSUPER_FOO:

preconditions(SUPER_FOO::bar) must imply precondi-
tions(SUB_FOO::bar)

More intuitively, to ensure the substitutability of a subclass,precondi-
tions may only be weakened under subtyping.

Note that invariant preconditions are sufficient for most purposes; it is
very rare for a subtype to actually weaken its preconditions. However, we
retain the notion of weakening preconditions in order to remind us of the
direction of the implication.

Post conditions
Postconditions are the converse of preconditions - they are a statement of
what the method guarantees to the caller after it is done. An error in a post-
condition denotes an error in the method implementation. In order to
guarantee substitutability of a subtype for its supertype, the postconditions
of the subtype method must imply the postconditions of the supertype
method.

postconditions(SUB_FOO::bar) must imply postcondi-
tions(SUPER_FOO::bar)

More intuitively, postconditions may only be strengthened under sub-
typing.

We use an Eiffel/Sather based syntax to state pre and post conditions:

class REAL is
sqrt:REAL;

precondition self >= 0;
postcondition result*result = initial(self);

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 4

The postcondition may make use of the the special variableresult whose
value is set to the return value of the method. It is sometimes also neces-
sary to compare values from before and after the method execution. Since
the postcondition is evaluated after the method terminates, we use the spe-
cial form initial(<expression>); to obtain the value of <expression> from
before the method execution. In the above example, the postcondition
states that the return value of the square root function when multiplied by
itself must be equal to the initial value of self.

Pre and post conditions may also be thought of as assertions that are
directly visible in the method interface.

Class invariants
A class invariant expresses constraints that must always hold true of any
object of that class (except, possibly, during the course of a method invo-
cation on the class). Class invariants behave like postconditions - the
child’s invariant must imply the parent’s invariant. In the subtyping dia-
grams used througout this report, the direction of the arrows between sub-
and super-type reflects the direction of this class invariant implication.

Type-safe subtyping
The types of the formal arguments to a method are a special case of pre-
conditions1 - to ensure substitutability of a subtype, the declared argu-
ments of a subtype method must be implied by (i.e. be supertypes of, or
contravariant with) the declared arguments of the corresponding subtype
method. Likewise, the return type of a method is a special case of a post-
condition. To ensure substitutablity of a subtype, the return type of the
subtype method must imply (i.e. be a subtype of, orcovariant with) the
return type of the corresponding supertype method. Intuitively, the precon-
ditions (argument types) may become less restrictive and the postcondition
(return type) may become more restrictive. In the example below, the sig-
nature SUB_FOO::bar must have an argument that is of typeFOO or
SUPER_FOO. The return type must be eitherFOO or SUB_FOO.

This report deals with strongly typed languages, i.e. languages in which
the subtyping rule verifies the type-safety of the substitutability statically2

[Lis88]. The same issues are relevant to object oriented design in weakly-
typed languages, but do not manifest themselves as readily in the type-sys-
tem.

1. The formal type of a method argument states the precondition that the type of
the actual argument must be a subtype of the formal type for correct method
execution.

2. No run-time typing errors can occur in a language such as Sather, except in a
typecase.

class SUPER_FOO
bar(FOO):SUPER_FOO;

class FOO
 subtypes from SUPER_FOO

bar(FOO):FOO;

SUPER_FOO

FOO

bar(FOO):SUPER_FOO;

bar(FOO):FOO;

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 5

1.2 Syntax Usage

In the discussion below, while our concerns were driven by Sather, the
resulting issues are by no means limited to Sather. Hence, we have used a
fairly generic pseudo-code that is somewhat more explicit than direct
Sather syntax that should be more understandable to users of other similar,
languages.

As a note for users of C++ -self as used here is equivalent tothis in C++
and the term abstract class is equivalent to a virtual class with all virtual
methods. Sather additionally completely separates the concepts of subtyp-
ing and code inclusion (which other practictioners sometimes refer to as
inheritance). To avoid confusion, we do not use the term inheritance, and
since this discussion focuses on typing issues, we omit any discussion of
code inclusion.

Other Languages
Of the other languages in the same general space as Sather (efficient,
type-safe, object oriented languages), C++ is strongly typed, but has the
more restrictive typing rule of no-variance. Java is similarly restricted.
Eiffel supports the covariant rule which does not permit compile-time type
safety, though there have been recent moves in this direction [Mey96].

2.0 The Problem

The power of object-oriented programming arises, in part, because it per-
mits the expression of existing object classifications through subtyping
relationships. The tools and intuitions regarding these existing classifica-
tions may then be used when reasoning about the program, resulting in
code that is easier to understand, maintain and extend. However, in many
seemingly straight-forward mathematical contexts, reflecting standard
mathematical is-a relationships in the subtyping hierarchy leads to prob-
lems with substitutability.

The problem is essentially the presence of specialization in the natural
inheritance hierarchy. A specialization from a classA to a classB is a rela-
tionship in which the class invariant in B more restrictive than than the
invariant ofB. If B is a specialization ofA, thenInvB => InvA. The prob-
lem with such specialization is that method calls that are legal in A may be
problematic ifB is substituted forA, since they may result in a violation of
the more restrictive class invariant. Thus, methods inB have more restric-
tive preconditions i.e.Prem,B => Prem,A. SupposeB extends the class
invariant ofA with the predicateP, thenB has the stronger invariant invA^ P.
A problem will arise with substitutability if the postcondition of a method
m in A contradictsP, then the postcondition ofm also contradicts the
invariant ofB andm cannot exist in B. If m cannot exist in B, thenB cannot
be a substitutable forA.

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 6

This problem may be illustrated using polygons and triangles, an illustra-
tion found in many introductory texts on object oriented programming

In the above definition, the point addition method modifies the polygon,
resulting in a polygon with one more point. A triangle may then be con-
sidered a particular kind of polygon

If we consider the invariant of a polygon to ben_points > 2, then a triangle
is a polygon with the class invariant that then_points = 3. In the case of the
triangle, it is not at all clear what theadd_point method should do. In
other words, in the postcondition ofadd_point, n_points may be greater
than 3, which contradicts the invariant ofB, namelyn_points = 3. Hence,
add_point cannot exist in the triangle and therefore triangle cannot be a
subtype of polygon.

• Raise an exception. The problem with this solution is that thePOLY-

GON::add_point method does not raise an exception. Hence, if we were
to substitute a triangle for a polygon object, unexpected exceptions
might occur. Raising exceptions that could not be raised in the super-
class may be viewed as a special case of violating the postcondition of
the method.

• Permit the user to “undefine” theadd_point method of the triangle.
Once again, substitutability is violated and run-time type errors may
result if the methodadd_point is called on a variable of typePOLYGON.

• Eliminate the offending method fromPOLYGON. The supertype no
longer has a method whose post-condition violates the predicate added
to the invariant in the subtype. This works and is a correct solution, but
it still does not explain why the mathematical subtyping relationship
cannot be expressed.

• Eliminate the subtyping relationship. This works too, but, as question
28.1 of the C++ faq asks, why can’t we subtype when mathematically a
triangle really is a kind of polygon.

 None of these solution is pleasant; a clean mathematical relationship can-
not be cleanly modelled in the type-system. The problem with circles and
ellipses is identical to the triangle/polygon case mentioned above.

3.0 The Real Problem

The real problem lies in a difference between the mathematical conception
of objects, and the standard object-oriented conception. This is the famil-
iar distinction between values and references in a slightly different dis-
guise. The mathematical notion of a polygon is fundamentally immutable.
A new polygon may arise by considering a particular triangle and an addi-

class POLYGON
n_points:INT;
add_point(point:POINT);

postcondition n_points = initial(n_points)+1;

class TRIANGLE subtypes from POLYGON
n_points:INT;
add_point(point:POINT);

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 7

tional point. However, this does not ever modify the original triangle. The
issue is obvious when you consider more basic mathematical entities such
as the number three - adding and subtracting values never modify the num-
ber three.

The problem is partially one of education - object oriented practitioners
are used to thinking in terms of persistant, modifiable objects, which is
quite different from the platonic objects in the world of mathematics. The
point we wish to stress is that there is no problem with mathematical hier-
archies as we think of them, nor is there any problem with object oriented
programming. There is, however, a problem, with modelling mathemati-
cal entities as if they were modifiable and expecting the mathematical
hierarchies to continue to hold.

In the context of rectangles and polygons and also ostriches and birds,
[Mey94] says:

 I should note in passing that some people criticize [method overriding]
as incompatible with a good use of inheritance. They are deeply wrong.
It is a sign of the limitations of the human ability to comprehend the
world -- similar perhaps to undecidability results in mathematics and
uncertainty results in modern physics -- that we cannot come up with
operationally useful classifications without keeping room for some
exceptions. Descendant hiding is the crucial tool providing such flexibil-
ity. Hiding add_vertex from RECTANGLE or fly from OSTRICH is not
a sign of sloppy design; it is the recognition that other inheritance hier-
archies that would not require descendant hiding would inevitably be
more complex and less useful.

There is something disturbing about this notion; the efficacy of object-ori-
ented programming depends in part, at least, on the belief that humans
think in terms of objects and that the intuition from human objects can
drive an object-oriented type hierarchy. If this is not so, if our human intu-
itions are fraught with errors, this spells trouble for the metaphorical basis
behind object-oriented programming.

We would like to note that the two problems - that of an ostrich being a
subtype of birds and rectangle being a subtype of polygon are quitediffer-
ent. If we are basing the bird hierarchy on the common notion of birds,
then the common human notion also notes that there are exceptional birds
such as penguins, emus and ostriches that do not fly. The point is that the
exception is noted in the guiding human hierarchy as well. If the bird hier-
archy is based on a more precise biological notion of birds, then flying will
not be a property of birds to begin with, and the problem does not arise.

However, we never think of the relationship between rectangles and poly-
gons as being in any way exceptional. Exceptions only arise when we try
to model unchanging mathematical entities using modifiable objects - all
bets are off, and implications from the world of mathematical polygons
may well be violated in this brave new world of modifiable polygons. This
is not to say that mutable polygons are useless or “wrong” - just that they
are a different concept from the mathematical entities we are used to;
modifiable polygons should not be called polygons (mathematics has pre-
cedence, and has already claimed the name to mean a particular kind of
entity, which our modifiable polygons are not).

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 8

4.0 Immutable Abstractions

The solution is to model mathematical entities as immutable entities.
Operations defined over immutable types are side-effect free and therefore
referentially transparent (any given expression always evaluates to the
same result). When an entity is immutable, it is natural for any operation
to return a new entity as a result of the operation; indeed, this is what hap-
pens in many mathematical packages such as Matlab and Mathematica.
For slightly more complex cases, as we shall see later, there are a few
problems that must be addressed in the type system in order to make this
work cleanly.

Returning to our original example of polygons and triangles,

The add_point method now returns a new polygon object containing the
additional point. It is then possible to provide a clean version of the trian-
gle class

The add_point method simply creates a new polygon which includes the
additional point (in this case, it might be reasonable for it to return aRECT-
ANGLE as well, which is still perfectly typesafe (covariant in the return
type).

In terms of method postconditions, theadd_point method now has the
postcondition that result.n_points = initial(self.n_points)+1, which can be
maintained by theadd_point method of the triangle class. The important
point is that, by making the postcondition say something about the return
type rather than about self, the class invariant on self in triangle (n_points =
3) may be preserved.

There are many ways to implement immutable objects. Immutable objects
may be implemented as actual values (primitive or composite) or as refer-
ences to actual values or even as applied closures yielding actual values,
but in all cases the value of the immutable object is the same and never
changes for as long as it exists. In contrast, mutable objects are best used
to model entities that have an identity plus a current state. The idea of an
object identity bound to a modifiable state introduces side effects into the
language, which can make expressions referentially opaque (an expression
involving a reference object may evaluate to a different result each time
that it is invoked).

5.0 Methods with Arguments

In the above discussion, only the return type needed to be specialized.
What happens when the argument must also be specialized? This fre-

class POLYGON
 n_points:INT;
 add_point(point:POINT):POLYGON

class TRIANGLE subtypes from POLYGON
 n_points:INT;
 add_point(point:POINT):POLYGON; -- returns a polygon

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 9

quently occurs in operations where, when both operands are of the same
type, the result is also guaranteed to be of the same type.

Consider B which is a specialized subtype of A, such that the method m
has the signaturem(a:A):A in A. We then wish to support the signature
m(b:B):B in the classB.

For a concrete example, consider sets which are a kind of bag, with the
stronger class invariant that no element in a bag is repeated. Implementing
the bag abstraction, with a couple of sample methods might look as fol-
lows (for now, we ignore the parametrization of the container class for the
sake of simplicity).

In the above example, we assume that the union operation is defined to
return a bag with the maximum number of occurences in eitherarg or self.
Thus, this definition of union is consistent with the standard set-theoretic
definition of union (when both self and the argument do not contain dupli-
cates, neither does the union).

Specialize the argument and return type?
A natural solution is to attempt to support the signaturem(B):B in the class
B. Since the argument types are a special case of the precondition, and
sinceB is a subtype ofA, n Prem,B => Prem,A which is not sufficient to
support substitutability.

In the case of our example involving sets:

From the point of view of substitutability, this is a non-starter. If we were
to replace theBAG ‘a’ by aSET in the example above, the union operation
would have the wrong argument and return types.

Specialize only the return type?
Another choice is to avoid the typing problem by generalizing the argu-
ment type by supporting the methodm(b:A):B. Though this eliminates the
typing problem in the argument position, the return type of the method
may no longer be sufficient. For the kinds of operations we are consider-
ing, the operation is only guaranteed to stay within the same domain if
both operands are of the same type.

Returning to our example:

 class BAG
union(arg:BAG):BAG;

a:BAG; -- Contains 3
b:BAG; -- Contains 1,1,2,4
c:BAG := a.union(b); -- c now contains 1,1,2,3,4
-- Postcondition - c.size = 5

class SET subtype of BAG
union(arg:SET):SET;

class SET subtype of BAG
union(arg:BAG):SET;

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 10

This second definition of union still violates substitutability.In the above

code, if ‘a’ were to be substituted by a SET, the result would be a set as
well, and would not be able to contain any duplications of the number ‘1’.
Thus, the result of using a set instead of a bag for ‘a’ will be different, and
the implicit postcondition, that the number of items in the result is 5, will
be violated.

More precisely, the union operation in BAG has the postcondition

∀ items i in self and arg, result.n_occurs(i) = initial(max(n_occurs(i),
arg.n_occurs(i)) (EQ 1)

The postcondition in SET, however is

∀ items i in self and arg, result.n_occurs(i) = 1 (EQ 2)

Keep the same signature?
A final solution is to avoid the method specialization altogether. Thus, we
may support the methodm(b:A):A in the classB. Clearly, this causes no
problems with subtyping, since both argument and return types are invari-
ant.

We can see this in the case of the example:

In this case substitutability is not violated. However, a more serious prob-
lem is introduced. It becomes impossible to stay within a domain without
constantly slipping into weaker and weaker supertypes.

As may be seen, even though we can guarantee that the result of the union
operation will be aSET, the return type of the signature is aBAG. In prac-
tice, this weaking is completely unacceptable. It means that we cannot
operate on sets cleanly - we keep getting bumped up to a higher level of
abstraction, when we are certain that the resultmust be a set.

A further disadvantage of this approach is that it is harder to make use of
more efficient algorithms that may be available to perform the same opera-
tion.

6.0 Static Covariance: The Overloading Rule

What we need is to be able to choose the right method based on both the
type of self and the type of the argument i.e. a multi-method. With multi-
methods, the interface to theSET class may contain two separate methods,

s:SET := 3;
a:BAG := s; -- Contains 3
b:BAG; -- Contains 1,1,2,4
c:BAG := a.union(b); -- Contains 1,2,3,4

class SET subtype of BAG
union(arg:BAG):BAG;

a:SET; -- contains 1,2
b:SET; -- contains 3
c:BAG := a.union(b);

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 11

one to handle the general case of a union with bags, and the other to han-
dle the more specialized case of a union of a set with another set.

Languages such as CLOS [BK88] and Cecil [Cha93] permit multi-meth-
ods which dispatch on more than one argument. This is a viable but expen-
sive solution; multi-method dispatch is inherently considerably more
complex than singly dispatched methods. Though vigorous type-inference
might eliminate some of these costs, this expense was not a viable design
choice for a high-performance language such as Sather.

Fortunately, multi-methods are not required, since the choice of method
may be made statically through the use of overloading. Thus, the solution
is to support both methods in the interface of B,m(a:A):A as well as
m(b:B):B. The choice of method is determined at compile-time, based on
the declared type of the argument.

 In addition to the benefit of efficiency, with overloading the choice of
method is changed from a dynamic decision to a static one, permitting
compile-time type checking.

Note that the implementation of the more general union operation could be
written using the more specific method as:

6.1 The Overloading Rule

The minimum degree of overloading that must be permitted to support the
above usage is determined by the nature of specialization. The nature and
design rationale behind the Sather overloading rule is described in a
related report [GSW97].

In summary, two methods are permitted to overload iff there is a subtyp-
ing relationship between every pair of corresponding argument types. Dif-
ferences in the return type are not used in determining overloading. At the
point of call, the most specific method that matches is chosen; it is an error
if there is more than one most specific method. In the example above, the
two version of theunion operator take arguments ofSET andBAG respec-
tively. SinceSET subtypes fromBAG, the overloading is permitted

The design of the Sather overloading rule is complicated by the presence
of supertyping in the language; other languages which do not support
supertyping can provide a less restriced form of overloading. It is interest-
ing, however, to note that the kind of overloading that is permissible in the

class SET subtype of BAG
union(arg;BAG):BAG;
union(arg:SET):SET;

union(arg:BAG):BAG is
typecase arg
when SET then return union(arg); -- Uses the second union method
else

-- perform the more general bag union
end;

end;

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 12

presence of supertyping is exactly that which is required to support spe-
cialization. In some ways, this restriction on overloading is desirable in
any case, to prevent users from overloading methods which happen to
have the same name but which are not specializations of each other.

6.2 Overloading vs. Overriding

It is also possible to over-ride an inherited method by generalizing it. The
distinction lies in the nature of the arguments to the method. If the argu-
ments to a method are more general than (supertypes of) the arguments to
the inherited method, the new method, being more widely applicable,
over-rides the inherited method. If the arguments are specialized, then
overloading occurs, provided that the methods can co-exist in the interface
according to the overloading rule.

Another way of looking at this distinction is in terms of pre conditions.
Generalization, or over-riding of a method occurs when the method pre-
conditions become less restrictive (contravariant). Specialization by over-
loading of a method should be used when the method preconditions
become more restrictive (covariant). When a method is specialized, the
general version must still be made available in order to ensure substitut-
ability.

7.0 What about Mutable Classes?

The above discussion presents a clean inheritance hierarchy provided that
immutable abstractions are used. However, since immutable classes pro-
vide a copy of the class when any modification occurs, they may be con-
siderably less efficient than their mutable counterparts. What should the
interfaces of these mutable classes look like, and are the possible typing
relationships between them?

We start with the mutable polygons mentioned in Section2.0 (with the
names amended to reflect their mutable semantics).

The postcondition of the mutating method add_point inMUT_POLYGON
cannot be maintained inMUT_TRIANGLE, since this violates the triangle
invariant that it has exactly three points. Hence, there is no subtyping rela-

class MUT_POLYGON
n_points:INT;
add_point(point:POINT);

postcondition result.n_points = initial(n_points)+1;

class MUT_TRIANGLE
n_points:INT;

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 13

tionship between mutable triangles and mutable polygons. We can, how-
ever, add non-mutating operations to the polygon and triangle interfaces.

The immutable methods are common to both the mutable and immutable
abstractions. We abstract this intersection of the two interfaces into a read-
only interface. We denote these read-only abstractions with the prefix
RO_. The read-only interface corresponds to a factoring out of the contra-
variant methods common to the mutable and immutable classes, but, more
importantly, corresponds exactly to the distinction between mutable and
immutable methods.

Note that the read-only interface, though it may have the same set of meth-
ods as the immutable interface, has adifferent meaning from the immu-
table interface. A variable which has the type of a read-only interface
makes only the immutable interface visible. The object referred to by the
variable, however, may be mutable and may be mutated through other
aliases which provide the mutation-permitting interface. [DL92] show
that if aliasing is prohibited, immutable types may be subtypes of mutable
abstractions, since the mutating operations cannot be observbed through
the immutable supertype interface.

The above diagram illustrates the potential subtyping relationships
between the various abstractions. Not all of these types or subtyping rela-
tions need be represented in the type system. Furthermore, type relations
between mutable classes may also be legal, provided the subtype preserves
the class invariant. Since there are no direct subtyping relationships
between mutable polygons and triangles, any application that seeks to
exploit the relationship between triangles and polygons must make use of
the read-only interface, which provides all the immutable operations only
i.e. all the operations that may be safely used on polygons, even when they
are substituted by triangles.

class MUT_POLYGON
n_points:INT;
add_point(point:POINT);
add_point(point:POINT):MUT_POLYGON;

class MUT_TRIANGLE
n_points:INT;
add_point(point:POING):MUT_POLYGON;

RO_POLYGON

MUT_POLYGON POLYGON

RO_TRIANGLE

TRIANGLEMUT_TRIANGLE

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 14

7.1 The Value of a Mutable Object

It is possible to take an immutable snapshot of an object at any particular
point in time, and this is the “value” of the object at that particular instant.
Thus, all our mutable interface provide the methods such as
MUT_TRIANGLE::value:TRIANGLE. This method provides a conversion from
an mutable to an immutable object.

8.0 Object Equality

In the context of mutable objects, the nature of equality may sometimes
get confusing - is it the equality of the object pointers or the equality of the
contents? Some languages provide several levels of equality (the famous
eq, eql and equal), frequently a source of confusion to beginning program-
mers. The theoretical aspects of equality relations are dealt with in
[Cas95]. We merely point out that the notion of immutable object equality
may be used to guide our notion of mutable object equality.

In the mathematical world, this confusion does not arise: two objects that
have the same set of values (two triangles with the same coordinates, for
instance) are equivalent in all respects and therefore equal.

The immutable definition of equality preserves the substitutability princi-
ple - if two supertype objects are equal, substituted subtype objects must
also be equal. The clean definition of equality in the case of immutable
objects can be used to define the equality of mutable objects - two mutable
objects are considered equal at any time if their value is equal. Two
objects references are equal if the objects they point to return values that
are equal. Thus, the equality of two reference objects is defined in terms
of the equality of the corresponding immutable objects at that time, which
includes all of their contained state.

9.0 The Cost of Immutability: Freezing

Given the above discussion, it is clearly cleaner and safer (immutable
objects do not suffer from bugs caused by aliasing) to use immutable
objects in many contexts. The main problem with immutable objects is the
inordinate cost involved in all modification operations.In this section, we
mention one simple way to avoid much of this overhead, which is actually
used in the standard Sather library.

The cost savings is based on the observation that it is a fairly common pro-
gramming practice to make use of the modification operations when set-
ting up a data structure and to never modify the data structure afterwards it
has been created. In the case of a graph, for instance, it may be convenient
to create an empty graph and then add nodes and edges until it assumes the
desired structure. From that point on, the structure may never be modified.
This notion can be captured by the notion of freezing mutable object:

• Freezing a mutable object sets a boolean in the object after which no
further modifying operations are permitted. The “is_frozen” flag is

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 15

checked in the precondition of all mutating operations. This concept is
used in other libraries such as JGL [Gla97].

• Frozen views are adaptor classes that take a frozen mutable class and
provide an immutable wrapper.

The adapter that present frozen polygons as immutable is shown below :

All calls on the adaptor are delegated to the private attribute from.

There are a few points to note about freezing

• Freezing is cheap - it only involves setting a boolean variable, and the
precondition checks may be eliminated in debugged production code.

• Freezing is one-way - an object once frozen may never be unfrozen.
This is critical to the immutable semantics.

Freezing is similar to the use of a mutable class through its read-only inter-
face. However, while using a frozen class will guarantee immutability,
using the read-only interface will result in errors if the original object is
modified through aliases unless the aliasing is restricted.

class MUT_POLYGON_IMPL

readonly attr is_frozen:BOOL; -- Set initially to false
freeze is is_frozen := true; end;

add_point(p:POINT)
precondition ~is_frozen

is...

value:POLYGON is
if is_frozen then

return FROZEN_POLYGON_VIEW::create(self);
else

return POLYGON::create(points);
end;

class FROZEN_POLYGON_VIEW
subtypes from POLYGON
private attr from:MUT_POLYGON;
 -- Delegate calls to “from”

create(from:MUT_POLYGON):SAME
precondition from.is_frozen

is

RO_POLYGON

POLYGON

FROZEN_POLYGON_VIEW

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 16

10.0 Numbers - Complex, Real and Integer

Using value semantics (as is usually done with these classes in any case)
we can conveniently model the basic number hierarchy in the conventional
mathematical manner.

The above hierarchy demonstrates how the overloading rule may be used
to obtain clean subtyping relations in the presence of specialization.

10.1 64 and 32 bit numbers

In [LM95] it is claimed that “smaller integers cannot be a subtype of
larger integers because of observable differences in behavior; for example,
an overflow exception that would occur when adding two 32-bit integers
would not occur if they were 64-bit integers”.

 The substitutability of a 32 bit integer type for a 64 bit integer type actu-
ally depends on the exact nature of the class invariant that must be pre-
served. For instance, if we take a 64 bit integer abstraction to embody the
invariant that its value < 2^64, and a 32 bit integer to embody the invariant

CPX
plus(arg:CPX):CPX;
magnitude:REAL;

REAL
-- magnitude:REAL;
-- plus(arg:CPX):CPX;
plus(arg:REAL):REAL;
is_lt(arg:REAL):BOOL;

INT
-- magnitude:REAL;
-- plus(arg:CPX):CPX
-- plus(arg:REAL):REAL;
plus(arg:INT):INT;
-- is_lt(arg:REAL):BOOL;
is_lt(arg:INT):BOOL;

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 17

that its value < 2^32, then the invariant of the 32 bit integers certainly
implies the invariant of the 64 bit integer and we may have

The 32 bit integer class provides specialized 32 bit methods for addition
and subtraction, in addition to the general methods provided in the 64 bit
class.Note that the substitutability is safe, in terms of behavior, overflow
exceptions and in all other respects.

We could define the 64 bit integer class in such a way that substitutability
is impossible, for instance, with the invariant that it has exactly 64 bits.
Then the methodINT64::does_not_have_64_bits1 cannot be properly sub-
typed inINT32. Then,INT32 clearly violates this invariant, and subtyping is
not possible. This is, however, an intentionally perverse definition of
INT64, which specifically prohibits certain kinds of subtyping.

The same reasoning holds for theFAT_SET example presented in [LM95].
Unsurprisingly, if the invariant of a class is that elements may never be
removed, then it is not possible to substitute it with a class that violates
precisely that invariant. By design of an abstract type, it is possible to pro-
scribe certain kinds of subtyping.

11.0 Correct Method Naming

Methods that behave differently must have different names. This may
seem like an obvious point, but it is one that is easy to violate if method
signatures alone, and not the method semantics, are taken into account. In
other words, type signatures are not everything. [LM95] makes this point
by considering other aspects of the class semantics via the notion of con-
straints on behavior.

1. INT64::does_not_have_64_bits:BOOL will return false, while
INT32::does_not_have_64_bits:BOOL will return true, thus violating the
upward implication of preconditions required for substitutability.

INT64
plus(INT64):INT64
minus(INT64):INT64;

INT32
plus(INT64):INT64;
plus(INT32):INT32;
minus(INT64):INT64;
minus(INT32):INT32;

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 18

We illustrate the point with the case of the ‘insert’ method in sets and in
bags. For example, it seems reasonable to support a BAG::insert which is
then specialized in the SET abstraction.

There is no problem with the typing of the above methods. The return type
of the SET::insert is specialized, and is therefore conformant to
BAG::insert. However, the second method is not substitutable for the first.
Consider the post conditions of the methods above:

The postcondition in the case of the Set states that the resulting size
remains the same if the set already contained the element, otherwise the
resulting size is increased by 1. The crucial test for substitutability is
whether the postcondition ofSET::insert implies the postcondition of
BAG::insert.

initial(contains(e)) and result.size = initial(size) or result.size = ini-
tial(size)+1

? =>

result.size = initial(size)+1;

Clearly, when the element is already in the set, the antecedent is true with
the size of the result equal to the initial size, and the consequent is false.
Thus the implication does not hold andSET is not substitutable forBAG as
they are defined here.

class BAG{T}
insert(element:T):BAG{T};

class SET{T} subtype of BAG{T}
insert(element:T):SET{T};

class BAG{T}
insert(e:T):BAG{T};

postcondition result.size = initial(size)+1;

class SET{T} subtype of BAG{T}
insert(e:T):SET{T};

postcondition initial(contains(e)) and result.size = initial(size)
or result.size = initial(size)+1;

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 19

The right approach is to distinguish between the two notions of insertion.

With the above definition, theinsert routine may be safely specialized - the
postcondition is the same in both cases. Theappend routine must con-
tinue to return aBAG, since appending an element to aSET may result in the
presence of duplicate elements, requiring aBAG.

Using the structure of these immutable abstractions to guide the mutable
abstraction,MUT_BAG should provide both an append and an insert
method, while theMUT_SET abstraction can only provide the insert method.

The Eiffel library design recommends consistent naming, which means
using the “same names for all structures regardless of the semantic differ-
ences” [Mey94]. Rules such as this can end up obscuring important differ-
ences in method semantics and may promote erroneous subtyping
relationships.

12.0 Related Work

This report is aimed at object-oriented practitioners; in the course of
designing the Sather libraries, the problems related here arose repeatedly;
indeed, the confusion is quite widespread, as we illustrate by our quotes.
The problem arises principally from differences between the mathematical
and the object based metaphors that underlie library design. The underly-
ing theoretical ideas have been explored, though not, to our knowledge, in
the context of actual library design.

[LW94] explicates guaranties of substitutability under subtyping, based on
object behavior, and the importance of considering object protocol in addi-
tion to type signatures when determining substitutability. The distinction
between specialization (using overloading) and subtyping that we draw in
this report is largely a restatement of [Cas95]. Others have noted that
some subtyping problems may be avoided by considering immutable data
types ([Ock95], [Win97]). It has also been shown in [DL92] that subtyping
between mutable and immutable types is possible if aliasing is restricted,
so that an object may only be viewed via a subtype or a supertype variable,
but not both at the same time. The problem has mosly been explored from
the perpspective of the formal semantics of objects, rather than from the
point of view of correct modelling. The formal semantics, while useful in
understanding language restrictions, obscures the simple nature of the
underlying modelling problem. Our primary goal was to explain, in a non-

class BAG{T}
append(e:T):BAG{T}

-- add e to the bag, even if it is already present
postcondition result.size = result.size + 1;

insert(e:T):BAG{T}
-- insert only if e is not already in self

postcondition initial(has(e)) and result.size = initial(size) or
result.size = initial(size)+1;

class SET{T} subtype of BAG{T}
append(e:T):BAG{T}; -- Same postcondition as BAG::append
insert(e:T):SET{T}; -- Same postcondition as BAG::insert

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 20

theoretical manner, the modelling problem, why the problem arises, our
solution in Sather and the implications for practical library design.

 Libraries, such as the collections package in Java libraries by D. Lea
[Lea97] distinguish between value and reference semantics as we advo-
cate. However, they do not deal with the issues of subtyping and cannot
make use of the covariant specialization that our overloading rule permits.

Other libraries, such as the Karla library [FNZ97] deal extensively with
the problem of mutable classes. Since the is-a relationships from mathe-
matics do not hold in the world of, for instance, mutable graphs, they have
devised a generator for the combinatorial number of possible concrete
classes that may arise.

13.0 Conclusions

The answer to the FAQ question 28.1 mentioned in the abstraction runs (in
part) as follows:

 The sad reality is that it means your intuition is wrong. Look, I have
received and answered dozens of passionate e-mail messages about this
subject. I have taught it hundreds of times to thousands of software pro-
fessionals all over the place. I know it goes against your intuition. But
trust me; your intuition is wrong.

The real problem is your intuitive notion of “kind of” doesn’t match the
OO notion of proper inheritance (technically called “subtyping”). The
bottom line is that the derived class objects must be substitutable for the
base class objects. In the case of Circle/Ellipse, the setSize(x,y) member
function violates this substitutability.

While the above answer is true, it does not capture the real cause of the
problem, which is the distinction between value and reference abstrac-
tions. We have described the distinction in detail, and the use of overload-
ing in correctly modelling mathematical entities using value abstractions.
We also describe how these clean mathematical abstractions may be used
to guide the design of the more efficient, mutable abstractions.

Some of the lessons we draw for library design:

• Pay close attention to the underlying object metaphor of the domain
being modelled. If the metaphor used when modelling is different from
the original domain metaphor, then entailments from the original
domain will not hold in the modelled domain.

• Clarity is important; terms from the world of mathematics (such as
polygon, graphs, sets etc.) should not be used to name classes that
model entities that are subtly different. Inferences from the mathemat-
ical domain may not hold in this modelled domain, and this should be
made clear to clients of the class (and, often, to the class designer as
well!).

• When type-safe substitutability is possible, overloading may be neces-
sary to permit specialization of operations. In general, contravariance

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 21

(or invariance) of the preconditions only causes problems when there is
some underlying problem with the substitutability relation.

• Signatures are not everything; methods with different semantics must
be given different names, even if they happen to have conforming sig-
natures.

Appendix A Mutable, Immutable and Frozen Polygons

The complete code for mutable, immutable and frozen polygons is shown
below. We first present the abstract classes.

The typing relationships are as shown below.

Note that the leaves of the type graph are implementation classes, while all
interior nodes are abstract.

class RO_POLYGON
is_frozen:BOOL;
value:POLYGON;
n_points:INT;
add_point(p:POINT):SAME;

class MUT_POLYGON subtypes from RO_POLYGON
add_point(p:POINT);

class POLYGON subtypes from RO_POLYGON
-- same interface as RO_POLYGON

RO_POLYGON

MUT_POLYGON

MUT_POLYGON_IMPL

POLYGON

POLYGON_IMPL FROZEN_POLYGON_VIEW

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 22

The mutable polygon may then be defined as follows

References

 [BK88] Daniel G. Bobrow and Gregor Kiczales. Common LISP ob-
ject system specification. Technical Report 89-003, MOP Draft
number 10, MIT, December 1988.

 [Cas95]Guiseppe Castagna. Covariance and contravariance: Con-
flict without a cause. ACM Transactions on Programming Lan-
guages and Systems, 17(3):431–447, March 1995.

 [Cha93]Craig Chambers. The cecil language: Specification and ra-
tionale. Technical report, University of Washington, March 1993.

 [DL92] Krishna K. Dhara and Gary T. Leavens. Subtyping for muta-
ble types in object-oriented languages. Technical Report 92-36,
Iowa State University, November 1992.

class MUT_POLYGON
private attr points: ARRAY of POINT;
readonly attr is_frozen:BOOL;

create:SAME is
res:SAME := new;
res.points := new ARRAY of POINT;
res.is_frozen := false;
return res;

end;

add_point(p:POINT):MUT_POLYGON is
res:SAME := MUT_POLYGON::create;
for old_point:POINT in points

res.points.append(old_point);
return res;

end;

add_point(p:POINT) precondition ~is_frozen is
 points.append(p);
 end;

freeze is is_frozen := true; end;

value:POLYGON is
if is_frozen then return FROZEN_POLYGON_VIEW::create(self);
else return POLYGON(self); end;

end;

 end;

Using Value Semantic Abstractions to Guide Strongly Typed Library DesignApril 24, 1998 23

 [FNZ97] Jozsef Frigo, Rainer Neumann, and Wolf Zimmermann. Me-
chanical generation of robust class hierarchies. In TOOLS97,
1997.

 [Gla97]G. Glass. The Java Generic Library. C++ Report, 9(1):70–
74, January 1997.

 [GSW97]Benedict Gomes, David Stoutamire, and Boris Weissman.
The overloading rule in Sather. Technical Report Unknown, In-
ternational Computer Science Institute, July 1997.

 [Lea97]Doug Lea. Overview of the collections package. http://
gee.cs.oswego.edu/dl/classes/collections/index.html, 1997.

 [Lis88] Barbara Liskov. Data abstraction and hierarchy. SIGPLAN
Notices, 23(5), may 1988.

 [LW94] Barbara Liskov and Jeannette Wing. A behavioral notion of
subtyping. ACM Transactions on Programming Languages and
Systemsn, November 1994.

 [Mar96] Robert C. Martin. The Liskov substitution principle. The
C++ Report, March 1996. http://www.sigs.com/publications/
docs/cppr/9603/cppr9603.c.martin.html.

 [Mey94] Bertrand Meyer.Reusable Software: The Base Object-Orient-
ed Component Libraries. Prentice Hall, 1994.

 [Mey96] Bertrand Meyer. Static typing and other mysteries of life.
Object Currents, 1(1), January 1996. http://www.sigs.com/publi-
cations/docs/oc/9601/oc9601.c.meyer.html.

 [Ock95]John Ockerbloom. Exploiting structured data in wide-area
information systems. Technical Report CMU-CS-95-184, Carn-
egie Mellon University, 1995.

 [Sha96]David Shang. Are cows animals. Object Currents, 1(1), Jan-
uary 1996. http://www.sigs.com/publications/docs/oc/9601/
oc9601.c.shang.html.

 [Win97] Jeannette M. Wing. Subtyping for distributed object stores.
Technical Report CMU-CS-97-121, Carnegie Mellon University,
April 1997.

