
Create dynamic sites with PHP &
MySQL

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. About this tutorial 2

2. Introduction and installation 3

3. Start coding 7

4. Add new records 10

5. Get a better view 12

6. Delete, edit, and search data 14

7. Next steps: tips and resources 18

Create dynamic sites with PHP & MySQL Page 1

Section 1. About this tutorial

Should I take this tutorial?
This tutorial shows you how to use two open source, cross-platform tools for creating a
dynamic Web site: PHP and MySQL. When we are finished, you will know how dynamic sites
work and how they serve the content, and you will be ready to serve your own dynamic
content from your site.

About the author
For technical questions about the content of this tutorial, contact the author, Md. Ashraful
Anam, at russell@bangla.net .

Md. Ashraful Anam works as an independent Web developer. Having conquered the
Windows platform, he recently changed his interest to Linux and immediately fell in love with
it.

In his spare time he can be seen wandering the virtual avenues of the net, testing open
source software, and trying to promote his country, Bangladesh, in the international IT
market. He can be reached at russell@bangla.net .

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 2

mailto:russell@bangla.net
mailto:russell@bangla.net

Section 2. Introduction and installation

The need for dynamic content
The Web is no longer static; it's dynamic. As the information content of the Web grows,
so does the need to make Web sites more dynamic. Think of an e-shop that has 1,000
products. The owner has to create 1,000 Web pages (one for each product), and
whenever anything changes, the owner has to change all those pages. Ouch!!!
Wouldn't it be easier to have only one page that created and served the content on the
fly from the information about the products stored in a database, depending on the
client request?

Nowadays sites have to change constantly and provide up-to-date news, information,
stock prices, and customized pages. PHP and SQL are two ways to make your site
dynamic.

PHP PHP is a robust, server-side, open source scripting language that is extremely
flexible and actually fun to learn. PHP is also cross platform, which means your PHP
scripts will run on Unix, Linux, or an NT server.

MySQL SQL is the standard query language for interacting with databases. MySQL is
an open source, SQL database server that is more or less free and extremely fast.
MySQL is also cross platform.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 3

http://www.apache.org/dist
http://www.apache.org/dist

Installing Apache server routines
First we will install the Apache server routines in the Linux environment. To install
these packages you will need root access to your server. If someone else is hosting
your site, ask the administrator to install them for you.

Installing Apache is relatively simple. First download the Apache archive,
apache_x.x.xx.tar.gz (the latest I downloaded was apache_1.3.14.tar.gz) from the
Apache site and save it in /tmp/src directory. Go to that directory:

cd /tmp/src/
Extract the files with the command:

gunzip -dc apache_x.x.xx.tar.gz | tar xv
replacing those xs with your version number. Change to the directory that has been
created:

cd apache_x.x.xx
Now to configure and install apache, type the commands:

./configure --prefix=/usr/local/apache --enable-module=so
make
make install

This will install Apache in the directory /usr/local/apache. If you want to install Apache
to a different directory, replace /usr/local/apache with your directory in the prefix. That's
it! Apache is installed.

You might want to change the default server name to something of real value. To do
this, open the httpd.conf file (located at /usr/local/apache/conf) and find the line starting
with ServerName. Change it to ServerName localhost.

To test your install, start up your Apache HTTP server by running:

/usr/local/apache/bin/apachectl start
You should see a message like "httpd started". Open your Web browser and type
"http://localhost/" in the location bar (replace localhost with your ServerName if you set
it differently). You should see a nice welcome page.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 4

http://www.apache.org/dist
http://www.apache.org/dist
http://www.mysql.com/
http://www.mysql.com/

Installing MySQL
Next comes MySQL. We will follow the same procedure (replacing those xs again with
our version number). Download the source from the MySQL site and save it in /tmp/src.
The latest version I found was mysql-3.22.32.tar.gz.

cd /tmp/src/
gunzip -dc mysql-x.xx.xx.tar.gz | tar xv
cd mysql-x.xx.xx
./configure --prefix=/usr/local/mysql
make
make install

MySQL is installed. Now you need to create the grant tables:

scripts/mysql_install_db
Then start the MySQL server:

/usr/local/bin/safe_mysqld &
And test your installation by typing:

mysql -uroot -p
At the password prompt, just press Enter. You should see something like:
Welcome to MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5 to server version 3.22.34

Type 'help' for help.

mysql>

If you see this, you have MySQL running properly. If you don't, try installing MySQL
again. Type status to see the MySQL server status. Type quit to exit the prompt.

Installing PHP
We will follow a similar procedure to install PHP. Download and save the source from the
PHP site to /tmp/src:

cd /tmp/src/
gunzip -dc php-x.x.xx.tar.gz | tar xv
cd php-x.x.xx
./configure --with-mysql=/usr/local/mysql --with-apxs=/usr/local/apache/bin/apxs
make
make install

Copy the ini file to the proper directory:

cp php.ini-dist /usr/local/lib/php.ini
Open httpd.conf in your text editor (probably located in /usr/local/apache/conf directory), and
find a section that looks like the following:

And for PHP 4.x, use:
#
#AddType application/x-httpd-php .php

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 5

http://www.mysql.com/
http://www.mysql.com/
http://www.php.net/
http://www.php.net/

#AddType application/x-httpd-php-source .phps

Just remove those #s before the AddType line so that it looks like:

And for PHP 4.x, use:
#
AddType application/x-httpd-php .php .phtml
AddType application/x-httpd-php-source .phps

Save your file and restart apache:

/usr/local/apache/bin/apachectl stop
/usr/local/apache/bin/apachectl start

Then test whether you have PHP installed properly. Type the following code in a text editor
and save it as test.php in a directory accessible by your Web server:

<HTML>
<?php
phpinfo();
?>
</HTML>

Set the permission of the file to executable by typing at console chmod 775 test.php,
and then view it with your browser. You should see a detailed description of the environment
variables in PHP similar to the image below. If you don't, then PHP was not installed
properly. Try reinstalling it. Make sure there is a section "MySQL" in the php info; if not,
MySQL connectivity will not work.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 6

Section 3. Start coding

Your first script
Following tradition, we will begin coding with a "hello world" example. Fire up your text
editor and type the following code:

<HTML>
<?php
echo "Hello World";
?>
</HTML>

Save the file as first.php and view it in the browser (remember to set the permission to
chmod 775 first). The page shows "Hello World". View the HTML source of this page
through your browser. You will only see the text Hello World. This happened
because PHP processed the code, and the code told PHP to output the string "Hello
World". Notice the <?php and ?>. These are delimiters and enclose a block of PHP
code. <?php tells PHP to process all the lines following this as PHP code and ?> tells
PHP to stop processing. All lines beyond this scope are passed as HTML to the
browser.

Your first database
Now that we have PHP running properly and have created our first script, let's create our first
database and see what we can do with it. Drop to console and type in the following
command:

mysqladmin -uroot create learndb
This creates a database named "learndb" for us to use. Here we have assumed that you are
root user. If you are logged in as another user, just use the command mysqladmin
-uusername -pyourpassword create learndb, replacing username and
yourpassword with your username and password respectively. If you are hosting your site
through a hosting company, you probably don't have permission to run mysqladmin. In this
case, you have to ask your server administrator to create the database for you.

Next we will create tables in this database and enter some information. Go to the console.
Type:

mysql
You should see something like:

Welcome to MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5 to server version 3.22.34

Type 'help' for help.

Type:
CONNECT learndb

CREATE TABLE personnel
(
id int NOT NULL AUTO_INCREMENT,
firstname varchar(25),
lastname varchar(20),

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 7

nick varchar(12),
email varchar(35),
salary int,
PRIMARY KEY (id),
UNIQUE id (id)

);

INSERT INTO personnel VALUES ('1','John','Lever','John', 'john@everywhere.net','75000');
INSERT INTO personnel VALUES ('2','Camilla','Anderson','Rose', 'rose@flower.com','66000');

This creates a table with 5 fields and puts some information in it.

Where's my view?
Now that we have a database with some information with it, let's see if we can view it with
PHP. Save the following text as viewdb.php:

<HTML>
<?php
$db = mysql_connect("localhost", "root", "");
mysql_select_db("learndb",$db);
$result = mysql_query("SELECT * FROM personnel",$db);
echo "<TABLE>";
echo"<TR><TD>Full Name<TD>Nick Name<TD>Salary</TR>";
while ($myrow = mysql_fetch_array($result))

{
echo "<TR><TD>";
echo $myrow["firstname"];
echo " ";
echo $myrow["lastname"];
echo "<TD>";
echo $myrow["nick"];
echo "<TD>";
echo $myrow["salary"];
}

echo "</TABLE>";
?>
</HTML>

Run it through your browser and you will see a personnel database. But what is this code
doing and how is it generated? Let's examine the code. First we declare a variable $db. In

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 8

PHP we declare a variable by putting the '$' sign before it. The string after $ is the name of
that variable. We assign value to it by coding:$variable_name=somevalue; (example:
$count=4;)
Remember to put ';' after all the lines that are executable in PHP. So we declare the variable
$db and create a connection to the mysql database with the statement
"mysql_connect("localhost", "root", "")". In plain English, it means connect to MySQL
database in localhost server with the username root and password "". Replace them with
your own username and password if they are different.

Then we assign a pointer to this database to $db; in other words, $db points to our database
server localhost. Next we select the database with which we want to interact with the lines
"mysql_select_db("learndb",$db);" which means we wish to use the database "learndb"
located by the pointer variable $db. But we want information from the database, so we query
the database with the lines "$result = mysql_query("SELECT * FROM personnel",$db);" The
part "SELECT * FROM personnel" is an SQL statement (in case you don't know SQL), which
means select all the stuff from the database personnel.

We run this query with the PHP command mysql_query() and save the result returned by the
database to the variable $result. Now we can access the different data in the different rows
of the database from the $result variable. We use the function mysql_fetch_array() to extract
each row from $result and assign them to variable $myrow. So $myrow contains information
about each row as opposed to all the rows in $result.

Then we output the data contained in each row. "echo $myrow["firstname"];" means
send to output the value contained in the field "firstname" of the row contained in $myrow; in
other words, we access different fields of the row with $myrow["fieldname"].

We have used the while() loop here, which means as long as or while there are data to be
extracted from $result, execute the lines within those brackets {}. Thus we get nicely
formatted output in our browser. Viewing the PHP code and the HTML source from the
browser side-by-side may help you easily understand the procedure. Congratulations! You
have created your first dynamic page.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 9

Section 4. Add new records

Creating an HTML form
So now you can view records stored in your MySQL database and display them in your
browser using PHP. But you want to add new record. Assuming that you know about
HTML forms, let's code a page that will do just that. First we'll create a static form,
datain.html:

<HTML>
<BODY>
<form method="post" action="datain.php">
First name:<input type="Text" name="first">

Last name:<input type="Text" name="last">

Nick Name:<input type="Text" name="nickname">

E-mail:<input type="Text" name="email">

Salary:<input type="Text" name="salary">

<input type="Submit" name="submit" value="Enter information">
</form>
</HTML>

Now we have a form that will post the information to a page "datain.php". We must
code this page so that it is able to process the posted data and send it to our MySQL
database. The following listing of datain.php will do that:

<HTML>
<?php
$db = mysql_connect("localhost", "root","");
mysql_select_db("learndb",$db);
$sql = "INSERT INTO personnel (firstname, lastname, nick, email, salary) VALUES ('$first','$last','$nickname','$email','$salary')";
$result = mysql_query($sql);
echo "Thank you! Information entered.\n";
?>
</HTML>

The first 3 lines are same as before, only we use the SQL command "INSERT INTO",
which means insert into the database into the columns specified (here firstname,
lastname, nick, email) the data contained in the variable
'$first','$last','$nickname','$email' respectively.

But where did these variables come from? Well, PHP has a wonderful way of creating
the variables automatically from the data posted to it. So the text box with name "first"
created the variable $first and it contained the text typed in that textbox.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 10

Putting it together
Now let's merge the code into one file. We will call it input.php

<HTML>
<?php
if($submit)

{
$db = mysql_connect("localhost", "root","");
mysql_select_db("learndb",$db);
$sql = "INSERT INTO personnel (firstname, lastname, nick, email, salary) VALUES ('$first','$last','$nickname','$email','$salary')";
$result = mysql_query($sql);
echo "Thank you! Information entered.\n";
}

else
{
?>
<form method="post" action="input.php">
First name:<input type="Text" name="first">

Last name:<input type="Text" name="last">

Nick Name:<input type="Text" name="nickname">

E-mail:<input type="Text" name="email">

Salary:<input type="Text" name="salary">

<input type="Submit" name="submit" value="Enter information"></form>
<?
}

?>
</HTML>

This creates a script that shows the form when there is no input or otherwise enters the
information into the database. How does the script understand when to do what? We
have already learned that PHP automatically creates variable with information posted
to it. So it will create the variable $submit if the form is posted. The script determines
whether there exists the variable $submit. If it exists and contains a value then we have
to enter the posted values into the database; otherwise, we have to show the form.

So now we can enter information to our database and view it. Try inserting some new
data into the database and check to see if it really works by viewing them with
viewdb.php.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 11

Section 5. Get a better view

Passing variables
Let's take a different view now and consider how information can be passed to another
PHP page. One method is by using forms as we have done already; another is by
using query strings. What are query strings? Change the line method="post" to
method="get" in our script input.php. Now try submitting new data into the database
with it. After clicking submit you will see our familiar "Thank you! Information entered" in
the browser. But look at the URL. It looks something like:

http://yourhost/input.php?first=Rick&last=Denver&nickname=Mike&email=j@xyz.com&salary=25000&submit=Enter+information
Look closely. Now the information is passed as a string in the URL instead of posting
directly. The sentence after the ? is the query string, and as you can see it contains the
name of the variable and its values. When PHP receives a query string like ?first=John
it automatically creates a variable named $first and assigns the value from the query
string to it. So it is equivalent to $first="John"; When more than one variable is present,
the variables are separated by an ampersand (&).

Viewing individual rows
So now we will create a script that will display the information of a particular row in our
database defined by the variable $id. Save the following code as view.php. Try viewing it
through your Web server as http://yourhost/view.php?id=2 (here we have passed the variable
$id=2 through the query string). The page should show information corresponding to the id 2
in the MySQL database.

<HTML>
<?php
$db = mysql_connect("localhost", "root", "");
mysql_select_db("learndb",$db);
$result = mysql_query("SELECT * FROM personnel WHERE id=$id",$db);
$myrow = mysql_fetch_array($result);
echo "First Name: ".$myrow["firstname"];
echo "
Last Name: ".$myrow["lastname"];
echo "
Nick Name: ".$myrow["nick"];
echo "
Email address: ".$myrow["email"];
echo "
Salary: ".$myrow["salary"];
?>
</HTML>

Here the SQL command has changed and it tells the database to search for the row that has
the value $id. But can't multiple rows contain the same values of id? Generally a column can
contain any value, the same or different. But in our database two rows can never have the
same value of id, as we have defined id as UNIQUE when we created our database.

We immediately modify our previous viewdb.php to viewdb2.php so that it can call view.php
with the proper query string.

<HTML>
<?php
$db = mysql_connect("localhost", "root", "");
mysql_select_db("learndb",$db);
$result = mysql_query("SELECT * FROM personnel",$db);
echo "<TABLE BORDER=2>";

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 12

echo"<TR><TD>Full Name<TD>Nick Name<TD>Options</TR>";
while ($myrow = mysql_fetch_array($result))

{
echo "<TR><TD>".$myrow["firstname"]." ".$myrow["lastname"]."<TD>".$myrow["nick"];
echo "<TD>View";
}

echo "</TABLE>";
?>
</HTML>

Viewing this page will show a list of names and corresponding nicknames. Look at the third
column with a hyperlink view. Take your mouse over the hyperlink and look what it points to.
The link should be something like http://yourhost/view.php?id=3 and the links in each row will
be different. Click on one of the links. It will bring up our previously coded view.php showing
the detailed information of that person. How is this achieved?

Let's take a look at our code viewdb2.php. Look at line 11, where all the real stuff takes
place. The only unfamiliar thing here should be those odd dots (.) all around the line. The dot
(.) is a concatenating operator in PHP, which means it concatenates the two strings on its
two sides, which in turn means that if we write echo "Hello"."World", the output will actually
be "HelloWorld". In our example we use the concatenate operator to generate a line like:

<TR><TD>Camilla Anderson<TD>Rose<TD>View
for the browser.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 13

Section 6. Delete, edit, and search data

Deleting rows
So far we have only entered new information in our database and viewed it. Where's
the fun if we can't trash some of those data, at least the useless ones? Our delete.php
will do just that. It works exactly like view.php. The only difference is the SQL command
"DELETE FROM personnel WHERE id=$id", which tell MySQL to delete the row
that contains the id corresponding to the variable $id. Generally, the SQL command for
deleting a row is DELETE FROM database_name WHERE
field_name=somevalue

<HTML>
<?php
$db = mysql_connect("localhost", "root", "");
mysql_select_db("learndb",$db);
mysql_query("DELETE FROM personnel WHERE id=$id",$db);
echo "Information Deleted";
?>
</HTML>

Once again we modify our previous viewdb2.php script to viewdb3.php to add this new
feature. The additions should be obvious.

<HTML>
<?php
$db = mysql_connect("localhost", "root", "");
mysql_select_db("learndb",$db);
$result = mysql_query("SELECT * FROM personnel",$db);
echo "<TABLE BORDER=2>";
echo"<TR><TD>Full Name<TD>Nick Name<TD>Options</TR>";
while ($myrow = mysql_fetch_array($result))

{
echo "<TR><TD>".$myrow["firstname"]."

".$myrow["nick"];
echo "<TD>View ";
echo "Delete";
}

echo "</TABLE>";
?>
</HTML>

Try clicking on delete and then view the database again with viewdb3.php to verify that
the row was really deleted. You may have to refresh your browser.

Editing data
So far we have viewed and deleted database content. But sometimes we need to edit
database content. For this we will modify our previously coded input.php file. By now you are
familiar with the concept of passing variables by URL. We will call this modified script
addedit.php:

<HTML>
<?php
if($submit)

{
$db = mysql_connect("localhost", "root","");
mysql_select_db("learndb",$db);

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 14

$sql = "INSERT INTO personnel (firstname, lastname, nick, email, salary)
VALUES ('$first','$last','$nickname','$email','$salary')";
$result = mysql_query($sql);

echo "Thank you! Information entered.\n";
}

else if($update)
{
$db = mysql_connect("localhost", "root","");
mysql_select_db("learndb",$db);
$sql = "UPDATE personnel SET firstname='$first',lastname='$last',nick='$nickname',email='$email',
salary='$salary' WHERE id=$id";
$result = mysql_query($sql);
echo "Thank you! Information updated.\n";
}

else if($id)
{
$db = mysql_connect("localhost", "root", "");
mysql_select_db("learndb",$db);
$result = mysql_query("SELECT * FROM personnel WHERE id=$id",$db);
$myrow = mysql_fetch_array($result);
?>
<form method="post" action="<?php echo $PHP_SELF?>">
<input type="hidden" name="id" value="<?php echo $myrow["id"]?>">
First name:<input type="Text" name="first" value="<?php echo

br>
Last name:<input type="Text" name="last" value="<?php echo $myrow["lastname"]?>">

Nick Name:<input type="Text" name="nickname" value="<?php echo $myrow["nick"]?>">

E-mail:<input type="Text" name="email" value="<?php echo $myrow["email"]?>">

Salary:<input type="Text" name="salary" value="<?php echo $myrow["salary"]?>">

<input type="Submit" name="update" value="Update information"></form>
<?

}
else

{
?>
<form method="post" action="<?php echo $PHP_SELF?>">
First name:<input type="Text" name="first">

Last name:<input type="Text" name="last">

Nick Name:<input type="Text" name="nickname">

E-mail:<input type="Text" name="email">

Salary:<input type="Text" name="salary">

<input type="Submit" name="submit" value="Enter information"></form>
<?
}

?>
</HTML>

Hmmm...the code looks quite complex. But really it isn't. Previously input.php had two
features: it could add information to the database or could show the form. We'll add two more
features to it: the ability to show the same form but with values of a particular person already
there and the ability to update records for that person. The SQL commands for entering new
information and updating existing information are different, so we can't use our previous code
for entering information.

The script searches for the $submit variable. If it contains some value, then someone
submitted new data and the information is entered into the database. If $submit does not
contain any value, then someone might have just posted their updated information, so we
check $update. If it contains a value, then we update that person's record with the SQL
statement "UPDATE personnel SET
fieldname1='$variablename1',fieldname2='$variablename2' WHERE id=$id";".
Otherwise, if someone provided the id in the query string, we show that person's information,
but this time in a form so he may change it. If all these are not the case, we simply have to
show the old form.

Experiment with the script. Open it with your browser to see what comes up. Then call it

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 15

providing query string ?id=1. Change the information and click update. Verify whether the
database is updated by viewing the database with viewdb3.php.

Another new element was just introduced. It is the global PHP variable $PHP_SELF. This
variable always contains the name of the script it is in and its location. We have used this
variable in a 'form action' so no matter what you name this file, this script will always post
information to itself.

Once again we modify our viewing script incorporating this feature. Here's the listing for
viewdb4.php:

<HTML>
<?php
$db = mysql_connect("localhost", "root", "");
mysql_select_db("learndb",$db);
$result = mysql_query("SELECT * FROM personnel",$db);
echo "<TABLE BORDER=2>";
echo"<TR><TD>Full Name<TD>Nick Name<TD>Options</TR>";
while ($myrow = mysql_fetch_array($result))

{
echo "<TR><TD>".$myrow["firstname"]." ".$myrow["lastname"]."<TD>".$myrow["nick"];
echo "<TD>View ";
echo "Delete ";
echo "Edit";
}

echo "</TABLE>";
?>
</HTML>

Searching our data
Information is useless if you can't find the data you require from a wealth of information. We
need a way to search our database, so let's implement a search function. The page will show
a static form initially and will show the search result when we have something submitted.

<HTML>
<?php
if ($searchstring)

{
$sql="SELECT * FROM personnel WHERE $searchtype LIKE '%$searchstring%' ORDER BY firstname ASC";
$db = mysql_connect("localhost", "root", "");
mysql_select_db("learndb",$db);
$result = mysql_query($sql,$db);
echo "<TABLE BORDER=2>";
echo"<TR><TD>Full Name<TD>Nick Name<TD>Options</TR>";
while ($myrow = mysql_fetch_array($result))

{
echo "<TR><TD>".$myrow["firstname"]."

".$myrow["nick"];
echo "<TD>View";
}

echo "</TABLE>";
}

else
{
?>
<form method="POST" action="<?php $PHP_SELF ?>">
<table border="2" cellspacing="2">
<tr><td>Insert you search string here</td>
<td>Search type</td></tr>
<tr>
<td><input type="text" name="searchstring" size="28"></td>
<td><select size="1" name="searchtype">

<option selected value="firstname">First Name</option>

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 16

<option value="lastname">Last Name</option>
<option value="nick">Nick Name</option>
<option value="email">Email</option>

</select></td>
</tr>
</table>
<p><input type="submit" value="Submit" name="B1"><input type="reset" value="Reset"

></p>
</form>
<?php
}

?>
</HTML>

The script checks whether a search string exists. If $searchstring contains a value, then we
have something to search; otherwise, we just show an HTML form. The part of code that
searches is similar to our viewdb2.php. The SQL command deserves a bit of explanation
here. Let's look at it closely. The SQL command is:

"SELECT * FROM personnel WHERE $searchtype LIKE '%$searchstring%' ORDER BY firstname ASC"

Two news things are introduced here, "LIKE" and "ORDER BY". LIKE simply means 'sounds
like'. The '%' sign represents any possible combination of characters (numbers or letters). So
to find people whose first name starts with 'J' we would use the SQL command

"SELECT * FROM personnel WHERE firstname LIKE 'J%'"

To find those people with a name ending with J we have to use '%J'. If we wish find people
with 'J' anywhere in their name (first, middle, or last) we have to use '%J%'.

'ORDER BY' simply orders the records in ascending or descending order. The syntax is:
"ORDER BY fieldname order_method" where order_method is ASC or DESC allowing the
ordering to be done in ASCending or DESCending order.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 17

Section 7. Next steps: tips and resources

Tips for common tasks
We have covered the basics. Where you go from here is up to you. You know enough
now to implement some of these useful tasks:

* User database
You could implement a user database. You can add a login feature to this.

* News
You could code a section that always displays the latest news or maybe a "What's
new" section that's automatically generated. The TABLE could be something like:

CREATE TABLE news
(
id INT NOT NULL AUTO_INCREMENT,
title VARCHAR(40),
newsbody TEXT,
news_date DATE,
PRIMARY KEY (id),
UNIQUE id (id)
);

And assuming you want to automatically show the title of the latest five news
items, the code could be something like:

<HTML>
<?php
$sql="SELECT * FROM news ORDER by news_date DESC";
$db = mysql_connect("localhost", "root", "");
mysql_select_db("newsdb",$db);
$result = mysql_query($sql,$db);
echo "Latest News:
";
$i=1;
while ($myrow = mysql_fetch_array($result))

{
echo "<a

/a>
";
$i=$i+1;
if($i>5)

break;
}

?>
</HTML>

* Product database
You could create a detailed database of your products. Clients could see all the
products or search for particular product.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 18

http://www.php.net
http://www.php.net

Resources
You'll find useful information for further study at these sites:

* PHP site
At this official PHP site, you will find PHP source as well as compiled binaries for
both Linux and Windows. You will also find documentation and some useful links
to various PHP sites, including a list of hosting providers that support PHP.

* MySQL site
Here you'll find news, downloads, training information, documentation, and also
job information.

* Apache Software Foundation site
The Apache Software Foundation has created some of the best open source
software projects. One of them is the Apache Web Server, which is currently the
most popular Web server on the net.

* AbriaSoft site
AbriaSoft specializes in the setup of a PHP, MySQL development environment.
Their AbriaSQL Lite, which is free, is probably the easiest solution for installing
Apache, PHP3, and MySQL.

* PHPBuilder site
This is a must-visit resource site for PHP developers. You will find code, tips,
discussion forums, news, jobs, links, and all sorts of useful stuff.

Your feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other tutorial topics you'd like to see covered. Thanks!

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The Toot-O-Matic tool is a short Java program that uses XSLT stylesheets to
convert the XML source into a number of HTML pages, a zip file, JPEG heading graphics,
and PDF files. Our ability to generate multiple text and binary formats from a single source
file illustrates the power and flexibility of XML.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

Create dynamic sites with PHP & MySQL Page 19

http://www.php.net
http://www.php.net
http://www.mysql.com
http://www.mysql.com
http://www.apache.org
http://www.apache.org
http://www.apache.org
http://www.apache.org
http://www.abriasoft.com
http://www.abriasoft.com
http://www.phpbuilder.com
http://www.phpbuilder.com

