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Chapter 1

Automata

1.1 Notation

The following conventions are useful and standard.

¬ stands for “not” or “the negation of”.
∀ stands for “for all”.
∃ stands for “there exists”.
∋ stands for “such that”.
s.t. stands for “such that”.
⇒ stands for “implies” as in A⇒ B (“A implies B”).
⇔ stands for “is equivalent to” as in A⇔ B (“A is equivalent to B”).
iff is the same as ⇔.

1.2 Proofs

The best way to learn what proofs are and how to do them is to see examples. If you try to find a definition
of a proof or you going around asking people what they think a proof is, then you will quickly find that
you are asking a hard question. Our approach will be to avoid defining proofs (something we couldn’t do
anyway), and instead do a bunch so you can see what we mean.
Often students say “I don’t know how to do proofs”. But they do. Almost everyone could do the following:

Theorem x = 5 is a solution of 2x = 10.
Proof 2 · 5 = 10.

So in some sense, EVERYONE can do a proof. Things get stickier though if it is not clear what you allowed
to use. For example, the following theorem is often proved in elementary real analysis courses:

Theorem 1 > 0.
Just given that theorem out of context, it really isn’t clear that there is anything to prove. But, in a
analysis course a definition of 1 and 0 is given so that it is sensible to give a proof. In other words the basic
assumptions are made clear. One of our goals in the next few sections is to clarify what is to be considered
a “basic assumption”.

1.3 Set Theory

Most people are introduced to computer science by using a real computer of course, and for the most part
this requires a knowledge of only some basic algebra. But as one starts to learn more about about the theory
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of computer science, it becomes apparent that a kind of mathematics different from algebra must be used.
What is needed is a way of stating problems precisely and a way to deal with things that are more abstract
than basic algebra. Fortunately, there is a lot of mathematics available to do this. In fact, there are even
different choices that one can use for the foundations, although the framework that we will use is used by
almost everyone. That framework is classical set theory as was invented by Cantor in the 19th century.
We should emphasize that one reason people start with set theory as their foundations is that the idea of
a set seems pretty natural to most people, and so we can communicate with each other fairly well since we
seem to all have the same thing in mind. But what we take as an axiom, as opposed to what we construct, is
a matter of taste. For example, some objects that we define below, such as the ordered pair or the function,
could be taken as part of the axioms. There is no universal place where one can say the foundations should
begin. It seems to be the case though, that when most people read the definition of a set, they understand
it, in the sense that they talk to other people about sets and seem to be talking about the same thing.

Definition 1.3.1 A set is a collection of objects. The objects of a set are called the elements of that set.

Notation If we are given a set A such that x is in A iff x has property P , then we write

A = {x | x has property P},

or some obvious variation on the above. If x is an element of A then we may write x ∈ A.

Example 1.3.2 Thus,
P = {x | x is a prime number}

is the set of prime numbers. Similarly, if we want to only look at prime numbers of the form n2 + 1 we could
write

{x ∈ P | there exists a natural number n, such that x = n2 + 1.}
A more compact way of denoting this set is

{x ∈ P | (∃n ∈ N) ∋ (x = n2 + 1)}

or even simply
{x ∈ P | (∃n ∈ N)(x = n2 + 1)}.

Although these last two ways of defining the above set is more compact, if many things are written in this
manner it soon becomes hard to read them.
For finite sets we can just list the elements, so the set with the elements 1, 2 and 3 is {1, 2, 3}. On the other
hand to list the numbers from 1 to 100 we could write {1, 2, 3, ..., 99, 100}.

Notation Some sets of numbers are used so often that they are given their own names. We will use N for the
set of natural numbers {0, 1, 2, 3...}, Z for the set of integers {0, 1,−1, 2,−2, ...}, Z+ for the set of positive

integers, Q for the set of rational numbers {p
q
|p, q ∈ Z, q 6= 0}, and R for the set of real numbers. Another

common notation is that for any set A of numbers, if n is an integer then nA = {na|a ∈ A}. Thus, for
example, 2Z is the set of even numbers. Incidentally, we have not indicated how to construct these sets, and
we have no intention of doing so. One can start from scratch, and define the natural numbers, and then the
integers and the rationals etc. This is a very interesting process, and one can continue it in many different
directions, defining the real numbers, the p-adic numbers, the complex numbers and the quaternions. Some
of these objects have applications in computer science, but the closest we will get to the foundational aspects
of numbers systems is when we study the natural numbers below.

Definition 1.3.3 If A and B are sets and for every x ∈ A we have that x ∈ B then we say that A is a
subset of B and we write A ⊂ B.

5



Definition 1.3.4 We consider two sets to be equal if they have the same elements, i.e. if A ⊂ B and
B ⊂ A. If A and B are equal then we write A = B.

It might seem strange to define what it means for two things to be equal. A familiar example of a situation
where it is not so clear as to what is meant by equality is how to define equality between two objects that
have the same type in a programming language (i.e. the notion of equality for a given data structure). For
example, given two pointers, are they equal if they point at the same memory location, or are they equal
if they point at memory locations that have the same contents ? Thus in programming one needs to be
careful about this, but from now on since everything will be defined in terms of sets, we can use the above
definition.

Definition 1.3.5 The union of the sets A and B is the set

A ∪B = {x | x ∈ A or x ∈ B}.

More generally, for any set C we define

∪C = {x|(∃A ∈ C) ∋ (x ∈ A)}.

For example, if A = {1, 2, 6, {10, 100}, {0}, {{3.1415}}} then ∪A = {10, 100, 0, {3.1415}}. There are a number
of variants of this notation. For example, suppose we have a set of 10 sets C = {A1, ..., A10}. Then the union,⋃ C, can also be written as

10⋃

i=1

Ai.

Lemma 1.3.6 A ∪B = B ∪A.

Proof What needs to be shown here ? The assertion is that two sets are equal. Thus we need to show that
x ∈ A∪B ⇐⇒ x ∈ B∪A. This means that we need to do two little proofs: one that x ∈ A∪B → x ∈ B∪A
and one that x ∈ A ∪B ← x ∈ B ∪A.

→: If x ∈ A ∪B then we know that x is in either A or B. We want to show that x is in either B or A. But
from logic we know that these are equivalent statements, i.e. “p or q” is logically the same as “q or p”. So
we are done with this part of the proof.

←: This proof is very much like the one above.

Definition 1.3.7 The intersection of the sets A and B is the set

A ∩B = {x | x ∈ A and x ∈ B}.

Definition 1.3.8 The difference of the sets A and B is the set

A−B = {x | x ∈ A and x 6∈ B}.

Definition 1.3.9 By an ordered pair (a, b) we mean the set {{a}, {a, b}}.

This definition of ordered pair is due to Kuratowski. At this point, a good problem for the reader is to prove
theorem 1.3.10. Just as the cons operator is the foundation of Lisp like programming languages, the pair
is the foundation of most mathematics, and for essentially the same reasons. The following is the essential
reason for the importance of the ordered pair.

Theorem 1.3.10 If (a, b) = (c, d) then a = c and b = d.

6



(0, 0)

(1, 1)

(2, 3)

Figure 1.1: Here we see a few of the points from the lattice of integers in the plane

Proof See exercise 4 for a hint.

Notation It is possible to give many different definitions of an n-tuple (a1, a2, ..., an). For example, we could
define a triple (a, b, c) as (a, (b, c)) or ((a, b), c). Which definition we choose doesn’t really matter - the only
thing that is important is that the definition implies that if two n-tuples are equal, then their entries are
equal. From this point on we will assume that we are using one of these definitions of an n-tuple.

Definition 1.3.11 We define the Cartesian product of A and B as

A×B = {(a, b) | a ∈ A and b ∈ B}.

A convenient notation is to write A2 for A × A. In general, if we take the product of a set A with itself n
times, then we will sometimes write it as An.

Example 1.3.12 Probably the most familiar example of a Cartesian product is the plane, R2 = R × R.
This is partly since it was the “first” example, due to Decartes, who invented what we now call Cartesian
coordinates. The idea of this important breakthrough is to think of the plane as a product. Then the
position of a point can be encoded as a pair of numbers. A similar example is the lattice Z × Z, which is
a subset of R × R. This lattice is simply the set of points in the plane with integer coordinates (see figure
1.1). Can you picture Z3 ⊂ R3 ?

Example 1.3.13 For finite sets, one can “list” the elements in a Cartesian product. Thus {1, 2, 3}×{x, y}=
{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)}. Do you see how to list the elements of a Cartesian product using two
“nested loops” ?

Example 1.3.14 For any set A, A× ∅ = ∅ ×A = ∅.

Definition 1.3.15 A relation is a set of ordered pairs. By a relation on A we mean a subset of A×A.

Notation If R is an relation on A and (a, b) ∈ R then we sometimes write aRb.
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Figure 1.2: Here we consider two points in the plane equivalent if they have the same distance to the origin.
Thus every equivalence class is either a circle or the set containing the origin.

Definition 1.3.16 An equivalence relation on A is a relation ∼ on A satisfying
(1) a ∼ a for all a ∈ A,
(2) if a ∼ b then b ∼ a,
(3) a ∼ b and b ∼ c imply that a ∼ c.

The equivalence relation is an abstraction of equality. You have probably encountered equivalence relations
when you studied plane geometry: congruence and similarity of triangles are the two most common examples.
The point of the concept of congruence of two triangles is that even if two triangles are not equal as subsets
of the plane, for some purposes they can be considered as being “the same”. Later in this chapter we will
consider an equivalence relation on the states of a finite state machine. In that situation two states will be
considered equivalent if they react in the same way to the same input.

Example 1.3.17 A classic example of an equivalence relation is congruence modulo an integer. (Sometimes
this is taught to children in the case of n = 12 and called clock arithmetic, since it is like adding hours on
a clock, i.e. 4 hours after 11 o’clock is 3 o’clock.) Here, we fix an integer, n, and we consider two other
integers to be equivalent if when we divide n into each of them “as much as possible”, then they have the
same remainders. Thus, if n = 7 then 15 and 22 are consider to be equivalent. Also 7 is equivalent to 0,
14, 21,... , i.e. 7 is equivalent to all multiple of 7. 1 is equivalent to all multiples of 7, plus 1. Hence, 1 is
equivalent to -6. We will elaborate on this notion later, since it is very relevant to the study of finite state
machines.

Example 1.3.18 Suppose one declares two points in the plane to be equivalent if they have the same
distance to the origin. Then this is clearly an equivalence relation. If one fixes a point, the set of other
points in the plane that are equivalent to that point is the set of points lying on the circle containing the
point that is centered about the origin, unless of course the point is the origin, which is equivalent only to
itself. (See figure 1.2).

Definition 1.3.19 If ∼ is an equivalence relation on A and a ∈ A, then we define the equivalence class of
a, [a], as {b ∈ A|b ∼ a}. Notice that a ∼ b iff [a] = [b]. If it is not true that a ∼ b, then [a] ∩ [b] = ∅.

Definition 1.3.20 A partition of a set A is a collection of non-empty subsets of A, P , with the properties
(1) For all x ∈ A, there exists U ∈ P such that x ∈ U . (P “covers” A.)
(2) If U, V ∈ P then either U = V or U ∩ V = ∅.

The elements of P are sometimes referred to as blocks. Very often though the set has some other structure
and rather than “block” or “equivalence class” another term is used, such as residue class, coset or fiber.
The typical diagram that goes along with the definition of a partition can be seen in figure 1.3 . We draw
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lion
tiger

blue whale

sperm whale

cheetah

humpback whale

mouse

rat

capybara

beavergorilla

chimpanzee

naked mole rats

deer

moose

antelope

caribou

Figure 1.3: A simple classification of animals provides an example of an equivalence relation. Thus, one may
view each of the usual biological classifications such as kingdom, phylum, genus, species, etc. as equivalence
relations or partitions on the set of living things.

the set A as a blob, and break it up into compartments, each compartment corresponding to an element of
P .
There is a canonical correspondence between partitions of a set and equivalence relations on that set. Namely,
given an equivalence relation, one can define a partition as the set of equivalence classes. On the other hand,
given a partition of a set, one can define two elements of the set to be equivalent if they lie in the same block.

Definition 1.3.21 A function is a set of ordered pairs such that any two pairs with the same first member
also have the same second member.

The domain of a function, f , dom(f), is the set {a | ∃b s.t. (a, b) ∈ f}. The range of f , ran(f), is the set
{b | ∃a s.t. (a, b) ∈ f}. If the domain of f is A and the range of f is contained in b then we may write

f : A −→ B.

Several comments need to be made about this definition. First, a function is a special kind of relation.
Therefore we can use the relation notation afb to say that (a, b) ∈ f . This in not standard notation for
functions! It is more common in this case to write b = f(a) or f(a) = b. This brings us to our second
comment.
The reader is probably used to specifying a function with a formula, like y = x2, or f(x) = ecos(x), or with
the more modern notation x 7→ x2. Even though this notation doesn’t indicate what the domain and range
of a function is, it is usually clear from the context. You may remember that a common exercise in calculus
courses is to determine the domain and range of a function given by such a formula, assuming that the

domain and range lie in the real numbers. For example, what is the domain and range of y =
1

x2 − 1
?

In this book we usually will need to be more explicit about such things, but that does not mean that the
reader’s past experience with functions is not useful.
Finally, consider the difference between what is meant by a function in a programming language as opposed
to our definition. Our definition doesn’t make any reference to a method for computing the range values
from the domain values. In fact this may be what people find the most confusing about this sort of abstract
definition the first time they encounter it. The point is that the function exists independently of any method
or formula that might be used to compute it. Notice that is very much in the philosophy of modern
programming: functions should be given just with specs on what they will do, and the user need not know
anything about the specific implementation. Another way to think of this is that for a given function there
may be many programs that compute, and one should take care to distinguish between a function and a
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x

y

z a

b

c

d

Figure 1.4: A schematic depiction of a function. The blob on the left represents the domain, with elements
x, y and z, and the blob on the right contains the range. Thus, for example, f(x) = b. This function is not
injective or surjective.

x

y

z
a

b

c

d x

y

z
a

b

c

d
w

v
   

Figure 1.5: The function on the left is injective, but not surjective. The function on the right is surjective
but not injective.

program that computes this function. In fact, below in example 1.3.40 you will see that there are functions
which can’t be computed at all!

Example 1.3.22 The set {(1, 5), (2, 4), (3, 7), (6, 7)} is a function.

Example 1.3.23 The set {(1, 5), (2, 4), (3, 7), (3, 7)} is not a function. It is a relation however.

Example 1.3.24 Take f to be the set {(n, pn)|n ∈ Z+, pn is the nth prime number}. Many algorithms are
know for computing this function, although this is an active area of research. No “formula” is known for
this function.

Example 1.3.25 Take f to be the set {(x,
√

x)|x ∈ R, x ≥ 0}. This is the usual square root function.

Example 1.3.26 The empty set may be considered a function. This may look silly, but it actually allows
for certain things to work out very nicely, such as theorem 1.3.42.

Definition 1.3.27 A function (A, f, B) is 1-1 or injective if any two pairs of f with the same second
member have the same first member. f is onto B, or surjective , if the range of f is B.

Definition 1.3.28 A function f : A −→ B that is both injective and surjective is called a bijection and
we say that there is a bijection between A and B.

The idea of a bijection between two sets is that the elements of the sets can be matched up in a unique way.
This provides a more general way of comparing the sizes of things than counting them. For example, if you
are given two groups of people and you want to see if they were the same size, then you could count them.
But another way to check if they are the same size is to start pairing them off and see if you run out of
people in one of the groups before the other. If you run out of people in both groups at the same time, then
the groups are of the same size. This means that you have constructed a bijection between the two groups
(sets, really) of people. The advantage of this technique is that it avoids counting. For finite sets this is a
useful technique often used in the subject of combinatorics (see exercise ). But it has the nice feature that
it also provides a way to check if two infinite sets are the same size! A remarkable result of all this is that
one finds that some infinite objects are bigger than others. See example 1.3.40.

10



This point gets mapped to this point

Figure 1.6: A bijection from the circle minus a point to the real line.

Example 1.3.29 It turns out that most of the infinite sets that we meet are either the size of the integers
or the size of the real numbers. Consider the circle x2 + (y − 1)2 = 1 with the point (0, 2) removed. We
claim that this set has the same size as the real numbers. One can geometrically see a bijection between the
two sets in figure 1.6. We leave it as an exercise to the reader to write down the equations for this function
and prove that it is a bijection.

Example 1.3.30 Another surprising consequence of our notion of size is that the plane and the real line
have the same number of points! One way to see this is to construct a bijection from (0, 1)× (0, 1) −→ (0, 1),
i.e. from the unit square to the unit interval. To do this we use the decimal representation of the real
numbers: each real number in (0, 1) can be written in the form .d1d2d3... where d is an integer from 0 to 9.
We then define the bijection as

(.d1d2d3..., .c1c2c3...) −→ .d1c1d2c2d3c3....

There is something to worry about here - namely that some numbers have two decimal representations. For
example .19̄ = .2. We leave it to the reader as an exercise to provide the appropriate adjustments so that
the above map is a well-defined bijection.

Definition 1.3.31 A sequence is a function whose domain is N . If f : N −→ A then we say that f is a
sequence of elements of A.

Intuitively, one thinks of a sequence as an infinite list, because given a sequence f we can list the “elements”
of the sequence: f(0), f(1), f(2), .... We will be loose with the definition of sequence. For example, if the
domain of f is the positive integers, will will also consider it a sequence, or if the domain is something like
{1, 2, ...k} we will refer to f as a finite sequence.

Definition 1.3.32 If there is a bijection between A and B then we say that A and B have the same
cardinality. If there is a bijection between A and the set of natural numbers, then we say that A is
denumerable. If a set is finite or denumerable, it may also be referred to as countable.

Notice that we have not defined what is means for a set to be finite. There are at least two ways to do this.
One way is to declare a set to be infinite if there is a bijection from the set to a proper subset of that set.
This makes it easy to show, for example that the integers are infinite: just use x 7→ 2x. Then a set is said
to be finite if it is not infinite. This works out OK, but seems a bit indirect. Another way to define finite is
to say that there is a bijection between it and a subset of the natural numbers of the form {x|x ≤ n}, where
n is a fixed natural number. In any case, we will not go into these issues in any more detail.
Note that, in light of our definition of a sequence, a set is countable is it’s elements can all be put on
an infinite list. This tells us immediately, for example, that the set of programs from a fixed language is
countable, since they can all be listed (list then alphabetically).
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Definition 1.3.33 If f : A −→ B is a bijection then we write A ∼ B. If f : A −→ B is an injection and
there is no bijection between A and B then we write A < B.

Definition 1.3.34 The power set of a set A is the set

℘(A) = {B | B ⊂ A}.

Example 1.3.35 If A = {1, 2, 3} then ℘(A) = {{1}, {2}, {3}, {1, 2}, {1, 3}{2, 3}, {1, 2, 3}, ∅}.

Example 1.3.36 If A = ∅ then ℘(A) = {∅}.

The above example indicates that there is a natural injection from a set to it’s power set, i.e. x→ {x}. The
fact that no such surjection exists is the next theorem.

Theorem 1.3.37 For any set A, A < ℘(A).

Proof It would be a crime to deprive the reader of the opportunity to work on this problem. It is a tough
problem, but even if you don’t solve it, you will benefit from working on it. See the exercises if you want a
hint.

Definition 1.3.38 For any two sets A and B we define

AB = {f | f : B −→ A}.

Example 1.3.39 {0, 1}{1,2,3} has eight elements. We can see this by counting. If we are given a function
f : {1, 2, 3} −→ {1, 2}, then how many choices do we have for f(1) ? Two, since it can be 0 or 1. Likewise
for f(2) and f(3). Thus there are 2× 2× 2 = 8 different functions.

Example 1.3.40 Here we show that N < NN , illustrating a technique called Cantor diagnolization.
This method can also be used to show that N < R. We do the proof by contradiction. Suppose that
N ∼ NN . Thus there is a bijection F : N −→ NN . This means that we can “list” the elements of NN :
F (0), F (1), F (2)... (remember - F (k) is an function, not a number!) We now show that there is a function
not on the list. Define g : N −→ N by the equation

g(n) = F (n)(n) + 1.

Then g must be on the list, so it is F (k) for some k. But then F (k)(k) = g(k) = F (k)(k)+1, a contradiction.
Therefore no such bijection can exist, i.e. NN is not denumerable.

Food for thought It would seem that if one picked a programming language, then the set of programs that
one could write in that language would be denumerable. On the other hand, NN is not denumerable, so it
would appear to be the case that there are more functions around then there are programs. This is the first
evidence we have that there are things around which just can’t be computed.

Definition 1.3.41 If A ⊂ B then we define the characteristic function, χA of A (with respect to B) for each
x ∈ B by letting χA(x) = 1 if x ∈ B and χA(x) = 0 otherwise. Notice that χA is a function on B, not A,
i.e. χA : B −→ {0, 1}. .

In our above notation, The set of characteristics functions on a set A is just {0, 1}A.

Theorem 1.3.42 For any set A, {0, 1}A ∼ ℘(A).

12



Proof We need to find a function between these two sets and then prove that it is a 1-1 and onto function.
So, give a characteristic function, f , what is a natural way to associate to it a subset of A ? Since f is a
characteristic function, there exists a set A so that f = χA. The idea is then to map f to A. In other words
define F : {0, 1}A −→ ℘(A) as F (f) = F (χA) = A.
Several things have to be done now. First of all how do we know that this function is well defined ? Maybe
for a given characteristic function there are two unequal sets A and B and χA = χB. But it is easy to see
that this can’t happen (why ?). So now we know we have a well defined mapping.

Next, we show that F is onto. Thus, for any U ∈ ℘(A) we need to produce an f ∈ {0, 1}A such that
F (f) = U. Here we can just let U = {x ∈ A|f(x) = 1}.
To show that F is 1-1 suppose that F (f) = F (g). Say f = χA and g = χB. Thus A = B. But then certainly
χA = χB, i.e. f = g.

Definition 1.3.43 A partial order on A is a relation ≤ on A satisfying the following: for every a, b, c ∈ A
(1) a ≤ a,
(2) a ≤ b and b ≤ c implies that a ≤ c.
(3) a ≤ b and b ≤ a implies that a = b.

Example 1.3.44 The usual order on the set of real numbers is an example of a partial order that everyone
is familiar with. To prove that (1), (2) and (3) hold requires that one knows how the real numbers are
defined. We will just take them as given, so in this case we can’t “prove” that the usual order is a total
order.

Example 1.3.45 A natural partial order that we have already encountered is the subset partial order, ⊂
known also as inclusion. The reader should check (1), (2) and (3) do in fact hold.

Definition 1.3.46 Given a set A, a, b ∈ and a partial order ≤ on A, we say that a and b are compatible
if either a ≤ b or b ≤ a. A total order on a set is a partial order on that set in which any two elements of
the set are compatible.

Example 1.3.47 In example (1.3.44) the order is total, but in example (1.3.45) is is not. It is possible to
draw a picture of this - see figure 1.7. Notice that there is one containment that we have not included in this
diagram, the fact that {1} ⊂ {1, 3}, since it was not typographically feasible using the containment sign. It
is clear from this example that partially ordered sets are things that somehow can’t be arranged in a linear
fashion. For this reason total orders are also sometime called linear orderings.

Example 1.3.48 The Sharkovsy ordering of N is:

3 < 5 < 7 < 9 < · · · < 3 ·2 < 5 ·2 < 7 ·2 < 9 ·2 < · · · < 3 ·22 < 5 ·22 < 7 ·22 < 9 ·22 < · · · < 23 < 22 < 2 < 1.

Notice that in this ordering of the natural numbers, there is a largest and a smallest element. This ordering
has remarkable applications to theory of dynamical systems.

Example 1.3.49 The dictionary ordering on Z × Z, a total order, is defined as follows. (a, b) < (c, d) if
a < c or a = c and b < d. This type of order can actually be defined on any number of products of any
totally ordered sets.

We finish this section with a discussion of the pigeon hole principle. The pigeon hole principle is probably
the single most important elementary tool needed for the study of finite state automata. The idea is that
if there are n + 1 pigeons, and n pigeon holes for them to sit in, then if all the pigeon go into the holes it
then it must be the case that two pigeons occupy the same hole. It seems obvious, and it is. Nevertheless it
turns out to be the crucial fact in proving many non-trivial things about finite state automata.
The formal mathematical statement of the pigeon hole principle is that if f : A −→ B and A and B are
finite sets A has more elements then B, then f is not injective. How does one prove this ? We leave this to
the curious reader, who wants to investigate the foundations some more.
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Figure 1.7: Containment is a partial ordering on the power set of a set.

Exercises

1 Show that A ∩B = B ∩A.

2 Show that (A ∪B) ∪ C = A ∪ (B ∪ C).

3 Show that (A ∩B) ∩ C = A ∩ (B ∩ C).

4 Show that (a, b) = (c, d) implies that a = c and b = d. (Hint - consider separately the cases of a = b and
a 6= b.)

5 Show that for any sets A, B and C that
(i) A ∼ A,
(ii) A ∼ B implies B ∼ A, and
(iii) A ∼ B and B ∼ C implies that A ∼ C.

(Given that (i), (ii) and (iii) are true it is tempting to say that ∼ is an equivalence relation on the set of
sets. But exercise 21 shows why this can cause technical difficulties.)

6 Show the following:
(i) Z ∼ N
(ii) nZ ∼ Z for any integer n.

7 Show that N ×N ∼ N.

8 Show that Q ∼ N.

9 Show that A ∼ C and B ∼ D implies that A×B ∼ C ×D.

10 Show that A× (B ∪ C) = (A×B) ∪ (A× C) and that A× (B ∩ C) = (A×B) ∩ (A× C)

11 Show that A(BC) ∼ AB×C . Do you know any computer languages where this bijection occurs ?

14



12 How many elements are in ∅∅ ?

13 Show that
⋃{Nn|n ∈ Z+} ∼ N . (This is the essence of what is called Godel numbering.)

14 Show that a countable union of countable sets is countable.

15 Show that if A has n elements and B has m elements, n, m ∈ Z+, then AB has nm elements. What
does this have to do with exercise 12 ?

16 Use exercise 15 to show that if A has n ∈ N elements, then P(A) has 2n elements.

17 Recall that we define 0! = 1 and for n > 0 we define n! = n · (n − 1) · (n − 2) · · · 2 · 1. We define
Perm(A) = {f ∈ AA|f is a bijection}. Show that if A has n elements then Perm(A) has n! elements.

18 Define the relation div = {(a, b)|a, b ∈ N, a is a divisor of b}. Show that div is a partial order on N .

19 We define intervals of real numbers in the usual way: [a, b] = {x ∈ R|a ≤ x ≤ b}, (a, b) = {x ∈ R|a <
x < b}, etc. Show that if a < b and c < d that (a, b) ∼ (c, d) and that [a, b] ∼ [c, d].

20 Show that [0, 1) ∼ [0, 1].

21 Russel’s Paradox Consider the set U = {A|A 6∈ A}. Show that U ∈ U iff U 6∈ U .

Does this paradox mean that set theory is flawed ? The answer is “yes”, in the sense that if you are not
careful you will find yourself in trouble. For example, you may be able to generate contradictions if you
don’t follow the rules of your set theory. Notice that we didn’t state what the rules were and we ran into a
paradox! This is what happened after Cantor introduced set theory: he didn’t have any restrictions on what
could be done with sets and it led to the above famous paradox, discover by Bertrand Russell. As a result
of this paradox, people started to look very closely at the foundations of mathematics, and thereafter logic
and set theory grew at a much more rapid pace than it had previously. Mathematicians came up with ways
to avoid the paradoxes in a way that preserved the essence of Cantor’s original set theory. In the mean time,
most of the mathematicians who were not working on the foundations, but on subjects like Topology and
Differential Equations ignored the paradoxes, and nothing bad happened. We will be able to do the same
thing, i.e. we may ignore the technical difficulties that can arise in set theory. The reason for this can be
well expressed by the story of the patient who complains to his doctor of some pain:
Patient : “My hand hurts when I play the piano. What should I do ?”
Doctor: “Don’t play the piano.”
In other words, it will be OK for us to just use set theory if we just avoid doing certain things, like forming
{A|A 6∈ A} ! or forming sets like “the set that contains all sets”. This will definitely cause some trouble.
Luckily, nothing we are interested in doing requires anything peculiar enough to cause this kind of trouble.

22 Show that for any set A, A < ℘(A). (Hint-consider the subset of A {a ∈ A|a 6∈ f(a)}. Keep Russel’s
paradox in mind.)

23 Let A be a set of open intervals in the real line with the property that no two of them intersect. Show
that A is countable. Generalize to higher dimensions.

24 One way to define when a set is infinite is if there is a bijection between the set and a proper subset of
the set. Using this definition show that N, Q and R are infinite.

25 Using the definition of infinite from exercise 24, show that if a set contains an infinite subset, then it is
infinite.

26 Again, using the definition of infinite from exercise 24, show that if a < b then (a, b) and [a, b] are
infinite.
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27 Show that that the Sharkovsky ordering of N is a total ordering.

28 Find an explicit way to well-order Q. Can you generalize this result ?

29 A partition of a positive integer is a decomposition of that integer into a sum of positive integers. For
example, 5 + 5, and 2 + 6 + 1 + 1 are both partitions of 10. Here order doesn’t count, so we consider 1 + 2
and 2 + 1 as the same partition of 3. The numbers that appear in a partitions are called the parts of the
partition. Thus the partition of 12, 3 + 2 + 2 + 5, has four parts: 3, 2, 2 and 5. Show that the number of
ways to partition n into partitions with m parts is equal to the number of partitions of n where the largest
part in any of the partitions is m. (Hint - Find a geometric way to represent a partition.) Can you re-phrase
this exercise for sets ?

30 Cantor-Bernstein Theorem Show that if there is an injection from A into B, and an injection from
B into A, that there is a bijection between A and B.

31 If P is a partition of A then there is a natural map π : A −→ P defined by a 7→ [a]. Show that π is
surjective.

32 The First Isomorphism Theorem for Sets Given a function between two sets f : A −→ B, there is
a natural partition Pf with corresponding equivalence relation ∼ induced on A by defining [a] = f−1(f(a)).
Prove that
(i) Pf is a partition of A,
(ii) For all a, b ∈ A, a ∼ b iff f(a) = f(b),
(ii) there is a bijection φ : Pf −→ ran(f) with the property that f = φπ.

This last property is sometimes phrased as saying that the following diagram “commutes”:

A B
f

P
f

π
ϕ

This theorem occur in several different forms, most notably in group theory.

33 Generalize example 1.3.29 to 2-dimensions by considering a sphere with its north pole deleted sitting on
a plane. Write down the equations for the map and prove that it is a bijection. This famous map is called
the stereographic projection. It was once used by map makers, but is very useful in mathematics (particularly
complex analysis) due to it’s numerous special properties. For example, it maps circles on the sphere to
circles or lines in the plane.

1.4 The Natural numbers and Induction

Now that the reader has had a brief (and very intense) introduction to set theory, we now look closely and
the set of natural numbers and the method of proof called induction. What is funny about induction is that
from studying the natural numbers one discovers a new way to do proofs. You may then wonder, what really
comes first - the set theory or the logic. Again, we won’t address these issues, since they would bring us too
far astray.
We introduce the reader to induction with two examples, and then give a formal statement. The first
example seems simple, and on first meeting induction through it, the reader may think “how can such a
simple idea be useful ?”. We hope that the second example, which is a more subtle application of induction,
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1 2 3 4 5 60

Figure 1.8: Induction via light bulbs

0 1 2 3 4 5 6

Figure 1.9: If bulb 3 is on, then so it 4, 5, etc.

answers this question. Induction is not merely useful - it is one of the most powerful techniques available
to mathematicians and computers scientists, not to mention one of the most commonly used. Not only can
induction be used to prove things, but it usually gives a constructive method for doing so. As a result,
induction is closely related to recursion, a crucial concept (to say the least!) in computer science. Our first
example will illustrate the idea of induction, and the second and third are applications.
Suppose that there is an infinite line of light bulbs, which we can think of as going from left to right, and
labeled with 0,1,2,.... The light bulbs are all in the same circuit, and are wired to obey the following rule: If
a given light bulb is lit, then the light bulb to the right of it will also be lit.
Given this, what can be concluded if one is told that a given light bulb is lit ? Clearly, all of the bulbs to
the right of that bulb will also be lit.
In particular, what will happen if the first light bulb in the line is turned on ? It seems to be an obvious
conclusion that they must all be on. If the you understands this, then you understand one form induction.
The next step is to learn how to apply it.
Our second example is a game sometimes called “the towers of Hanoi”. The game consists of three spindles,
A, B and C, and a stack of n disks, which uniformly diminish in size from the first to the last disk. The disks
have holes in them and in the start of the game are stacked on spindle A, with the largest on the bottom to
the smallest on the top, as in figure. You are allowed to move a disk and put it on a second spindle provided
that there is no smaller disk already there. The goal of the game is to move all of the disks to spindle B.
If one plays this game for a little while, it becomes clear that it is pretty tricky. But if it is approached
systematically, there is an elegant solution that is nice example of induction.

0 1 2 3 4 5 6

Figure 1.10: If bulb 0 is lit, then they all are!
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A B C

Figure 1.11: The Towers of Hanoi

First, try solving the game with just two disks. This is easily accomplished through the following moves:
disk 1 first goes to C, then disk 2 goes to B, then disk 1 goes to B. Notice that there is nothing special about
spindle B here - we could have moved all of the disks to spindle C in the same manner.
Now consider the game with three disks. We come to this problem with the solution of the first, and we
use it as follows. We know that we are free to move the top two disks around however we like, keeping the
smaller one above larger one. So use this to move them to spindle C. Then move the remaining third disk
to spindle B. Finally, apply our method of moving the two disks again to the disks on C, moving them to B.
This wins the game for us.
The game with three disks then allows us to solve the game with four disks. (Do you see how ?) At this
point, if you see the general pattern you probably will say “ahh! you can then always solve the game for
any number of disks!”. This means that the induction is so clear to you, that you don’t even realize that it
is there! Let’s look closely at the logic of the game.
Suppose that Pn is the statement “the game with n disks can be solved”. We saw that P2 was a true
statement. And after seeing that Pn ⇒ Pn+1 we immediately concluded that Pn was always true. Well,
this certainly is intuitive. And you may even see how this is really the same as the light bulb example. So
we now ask, what is it that allows us to conclude that Pn is true for all n ? Or, what is it that allows us
to conclude that all of the lightbulbs are on if the first one is on ? Well, if one wants a formal proof, the
right way to start is to say “It’s so obvious, how could it be otherwise ?”. This is key to illuminating what
is going on here. Assume that for some positive integer, m, Pm was false. Then it must be that Pm−1 is
also false, or else we would have a contradiction. You may be tempted to try the same reasoning on Pm−1,
concluding that Pm−2 is false. Where does it end ? If there was a smallest value k for which Pk was false,
then we would know that Pk−1 was true. But we know that if Pk−1 is true that then Pk must be true, a
contradiction. To sum up, if one of the Pn’s was false, then we can make a contradiction by looking at the
smallest one that is false, so they must all be true.
This is all perfectly correct, and the fact that we are using that is so crucial is the following:

Every non-empty subset of N has a smallest member.

The above fact is known as the well-ordering property of N, and we will take this as an axiom. 1 To sum up,
the principle of induction is as follows: if one know that P1 is true and that Pn ⇒ Pn+1 for every n, then
Pn is true for every n.
Incidentally, you might find it useful to ask yourself if there are any sets besides N for which the above
is true. For example, it is certainly not true for the integers. It turns out that any set can be ordered in
such a way that the above property holds, if you have the right axioms of set theory. An ordering with this
property is called a well-ordering. If you try to imagine a well-ordering of R, you will see that this is a very
strange business!

1There are many different ways to approach this - one can even start with a set of axioms for the real numbers and define

N and then prove the well-ordering property.
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Example 1.4.1 Show that 1 + 2 + · · ·+ n =
n(n− 1)

2
.

Proof Let the above statement be Pn. Clearly it is true if n = 1. If we know Pn is true then adding n + 1
to both sides of the equality gives

1 + 2 + · · ·+ n + n + 1 =
n(n− 1)

2
+ n + 1,

but some algebra shows that this is just Pn+1. Therefore, Pn ⇒ Pn+1, so by induction the formula is always
true for all n = 1, 2, ....

This is a classic example, and probably the single most used example in teaching induction. There is one
troubling thing about this though, namely where does the formula come from ? This is actually the hard
part! In this case there is a geometric way to “guess” the above formula (see exercise 4). On one hand,
mathematical induction provides a way of proving statements that you can guess, so it doesn’t provide
anything new except in the verification of a statement. But on the other hand it is closely related to
recursion, and can be used in a constructive fashion to solve a problem.
If we stopped at this point, you might have gotten the impression from the above example that induction is
a trick for proving that certain algebraic formulas or identities are true. Induction is a very useful tool for
proving such things, but it can handle much more general things, such as the following example.

Example 1.4.2 Recall that an integer > 1 is said to be prime if its only divisors are 1 and itself. Show
that every integer > 1 is a product of prime numbers.

Proof The proof is by induction. Let Pn be the statement “every integer from 2 and n is a product of
primes”. The base case, P2, “2 is a product of primes”, is certainly true. We want to show that if we assume
that Pn is true that we can prove Pn+1, so we assume that every integer from 2 and n is a product of primes.
Pn+1 is the statement “every integer from 2 to n + 1 is a product of primes”. This means that we need to
show that n + 1 is a product of primes. If n + 1 is a prime number then certainly this is true. Otherwise,
n + 1 = ab where a and b are integers with 2 ≤ a, b ≤ n. But now we can use Pn to conclude that a and b
are products of primes. But then clearly n + 1 is a product of primes since n + 1 = ab.

Exercises

1 Prove that
1

1 · 2 +
1

2 · 3 +
1

3 · 4 · · ·+
1

n(n + 1)
= 1− 1

n + 1
.

Can you give a proof without induction ?

2 Write a computer program that wins the towers of Hanoi game. Do you see the relationship between
induction and recursion ?

3 How many moves does it take to win the towers of Hanoi game if it has n disks ?

4 Find a formula for the sum 1 + 3 + 5 + · · · + 2n− 1, and prove it by induction. There are at least two
ways to do this, one using a geometric representation of the sum as is indicated below.

5 Find a geometric representation, like that given in exercise 4, for the formula in example 1.4.1.

6 Use induction to prove the formula for the sum of a geometric series: 1+x+x2+x3+ · · ·+xn =
1− xn+1

1− x
.

It is also possible to prove this directly, using algebra. For what x is this formula true (e.g. does it work
when x is a real number, a complex number, a matrix, an integer mod k, etc.) ?
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7 Use induction to show that 12 + 22 + · · ·+n2 =
n(n + 1)(2n + 1)

6
. What about for sums of higher powers

?

8 Notice that
13 = (1)2,

13 + 23 = (1 + 2)2,

13 + 23 + 33 = (1 + 2 + 3)2.

Can you formulate a general statement and prove it with induction ?

9 Recall that we define 0! = 1 and for n > 0 we define n! = n · (n− 1) · (n− 2) · · · 2 · 1. Notice that

1! = 1!,
1! · 3! = 3!,

1! · 3! · 5! = 6!,
1! · 3! · 5! · 7! = 10!.

Can you formulate a general statement and prove it with induction ?

10 We define Cn,k =
n!

k!(n− k)!
. Use induction to show that Cn,0 + Cn,1 + · · ·+ Cn,n = 2n.

11 If one had n objects, then the number of way of picking k objects from the n objects is in fact Cn,k.
Use this fact to give another solution to exercise 10.

12 In section 1.3, exercises 15, 16 and 17, did you use induction in your proofs ? If not, redo them using
induction.

13 For a fixed n = 1, 2, ... we define an n-vector x = (x1, ..., xn) as an ordered n-tuple of real numbers. The
norm of ||x|| is the number

√
x2

1 + · · ·+ x2
n. We may add and subtract vectors componentwise. The triangle

inequality states that for any three n-vectors x, y and z

||x− z|| ≤ ||x− y||+ ||y − z||.

Using this and induction prove the generalized triangle inequality: If x1, ...,xm are n-vectors, then

||x1 − xm|| ≤ ||x1 − x2||+ ||x2 − x3||+ · · ·+ ||xm−1 − xm||.

14 (This exercise requires some knowledge of linear algebra) Show that the determinant of an upper trian-
gular matrix is the product of its diagnol entries.
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1.5 Foundations of Language Theory

We now begin to lay the mathematical foundations of languages that we will use throughout the rest of this
book. Our viewpoint a language is a set of strings. In turn, a string is a finite sequence of letters from some
alphabet. These concepts are defined rigorously as follows.

Definition 1.5.1 An alphabet is any finite set. We will usually use the symbol Σ to represent an alphabet
and write Σ = {a1, . . . , ak}. The ai are called the symbols of the alphabet.

Definition 1.5.2 A string (over Σ) is a function u : {1, ..., n} −→ Σ or the function ǫ : ∅ −→ Σ. The latter
is called the empty string or null string and is sometimes denoted by λ, Λ, e or 1. If a string is non-empty
then we may write it by listing the elements of it’s range in order.

Example 1.5.3 Σ = {a, b}, u : {1, 2, 3} −→ Σ by u(1) = a, u(2) = b and u(3) = a. We write this string as
aba.

The set of all strings over Σ is denoted as Σ∗. Thus {a}∗ = {an|n = 0, 1, ...}, where we have introduced the
convention that a0 = ǫ. Observe that Σ∗ is a countable set.

It is a useful convention to use letters from the beginning of the alphabet to represent single letters and
letters from the end of the alphabet to represent strings.

Warning Although letters like a and b are used to represent specific elements of an alphabet, they may also
be used to represent variable elements of an alphabet, i.e. one may encounter a statement like ‘Suppose that
Σ = {0, 1} and let a ∈ Σ’.

A language (over Σ) is a subset of Σ∗. Concatenation is a binary operation · on the strings over a given
alphabet Σ. If u : {1, ..., m} −→ Σ and v : {1, ..., n} −→ Σ then we define u · v : {1, ..., m + n} −→ Σ as
u(1)...u(m)v(1)...v(n) or

(u · v)(i) =

{
u(i) for 1 ≤ i ≤ m
v(i−m) for m + 1 ≤ i ≤ m + n.

If u is the empty string then we define u · v = v and similarly if v is the empty string. Generally the dot ·
will not be written between letters.

Remarks Concatenation is not commutative, e.g. (ab)(bb) 6= (bb)(ab). But it is true that for any string u,
unum = umun. Concatenation is associative, i.e. u(vw) = (uv)w.

u is a prefix of v if there exists y such that v = uy. u is a suffix of v if there exists x such that v = xu.
u is a substring of v if there exists x and y such that v = xuy. We say that u is a proper prefix (suffix,
substring) of v iff u is a prefix (suffix, substring) of v and u 6= v.
Each of the above relations are partial orders on Σ∗. Given that Σ is a totally ordered set, e.g. Σ =
{a1, ..., an}, then there is a natural extension to a total order on Σ∗, called the lexicographic ordering. We
define u ≤ v if u is a prefix of v or there exists x, y, z ∈ Σ∗ and ai, aj ∈ Σ such that in the order of Σ we
have that ai < aj and u = xaiy and v = xajz.

Exercises

1 Given a string w, its reversal wR is defined inductively as follows: ǫR = ǫ, (ua)R = auR, where a ∈ Σ.
Also, recall that u0 = ǫ, and un+1 = unu. Prove that (wn)R = (wR)n.

2 Suppose that a and b are two different members of an alphabet. Prove that ab 6= ba.

3 Suppose that u and v are non-empty strings over an alphabet. Prove that if uv = vu then there is a
string w and natural numbers m, n such that u = wm, v = wn.
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4 Prove that for any alphabet Σ, Σ∗ is a countable set.

5 Lurking behind the notions of alphabet and language is the idea of a semi-group, i.e. a set equipped with
an associative law of composition that has an identity element. Σ∗ is the free semi-group over Σ. Is a given
language over Σ necessarily a semi-group ?

1.6 Operations on Languages

A way of building more complex languages from simpler ones is to combine them using various operations.
The union and intersection operations we have already seen.

Given some alphabet Σ, for any two languages S, T over Σ, the difference S − T of S and T is the language

S − T = {w ∈ Σ∗ | w ∈ S and w /∈ T }.

The difference is also called the relative complement . A special case of the difference is obtained when
S = Σ∗, in which case we define the complement L of a language L as

L = {w ∈ Σ∗ | w /∈ L}.

The above operations do not make use the structure of strings. T he following operations make use of
concatenation.

Definition 1.6.1 Given an alphabet Σ, for any two languages S, T over Σ, the concatenation ST of S and
T is the language

ST = {w ∈ Σ∗ | ∃u ∈ S, ∃v ∈ T, w = uv}.
For any language L, we define Ln as follows:

L0 = {ǫ},

Ln+1 = LnL.

Example 1.6.2 For example, if S = {a, b, ab}, T = {ba, b, ab} and U = {a, a2, a3} then

S2 = {aa, ab, aab, ba, bb, bab, aba, abb, abab},

T 2 = {baba, bab, baab, bba, bb, abba, abb, abab},
U2 = {a2, a3, a4, a5, a6},

ST = {aba, ab, aab, bba, bab, bb, abba, abb}.
Notice that even though S, T and U have the same number of elements, their squares all have different
numbers of elements. See the exercises for more on this funny phenomenon.

Multiplication of languages has lots of nice properties, such as L∅ = ∅, and L{ǫ} = L.

In general, ST 6= TS.

So far, all of the operations that we have introduced preserve the finiteness of languages. This is not the
case for the next two operations.
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Definition 1.6.3 Given an alphabet Σ, for any language L over Σ, the Kleene ∗-closure L∗ of L is the
infinite union

L∗ = L0 ∪ L1 ∪ L2 ∪ . . . ∪ Ln ∪ . . . .

The Kleene +-closure L+ of L is the infinite union

L+ = L1 ∪ L2 ∪ . . . ∪ Ln ∪ . . . .

Since L1 = L, both L∗ and L+ contain L. Also, notice that since L0 = {ǫ}, the language L∗ always contains
ǫ, and we have

L∗ = L+ ∪ {ǫ}.
However, if ǫ /∈ L, then ǫ /∈ L+.

Remark Σ∗ has already been defined when Σ is an alphabet. Modulo some set theory, the Kleene *-closure
of Σ coincides with this previous definition if we view Σ as a language over itself. Therefore the Kleene
*-closure is an extension of our original * operation.

Exercises

1 Prove the following identities:

(i) L∅ = ∅,
(ii) ∅L = ∅,
(iii) L{ǫ} = L,

(iv) {ǫ}L = L,

(v) (S ∪ {ǫ})T = ST ∪ T,

(vi) S(T ∪ {ǫ}) = ST ∪ S,

(vii) LnL = LLn.

(viii) ∅∗ = {ǫ},
(ix) L+ = L∗L,

(x) L∗∗ = L∗,

(xi) L∗L∗ = L∗.

2 Given a language L over Σ, we define the reverse of L as LR = {wR | w ∈ L}. For each of the following,
either prove equality or provide a counter example. Which of the false equalities can be made true by
replacing = with a containment sign ?

(i)(S ∪ T )R = SR ∪ T R;

(ii)(ST )R = T RSR;

(iii)(L∗)R = (LR)∗.

(iv)(S ∪ T )∗ = S∗ ∪ T ∗.

(v)(ST )∗ = T ∗S∗

3 Prove that if LL = L then L contains the empty string or L = ∅.

4 Suppose that L1 and T are languages over a two letter alphabet. If ST = TS is S = T ?

5 Does A∗ = B∗ imply that A = B ? Find a counter example or provide a proof.
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Figure 1.12: A dfa

6 Let Lk = {a, a2, ..., ak}. How many elements are in L2
k ?

7 If L is a finite language with k elements, show that L2 has at most k2 elements. For each positive integer
k find a language with k elements whose square has k2 elements. Can this be done with a language over a
one letter alphabet ?

8 If L is a finite language with k elements, show that L2 has at least k elements. How close can you come
to this lower bound with an example ?

1.7 Deterministic Finite Automata

We are now ready to define the basic type of machine, the Deterministic Finite Automaton, or DFA. These
objects will take a string and either ‘accept’ or ‘reject’ it, and thus define a language. Our task is to rigorously
define these objects and then explain what it means for one of them to accept a language.

Example 1.7.1 Let Σ = {a, b}, S = {ab, abab, ababab, ...}. A machine to accept S is

A few comments are necessary. First of all, the small arrow on the left of the diagram is pointing to the
start state, 1, of the machine. This is where we ‘input’ strings. The circle on the far right with the smaller
circle and the 4 in it is a final state, which is where we need to finish if a string is to be accepted. Our
convention is that we always point a little arrow to the start state and put little circles in the final states
(there may be more than one).

How does this machine process strings ? Take abb for example. We start at state 1 and examine the
leftmost letter of the string first. This is an a so we move from state 1 to 2. Then we consider the second
leftmost letter, b, which according to the machine, moves us from state 2 to state 4. Finally, we read a b,
which moves us from state 4 to state 3. State 3 is not a final state, so the string is rejected. If our string
had been ab, we would have finished in state 4, and so the string would be accepted.

What roles is played by state 3 ? If a string has been partially read into the machine and a sequence of
ab’s has been encountered then we don’t know yet if we want to keep the string, until we get to the end or
we get an aa or bb. So we bounce back and forth between states 2 and 4. But if, for example, we encounter
the letters bb in our string, then we know that we don’t want to accept it. Then we go to a state that is not
final, 3, and stay there. State 3 is an example of a dead state, i.e. a non-final state where all of the outgoing
arrows point back at the state.

Example 1.7.2 Let T = S ∪ {ǫ}. A machine that accepts T is

The point here is that if we allow the empty string we can simplify the machine. The interpretation of
processing the empty string is simply that we start at state 1 and move to state 1. Thus, if the start state
is also a final state, then empty string is accepted by the machine.
The formal definition of a DFA should now more accessible to the reader.
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Definition 1.7.3 A deterministic finite automata is a 5-tuple

(Q, Σ, δ, q0, F )

where Q and Σ are finite sets, called the states and the alphabet, δ : Q×Σ −→ Q is the transition function,
q0 ∈ Q is a distinguished state called the start state and F is a subset of the set of states, known as the set
of final states.

Notice that our definition doesn’t say anything about how to compute with a DFA. To do that we have to
make more definitions. The function δ obviously corresponds to the labeled arrows in the examples we have
seen: given that we are in a state p, if we receive a letter a then we move to δ(p, a). But this doesn’t tell us
what to do with an element of Σ∗. We need to extend δ to a function δ∗ where

δ∗ : Q× Σ∗ −→ Q.

This is done inductively by letting δ∗(q, ǫ) = q and δ∗(q, ua) = δ(δ∗(q, u), a) where a ∈ Σ and u ∈ Σ∗. We
then have

Definition 1.7.4 If M = (Q, Σ, δ, q0, F ) is a DFA then we define the language accepted by M to be

L(M) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F}.

A language L is said to be regular if there is a DFA M such that L = L(M). Sometimes we say that M
recognizes L.

The fact that not every language over a given alphabet is regular can be proved by a cardinality argument.
The number of possible dfas that can be constructed over a given alphabet is a countable set, but the total
number of languages over any alphabet is uncountable. So in fact most languages are not regular!. The
class of regular languages is the smallest class of languages in a hierarchy of classes that we will consider.
To explicitly give an example of a language that is not regular though, we will need something called the
pumping lemma. But first we will give more examples of DFAs and their languages.

Example 1.7.5 If L = {w ∈ {a, b}∗ | w contains an odd number of a′s} then a DFA specifying L is

Example 1.7.6 If L = {w ∈ {a, b}∗ | w ends in the string abb} then a DFA specifying L is

A useful concept is the length of a string w, denoted |w|, which is defined to be the total number of letters
in a string if the string is non-empty, and 0 is the string is empty.
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Example 1.7.7 If L = {w ∈ {a, b}∗ | |w| = 3 } then a DFA specifying L is

Example 1.7.8 If L = {w ∈ {a, b}∗ | w = anbm, n, m > 0 } then a DFA specifying L is

Example 1.7.9 If L = {w ∈ {a}∗ | |w| = a4k+1, k ≥ 0 } then a DFA specifying L is

Exercises

1 Write a computer program taking as input a DFA D = (Q, Σ, δ, q0, F ) and a string w, and returning the
sequence of states traversed along the path specified by w (from the start state). The program should also
indicate whether or not the string is accepted.

2 Show that if L is regular then LR is regular.

3 Construct DFA’s for the following languages:
(a) {w | w ∈ {a, b}∗, w has neither aa nor bb as a substring}.
(b) {w | w ∈ {a, b}∗, w has an odd number of b’s and an even number of a’s}.

4 Let L be a regular language over some alphabet Σ.

(a) Is the language L1 consisting of all strings in L of length ≤ 200 a regular language?

(b) Is the language L2 consisting of all strings in L of length > 200 a regular language?

Justify your answer in both cases.

a; b a; b a; b a; ba; b
Figure 1.16:
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5 Classify all regular languages on a one letter alphabet.

6 Suppose that L is a language over and one letter alphabet and L = L∗. Show that L is regular.

7 How many distinct DFAs are there on a given set of n states over an alphabet with k letters ?

8 Show that every finite language is regular.

9 Suppose that a language L is finite. What is the minimum number of states that a machine accepting L
need have ?

10 Let Σ be an alphabet, and let L1, L2, L be languages over Σ. Prove or disprove the following statements
(if false, then provide a counter example).

(i) If L1 ∪ L2 is a regular language, then either L1 or L2 is regular.

(ii) If L1L2 is a regular language, then either L1 or L2 is regular.

(iii) If L∗ is a regular language, then L is regular.

11 Define a language to be one-state if there is a DFA accepting it that has only one final state. Show that
every regular language is a finite union of one-state languages. Give an example of a language that is not
one-state and prove that it is not.

12 A DFA is said to be connected if given q ∈ Q there is a string w ∈ Σ∗ such that δ∗(q0, w) = q. Show
that if a language is regular, then there is a connected DFA accepting that language.

13 What effect does the changing of the start state of a given machine have on the language accepted by
that machine ?
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14 What effect does the changing of the final states of a given machine have on the language accepted by
that machine ?

15 In our definition of a DFA we had that δ : Σ×Q −→ Q. We could have ‘curried’ our map, and instead
defined δ : Σ −→ QQ, i.e. every letter a gives rise to a map fa : Q −→ Q where fa(q) = δ(a, q) (see the
exercises of 1.2). We may then define δ∗ : Σ∗ −→ QQ. δ∗ is an example of a monoid action.
For a given machine it may be the case that δ∗(Σ∗) ⊂ Perm(Q), where Perm(Q) is the set of bijections
from Q to itself. Show that if this is the case and the machine is connected that for each letter a of Σ and
n ∈ N there is a string accepted by the machine which contains a power of a greater than n.

16 For any language L over Σ, define the prefix closure of L as

Pre(L) = {u ∈ Σ∗ |∃v ∈ Σ∗such that uv ∈ L}.

Is it true that L being regular implies Pre(L) is regular ? What about the converse ?

17 Show that {anbm|n, m ∈ N are relatively prime} is not regular.

1.8 The Cross Product Construction

Now that we have defined what it means for a language to be regular over an alphabet, it is natural to ask
what sort of closure properties this collection has under some of the defined properties, i.e. is it closed under
unions, intersection, reversal, etc. To answer these questions we are led to some new constructions.
The most natural question to ask is whether the union of regular languages is regular. In this case we must
restrict ourselves to finite unions, since every language is the union of finite languages. It is in fact true that
the union of two regular languages over a common alphabet is regular. To show this we introduce the notion
of the cross product of DFAs.
Let Σ = {a1, . . . , am} be an alphabet and suppose that we are given two DFA’s D1 = (Q1, Σ, δ1, q0,1, F1) and
D2 = (Q2, Σ, δ2, q0,2, F2), accepting L1 and L2 respectively. We will show that the union, the intersection,
and the relative complement of regular languages is a regular language.

First we will explain how to construct a DFA accepting the intersection L1 ∩ L2. The idea is to construct a
DFA simulating D1 and D2 in ‘parallel’. This can be done by using states which are pairs (p1, p2) ∈ Q1×Q2.
Define a DFA, D, as follows:

D = (Q1 ×Q2, Σ, δ, (q0,1, q0,2), F1 × F2),

where the transition function δ : (Q1 ×Q2)× Σ→ Q1 ×Q2 is defined by

δ((p1, p2), a) = (δ1(p1, a), δ2(p2, a)),

for all p1 ∈ Q1, p2 ∈ Q2, and a ∈ Σ.

Clearly D is a DFA, since D1 and D2 are. Also, by the definition of δ, we have

δ∗((p1, p2), w) = ((δ∗1(p1, w), δ∗2(p2, w)),

for all p1 ∈ Q1, p2 ∈ Q2, and w ∈ Σ∗.

Example 1.8.1 A product of two DFAs with two states each is given below.

We have that w ∈ L(D1) ∩ L(D2) iff w ∈ L(D1) and w ∈ L(D2),iff δ∗1(q0,1, w) ∈ F1 and δ∗2(q0,2, w) ∈ F2, iff
δ∗((q0,1, q0,2), , w) ∈ F1 × F2, iff w ∈ L(D). Thus L(D) = L(D1) ∩ L(D2).

We can now modify D very easily to accept L(D1)∪L(D2). We change the set of final to (F1×Q2)∪(Q1×F2).
Then
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cross product figure
Figure 1.19:

w ∈ L(D1) ∪ L(D2)iff
w ∈ L(D1) or w ∈ L(D2)iff

δ∗1(q0,1, w) ∈ F1 or
δ∗2(q0,2, w) ∈ F2, iff

δ∗((q0,1, q0,2), w) ∈ (F1 ×Q2) ∪ (Q1 × F2), iff
w ∈ L(D).

Thus, L(D) = L(D1) ∪ L(D2).

We can also modify D to accept L(D1)−L(D2). We change the set of final states to F1 × (Q2 − F2). Then

w ∈ L(D1)− L(D2)iff
w ∈ L(D1) and w /∈ L(D2), iff

δ∗1(q0,1, w) ∈ F1 andδ∗2(q0,2, w) /∈ F2, iff
δ∗((q0,1, q0,2), w) ∈ F1 × (Q2 − F2), iff

w ∈ L(D).

Thus, L(D) = L(D1)− L(D2).

In all cases if D1 has n1 states and D2 has n2 states then the DFA D has n1n2 states.

Exercises

1 A morphism between two DFA’s D1 = (Q1, Σ, δ1, q0,1, F1) and D2 = (Q2, Σ, δ2, q0,2, F2) is a function
f : Q1 −→ Q2 such that f(δ1(q, a)) = δ2(f(q), a) for all q ∈ Q1, a ∈ Σ, f(q0,1) = q0,2 and f(F1) ⊂ F2 (note
that we require D1 and D2 to have the same alphabets). If the morphism is surjective then we say that D2

is the homomorphic image of D1.
i) Show that if u ∈ Σ∗ then f(δ1(q, u)) = δ2(f(q), u) for all q ∈ Q1, a ∈ Σ.
ii) Show that if f : D1 −→ D2 is a morphism, then L(D1) ⊂ L(D2). When is L(D1) = L(D2) ?
iii) By the product of D1 and D2, denoted D1 ×D2, we mean the product machine described above with
F1 × F2 as final states. Show D1 and D2 are homomorphic images of D1 ×D2.

2 A morphism f between D1 and D2 is called an isomorphism if it is bijective and f(F1) = F2. If a
isomorphism between D1 and D2 exists then D1 and D2 are said to be isomorphic and we write D1 ≈ D2.
i) Show that the inverse of an isomorphism is a morphism, hence is an isomorphism.
ii) Show that D1 ≈ D2 implies that L(D1) = L(D2).
iii) Show that for a given alphabet there is a machine I over that alphabet such that for any other DFA D
over the same alphabet we have that D × I ≈ I ×D ≈ D.

3 (For readers who like Category theory) Show that the collection of DFAs over a fixed alphabet forms a
category. Are there products ? Coproducts ? Is there a terminal object ?
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1.9 Non-Deterministic Finite Automata

There would appear to be a number of obvious variations on the definition of a DFA. One might allow for
example, that the transition function not necessarily be defined for every state and letter, i.e. not every state
has |Σ| arrows coming out of it. Or perhaps we could allow many arrows out of a state labeled with the same
letter. Whatever we define though, we have the same issue to confront that we did for DFAs, namely, what
does mean for a machine to accept a language? After this is done, we will see that all the little variations
don’t give us any new languages, i.e. the new machines are not computing anything different then the old.
Then why bother with them ? Because they make the constructions of some things much easier and often
make proofs clear where they were not at all clear earlier.
The object that we define below has the features that we just described, plus we will now allow arrows to
be labeled with ǫ. Roughly, the idea here is that you can move along an arrow labeled ǫ if that is what you
want to do.

Definition 1.9.1 A non-deterministic finite automata (or NFA) is a five-tuple

(Q, Σ, δ, q0, F )

where Q and Σ are finite sets, called the states and the alphabet, δ : Q× (Σ ∪ {ǫ}) −→ 2Q is the transition
function, q0 ∈ Q is a distinguished states, called the start state and F is a subset of the set of states, known
as the set of final states.

There are three funny things about this definition. First of all is the non-determinism, i.e. given a string
there are many paths to choose from. This is probably the hardest to swallow, as it seems too powerful.
The next thing is that we have ǫ−moves. One way to think of this is that we take our string and stick in
epsilons wherever we want, and then feed it to the machine. Thirdly, since the range of δ is the power set
of Q, a pair (q, a) may be mapped to the null set, which in terms of arrows and a diagram means that no
arrow out the state p has the label a.
We would like to define the language accepted by N , and for this, we need to extend the transition function
δ : Q× (Σ ∪ {ǫ})2Q to a function

δ∗ : Q× Σ∗2Q.

The presence of ǫ-transitions (i.e., when q ∈ δ(p, ǫ)) causes technical problems. To overcome these problems
we introduce the notion of ǫ-closure.

Definition 1.9.2 For any state p of an NFA we define the ǫ-closure of p to be set ǫ-closure(p) consisting of
all states q such that there is a path from p to q whose spelling is ǫ. This means that either q = p, or that
all the edges on the path from p to q have the label ǫ.

We can compute ǫ-closure(p) using a sequence of approximations as follows. Define the sequence of sets of
states (ǫ-cloi(p))i≥0 as follows:

ǫ-clo0(p) = {p},
ǫ-cloi+1(p) = ǫ-cloi(p) ∪ {q ∈ Q | ∃s ∈ ǫ-cloi(p), q ∈ δ(s, ǫ)}.

Since ǫ-cloi(p) ⊆ ǫ-cloi+1(p), ǫ-cloi(p) ⊆ Q, for all i ≥ 0, and Q is finite, there is a smallest i, say i0, such
that

ǫ-cloi0(p) = ǫ-cloi0+1(p),

and it is immediately verified that
ǫ-closure(p) = ǫ-cloi0(p).
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(It should be noted that there are more efficient ways of computing ǫ-closure(p), for example, using a stack
(basically, a kind of depth-first search.)) When N has no ǫ-transitions, i.e., when δ(p, ǫ) = ∅ for all p ∈ Q
(which means that δ can be viewed as a function δ : Q× Σ2Q) we have

ǫ-closure(p) = {p}.

Given a subset S of Q, we define ǫ-closure(S) as

ǫ-closure(S) =
⋃

p∈S

ǫ-closure(p).

When N has no ǫ-transitions we have
ǫ-closure(S) = S.

We are now ready to define the extension δ∗ : Q× Σ∗2Q of the transition function δ : Q× (Σ ∪ {ǫ})2Q. The
intuition behind the extended transition function is that δ∗(p, w) is the set of all states reachable from p by
a path whose spelling is w.

Definition 1.9.3 Given an NFA N = (Q, Σ, δ, q0, F ) (with ǫ-transitions), the extended transition function
δ∗ : Q× Σ∗2Q is defined as follows: for every p ∈ Q, every u ∈ Σ∗ and every a ∈ Σ,

δ∗(p, ǫ) = ǫ-closure({p}),

δ∗(p, ua) = ǫ-closure

( ⋃

s∈δ∗(p,u)

δ(s, a)

)
.

The language L(N) accepted by an NFA N is the set

L(N) = {w ∈ Σ∗ | δ∗(q0, w) ∩ F 6= ∅}.

We now extend δ∗ : Q× Σ∗2Q to a function δ̂ : 2Q × Σ∗2Q defined as follows: for every subset S of Q, for
every w ∈ Σ∗,

δ̂(S, w) =
⋃

p∈S

δ∗(p, w).

Let Q be the subset of 2Q consisting of those subsets S of Q that are ǫ-closed, i.e., such that S = ǫ-closure(S).

If we consider the restriction ∆ : Q×±Q of δ̂ : 2Q × Σ∗2Q to Q and Σ, we observe that ∆ is the transition
function of a DFA. Indeed, this is the transition function of a DFA accepting L(N). It is easy to show that
∆ is defined directly as follows (on subsets S in Q):

∆(S, a) = ǫ-closure

(⋃

s∈S

δ(s, a)

)
.

Then, the DFA D is defined as follows:

D = (Q,±, ·, ǫ-closure({∐′}),F),

where F = {S ∈ Q | S ∩ F 6= ∅}.
It is not difficult to show that L(D) = L(N), that is, D is a DFA accepting L(N). Thus we have converted
the NFA N into a DFA D (and gotten rid of ǫ-transitions).

The states of the DFA D equivalent to N are ǫ-closed subsets of Q. For this reason the above construction is
often called the “subset construction”. It is due to Rabin and Scott. Although theoretically fine, the method
may construct useless sets S that are not reachable from the start state ǫ-closure({q0}). A more economical
construction is given below.

31



An Algorithm to convert an NFA into a DFA:

The “subset construction”

Given an input NFA N = (Q, Σ, δ, q0, F ), a DFA D = (K, Σ, ∆, S0,F)

is constructed. It is assumed that ∆ is a list of triples (S, a, T ), with

S, T ∈ K, and a ∈ Σ.

S0 := ǫ-closure({q0}); K := {S0}; total := 1;

marked := 0; ∆ := nil;

while marked < total do;

marked := marked + 1; S := K[marked];

for each a ∈ Σ do

U :=
⋃

s∈S δ(s, a); T := ǫ-closure(U);

if T /∈ K then

total := total + 1; K[total] := T

endif;

∆ := append[∆, (S, a, T )]

endfor

endwhile;

F := {S ∈ K | S ∩ F 6= ∅}
Exercises

1 Implement the “subset algorithm” for converting an NFA with ǫ-transitions to a DFA. Pay particu-
lar attention to the input and output format. Explain your data structures. How do you deal with set
comparisons?

2 Let Σ = {a1, . . . , an} be an alphabet of n symbols.
(i) Construct an NFA with 2n + 1 states accepting the set Ln of strings over Σ such that, every string in Ln

has an odd number of ai, for some ai ∈ Σ. Equivalently, if Li
n is the set of all strings over Σ with an odd

number of ai, then Ln = L1
n ∪ · · · ∪ Ln

n.
(ii) Prove that there is a DFA with 2n states accepting the language Ln.
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3 Prove that every DFA accepting Ln (from problem 2) has at least 2n states. Hint : If a DFA D with
k < 2n states accepts Ln, show that there are two strings u, v with the property that, for some ai ∈ Σ,
u contains an odd number of ai’s, v contains an even number of ai’s, and D ends in the same state after
processing u and v. From this, conclude that D accepts incorrect strings.

4 (i) Given two alphabets Σ and Ω with Σ ⊂ Ω, then we may define a map e : Ω∗ −→ Σ∗ by simply taking
a string in Ω∗ and removing all occurrences of elements of Ω−Σ, i.e. just erase the letters that aren’t in Ω.
Show that if L is regular over Ω then e(L) is regular over Σ.
(ii) On the other hand, suppose that L ⊂ Σ∗. Then for any a ∈ Ω, define the a-blow-up of L to be
La = {ak1u1...a

knun |u1...un ∈  L and k1, .., kn ≥ 0}. Show that La is regular if L is regular.
(iii) Again, suppose that L ⊂ Σ∗. Define the blow-up of L relative to Ω to be LΩ = {w1u1...wnun|u1...un ∈  L
and w1, ...wn ∈ Ω∗}. Is LΩ regular over Ω ?

1.10 Directed Graphs and Paths

It is often useful to view DFA’s and NFA’s as labeled directed graphs. The purpose of this section is to
review some of these concepts. We begin with directed graphs. Our definition is very flexible, since it allows
parallel edges and self loops.

Definition 1.10.1 A directed graph is a quadruple G = (V, E, s, t), where V is a set of vertices, or nodes ,
E is a set of edges, or arcs , and s, t: E → V are two functions, s being called the source function, and t the
target function. Given an edge e ∈ E, we also call s(e) the origin (or source) of e, and t(e) the endpoint (or
target) of e.

Remark The functions s, t need not be injective or surjective. Thus, we allow “isolated vertices”.

Example 1.10.2 Let G be the directed graph defined such that

E = {e1, e2, e3, e4, e5, e6, e7, e8}, V = {v1, v2, v3, v4, v5, v6}, and

s(e1) = v1, s(e2) = v2, s(e3) = v3, s(e4) = v4, s(e5) = v2, s(e6) = v5, s(e7) = v5, s(e8) = v5,

t(e1) = v2, t(e2) = v3, t(e3) = v4, t(e4) = v2, t(e5) = v5, t(e6) = v5, t(e7) = v6, t(e8) = v6.

Such a graph can be represented by the following diagram:

In drawing directed graphs, we will usually omit edge names (the ei), and sometimes even the node names
(the vj). We now define paths in a directed graph.

Definition 1.10.3 Given a directed graph G = (V, E, s, t) for any two nodes u, v ∈ V , a path from u to
v is a triple π = (u, e1 . . . en, v), where e1 . . . en is a string (sequence) of edges in E such that, s(e1) = u,
t(en) = v, and t(ei) = s(ei+1), for all i such that 1 ≤ i ≤ n− 1. When n = 0, we must have u = v, and the
path (u, ǫ, u) is called the null path from u to u. The number n is the length of the path. We also call u the
source (or origin) of the path, and v the target (or endpoint) of the path. When there is a nonnull path π
from u to v, we say that u and v are connected .

Remark In a path π = (u, e1 . . . en, v), the expression e1 . . . en is a sequence, and thus, the ei are not
necessarily distinct.

For example, the following are paths:
π1 = (v1, e1e5e7, v6),

π2 = (v2, e2e3e4e2e3e4e2e3e4, v2),

and
π2 = (v1, e1e2e3e4e2e3e4e5e6e6e8, v6).

Clearly, π2 and π3 are of a different nature from π1. Indeed, they contain cycles. This is formalized as
follows.
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Figure 1.20:
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Definition 1.10.4 Given a directed graph G = (V, E, s, t), for any node u ∈ E a cycle (or loop) through
u is a nonnull path of the form π = (u, e1 . . . en, u) (equivalently, t(en) = s(e1)). More generally, a nonnull
path π = (u, e1 . . . en, v) contains a cycle iff for some i, j, with 1 ≤ i ≤ j ≤ n, t(ej) = s(ei). In this case,
letting w = t(ej) = s(ei), the path (w, ei . . . ej, w) is a cycle through w. A path π is acyclic iff it does not
contain any cycle. Note that each null path (u, ǫ, u) is acyclic.

Obviously, a cycle π = (u, e1 . . . en, u) through u is also a cycle through every node t(ei). Also, a path π may
contain several different cycles. Paths can be concatenated as follows.

Definition 1.10.5 Given a directed graph G = (V, E, s, t), two paths π1 = (u, e1 . . . em, v) and π2 =
(u′, e′1 . . . e′n, v′) can be concatenated provided that v = u′, in which case their concatenation is the path

π1π2 = (u, e1 . . . eme′1 . . . e′n, v′).

It is immediately verified that the concatenation of paths is associative, and that the composition of the
path π = (u, e1 . . . em, v) with the null path (u, ǫ, u) or with the null path (v, ǫ, v) is the path π itself.

The following fact, although almost trivial, is used all the time, and is worth stating precisely.

Lemma 1.10.6 Given a directed graph G = (V, E, s, t), if the set of nodes V has m ≥ 1 elements (in
particular, it is finite), then every path π of length at least m contains some cycle.

Proof . Let π = (u, e1 . . . en, v). By the hypothesis, n ≥ m. Consider the sequence of nodes

(u, t(e1), . . . , t(en−1), t(en) = v).

This sequence contains n + 1 elements. Since n ≥ m, we have n + 1 > m, and by the so-called “pigeonhole
principle”, since V only contains m distinct nodes, some node in the sequence must appear twice. This shows
that either t(ej) = u = s(e1) for some j with 1 ≤ j ≤ n, or t(ej) = t(ei), for some i, j, with 1 ≤ i < j ≤ n,
and thus t(ej) = s(ei+1), with 1 ≤ i < j ≤ n. Combining both cases, we have t(ej) = s(ei) for some i, j,
with 1 ≤ i ≤ j ≤ n, which yields a cycle.

A consequence of lemma 1.10.6 is that in a finite graph with m nodes, given any two nodes u, v ∈ V , in order
to find out whether there is a path from u to v, it is enough to consider paths of length ≤ m − 1. Indeed,
if there is path between u and v, then there is some path π of minimal length (not necessarily unique, but
this doesn’t matter). If this minimal path has length at least m, then by the lemma, it contains a cycle.
However, by deleting this cycle from the path π, we get an even shorter path from u to v, contradicting the
minimality of π.

Exercises

1 Let D = (Q, Σ, δ, q0, F ) be a DFA. Suppose that every path in the graph of D from the start state to
some final state is acyclic. Does it follow that L(D) is a finite language?

1.11 Labeled Graphs and Automata

Definition 1.11.1 A labeled directed graph is a tuple G = (V, E, L, s, t, λ), where V is a set of vertices, or
nodes , E is a set of edges, or arcs , L is a set of labels , s, t: E → V are two functions, s being called the
source function, and t the target function, and λ: E → L is the labeling function. Given an edge e ∈ E, we
also call s(e) the origin (or source) of e, t(e) the endpoint (or target) of e, and λ(e) the label of e.

Note that the function λ need not be injective or surjective. Thus, distinct edges may have the same label.
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Figure 1.21:

Example 1.11.2 Let G be the directed graph defined such that

E = {e1, e2, e3, e4, e5, e6, e7, e8}, V = {v1, v2, v3, v4, v5, v6}, L = {a, b}, and

s(e1) = v1, s(e2) = v2, s(e3) = v3, s(e4) = v4, s(e5) = v2, s(e6) = v5, s(e7) = v5, s(e8) = v5,

t(e1) = v2, t(e2) = v3, t(e3) = v4, t(e4) = v2, t(e5) = v5, t(e6) = v5, t(e7) = v6, t(e8) = v6,

λ(e1) = a, λ(e2) = b, λ(e3) = a, λ(e4) = a, λ(e5) = b, λ(e6) = a, λ(e7) = a, λ(e8) = b.

Such a labeled graph can be represented by the following diagram:

In drawing labeled graphs, we will usually omit edge names (the ei), and sometimes even the node names
(the vj). Paths, cycles, and concatenation of paths are defined just as before (that is, we ignore the labels).
However, we can now define the spelling of a path.

Definition 1.11.3 Given a labeled directed graph G = (V, E, L, s, t, λ) for any two nodes u, v ∈ V , for any
path π = (u, e1 . . . en, v), the spelling of the path π is the string of labels

λ(e1) . . . λ(en).

When n = 0, the spelling of the null path (u, ǫ, u) is the null string ǫ.
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For example, the spelling of the path

π2 = (v1, e1e2e3e4e2e3e4e5e6e6e8, v6)

is
abaabaabaab.

Every DFA and every NFA can be viewed as a labeled graph, in such a way that the set of spellings of paths
from the start state to some final state is the language accepted by the automaton in question.

Given a DFA D = (Q, Σ, δ, q0, F ), where δ: Q × Σ → Q, we associate the labeled directed graph GD =
(V, E, L, s, t, λ) defined as follows:

V = Q, E = {(p, a, q) | q = δ(p, a), p, q ∈ Q, a ∈ Σ},
L = Σ, s((p, a, q)) = p, t((p, a, q)) = q, and λ((p, a, q)) = a.

Such labeled graphs have a special structure that can easily be characterized.

It is easily shown that a string w ∈ Σ∗ is in the language L(D) = {w ∈ Σ∗ | δ∗(q0, w) ∈ F} iff w is the
spelling of some path in GD from q0 to some final state.

Similarly, given an NFA N = (Q, Σ, δ, q0, F ), where δ: Q× (Σ∪ {ǫ})→ 2Q, we associate the labeled directed
graph GN = (V, E, L, s, t, λ) defined as follows:

V = Q, E = {(p, a, q) | q ∈ δ(p, a), p, q ∈ Q, a ∈ Σ ∪ {ǫ}},
L = Σ ∪ {ǫ}, s((p, a, q)) = p, t((p, a, q)) = q, λ((p, a, q)) = a.

Remark When N has no ǫ-transitions, we can let L = Σ. Such labeled graphs have also a special structure
that can easily be characterized. A string w ∈ Σ∗ is in the language L(N) = {w ∈ Σ∗ | δ∗(q0, w) ∩ F 6= ∅}
iff w is the spelling of some path in GN from q0 to some final state.
Conversely, if we are given a labeled directed graph it may be viewed as an NFA if we pick a start state and
a set of final states. The relationship between NFAs and labeled directed graphs could be made more formal
then this, say, using category theory, but it is sufficiently simple that that is probably unnecessary.
Let Σ = {a1, . . . , am} be an alphabet. We define a family Rn, of sets of languages as follows:

R0 = {{a1}, . . . , {am}, ∅, {ǫ}},

Rn+1 = Rn ∪ {L1 ∪ L2, L1L2, L∗ |L1, L2, L ∈ Rn}.
We define R as

R =
⋃

n≥0

Rn = R0 ∪R1 ∪R2 ∪ · · ·.

R is the family of regular languages over Σ. The reason for this name is because R is precisely the
set of regular languages over Σ. The elements of R0 are called the atomic languages. In this section we
show that the regular languages are those languages that are ‘finitely generated’ using the operations union,
concatenation and Kleene-*. A regular expression is a natural way of denoting how these operations are
used to generate a language.
One thing to be careful about is that R depends on the alphabet Σ, although our notation doesn’t reflect
this fact. If for any reason it is unclear from the context which R we are referring to, we can use the notation
R(Σ) to denote R.

37



Example 1.11.4 Suppose we take Σ = {a, b}. Then

R1 = {{a}, {b}, ∅, {ǫ}, {a, b}, {ab}, {ba}, {ǫ, a, a2, ...}, {ǫ, b, b2, ...}}.

Observe that in general, Rn is a finite set. In this case it contains 9 languages, 7 of which are finite and two
infinite ones.

Lemma 1.11.5 The family R is the smallest family of languages that contains the (atomic) languages {a1},
. . . , {am}, ∅, {ǫ}, and is closed under union, concatenation, and Kleene ∗.

Proof Use induction on n.

Note that a given language may be “built” up in different ways. For example,

{a, b}∗ = ({a}∗{b}∗)∗.

Given an alphabet Σ = {a1, . . . , am}, consider the new alphabet

D = {+, ·, ∗, (, ), ∅, ǫ}.

Next, we define a family Rn of languages over D as follows:

R0 = {a1, . . . , am, ∅, ǫ},

Rn+1 = Rn ∪ {(S + T ), (S · T ), (U∗) |S, T, U ∈ Rn}.
Finally, we define R as

R = R0 ∪R1 ∪R2 ∪ · · ·
R is the set of regular expressions (over Σ).

Lemma 1.11.6 The language R is the smallest language which contains the symbols a1, . . . , am, ∅, ǫ, from
D, such that (S + T ), (S · T ), and U∗ belong to R, when S, T, U ∈ R.

Proof Exercise.

For simplicity of notation we write (R1R2) instead of (R1 ·R2).

Example 1.11.7 R = (a + b)∗, S = (a∗b∗)∗.

Every regular expression S ∈ R can be viewed as the name, or denotation, of some regular language L ∈ R.
Similarly, every regular language L ∈ R is the interpretation (or meaning) of some regular expression
S ∈ R. This is made rigorous by defining a function

L:R → P(Σ∗),

where P(Σ∗) is the set of subsets of Σ∗. We may think of L as standing for ‘the language denoted by’. This
function can be defined recursively by the equations

L[ai] = {ai},
L[∅] = ∅,
L[ǫ] = {ǫ},

L[(S + T )] = L[S] ∪ L[T ],

L[(ST )] = L[S]L[T ],

L[U∗] = L[U ]∗.
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a i

Figure 1.22: Here we see the three types of machines that accept the atomic languages. The top machine
accepts the empty set because it has no final states. The middle machine accepts only ǫ since it has no
arrows leaving it or going into it. The last machine accepts only a fixed letter ai (i.e. there is one machine
for each letter).

Remark The function L is not injective. For example, if S = (a + b)∗, T = (a∗b∗)∗, then

L[S] = L[T ] = {a, b}∗.

For simplicity we often denote L[S] as LS .

Theorem 1.11.8 For every regular expression S ∈ R, the language L[S] is regular (L[S] ∈ R). Conversely,
for every regular language L ∈ R, there is some regular expression S ∈ R such that L = L[S]. In other
words, the range of L is exactly R.

We break the theorem up into two lemmas, which actually say a bit more then the theorem.

Lemma 1.11.9 There is an algorithm, which, given any regular expression S ∈ R, constructs an NFA NS

accepting LS , i.e. such that LS = L(NS).

Proof The proof is by induction on the strata of R. We show that for each n if R ∈ Rn then there is an
NFA that accepts the language of R, and that this NFA has the properties that
(i) There are no edges entering the start state, and
(ii) there is one final state, which has no outgoing edges.

Without loss of generality, assume that Σ = {a1, ..., ak}. NFAs for R0 are given in figure (1.22).
Next, suppose that our hypothesis is true for Rm where m < n. Let R ∈ Rn be a regular expression. Then
R is either the Kleene-* of a regular expression in Rn−1 or the sum or product of two regular expressions in
Rn−1.
Suppose that R = S∗, S ∈ Rn−1. Then by induction there is an NFA accepting the language denoted by S
that has a single start state with no incoming edges and a single final state with no outgoing edges (see figure
(1.23). This can always be achieved by adding a single start state and final state and using the appropriate
epsilon transitions. In figure (1.23), and the figures to follow, we draw this type a machine with a “blob” in
the middle and imagine that inside the blob is a collection of states and transitions.
To construct a machine that will recognize the language denoted by R we alter the above machine to create
the machine that appears in figure (1.24).

Next, suppose that it is the case that R = (ST ), where S and T are in Rn−1. Then by induction there are
two NFAs accepting the languages denoted by S and T respectively, and as above me may assume that they
have the form depicted in figure (1.23). From these two machines we construct an NFA that will accept the
appropriate language - see figure (1.25).
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q0
Figure 1.23: For any regular language there is an NFA accepting of the form depicted above, namely a single
start and final state, each of which has no incoming arrows.

� �

�

�

Figure 1.24: If the machine in figure (1.23) is altered to appear as above, then the language accepted by the
new machine will be the Kleene-* of the language accepted by the machine in figure (1.23).

Figure 1.25: How to construct an NFA to accept the product of two languages, given an NFA for each of the
languages.

��
��

Figure 1.26:

40



Finally, suppose that it is the case that R = (S + T ), S, T ∈ Rn−1. Again, by induction there are two
NFAs accepting the languages denoted by S and T respectively. which look like the above two. A machine
corresponding to their sum is given in figure (1.26).
Of course, it is crucial that in each of the above three constructions the induction hypothesis is satisfied,
i.e. the resulting machine has a start state with no incoming edges and a single final state with no outgoing
edges. Therefore the proof of the first lemma is complete.

Lemma 1.11.10 There is an algorithm, which, given any NFA N , constructs a regular expression S ∈ R,
denoting L(N), i.e., such that LS = L(N).

This is the node elimination algorithm. The idea is to allow more general labels on the edges of an NFA,
namely, regular expressions. We will call these machines generalized NFAs.

Example 1.11.11 Consider a generalized NFA with two state p and q where q is final, and the edge between
them is labeled by a regular expression S. The language accepted by this generalized NFA is exactly L(S) !

The proof will proceed as follows. We start with an NFA and view it as a generalized NFA. We will then
‘contract’ this generalized NFA, step by step, preserving the recognized language at each step, until we have
a generalized NFA which has only one edge, as in the above example. The expression that labels the edge
will correspond to the language of the original NFA that we started with. But before we start this procedure
we must put the NFA the ‘normal form’ that we used earlier.

Preprocessing, phase 1:

Consider a given NFA. If there are incoming edges to the start state then add a new start state with an
ǫ-transition to the original start state.

If necessary, we need to add a new (unique) final state, with ǫ-transitions from each of the old final states
to the new final state, if there are outgoing edges from any of the old final states.

At the end of this phase, the start state s is a source (no incoming edges), and the final state t is a sink (no
outgoing edges).
Preprocessing, phase 2:
We need to “flatten” parallel edges. For any pair of states (p, q) (p = q is possible), if there are k edges from
p to q labeled u1, . . ., uk, then create a single edge labeled with the regular expression

u1 + · · ·+ uk.

For any pair of states (p, q) (p = q is possible) such that there is no edge from p to q, we put an edge labeled
∅.
At the end of this phase, the resulting generalized NFA has the property that for any pair of states (p, q)
(where p = q is possible), there is a unique edge labeled with some regular expression denoted as Rp,q. When
Rp,q = ∅, this really means that there is no edge from p to q in the original NFA N .
By interpreting each Rp,q as a function call (really, a macro) to the NFA Np,q accepting L[Rp,q] (constructed
using the previous algorithm), we can verify that the original language L(N) is accepted by this new gener-
alized NFA.
Node elimination This algorithm only applies if the generalized NFA has at least one node distinct from
s and t.
Pick any node r distinct from s and t. For every pair (p, q) where p 6= r and q 6= r, consider the “triangle”
formed by these states. If p 6= q then we may draw a diagram like the one in figure (1.27). Then, replace
the label of the edge from p to q with the expression Rp,q + Rp,rR

∗
r,rRr,q (see figure (1.28)).

We emphasize that this operation must be performed simultaneously for every pair (p, q) . Also, keep in
mind that if in the original machine there was no edge from p to q then we now have an edge between them
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p q

Figure 1.27: qp Rp;q+Rp;rR�r;rRr;q
Figure 1.28:

labeled with the empty set. If we don’t pay attention to other edges coming and going from r then our
algorithm probably won’t work properly.
At the end of this step delete the node r and all edges adjacent to r. Observe that it is possible that p = q,
in which case the triangle is “flat”. It is also possible that p = s or q = t. Also, this step is performed for
all pairs (p, q), which means that both (p, q) and (q, p) are considered (when p 6= q). Note that this step
only has an effect if there are edges from p to r and from r to q in the original NFA N . Otherwise r can
simply be deleted, as well as the edges adjacent to r. Other simplifications can be made. For example, when
Rr,r = ∅ we can simplify Rp,rR

∗
r,rRr,q to Rp,rRr,q. When Rp,q = ∅ we have Rp,rR

∗
r,rRr,q.

The order in which the nodes are eliminated is irrelevant, although it effects the size of the final expression.
The algorithm stops when the only remaining nodes are s and t. Then the label R of the edge from s to t
is a regular expression denoting L(N). This completes the proof of the second lemma.
In figure (1.29) we see an example of node elimination applied to a machine that accepts all binary strings
whose second to last letter is the digit 1. Another example, involving simultaneous edges during the elimi-
nation process can be seen in figure (??).

Definition 1.11.12 Two regular expressions S, T ∈ R are equivalent , denoted as S ∼= T , iff L[S] = L[T ].

It is easy to prove that ∼= is an equivalence relation. The relation ∼= satisfies some (nice) identities. For
example:

((S + T ) + U) ∼= (S + (T + U)),

((ST )U) ∼= (S(TU)),

(S + T ) ∼= (T + S),

(S∗S∗) ∼= S∗,

(S∗)∗ ∼= S∗.
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Exercises

1 (a) Find a regular expression denoting the set of all strings over Σ = {a, b} with no more than three a’s.
(b) Find a regular expression denoting the set of all strings over Σ = {a, b} such that the number of a’s is a
multiple of three (including 0).

2 Let R be any regular language. Prove that the language

L = {w | www ∈ R}

is regular (this is a bit tricky!).

3 Recall that for two regular expressions R and S, R ∼= S means that L(R) = L(S), i.e. R and S denote
the same language.

(i) Show that if R ∼= S∗.T , then R ∼= S.R + T .

(ii) Assume that ǫ (the empty string) is not in the language denoted by the regular expression S.

Hint : Prove that x ∈ R if and only if x ∈ S∗.T , by observing that R ∼= S.R + T implies that for every k ≥ 0,

R ∼= Sk+1.R + (Sk + Sk−1 + . . . + S2 + S + ǫ).T,

and that since ǫ /∈ S, every string in Sk+1.R has length at least k + 1.

4 Recall that two regular expressions R and S are equivalent, denoted as R ∼= S, iff they denote the same
regular language L(R) = L(S). Show that the following identities hold for regular expressions:

(R + S).T ∼= R.T + S.T

T.(R + S) ∼= T.R + T.S

R∗.R∗ ∼= R∗

(R∗)∗ ∼= R∗

(R + S)∗ ∼= (R∗.S)∗.R∗

5 Show that the recursion equations for L can be used to define L. Give a rigorous proof !

1.12 The Theorem of Myhill and Nerode

The purpose of this section is to give one more characterization of the regular languages in terms of certain
kinds of equivalence relations on strings. Pushing this characterization a bit further, we will be able to prove
the existence of minimal DFA’s.

Let D = (Q, Σ, δ, q0, F ) be a DFA. The DFA D may be redundant. For example, there may be states that
are not accessible from the start state. This motivates the following definition. The set Qacc of accessible
states is the subset of Q defined as

Qacc = {p ∈ Q | ∃w ∈ Σ∗, δ∗(q0, w) = p}.

The set Qacc can be easily computed by stages. If Q 6= Qacc, we can “clean up” D by deleting the states
in Q − Qacc and restricting the transition function δ to Qacc. We then get an ‘equivalent’ DFA D′, i.e.
L(D) = L(D′), where all the states of D′ are accessible. Therefore, without loss of generality, we assume
that we are dealing with DFA’s such that Q = Qacc.
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Recall that an equivalence relation ≃ on a set A is a relation which is reflexive, symmetric, and transitive.
Given any a ∈ A, the set

{b ∈ A | a ≃ b}
is called the equivalence class of a, and it is denoted as [a]≃, or even as [a]. Recall that for any two elements
a, b ∈ A, [a] ∩ [b] = ∅ iff a 6≃ b, and [a] = [b] iff a ≃ b. The set of equivalence classes associated with
the equivalence relation ≃ is a partition Π of A (also denoted as A/ ≃). This means that it is a family of
nonempty pairwise disjoint sets whose union is equal to A itself. The equivalence classes are also called the
blocks of the partition Π. The number of blocks in the partition Π is called the index of ≃ (and Π).

Given any two equivalence relations ≃1 and ≃2 with associated partitions Π1 and Π2,

≃1 ⊆≃2

iff every block of the partition Π1 is contained in some block of the partition Π2. Then every block of the
partition Π2 is the union of blocks of the partition Π1 and we say that ≃1 is a refinement of ≃2 (and similarly,
Π1 is a refinement of Π2). Note that Π2 has at most as many blocks as Π1 does.

We now define an equivalence relation on strings induced by a DFA. We say that two strings u, v are
equivalent iff when feeding first u and then v to the DFA, u and v drive the DFA to the same state. From
the point of view of the observer u and v have the same effect (reaching the same state).

Definition 1.12.1 Given a DFA D = (Q, Σ, δ, q0, F ) we define the relation ≃D on Σ∗ as follows: for any
two strings u, v ∈ Σ∗,

u ≃D v iff δ∗(q0, u) = δ∗(q0, v).

The relation ≃D turns out to have some interesting properties. In particular it is right-invariant , which
means that for all u, v, w ∈ Σ∗ if u ≃ v then uw ≃ vw.

Lemma 1.12.2 Given any (accessible) DFA D = (Q, Σ, δ, q0, F ), the relation ≃D is an equivalence relation
which is right-invariant and has finite index. Furthermore, if Q has n states, then the index of ≃D is n and
every equivalence class of ≃D is a regular language. Finally, L(D) is the union of some of the equivalence
classes of ≃D.

Proof . The fact that ≃D is an equivalence relation is trivial. To prove that ≃D is right-invariant we need
the fact that that for all u, v ∈ Σ∗and for all p ∈ Q,

δ∗(p, uv) = δ∗(δ∗(p, u), v).

Then if u ≃D v, which means that δ∗(q0, u) = δ∗(q0, v), we have that

δ∗(q0, uw) = δ∗(δ∗(q0, u), w) = δ∗(δ∗(q0, v), w) = δ∗(q0, vw),

which means that uw ≃D vw. Thus ≃D is right-invariant. We still have to prove that ≃D has index n.
Define the function f : Σ∗ → Q such that

f(u) = δ∗(q0, u).

Note that if u ≃D v, which means that δ∗(q0, u) = δ∗(q0, v), then f(u) = f(v). Thus the function f : Σ∗ → Q

induces a function f̂ : Π→ Q defined such that

f̂([u]) = f(u),

for every equivalence class [u] ∈ Π, where Π = Σ∗/ ≃ is the partition associated with ≃D. However, the

function f̂ : Π → Q is injective (one-to-one) since f̂([u]) = f̂([v]) means that δ∗(q0, u) = δ∗(q0, v), which
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means precisely that u ≃D v, i.e., [u] = [v]. Since Q has n states Π has at most n blocks. But since every
state is accessible, Π has exactly n blocks.

Finally, every equivalence class of Π is a set of strings of the form

{w ∈ Σ∗ | δ∗(q0, w) = p},
for some p ∈ Q, which is accepted by the DFA obtained from D by changing F to {p}. Thus every equivalence
class is a regular language and L(D) is the union of the equivalence classes corresponding to the final states
in F .

The remarkable fact due to Myhill and Nerode is that lemma 1.12.2 has a converse.

Lemma 1.12.3 Given any equivalence relation ≃ on Σ∗, if ≃ is right-invariant and has finite index n then
every equivalence class (block) in the partition Π associated with ≃ is a regular language.

Proof . Let C1, . . . , Cn be the blocks of Π, and assume that C1 = [ǫ] is the equivalence class of the empty
string. First, we claim that for every block Ci and every w ∈ Σ∗ there is a unique block Cj such that
Ciw ⊆ Cj , where Ciw = {uw | u ∈ Ci}.
For every u ∈ Ci the string uw belongs to one and only one of the blocks of Π, say Cj . For any other string
v ∈ Ci, by definition we have that u ≃ v and so by right invariance it follows that uw ≃ vw. But since
uw ∈ Cj and Cj is an equivalence class we also have vw ∈ Cj . This proves the first claim.

We also claim that for every w ∈ Σ∗ and every block Ci,

C1w ⊆ Ci iff w ∈ Ci.

If C1w ⊆ Ci then it follows that ǫw = w ∈ Ci since C1 = [ǫ]. Conversely, if w ∈ Ci then for any v ∈ C1 = [ǫ]
since ǫ ≃ v. By right invariance we have w ≃ vw and therefore vw ∈ Ci, which shows that C1w ⊆ Ci.

For every class Ci, let
Di = ({1, . . . , n}, Σ, δ, 1, {i}),

where δ(i, a) = j iff Cia ⊆ Cj .

Using claims 1 and 2 it is immediately verified that L(Di) = Ci, proving that every block Ci is a regular
language.

In general it is false that Cia = Cj for some block Cj . We can only claim that Cia ⊆ Cj .

We can combine lemma 1.12.2 and lemma 1.12.3 to get the following characterization of a regular language
due to Myhill and Nerode.

Theorem 1.12.4 A language L (over an alphabet Σ) is a regular language iff it is the union of some of the
equivalence classes of an equivalence relation ≃ on Σ∗ which is right-invariant and has finite index.

Theorem 1.12.4 can also be used to prove that certain languages are not regular. As an example we prove
that L = {anbn | n ≥ 1} is not regular.

Assume that L is regular. Then there is some equivalence relation ≃ which is right-invariant and of finite
index which has the property that L is the union of some of the classes of ≃. Since the set

{a, aa, aaa, . . . , ai, . . .}
is infinite and ≃ has a finite number of classes, two of these strings must belong to the same class. This
means that ai ≃ aj for some i 6= j. But ≃ is right invariant so by concatenating with bi on the right we
have that aibi ≃ ajbi for some i 6= j. However aibi ∈ L and since L is the union of classes of ≃ we also have
ajbi ∈ L for i 6= j, which is absurd, given the definition of L. Therefore L is not regular.

Another useful tool for proving that languages are not regular is the so-called pumping lemma.
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Lemma 1.12.5 Given any DFA D = (Q, Σ, δ, q0, F ) where Q has m states, for every w ∈ Σ∗, if w ∈ L(D)
and |w| ≥ m then there exists a decomposition of w as w = uxv, where

• x 6= ǫ,

• uxiv ∈ L(D), for all i ≥ 0, and

• |ux| ≤ m.

Proof . Let w = w1 . . . wn. Since |w| ≥ m, we have n ≥ m. Since w ∈ L(D), let

(q0, q1, . . . , qn),

be the sequence of states in the accepting computation of w (where qn ∈ F ). Consider the subsequence

(q0, q1, . . . , qm).

This sequence contains m + 1 states, but there are only m states in Q and thus we have qi = qj , for some
i, j such that 0 ≤ i < j ≤ m. Letting u = w1 . . . wi, x = wi+1 . . . wj and v = wj+1 . . . wn it is clear that the
conditions of the lemma hold.

The reader is urged to use the pumping lemma to prove that L = {anbn | n ≥ 1} is not regular. The
usefulness of the condition |ux| ≤ m lies in the fact that it reduces the number of legal decompositions uxv
of w.

We now consider an equivalence relation associated with a language L.

Exercises

1 Let D = (Q, Σ, δ, q0, F ) be a DFA. Recall that a state p ∈ Q is accessible iff there is some string w ∈ Σ∗,
such that

δ∗(q0, w) = p,

i.e., there is some path from q0 to p in D. Consider the following method for computing the set Qacc of
accessible states (of D): define the sequence of sets Qi

acc ⊆ Q, where

Q0
acc = {q0},

Qi+1
acc = {q ∈ Q | ∃p ∈ Qi

acc, ∃a ∈ Σ, q = δ(p, a)}.
Let Q̄i

acc denote the set of states reachable from q0 by paths of length i.
(a) Find a regular expression denoting the set of all strings over Σ = {a, b} with no more than three a’s.
(b) Find a regular expression denoting the set of all strings over Σ = {a, b} such that the number of a’s is a
multiple of three (including 0).

2 Let D = (Q, Σ, δ, q0, F ) be a deterministic finite automaton. Define the relations ≃ and ≡ on Σ∗ as
follows:

x ≃ y if and only if, for all p ∈ Q,

δ∗(p, x) ∈ F iff δ∗(p, y) ∈ F,

and
x ≡ y if and only if, for all p ∈ Q, δ∗(p, x) = δ∗(p, y).

(a) Show that ≃ is a left-invariant equivalence relation and that ≡ is an equivalence relation that is both
left and right invariant. (A relation R on Σ∗ is left invariant iff uRv implies that wuRwv for all w ∈ Σ∗,
and R is right invariant iff uRv implies that uwRvw for all w ∈ Σ∗.)
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(b) Let n be the number of states in Q (the set of states of D). Show that ≃ has at most 2n equivalence
classes and that ≡ has at most nn equivalence classes.

(c) Given any language L ⊆ Σ∗, define the relations λL and µL on Σ∗ as follows:

u λL v iff, for all z ∈ Σ∗, zu ∈ L iff zv ∈ L,

and
u µL v iff, for all x, y ∈ Σ∗, xuy ∈ L iff xvy ∈ L.

Prove that λL is left-invariant, and that µL is left and right-invariant. Prove that if L is regular, then both
λL and µL have a finite number of equivalence classes.

Hint : Show that the number of classes of λL is at most the number of classes of ≃, and that the number of
classes of µL is at most the number of classes of ≡.

3 Let Σ = {a, b}. Classify all languages over Σ whose strings are of the form aibj.

1.13 Minimal DFAs

Given any language L (not necessarily regular), we can define an equivalence relation ρL which is right-
invariant, but not necessarily of finite index. However, when L is regular the relation ρL has finite index.
In fact, this index is the size of a smallest DFA accepting L. This will lead us to a method for constructing
minimal DFA’s.

Definition 1.13.1 Given any language L (over Σ), we define the relation ρL on Σ∗ as follows: for any two
strings u, v ∈ Σ∗,

uρLv iff ∀w ∈ Σ∗(uw ∈ L iff vw ∈ L).

We leave as an easy exercise to prove that ρL is an equivalence relation which is right-invariant. It is clear
that L is the union of the equivalence classes of strings in L. When L is regular we have the following
remarkable result.

Lemma 1.13.2 If L is a regular language and D = (Q, Σ, δ, q0, F ) an (accessible) DFA such that L = L(D)
then ρL is a right-invariant equivalence relation and we have ≃D ⊆ ρL. Furthermore, if ρL has m classes
and Q has n states then m ≤ n.

Proof . By definition, u ≃D v iff δ∗(q0, u) = δ∗(q0, v). Since w ∈ L(D) iff δ∗(q0, w) ∈ F , the fact that uρLv
can be expressed as

∀w ∈ Σ∗(uw ∈ L iff vw ∈ L), iff,

∀w ∈ Σ∗(δ∗(q0, uw) ∈ F iff δ∗(q0, vw) ∈ F ), iff

∀w ∈ Σ∗(δ∗(δ∗(q0, u), w) ∈ F iff δ∗(δ∗(q0, v), w) ∈ F ),

and if δ∗(q0, u) = δ∗(q0, v), this shows that uρLv. Since the number of classes of ≃D is n and ≃D ⊆ ρL it
follows that the equivalence relation ρL has fewer classes than ≃D and m ≤ n.

Lemma 1.13.2 shows that when L is regular the index m of ρL is finite and it is a lower bound on the size
of all DFA’s accepting L. It remains to show that a DFA with m states accepting L exists. However, going
back to the proof of lemma 1.12.3 starting with the right-invariant equivalence relation ρL of finite index m,
if L is the union of the classes Ci1 , . . . , Cik

, then the DFA

DρL
= ({1, . . . , m}, Σ, δ, 1, {i1, . . . , ik}),
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where δ(i, a) = j iff Cia ⊆ Cj , is such that L = L(DρL
). Thus DρL

is a minimal DFA accepting L.

In the next section we give an algorithm which allows us to find DρL
given any DFA D accepting L. This

algorithms finds which states of D are equivalent.

Exercises

1 The existence of a minimal DFA follows immediately from the well-ordering of the natural numbers. The
point of the previous section is the construction given for a minimal DFA. In fact, this DFA is unique up to
isomorphism.

(i) Show that if D is minimal and L = L(D) then ρL =≃D.
(ii) Use (i) to show that a minimal DFA is unique up to isomorphism.
(iii) Show that if D is minimal and L(D̃) = L(D) then D is the homomorphic image of D̃.

1.14 State Equivalence and Minimal DFA’s

The proof of lemma 1.13.2 suggests the following definition of equivalence between states.

Definition 1.14.1 Given a DFA D = (Q, Σ, δ, q0, F ), the relation≡ on Q, called state equivalence, is defined
as follows: for all p, q ∈ Q,

p ≡ q iff ∀w ∈ Σ∗(δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F ).

When p ≡ q we say that p and q are indistinguishable.

It is trivial to verify that ≡ is an equivalence relation, and that it satisfies the following property:

if p ≡ q then δ(p, a) ≡ δ(q, a),

for all a ∈ Σ. The following lemma shows the relationship between ρL and ≡.

Lemma 1.14.2 For any (accessible) DFA D = (Q, Σ, δ, q0, F ) accepting the regular language L = L(D),
the function ϕ: Σ∗ → Q defined such that

ϕ(u) = δ∗(q0, u)

induces a bijection ϕ̂: Σ∗/ρL → Q/ ≡, defined such that

ϕ̂([u]ρL
) = [δ(q0, u)]≡.

Furthermore, we have
[u]ρL

a ⊆ [v]ρL
iff δ(ϕ(u), a) ≡ ϕ(v).

Proof . Since ϕ(u) = δ∗(q0, u) and ϕ(v) = δ∗(q0, v), the fact that ϕ(u) ≡ ϕ(v) can be expressed as

∀w ∈ Σ∗(δ∗(δ∗(q0, u), w) ∈ F iff δ∗(δ∗(q0, v), w) ∈ F ), iff

∀w ∈ Σ∗(δ∗(q0, uw) ∈ F iff δ∗(q0, vw) ∈ F ),

which is exactly uρLv. Thus, since every state in Q is accessible, we have a bijection ϕ̂: Σ∗/ρL → Q/ ≡.

Since ϕ(u) = δ∗(q0, u), we have

δ(ϕ(u), a) = δ(δ∗(q0, u), a) = δ∗(q0, ua) = ϕ(ua),
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and thus, δ(ϕ(u), a) ≡ ϕ(v) can be expressed as ϕ(ua) ≡ ϕ(v). By the previous part, this is equivalent to
uaρLv, which is equivalent to

[u]ρL
a ⊆ [v]ρL

.

Lemma 1.14.2 shows that the DFA DρL
is isomorphic to the DFA D/ ≡ obtained as the quotient of the DFA

D modulo the equivalence relation ≡ on Q. More precisely, if

D/ ≡= (Q/ ≡, Σ, δ/ ≡, [q0]≡, F/ ≡),

where
δ/ ≡ ([p]≡, a) = [δ(p, a)]≡,

then D/ ≡ is isomorphic to the minimal DFA DρL
accepting L, and thus, it is a minimal DFA accepting L.

The minimal DFA D/ ≡ is obtained by merging the states in each block of the partition Π associated with
≡, forming states corresponding to the blocks of Π, and drawing a transition on input a from a block Ci to
a block Cj of Π iff there is a transition q = δ(p, a) from any state p ∈ Ci to any state q ∈ Cj on input a.
The start state is the block containing q0, and the final states are the blocks consisting of final states.

Note that if F = ∅, then ≡ has a single block (Q), and if F = Q, then ≡ has a single block (F ). In the first
case, the minimal DFA is the one state DFA rejecting all strings. In the second case, the minimal DFA is
the one state DFA accepting all strings. When F 6= ∅ and F 6= Q, there are at least two states in Q, and ≡
also has at least two blocks, as we shall see shortly. It remains to compute ≡ explicitly. This is done using
a sequence of approximations. In view of the previous discussion, we are assuming that F 6= ∅ and F 6= Q,
which means that n ≥ 2, where n is the number of states in Q.

Definition 1.14.3 Given any DFA D = (Q, Σ, δ, q0, F ), for every i ≥ 0, the relation ≡i on Q, called i-state
equivalence, is defined as follows: for all p, q ∈ Q,

p ≡i q iff ∀w ∈ Σ∗, |w| ≤ i (δ∗(p, w) ∈ F iff δ∗(q, w) ∈ F ).

When p ≡i q, we say that p and q are i-indistinguishable.

Since we assumed that F 6= ∅ and F 6= Q, it is immediately verified that ≡0 has exactly two equivalence
classes F and Q− F , and that

≡⊆ . . . ⊆≡i+1 ⊆≡i ⊆ . . . ⊆≡1 ⊆≡0 .

If this sequence was strictly decreasing, the partition associated with ≡i+1 would contain at least one more
block than the partition associated with ≡i, and since ≡ only has finitely many blocks (at most the number
of states n in Q), there is a smallest integer, say i0, such that

≡i0+1 =≡i0 .

Furthermore, we have i0 ≤ n− 2, where n is the number of states in Q. Thus, it remains to compute ≡i+1

from ≡i, which can be done using the following lemma. The lemma will also show that

≡=≡i0 .

Lemma 1.14.4 For any (accessible) DFA D = (Q, Σ, δ, q0, F ), for all p, q ∈ Q, p ≡i+1 q iff p ≡i q and
δ(p, a) ≡i δ(q, a), for every a ∈ Σ. Furthermore, if F 6= ∅ and F 6= Q, there is a smallest integer i0 ≤ n− 2,
such that

≡i0+1 =≡i0 =≡ .
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We leave the easy proof as an exercise.

Using lemma 1.14.4, we can compute ≡ inductively, starting from ≡0 = (F, Q − F ), and computing ≡i+1

from ≡i, until the sequence of partitions associated with the ≡i stabilizes. There are a number of algorithms
for computing ≡, or to determine whether p ≡ q for some given p, q ∈ Q.

A simple method to compute ≡ is described in Hopcroft and Ullman. It consists in forming a triangular
array corresponding to all unordered pairs (p, q), with p 6= q (the rows and the columns of this triangular
array are indexed by the states in Q, where the entries are below the descending diagonal). Initially, the
entry (p, q) is marked iff p and q are not 0-equivalent, which means that p and q are not both in F . Then,
we process every unmarked entry on every row as follows: for any unmarked pair (p, q), we consider of pairs
(δ(p, a), δ(q, a)), for all a ∈ Σ. If any pair (δ(p, a), δ(q, a)) is already marked, this means that δ(p, a) and
δ(q, a) are inequivalent, and thus p and q are inequivalent, and we mark the pair (p, q). We continue in this
fashion, until at the end of a round during which all the rows are processed, nothing has changed. When the
algorithm stops, all marked pairs are inequivalent, and all unmarked pairs correspond to equivalent states.

There are ways of improving the efficiency of this algorithm, see Hopcroft and Ullman for such improvements.
Fast algorithms for testing whether p ≡ q for some given p, q ∈ Q also exist. One of these algorithms based on
“forward closures” is discussed in the exercises. Such an algorithm is related to a fast unification algorithm.

Exercises

1 The purpose of this problem is to get a fast algorithm for testing state equivalence in a DFA. Let
D = (Q, Σ, δ, q0, F ) be a deterministic finite automaton. Recall that state equivalence is the equivalence
relation ≡ on Q, defined such that,

p ≡ q iff ∀z ∈ Σ∗(δ∗(p, z) ∈ F iff δ∗(q, z) ∈ F ).

and that i-equivalence is the equivalence relation ≡i on Q, defined such that,

p ≡i q iff ∀z ∈ Σ∗, |z| ≤ i (δ∗(p, z) ∈ F iff δ∗(q, z) ∈ F ).

(i) Prove that p ≡i+1 q iff p ≡i q and δ(p, a) ≡i δ(q, a), for every a ∈ Σ. Prove that that ≡=≡i, for some
i ≤ n− 2, where n is the number of states in Q.

A relation S ⊆ Q×Q is a forward closure iff it is an equivalence relation and

(1) Whenever (p, q) ∈ S, then (δ(p, a), δ(q, a)) ∈ S, for all a ∈ Σ.

We say that a forward closure S is good iff whenever (p, q) ∈ S, then good(p, q), where good(p, q) holds iff
either both p, q ∈ F , or both p, q /∈ F .

Given any relation R ⊆ Q×Q, recall that the smallest equivalence relation R≈ containing R is the relation
(R ∪ R−1)∗ (where R−1 = {(q, p) | (p, q) ∈ R}, and (R ∪ R−1)∗ is the reflexive and transitive closure of
(R ∪R−1)). We define the sequence of relations Si ⊆ Q×Q as follows:

S0 = R≈

Si+1 = (Si ∪ {(δ(p, a), δ(q, a)) | (p, q) ∈ Si, a ∈ Σ})≈.

(ii) Prove that Si0+1 = Si0 for some least i0. Prove that Si0 is the smallest forward closure containing R.

(iii) Prove that p ≡ q iff the forward closure of the relation R = {(p, q)} is good.

Hint : First, show that p ≡ q iff good(p, q) and δ(p, a) ≡ δ(q, a) for all a ∈ Σ.
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2 A fast algorithm for computing the forward closure of the relation R = {(p, q)}, or detecting a bad
pair of states, can be obtained as follows. An equivalence relation on Q is represented by a partition Π.
Each equivalence class C in the partition is represented by a tree structure consisting of nodes and (parent)
pointers, with the pointers from the sons of a node to the node itself. The root has a null pointer. Each
node also maintains a counter keeping track of the number of nodes in the subtree rooted at that node.

Two functions union and find are defined as follows. Given a state p, find(p, Π) finds the root of the
tree containing p as a node (not necessarily a leaf). Given two root nodes p, q, union(p, q, Π) forms a new
partition by merging the two trees with roots p and q as follows: if the counter of p is smaller than that of
q, then let the root of p point to q, else let the root of q point to p.

In order to speed up the algorithm, we can modify find as follows: during a call find(p, Π), as we follow
the path from p to the root r of the tree containing p, we redirect the parent pointer of every node q on the
path from p (including p itself) to r.

Say that pair 〈p, q〉 is bad iff either both p ∈ F and q /∈ F , or both p /∈ F and q ∈ F . The function bad is
such that bad(〈p, q〉) = true if 〈p, q〉 is bad, and bad(〈p, q〉) = false otherwise.

For details of this implementation of partitions, see Fundamentals of data structures, by Horowitz and Sahni,
Computer Science press, pp. 248-256.

Then, the algorithm is as follows:

function unif [p, q, Π, dd]: flag;

begin

trans := left(dd); ff := right(dd); pq; = (p, q); st = (pq); flag = 1;

k := Length(first(trans));

while st 6= () ∧ flag 6= 0 do

uv := top(st); uu := left(uv); vv := right(uv);

pop(st);

if bad(ff, uv) = 1 then flag := 0

else

u := find(uu, Π); v := find(vv, Π);

if u 6= v then

union(u, v, Π);

for i = 1 to k do

u1 := delta(trans, uu, k − i + 1); v1 := delta(trans, vv, k − i + 1);

uv = (u1, v1); push(st, uv)

endfor

endif

endif

endwhile

end

The algorithm uses a stack st. We are assuming that the DFA dd is specified as a list of two sublists, the
fist list being a representation of the transition function, and the second one of the set of final states. The
transition function itself is a list of lists, where the i-th list represents the i-th row of the transition table for
dd. The function delta is such that delta(trans, i, j) returns the j-th state in the i-th row of the transition
table of dd. For example, we have a DFA
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dd = (((2, 3), (2, 4), (2, 3), (2, 5), (2, 3), (7, 6), (7, 8), (7, 9), (7, 6)), (5, 9)).

Implement the above algorithm, and test it at least for the above DFA dd and the pairs of states (1, 6) and
(1, 7).
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Figure 1.29: An example of node elimination. Keep in mind that if the original NFA lacks an edge between
two states, then during the node elimination process we assume that there is an edge there, but it is labeled
with the empty set. In most cases we don’t want to draw this edge in, since the picture will look like a mess.
In many cases these edges can be ignored, so we only draw it if it plays a non-trivial role in the elimination
process.
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Figure 1.30: Another example of node elimination. This example is trickier than the prior one, since some
of the nodes have many edges coming and going into them, so several triangles must be simultaneously
collapsed.
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Chapter 2

Formal Languages

2.1 A Grammar for Parsing English

The study of grammar in computer science is, of course, related to the study of the grammar of languages,
and so in some sense it’s development overlaps with the development of linguistics, a truly vast subject.
In the “primordial soup” of grammar were the parts of speech.
Once one realizes that that parts of sentences could be labeled to indicate their function, it seems natural
that one might notice that there appear to be rules dictating how these parts of speech are used. Also, if
they are used incorrectly in a sentence, a listening native speaker will say that the sentence sounds “wrong”.
As a result of having the notion of the parts of speech, it becomes possible to make a statement grammar.
For example,

In English, every sentence contains a verb.
or
A proper sentence of Martian consists of 100 nouns followed by 200 verbs and a participle.

After discovering the parts of speech the next step is to start diagramming, i.e. parsing sentences. The
formalization of this process led to the formal notion of a grammar in the 1950’s, a process which culminated
in Noam Chomsky’s classic book Syntactic structures. Chomsky is responsible for the definition of a context
free grammar, which is a mathematical way of saying how to generate the sentences of a language. A
collection of rules are given, often starting in the following way:

S −→ NP + V P

NP stands for noun phrase and V P stands for verb phase. The idea is that simple sentences consists of two
pieces, a noun phrase followed by a verb phrase. But this appears to not be very useful, since we don’t know
what noun and verb phrases are, and so how does this help to understand English grammar ? We answer
this by showing what a noun phrase may be decomposed into:

NP −→ proper noun

or
NP −→ indefinite pronoun

or
NP −→ determiner + common noun

This looks worse! It seems that more and more strange, undefined words are being introduced. Fortu-
nately, these rules eventually terminate in ‘recognizable’ words. But before we give the full set of rules that
demonstrate this, some discussion about the first rule might be helpful.
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A noun phrase is what is sounds like, namely, the generalization of what a noun is, and everyone knows that
a noun is a person, place or thing. Now admittedly, this last definition is a little shaky, since it is hard to
imagine an example of something that is not a ‘thing’ ! Nevertheless, we ask the reader to bear with us.
We would like to consider strings of words (phrases) like

The child
or
Fifteen hundred poison jelly beans
or
Those first three elements
or
Five out of every six planets
or
Somebody
or
The top of the icosahedron

to be considered as nouns, but they have all those funny modifiers in front of what we would normally call
the nouns, namely child and jelly beans. So we make up the more general category, the noun phrase. Below
we give a collection of rules for generating noun phrases, which are one-half of the rules for simplex sentences,
sometimes called minimal clauses. A minimal clause is a noun phrase followed by a verb phrase. But we
must emphasize here that these rules will sometimes generate phrases that are not standard American! In
fact, this is in some sense the entire problem of syntax in linguistics, i.e. finding a system that describes
exactly what the structure of a language is. The authors know of no way of doing this with a system like
that described below, which is an example of a context free grammar. So we have to settle for something
that will in fact generate many of the sentences that we consider to be standard American, but it will also
generate a few more. Nevertheless, such a grammar is still useful in parsing sentences, i.e. given a sentence
it can be decomposed into pieces. But it is not even clear that all sentences can be parsed. So we settle for
an approximation here, since our point is not to solve the problems of linguistics, but just to motivate our
later study of formal languages.
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s −→ np + vp

np −→ proper noun | indefinite pronoun | determiner + common noun
proper-noun −→ ∆
indefinite pronoun −→ {some-, no-, every-, any-} {-body, -one, -thing}
determiner −→ (pre-article) article (locative)
pre-article −→ quantifier (out) of (every)
quantifier −→ {number } {(a) few, some, much, many, more, most, all}
article −→ {definite, non-definite }
definite −→ {the, NEAR, FAR }
NEAR −→ {this, these }
FAR −→ {that, those }
non-definite −→ {some (or other), {a, Ø} (certain) }
locative −→ [status number dimension]
status −→ {past, present, future }
number −→ {cardinal, ordinal }
cardinal −→ {one, two, three,... }
ordinal −→ {first, second, third,..., second from the end, next to the last, last }
dimension −→ {top, bottom, right, left, front, back, middle }
common-noun −→ {count, non-count }
count −→ ∆ (plural)
non-count −→ ∆

vp −→ auxiliary {equational, nonequational (manner) } (adver(ial(s)))
auxiliary −→ tense (modal) (participle)
tense −→ {pres, past}
modal −→ {can, may, shall, will, must, (have to), be to, come to, ought to, do (to)? }
participle −→ [perfect/ progressive ]
perfect −→ have -en/d
progressive −→ be -ing
equational −→ {compula complement, attributive np(q) }
copula −→ {be, become, remain }
complement −→ {({preposition, like}) np, adj }
preposition −→ {in, out, under,over, through, across, from, to(?), towards, away(from),...}
adj −→ (intensifier) ∆
intensifier −→ {somewhat, rather, quite, very, awfully, terribly, damned }
attributive −→ {have, cost, weigh, measure}
npq −→ {two dollars, three square feet, seventeen pounds, an awful lot }
non-equational −→ {VI, VT np }
VI −→ ∆ [participle/complement]
VT −→ ∆ [participle/complement]
manner −→ adj -ly
adverb(ial(s)) −→ [place time duration frequency]
place −→ preposition np
time −→ {yesterday, today, tomorrow, then, now, in the future, three minutes ago, four years ago,... }
duration −→ { (for) two hours, (for) three years,...}
frequency −→ {twice, three times, three times a minute, often, seldom, never,...}

2.2 Context-Free Grammars

A context-free grammar basically consists of a finite set of grammar rules. In order to define grammar rules, we
assume that we have two kinds of symbols: the terminals, which are the symbols of the alphabet underlying the
languages under consideration, and the nonterminals, which behave like variables ranging over strings of terminals.
A rule is of the form A → α, where A is a single nonterminal, and the right-hand side α is a string of terminal and/or
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nonterminal symbols. As usual, first we need to define what the object is (a context-free grammar), and then we need
to explain how it is used. Unlike automata, grammars are used to generate strings, rather than recognize strings.

Definition 2.2.1 A context-free grammar (for short, CFG) is a quadruple G = (V, Σ, P, S), where

• V is a finite set of symbols called the vocabulary (or set of grammar symbols);

• Σ ⊆ V is the set of terminal symbols (for short, terminals);

• S ∈ (V − Σ) is a designated symbol called the start symbol ;

• P ⊆ (V − Σ)× V ∗ is a finite set of productions (or rewrite rules, or rules).

The set N = V − Σ is called the set of nonterminal symbols (for short, nonterminals). Thus, P ⊆ N × V ∗,
and every production 〈A, α〉 is also denoted as A→ α. A production of the form A→ ǫ is called an epsilon
rule, or null rule.

Remark : Context-free grammars are sometimes defined as G = (VN , VT , P, S). The correspondence with our
definition is that Σ = VT and N = VN , so that V = VN ∪ VT . Thus, in this other definition, it is necessary
to assume that VT ∩ VN = ∅.
Example 1. G1 = ({E, a, b}, {a, b}, E, P ), where P is the set of rules

E −→ aEb,

E −→ ab.

As we will see shortly, this grammar generates the language L1 = {anbn | n ≥ 1}, which is not regular.

Example 2. G2 = ({E, +, ∗, (, ), a}, {+, ∗, (, ), a}, E, P ), where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a.

This grammar generates a set of arithmetic expressions.

2.3 Derivations and Context-Free Languages

The productions of a grammar are used to derive strings. In this process, the productions are used as rewrite
rules. Formally, we define the derivation relation associated with a context-free grammar.

Definition 2.3.1 Given a context-free grammar G = (V, Σ, P, S), the (one-step) derivation relation =⇒G

associated with G is the binary relation =⇒G ⊆ V ∗ × V ∗ defined as follows: for all α, β ∈ V ∗, we have

α =⇒G β

iff there exist λ, ρ ∈ V ∗, and some production (A→ γ) ∈ P , such that

α = λAρ and β = λγρ.

The transitive closure of =⇒G is denoted as
+

=⇒G and the reflexive and transitive closure of =⇒G is denoted
as

∗
=⇒G.
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When the grammar G is clear from the context, we usually omit the subscript G in =⇒G,
+

=⇒G, and
∗

=⇒G.

A string α ∈ V ∗ such that S
∗

=⇒ α is called a sentential form, and a string w ∈ Σ∗ such that S
∗

=⇒ w is
called a sentence. A derivation α

∗
=⇒ β involving n steps is denoted as α

n
=⇒ β.

Note that a derivation step
α =⇒G β

is rather nondeterministic. Indeed, one can chose among various occurrences of nonterminals A in α, and
also among various productions A→ γ with left-hand side A.

For example, using the grammar G1 = ({E, a, b}, {a, b}, E, P ), where P is the set of rules

E −→ aEb,

E −→ ab,

every derivation from E is of the form

E
∗

=⇒ anEbn =⇒ anabbn = an+1bn+1,

or
E

∗
=⇒ anEbn =⇒ anaEbbn = an+1Ebn+1,

where n ≥ 0.

Grammar G1 is very simple: every string anbn has a unique derivation. This is usually not the case. For
example, using the grammar G2 = ({E, +, ∗, (, ), a}, {+, ∗, (, ), a}, E, P ), where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a,

the string a + a ∗ a has the following distinct derivations, where the boldface indicates which occurrence of
E is rewritten:

E =⇒ E ∗ E =⇒ E + E ∗ E

=⇒ a + E ∗ E =⇒ a + a ∗E =⇒ a + a ∗ a,

and

E =⇒ E + E =⇒ a + E

=⇒ a + E ∗ E =⇒ a + a ∗E =⇒ a + a ∗ a.

In the above derivations, the leftmost occurrence of a nonterminal is chosen at each step. Such derivations
are called leftmost derivations . We could systematically rewrite the rightmost occurrence of a nonterminal,
getting rightmost derivations . The string a + a ∗ a also has the following two rightmost derivations, where
the boldface indicates which occurrence of E is rewritten:

E =⇒ E + E =⇒ E + E ∗E
=⇒ E + E ∗ a =⇒ E + a ∗ a =⇒ a + a ∗ a,

and

E =⇒ E ∗E =⇒ E ∗ a

=⇒ E + E ∗ a =⇒ E + a ∗ a =⇒ a + a ∗ a.

The language generated by a context-free grammar is defined as follows.
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Definition 2.3.2 Given a context-free grammar G = (V, Σ, P, S), the language generated by G is the set

L(G) = {w ∈ Σ∗ | S +
=⇒ w}.

A language L ⊆ Σ∗ is a context-free language (for short, CFL) iff L = L(G) for some context-free grammar
G.

It is technically very useful to consider derivations in which the leftmost nonterminal is always selected for
rewriting, and dually, derivations in which the rightmost nonterminal is always selected for rewriting.

Definition 2.3.3 Given a context-free grammar G = (V, Σ, P, S), the (one-step) leftmost derivation relation
=⇒
lm

associated with G is the binary relation =⇒
lm
⊆ V ∗ × V ∗ defined as follows: for all α, β ∈ V ∗, we have

α =⇒
lm

β

iff there exist u ∈ Σ∗, ρ ∈ V ∗, and some production (A→ γ) ∈ P , such that

α = uAρ and β = uγρ.

The transitive closure of =⇒
lm

is denoted as
+

=⇒
lm

and the reflexive and transitive closure of =⇒
lm

is denoted as

∗
=⇒
lm

. The (one-step) rightmost derivation relation =⇒
rm

associated with G is the binary relation =⇒
rm
⊆ V ∗×V ∗

defined as follows: for all α, β ∈ V ∗, we have
α =⇒

rm
β

iff there exist λ ∈ V ∗, v ∈ Σ∗, and some production (A→ γ) ∈ P , such that

α = λAv and β = λγv.

The transitive closure of =⇒
rm

is denoted as
+

=⇒
rm

and the reflexive and transitive closure of =⇒
rm

is denoted

as
∗

=⇒
rm

.

Remarks : It is customary to use the symbols a, b, c, d, e for terminal symbols, and the symbols A, B, C, D, E
for nonterminal symbols. The symbols u, v, w, x, y, z denote terminal strings, and the symbols α, β, γ, λ, ρ, µ
denote strings in V ∗. The symbols X, Y, Z usually denote symbols in V .

Given a context-free grammar G = (V, Σ, P, S), parsing a string w consists in finding out whether w ∈ L(G),
and if so, in producing a derivation for w. The following lemma is technically very important. It shows that
leftmost and rightmost derivations are “universal”. This has some important practical implications for the
complexity of parsing algorithms.

Lemma 2.3.4 Let G = (V, Σ, P, S) be a context-free grammar. For every w ∈ Σ∗, for every derivation

S
+

=⇒ w, there is a leftmost derivation S
+

=⇒
lm

w, and there is a rightmost derivation S
+

=⇒
rm

w.

Proof . Of course, we have to somehow use induction on derivations, but this is a little tricky, and it is
necessary to prove a stronger fact. We treat leftmost derivations, rightmost derivations being handled in a
similar way.

Claim: For every w ∈ Σ∗, for every α ∈ V +, if α
n

=⇒ w, then there is a leftmost derivation α
n

=⇒
lm

w.

The claim is proved by induction on n.
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For n = 1, there exist some λ, ρ ∈ V ∗ and some production A → γ, such that α = λAρ and w = λγρ.
Since w is a terminal string, λ, ρ, and γ, are terminal strings. Thus, A is the only nonterminal in α, and the

derivation step α
1

=⇒ w is a leftmost step (and a rightmost step!).

If n > 1, then the derivation α
n

=⇒ w is of the form

α =⇒ α1
n−1
=⇒ w.

There are two sub-cases.

Case 1. If the derivation step α =⇒ α1 is a leftmost step α =⇒
lm

α1, by the induction hypothesis, there is a

leftmost derivation α1
n−1
=⇒
lm

w, and we get the leftmost derivation

α =⇒
lm

α1
n−1
=⇒
lm

w.

Case 2. The derivation step α =⇒ α1 is a not a leftmost step. In this case, there must be some u ∈ Σ∗,
µ, ρ ∈ V ∗, some nonterminals A and B, and some production B → δ, such that

α = uAµBρ and α1 = uAµδρ,

where A is the leftmost nonterminal in α. Since we have a derivation α1
n−1
=⇒ w of length n − 1, by the

induction hypothesis, there is a leftmost derivation

α1
n−1
=⇒
lm

w.

Since α1 = uAµδρ where A is the leftmost terminal in α1, the first step in the leftmost derivation α1
n−1
=⇒
lm

w

is of the form
uAµδρ =⇒

lm
uγµδρ,

for some production A→ γ. Thus, we have a derivation of the form

α = uAµBρ =⇒ uAµδρ =⇒
lm

uγµδρ
n−2
=⇒
lm

w.

We can commute the first two steps involving the productions B → δ and A→ γ, and we get the derivation

α = uAµBρ =⇒
lm

uγµBρ =⇒ uγµδρ
n−2
=⇒
lm

w.

This may no longer be a leftmost derivation, but the first step is leftmost, and we are back in case 1. Thus,

we conclude by applying the induction hypothesis to the derivation uγµBρ
n−1
=⇒ w, as in case 1.

Lemma 2.3.4 implies that

L(G) = {w ∈ Σ∗ | S +
=⇒
lm

w} = {w ∈ Σ∗ | S +
=⇒
rm

w}.

We observed that if we consider the grammar G2 = ({E, +, ∗, (, ), a}, {+, ∗, (, ), a}, E, P ), where P is the set
of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a,
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the string a + a ∗ a has the following two distinct leftmost derivations, where the boldface indicates which
occurrence of E is rewritten:

E =⇒ E ∗ E =⇒ E + E ∗ E

=⇒ a + E ∗ E =⇒ a + a ∗E =⇒ a + a ∗ a,

and

E =⇒ E + E =⇒ a + E

=⇒ a + E ∗ E =⇒ a + a ∗E =⇒ a + a ∗ a.

When this happens, we say that we have an ambiguous grammars. In some cases, it is possible to modify a
grammar to make it unambiguous. For example, the grammar G2 can be modified as follows.

Let G3 = ({E, T, F, +, ∗, (, ), a}, {+, ∗, (, ), a}, E, P ), where P is the set of rules

E −→ E + T,

E −→ T,

T −→ T ∗ F,

T −→ F,

F −→ (E),

F −→ a.

We leave as an exercise to show that L(G3) = L(G2), and that every string in L(G3) has a unique derivation.
Unfortunately, it is not always possible to modify a context-free grammar to make it unambiguous. There
exist context-free languages that have no unambiguous context-free grammars. For example, it can be shown
that

L3 = {ambmcn | m, n ≥ 1} ∪ {ambncn | m, n ≥ 1}
is context-free, but has no unambiguous grammars. All this motivates the following definition.

Definition 2.3.5 A context-free grammar G = (V, Σ, P, S) is ambiguous if there is some string w ∈ L(G)
that has two distinct leftmost derivations (or two distinct rightmost derivations). Thus, a grammar G is
unambiguous if every string w ∈ L(G) has a unique leftmost derivation (or a unique rightmost derivation).
A context-free language L is inherently ambiguous if every CFG G for L is ambiguous.

Whether or not a grammar is ambiguous affects the complexity of parsing. Parsing algorithms for unam-
biguous grammars are more efficient than parsing algorithms for ambiguous grammars.

We now consider various normal forms for context-free grammars.

2.4 Normal Forms for Context-Free Grammars, Chomsky Normal
Form

One of the main goals of this section is to show that every CFG G can be converted to an equivalent grammar
in Chomsky Normal Form (for short, CNF). A context-free grammar G = (V, Σ, P, S) is in Chomsky Normal
Form iff its productions are of the form

A→ BC,

A→ a, or

S → ǫ,
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where A, B, C ∈ N , a ∈ Σ, S → ǫ is in G iff ǫ ∈ L(G), and S does not occur on the right-hand side of any
production.

Note that a grammar in Chomsky Normal Form does not have ǫ-rules, i.e., rules of the form A→ ǫ, except
when ǫ ∈ L(G), in which case S → ǫ is the only ǫ-rule. It also does not have chain rules , i.e., rules of the
form A→ B, where A, B ∈ N . Thus, in order to convert a grammar to Chomsky Normal Form, we need to
show how to eliminate ǫ-rules and chain rules. This is not the end of the story, since we may still have rules
of the form A → α where either |α| ≥ 3 or |α| ≥ 2 and α contains terminals. However, dealing with such
rules is a simple recoding matter, and we first focus on the elimination of ǫ-rules and chain rules. It turns
out that ǫ-rules must be eliminated first.

The first step to eliminate ǫ-rules is to compute the set E(G) of erasable (or nullable) nonterminals

E(G) = {A ∈ N | A +
=⇒ ǫ}.

The set E(G) is computed using a sequence of approximations Ei defined as follows:

E0 = {A ∈ N | (A→ ǫ) ∈ P},
Ei+1 = Ei ∪ {A | ∃(A→ B1 . . . Bj . . . Bk) ∈ P, Bj ∈ Ei, 1 ≤ j ≤ k}.

Clearly, the Ei form an ascending chain

E0 ⊆ E1 ⊆ · · · ⊆ Ei ⊆ Ei+1 ⊆ · · · ⊆ N,

and since N is finite, there is a least i, say i0, such that Ei0 = Ei0+1. We claim that E(G) = Ei0 . Actually,
we prove the following lemma.

Lemma 2.4.1 Given any context-free grammar G = (V, Σ, P, S), one can construct a context-free grammar
G′ = (V ′, Σ, P ′, S′) such that:

(1) L(G′) = L(G);

(2) P ′ contains no ǫ-rules other than S′ → ǫ, and S′ → ǫ ∈ P ′ iff ǫ ∈ L(G);

(3) S′ does not occur on the right-hand side of any production in P ′.

Proof . We begin by proving that E(G) = Ei0 . For this, we prove that E(G) ⊆ Ei0 and Ei0 ⊆ E(G).

To prove that Ei0 ⊆ E(G), we proceed by induction on i. Since E0 = {A ∈ N | (A → ǫ) ∈ P}, we have

A
1

=⇒ ǫ, and thus A ∈ E(G). By the induction hypothesis, Ei ⊆ E(G). If A ∈ Ei+1, either A ∈ Ei and then
A ∈ E(G), or there is some production (A → B1 . . . Bj . . . Bk) ∈ P , such that Bj ∈ Ei for all j, 1 ≤ j ≤ k.

By the induction hypothesis, Bj
+

=⇒ ǫ for each j, 1 ≤ j ≤ k, and thus

A =⇒ B1 . . . Bj . . . Bk
+

=⇒ B2 . . . Bj . . . Bk
+

=⇒ Bj . . . Bk
+

=⇒ ǫ,

which shows that A ∈ E(G).

To prove that E(G) ⊆ Ei0 , we also proceed by induction, but on the length of a derivation A
+

=⇒ ǫ. If

A
1

=⇒ ǫ, then A→ ǫ ∈ P , and thus A ∈ E0 since E0 = {A ∈ N | (A→ ǫ) ∈ P}. If A
n+1
=⇒ ǫ, then

A =⇒ α
n

=⇒ ǫ,

for some production A → α ∈ P . If α contains terminals of nonterminals not in E(G), it is impossible to
derive ǫ from α, and thus, we must have α = B1 . . . Bj . . . Bk, with Bj ∈ E(G), for all j, 1 ≤ j ≤ k. However,

63



Bj

nj

=⇒ ǫ where nj ≤ n, and by the induction hypothesis, Bj ∈ Ei0 . But then, we get A ∈ Ei0+1 = Ei0 , as
desired.

Having shown that E(G) = Ei0 , we construct the grammar G′. Its set of production P ′ is defined as follows.
First, we create the production S′ → S where S′ /∈ V , to make sure that S′ does not occur on the right-hand
side of any rule in P ′. Let

P1 = {A→ α | α ∈ V +} ∪ {S′ → S},
and let P2 be the set of productions

P2 = {A→ α1α2 . . . αkαk+1 | ∃α1 ∈ V ∗, . . . ,∃αk+1 ∈ V ∗, ∃B1 ∈ E(G), . . . ,∃Bk ∈ E(G)

A→ α1B1α2 . . . αkBkαk+1 ∈ P, k ≥ 1, α1 . . . αk+1 6= ǫ}.

Note that ǫ ∈ L(G) iff S ∈ E(G). If S /∈ E(G), then let P ′ = P1 ∪ P2, and if S ∈ E(G), then let
P ′ = P1 ∪ P2 ∪ {S′ → ǫ}. We claim that L(G′) = L(G), which is proved by showing that every derivation
using G can be simulated by a derivation using G′, and vice-versa. All the conditions of the lemma are now
met.

¿From a practical point of view, the construction or lemma 2.4.1 is very costly. For example, given a grammar
containing the productions

S → ABCDEF,

A→ ǫ,

B → ǫ,

C → ǫ,

D → ǫ,

E → ǫ,

F → ǫ,

. . .→ . . . ,

eliminating ǫ-rules will create 26 − 1 = 63 new rules corresponding to the 63 nonempty subsets of the set
{A, B, C, D, E, F}. We now turn to the elimination of chain rules.

It turns out that matters are greatly simplified if we first apply lemma 2.4.1 to the input grammar G, and
we explain the construction assuming that G = (V, Σ, P, S) satisfies the conditions of lemma 2.4.1. For every
nonterminal A ∈ N , we define the set

IA = {B ∈ N | A +
=⇒ B}.

The sets IA are computed using approximations IA,i defined as follows:

IA,0 = {B ∈ N | (A→ B) ∈ P},
IA,i+1 = IA,i ∪ {C ∈ N | ∃(B → C) ∈ P, and B ∈ IA,i}.

Clearly, for every A ∈ N , the IA,i form an ascending chain

IA,0 ⊆ IA,1 ⊆ · · · ⊆ IA,i ⊆ IA,i+1 ⊆ · · · ⊆ N,

and since N is finite, there is a least i, say i0, such that IA,i0 = IA,i0+1. We claim that IA = IA,i0 . Actually,
we prove the following lemma.

Lemma 2.4.2 Given any context-free grammar G = (V, Σ, P, S), one can construct a context-free grammar
G′ = (V ′, Σ, P ′, S′) such that:
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(1) L(G′) = L(G);

(2) Every rule in P ′ is of the form A→ α where |α| ≥ 2, or A→ a where a ∈ Σ, or S′ → ǫ iff ǫ ∈ L(G);

(3) S′ does not occur on the right-hand side of any production in P ′.

Proof . First, we apply lemma 2.4.1 to the grammar G, obtaining a grammar G1 = (V1, Σ, S1, P1). The
proof that IA = IA,i0 is similar to the proof that E(G) = Ei0 . First, we prove that IA,i ⊆ IA by induction
on i. This is straightforward. Next, we prove that IA ⊆ IA,i0 by induction on derivations of the form

A
+

=⇒ B. In this part of the proof, we use the fact that G1 has no ǫ-rules except perhaps S1 → ǫ, and that

S1 does not occur on the right-hand side of any rule. This implies that a derivation A
n+1
=⇒ C is necessarily

of the form A
n

=⇒ B =⇒ C for some B ∈ N . Then, in the induction step, we have B ∈ IA,i0 , and thus
C ∈ IA,i0+1 = IA,i0 .

We now define the following sets of rules. Let

P2 = P1 − {A→ B | A→ B ∈ P1},
and let

P3 = {A→ α | B → α ∈ P1, α /∈ N1, B ∈ IA}.
We claim that G′ = (V1, Σ, P2 ∪ P3, S1) satisfies the conditions of the lemma. For example, S1 does not
appear on the right-hand side of any production, since the productions in P3 have right-hand sides from P1,
and S1 does not appear on the right-hand side in P1. It is also easily shown that L(G′) = L(G1) = L(G).

Let us apply the method of lemma 2.4.2 to the grammar

G3 = ({E, T, F, +, ∗, (, ), a}, {+, ∗, (, ), a}, E, P ),

where P is the set of rules

E −→ E + T,

E −→ T,

T −→ T ∗ F,

T −→ F,

F −→ (E),

F −→ a.

We get IE = {T, F}, IT = {F}, and IF = ∅. The new grammar G′
3 has the set of rules

E −→ E + T,

E −→ T ∗ F,

E −→ (E),

E −→ a,

T −→ T ∗ F,

T −→ (E),

T −→ a,

F −→ (E),

F −→ a.

At this stage, the grammar obtained in lemma 2.4.2 no longer has ǫ-rules (except perhaps S′ → ǫ iff ǫ ∈ L(G))
or chain rules. However, it may contain rules A → α with |α| ≥ 3, or with |α| ≥ 2 and where α contains
terminals(s). To obtain the Chomsky Normal Form. we need to eliminate such rules. This is not difficult,
but notationally a bit messy.
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Lemma 2.4.3 Given any context-free grammar G = (V, Σ, P, S), one can construct a context-free grammar
G′ = (V ′, Σ, P ′, S′) such that L(G′) = L(G) and G′ is in Chomsky Normal Form, that is, a grammar whose
productions are of the form

A→ BC,

A→ a, or

S′ → ǫ,

where A, B, C ∈ N ′, a ∈ Σ, S′ → ǫ is in G′ iff ǫ ∈ L(G), and S′ does not occur on the right-hand side of
any production in P ′.

Proof . First, we apply lemma 2.4.2, obtaining G1. Let Σr be the set of terminals occurring on the right-hand
side of rules A→ α ∈ P1, with |α| ≥ 2. For every a ∈ Σr, let Xa be a new nonterminal not in V1. Let

P2 = {Xa → a | a ∈ Σr}.

Let P1,r be the set of productions
A→ α1a1α2 · · ·αkakαk+1,

where a1, . . . , ak ∈ Σr and αi ∈ N∗
1 . For every production

A→ α1a1α2 · · ·αkakαk+1

in P1,r, let
A→ α1Xa1

α2 · · ·αkXak
αk+1

be a new production, and let P3 be the set of all such productions. Let P4 = (P1 − P1,r) ∪ P2 ∪ P3. Now,
productions A → α in P4 with |α| ≥ 2 do not contain terminals. However, we may still have productions
A → α ∈ P4 with |α| ≥ 3. We can perform some recoding using some new nonterminals. For every
production of the form

A→ B1 · · ·Bk,

where k ≥ 3, create the new nonterminals

[B1 · · ·Bk−1], [B1 · · ·Bk−2], · · · , [B1B2B3], [B1B2],

and the new productions

A→ [B1 · · ·Bk−1]Bk,

[B1 · · ·Bk−1]→ [B1 · · ·Bk−2]Bk−1,

· · · → · · · ,
[B1B2B3]→ [B1B2]B3,

[B1B2]→ B1B2.

All the productions are now in Chomsky Normal Form, and it is clear that the same language is generated.

Applying the first phase of the method of lemma 2.4.3 to the grammar G′
3, we get the rules

E −→ EX+T,

E −→ TX∗F,

E −→ X(EX),

E −→ a,
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T −→ TX∗F,

T −→ X(EX),

T −→ a,

F −→ X(EX),

F −→ a,

X+ −→ +,

X∗ −→ ∗,
X( −→ (,

X) −→).

After applying the second phase of the method, we get the following grammar in Chomsky Normal Form:

E −→ [EX+]T,

[EX+] −→ EX+,

E −→ [TX∗]F,

[TX∗] −→ TX∗,

E −→ [X(E]X),

[X(E] −→ X(E,

E −→ a,

T −→ [TX∗]F,

T −→ [X(E]X),

T −→ a,

F −→ [X(E]X),

F −→ a,

X+ −→ +,

X∗ −→ ∗,
X( −→ (,

X) −→).

For large grammars, it is often convenient to use the abbreviation which consists in grouping productions
having a common left-hand side, and listing the right-hand sides separated by the symbol |. Thus, a group
of productions

A→ α1,

A→ α2,

· · · → · · · ,
A→ αk,

may be abbreviated as
A→ α1 | α2 | · · · | αk.

An interesting corollary of the CNF is the following decidability result. There is an algorithm which, given
any context-free grammar G, given any string w ∈ Σ∗, decides whether w ∈ L(G). Indeed, we first convert
G to a grammar G′ in Chomsky Normal Form. If w = ǫ, we can test whether ǫ ∈ L(G), since this is the case
iff S′ → ǫ ∈ P ′. If w 6= ǫ, letting n = |w|, note that since the rules are of the form A→ BC or A→ a, where
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a ∈ Σ, any derivation for w has n− 1 + n = 2n− 1 steps. Thus, we enumerate all (leftmost) derivations of
length 2n− 1.

There are much better parsing algorithms than this naive algorithm. We now show that every regular
language is context-free.

2.5 Regular Languages are Context-Free

The regular languages can be characterized in terms of very special kinds of context-free grammars, right-
linear (and left-linear) context-free grammars.

Definition 2.5.1 A context-free grammar G = (V, Σ, P, S) is left-linear iff its productions are of the form

A→ Ba,

A→ a,

A→ ǫ.

where A, B ∈ N , and a ∈ Σ. A context-free grammar G = (V, Σ, P, S) is right-linear iff its productions are
of the form

A→ aB,

A→ a,

A→ ǫ.

where A, B ∈ N , and a ∈ Σ.

The following lemma shows the equivalence between NFA’s and right-linear grammars.

Lemma 2.5.2 A language L is regular if and only if is it generated by some right-linear grammar.

Proof . Let L = L(D) for some DFA D = (Q, Σ, δ, q0, F ). We construct a right-linear grammar G as follows.
Let V = Q ∪ Σ, S = q0, and let P be defined as follows:

P = {p→ aq | q = δ(p, a), p, q ∈ Q, a ∈ Σ} ∪ {p→ ǫ | p ∈ F}.
It is easily shown by induction on the length of w that

p
∗

=⇒ wq iff q = δ∗(p, w),

and thus, L(D) = L(G).

Conversely, let G = (V, Σ, P, S) be a right-linear grammar. First, let G = (V ′, Σ, P ′, S) be the right-linear
grammar obtained from G by adding the new terminal E to N , replacing every rule in P of the form A→ a
where a ∈ Σ by the rule A→ aE, and adding the rule E → ǫ. It is immediately verified that L(G′) = L(G).
Next, we construct the NFA M = (Q, Σ, δ, q0, F ) as follows: Q = N ′, q0 = S, F = {A ∈ N ′ | A→ ǫ}, and

δ(A, a) = {B ∈ N | A→ aB ∈ P ′},
for all A ∈ N ′ and all a ∈ Σ. It is easily shown by induction on the length of w that

A
∗

=⇒ wB iff B ∈ δ∗(A, w),

and thus, L(M) = L(G′) = L(G).

A similar lemma holds for left-linear grammars. It is also easily shown that the regular languages are exactly
the languages generated by context-free grammars whose rules are of the form

A→ Bu,

A→ u,

where A, B ∈ N , and u ∈ Σ∗.
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2.6 Useless Productions in Context-Free Grammars

Given a context-free grammar G = (V, Σ, P, S), it may contain rules that are useless for a number of reasons.
For example, consider the grammar G3 = ({E, A, a, b}, {a, b}, E, P ), where P is the set of rules

E −→ aEb,

E −→ ab,

E −→ A,

A −→ bAa.

The problem is that the nonterminal A does not derive any terminal strings, and thus, it is useless, as well as
the last two productions. Let us now consider the grammar G4 = ({E, A, a, b, c, d}, {a, b, c, d}, E, P ), where
P is the set of rules

E −→ aEb,

E −→ ab,

A −→ cAd,

A −→ cd.

This time, the nonterminal A generates strings of the form cndn, but there is no derivation E
+

=⇒ α from
E where A occurs in α. The nonterminal A is not connected to E, and the last two rules are useless.
Fortunately, it is possible to find such useless rules, and to eliminate them.

Let T (G) be the set of nonterminals that actually derive some terminal string, i.e.

T (G) = {A ∈ (V − Σ) | ∃w ∈ Σ∗, A =⇒+ w}.
The set T (G) can be defined by stages. We define the sets Tn (n ≥ 1) as follows:

T1 = {A ∈ (V − Σ) | ∃(A −→ w) ∈ P, with w ∈ Σ∗},
and

Tn+1 = Tn ∪ {A ∈ (V − Σ) | ∃(A −→ β) ∈ P, with β ∈ (Tn ∪ Σ)∗}.
It is easy to prove that there is some least n such that Tn+1 = Tn, and that for this n, T (G) = Tn.

If S /∈ T (G), then L(G) = ∅, and G is equivalent to the trivial grammar

G′ = ({S}, Σ, ∅, S).

If S ∈ T (G), then let U(G) be the set of nonterminals that are actually useful, i.e.,

U(G) = {A ∈ T (G) | ∃α, β ∈ (T (G) ∪ Σ)∗, S =⇒∗ αAβ}.
The set U(G) can also be computed by stages. We define the sets Un (n ≥ 1) as follows:

U1 = {A ∈ T (G) | ∃(S −→ αAβ) ∈ P, with α, β ∈ (T (G) ∪Σ)∗},
and

Un+1 = Un ∪ {B ∈ T (G) | ∃(A −→ αBβ) ∈ P, with A ∈ Un, α, β ∈ (T (G) ∪ Σ)∗}.
It is easy to prove that there is some least n such that Un+1 = Un, and that for this n, U(G) = Un ∪ {S}.
Then, we can use U(G) to transform G into an equivalent CFG in which every nonterminal is useful (i.e.,
for which V − Σ = U(G)). Indeed, simply delete all rules containing symbol not in U(G). The details are
left as an exercise.

It should be noted than although dull, the above considerations are important in practice. Certain algorithms
for constructing parsers, for example, LR-parsers, may loop if useless rules are not eliminated!

We now consider another normal form for context-free grammars, the Greibach Normal Form.
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2.7 The Greibach Normal Form

Every CFG G can also be converted to an equivalent grammar in Greibach Normal Form (for short, GNF).
A context-free grammar G = (V, Σ, P, S) is in Greibach Normal Form iff its productions are of the form

A→ aBC,

A→ aB,

A→ a, or

S → ǫ,

where A, B, C ∈ N , a ∈ Σ, S → ǫ is in G iff ǫ ∈ L(G), and S does not occur on the right-hand side of any
production.

Note that a grammar in Greibach Normal Form does not have ǫ-rules other than possibly S → ǫ. More
importantly, except for the special rule S → ǫ, every rule produces some terminal symbol.

An important consequence of the Greibach Normal Form is that every nonterminal is not left recursive. A

nonterminal A is left recursive iff A
+

=⇒ Aα for some α ∈ V ∗. Left recursive nonterminals cause top-down
deterministic parsers to loop. The Greibach Normal Form provides a way of avoiding this problem.

There are no easy proofs that every CFG can be converted to a Greibach Normal Form. A particularly
elegant method due to Rosenkrantz using least fixed-points and matrices will be given in section 2.10.

Lemma 2.7.1 Given any context-free grammar G = (V, Σ, P, S), one can construct a context-free grammar
G′ = (V ′, Σ, P ′, S′) such that L(G′) = L(G) and G′ is in Greibach Normal Form, that is, a grammar whose
productions are of the form

A→ aBC,

A→ aB,

A→ a, or

S′ → ǫ,

where A, B, C ∈ N ′, a ∈ Σ, S′ → ǫ is in G′ iff ǫ ∈ L(G), and S′ does not occur on the right-hand side of
any production in P ′.

2.8 Least Fixed-Points

Context-free languages can also be characterized as least fixed-points of certain functions induced by gram-
mars. This characterization yields a rather quick proof that every context-free grammar can be converted to
Greibach Normal Form. This characterization also reveals very clearly the recursive nature of the context-free
languages.

We begin by reviewing what we need from the theory of partially ordered sets.

Definition 2.8.1 Given a partially ordered set 〈A,≤〉, an ω-chain (an)n≥0 is a sequence such that an ≤ an+1

for all n ≥ 0. The least-upper bound of an ω-chain (an) is an element a ∈ A such that:

(1) an ≤ a, for all n ≥ 0;

(2) For any b ∈ A, if an ≤ b, for all n ≥ 0, then a ≤ b.

A partially ordered set 〈A,≤〉 is an ω-chain complete poset iff it has a least element ⊥, and iff every ω-chain
has a least upper bound denoted as

⊔
an.
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Remark : The ω in ω-chain means that we are considering countable chains (ω is the ordinal associated
with the order-type of the set of natural numbers). This notation may seem arcane, but is standard in
denotational semantics.

For example, given any set X , the power set 2X ordered by inclusion is an ω-chain complete poset with least
element ∅. The Cartesian product 2X × · · · × 2X

︸ ︷︷ ︸
n

ordered such that

(A1, . . . , An) ≤ (B1, . . . , Bn)

iff Ai ⊆ Bi (where Ai, Bi ∈ 2X) is an ω-chain complete poset with least element (∅, . . . , ∅).
We are interested in functions between partially ordered sets.

Definition 2.8.2 Given any two partially ordered sets 〈A1,≤1〉 and 〈A2,≤2〉, a function f : A1 → A2 is
monotonic iff for all x, y ∈ A1,

x ≤1 y implies that f(x) ≤2 f(y).

If 〈A1,≤1〉 and 〈A2,≤2〉 are ω-chain complete posets, a function f : A1 → A2 is ω-continuous iff it is mono-
tonic, and for every ω-chain (an),

f(
⊔

an) =
⊔

f(an).

Remark : Note that we are not requiring that an ω-continuous function f : A1 → A2 preserve least elements,
i.e., it is possible that f(⊥1) 6=⊥2.

We now define the crucial concept of a least fixed-point.

Definition 2.8.3 Let 〈A,≤〉 be a partially ordered set, and let f : A→ A be a function. A fixed-point of f
is an element a ∈ A such that f(a) = a. The least fixed-point of f is an element a ∈ A such that f(a) = a,
and for every b ∈ A such that f(b) = b, then a ≤ b.

The following lemma gives sufficient conditions for the existence of least fixed-points. It is one of the key
lemmas in denotational semantics.

Lemma 2.8.4 Let 〈A,≤〉 be an ω-chain complete poset with least element ⊥. Every ω-continuous function
f : A→ A has a unique least fixed-point x0 given by

x0 =
⊔

fn(⊥).

Furthermore, for any b ∈ A such that f(b) ≤ b, then x0 ≤ b.

Proof . First, we prove that the sequence

⊥ , f(⊥) , f2(⊥), . . . , fn(⊥), . . .

is an ω-chain. This is shown by induction on n. Since ⊥ is the least element of A, we have ⊥≤ f(⊥).
Assuming by induction that fn(⊥) ≤ fn+1(⊥), since f is ω-continuous, it is monotonic, and thus we get
fn+1(⊥) ≤ fn+2(⊥), as desired.

Since A is an ω-chain complete poset, the ω-chain (fn(⊥)) has a least upper bound

x0 =
⊔

fn(⊥).

Since f is ω-continuous, we have

f(x0) = f(
⊔

fn(⊥)) =
⊔

f(fn(⊥)) =
⊔

fn+1(⊥) = x0,
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and x0 is indeed a fixed-point of f .

Clearly, if f(b) ≤ b implies that x0 ≤ b, then f(b) = b implies that x0 ≤ b. Thus, assume that f(b) ≤ b for
some b ∈ A. We prove by induction of n that fn(⊥) ≤ b. Indeed, ⊥≤ b, since ⊥ is the least element of A.
Assuming by induction that fn(⊥) ≤ b, by monotonicity of f , we get

f(fn(⊥)) ≤ f(b),

and since f(b) ≤ b, this yields
fn+1(⊥)) ≤ b.

Since fn(⊥) ≤ b for all n ≥ 0, we have

x0 =
⊔

fn(⊥) ≤ b.

The second part of lemma 2.8.4 is very useful to prove that functions have the same least fixed-point. For
example, under the conditions of lemma 2.8.4, if g: A → A is another ω-chain continuous function, letting
x0 be the least fixed-point of f and y0 be the least fixed-point of g, if f(y0) ≤ y0 and g(x0) ≤ x0, we can
deduce that x0 = y0. Indeed, since f(y0) ≤ y0 and x0 is the least fixed-point of f , we get x0 ≤ y0, and since
g(x0) ≤ x0 and y0 is the least fixed-point of g, we get y0 ≤ x0, and therefore x0 = y0.

Lemma 2.8.4 also shows that the least fixed-point x0 of f can be approximated as much as desired, using
the sequence (fn(⊥)). We will now apply this fact to context-free grammars. For this, we need to show how
a context-free grammar G = (V, Σ, P, S) with m nonterminals induces an ω-continuous map

ΦG: 2Σ∗ × · · · × 2Σ∗

︸ ︷︷ ︸
m

→ 2Σ∗ × · · · × 2Σ∗

︸ ︷︷ ︸
m

.

2.9 Context-Free Languages as Least Fixed-Points

Given any context-free grammar G = (V, Σ, P, S) with m nonterminals A1, . . . Am, grouping all the produc-
tions having the same left-hand side, the grammar G can be concisely written as

A1 → α1,1 + · · ·+ α1,n1
,

· · · → · · ·
Ai → αi,1 + · · ·+ αi,ni

,

· · · → · · ·
Am → αm,1 + · · ·+ αm,nn

.

Given any set A, let Pfin(A) be the set of finite subsets of A.

Definition 2.9.1 Let G = (V, Σ, P, S) be a context-free grammar with m nonterminals A1, . . ., Am. For
any m-tuple Λ = (L1, . . . , Lm) of languages Li ⊆ Σ∗, we define the function

Φ[Λ]:Pfin(V ∗)→ 2Σ∗

inductively as follows:

Φ[Λ](∅) = ∅,
Φ[Λ]({ǫ}) = {ǫ},
Φ[Λ]({a}) = {a}, if a ∈ Σ,

Φ[Λ]({Ai}) = Li, if Ai ∈ N ,

Φ[Λ]({αX}) = Φ[Λ]({α})Φ[Λ]({X}), if α ∈ V +, X ∈ V,

Φ[Λ](S ∪ {α}) = Φ[Λ](S) ∪ Φ[Λ]({α}), if S ∈ Pfin(V ∗), S 6= ∅, α ∈ V ∗, α /∈ S.
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Then, writing the grammar G as

A1 → α1,1 + · · ·+ α1,n1
,

· · · → · · ·
Ai → αi,1 + · · ·+ αi,ni

,

· · · → · · ·
Am → αm,1 + · · ·+ αm,nn

,

we define the map
ΦG: 2Σ∗ × · · · × 2Σ∗

︸ ︷︷ ︸
m

→ 2Σ∗ × · · · × 2Σ∗

︸ ︷︷ ︸
m

such that
ΦG(L1, . . . Lm) = (Φ[Λ]({α1,1, . . . , α1,n1

}), . . . , Φ[Λ]({αm,1, . . . , αm,nm
}))

for all Λ = (L1, . . . , Lm) ∈ 2Σ∗ × · · · × 2Σ∗

︸ ︷︷ ︸
m

.

One should verify that the map Φ[Λ] is well defined, but this is easy. The following lemma is easily shown.

Lemma 2.9.2 Given a context-free grammar G = (V, Σ, P, S) with m nonterminals A1, . . ., Am, the map

ΦG: 2Σ∗ × · · · × 2Σ∗

︸ ︷︷ ︸
m

→ 2Σ∗ × · · · × 2Σ∗

︸ ︷︷ ︸
m

is ω-continuous.

Now, 2Σ∗ × · · · × 2Σ∗

︸ ︷︷ ︸
m

is an ω-chain complete poset, and the map ΦG is ω-continuous. Thus, by lemma 2.8.4,

the map ΦG has a least-fixed point. It turns out that the components of this least fixed-point are precisely
the languages generated by the grammars (V, Σ, P, Ai). Before proving this fact, let us give an example
illustrating it.

Example. Consider the grammar G = ({A, B, a, b}, {a, b}, P, A) defined by the rules

A→ BB + ab,

B → aBb + ab.

The least fixed-point of ΦG is the least upper bound of the chain

(Φn
G(∅, ∅)) = ((Φn

G,A(∅, ∅), Φn
G,B(∅, ∅)),

where
Φ0

G,A(∅, ∅) = Φ0
G,B(∅, ∅) = ∅,

and

Φn+1
G,A(∅, ∅) = Φn

G,B(∅, ∅)Φn
G,B(∅, ∅) ∪ {ab},

Φn+1
G,B(∅, ∅) = aΦn

G,B(∅, ∅)b ∪ {ab}.
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It is easy to verify that

Φ1
G,A(∅, ∅) = {ab},

Φ1
G,B(∅, ∅) = {ab},

Φ2
G,A(∅, ∅) = {ab, abab},

Φ2
G,B(∅, ∅) = {ab, aabb},

Φ3
G,A(∅, ∅) = {ab, aabbab, aabbaabb, abaabb},

Φ3
G,B(∅, ∅) = {ab, aabb, aaabbb}.

By induction, we can easily prove that the two components of the least fixed-point are the languages

LA = {ambmanbn | m, n ≥ 1} ∪ {ab} and LB = {anbn | n ≥ 1}.

Letting GA = ({A, B, a, b}, {a, b}, P, A) and GB = ({A, B, a, b}, {a, b}, P, B), it is indeed true that LA =
L(GA) and LB = L(GB) .

We have the following theorem due to Ginsburg and Rose.

Theorem 2.9.3 Given any context-free grammar G = (V, Σ, P, S) with m nonterminals A1, . . ., Am, the
least fixed-point of the map ΦG is the m-tuple of languages

(L(GA1
), . . . , L(GAm

)),

where GAi
= (V, Σ, P, Ai).

Proof . Writing G as

A1 → α1,1 + · · ·+ α1,n1
,

· · · → · · ·
Ai → αi,1 + · · ·+ αi,ni

,

· · · → · · ·
Am → αm,1 + · · ·+ αm,nn

,

let M = max{|αi,j |} be the maximum length of right-hand sides of rules in P . Let

Φn
G(∅, . . . , ∅) = (Φn

G,1(∅, . . . , ∅), . . . , Φn
G,m(∅, . . . , ∅)).

Then, for any w ∈ Σ∗, observe that
w ∈ Φ1

G,i(∅, . . . , ∅)
iff there is some rule Ai → αi,j with w = αi,j , and that

w ∈ Φn
G,i(∅, . . . , ∅)

for some n ≥ 2 iff there is some rule Ai → αi,j with αi,j of the form

αi,j = u1Aj1u2 · · ·ukAjk
uk+1,

where u1, . . . , uk+1 ∈ Σ∗, k ≥ 1, and some w1, . . . , wk ∈ Σ∗ such that

wh ∈ Φn−1
G,jh

(∅, . . . , ∅),
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and
w = u1w1u2 · · ·ukwkuk+1.

We prove the following two claims.

Claim 1: For every w ∈ Σ∗, if Ai
n

=⇒ w, then w ∈ Φp
G,i(∅, . . . , ∅), for some p ≥ 1.

Claim 2: For every w ∈ Σ∗, if w ∈ Φn
G,i(∅, . . . , ∅), with n ≥ 1, then Ai

p
=⇒ w for some p ≤ (M + 1)n−1.

Proof of Claim 1. We proceed by induction on n. If Ai
1

=⇒ w, then w = αi,j for some rule A → αi,j , and
by the remark just before the claim, w ∈ Φ1

G,i(∅, . . . , ∅).

If Ai
n+1
=⇒ w with n ≥ 1, then

Ai
n

=⇒ αi,j =⇒ w

for some rule Ai → αi,j . If
αi,j = u1Aj1u2 · · ·ukAjk

uk+1,

where u1, . . . , uk+1 ∈ Σ∗, k ≥ 1, then Ajh

nh=⇒ wh, where nh ≤ n, and

w = u1w1u2 · · ·ukwkuk+1

for some w1, . . . , wk ∈ Σ∗. By the induction hypothesis,

wh ∈ Φph

G,jh
(∅, . . . , ∅),

for some ph ≥ 1, for every h, 1 ≤ h ≤ k. Letting p = max{p1, . . . , pk}, since each sequence (Φq
G,i(∅, . . . , ∅))

is an ω-chain, we have wh ∈ Φp
G,jh

(∅, . . . , ∅) for every h, 1 ≤ h ≤ k, and by the remark just before the claim,

w ∈ Φp+1
G,i (∅, . . . , ∅).

Proof of Claim 2. We proceed by induction on n. If w ∈ Φ1
G,i(∅, . . . , ∅), by the remark just before the claim,

then w = αi,j for some rule A→ αi,j , and Ai
1

=⇒ w.

If w ∈ Φn
G,i(∅, . . . , ∅) for some n ≥ 2, then there is some rule Ai → αi,j with αi,j of the form

αi,j = u1Aj1u2 · · ·ukAjk
uk+1,

where u1, . . . , uk+1 ∈ Σ∗, k ≥ 1, and some w1, . . . , wk ∈ Σ∗ such that

wh ∈ Φn−1
G,jh

(∅, . . . , ∅),

and
w = u1w1u2 · · ·ukwkuk+1.

By the induction hypothesis, Ajh

ph
=⇒ wh with ph ≤ (M + 1)n−2, and thus

Ai =⇒ u1Aj1u2 · · ·ukAjk
uk+1

p1

=⇒ · · · pk
=⇒ w,

so that Ai
p

=⇒ w with

p ≤ p1 + · · ·+ pk + 1 ≤M(M + 1)n−2 + 1 ≤ (M + 1)n−1,

since k ≤M .

Combining Claim 1 and Claim 2, we have

L(GAi
) =

⋃

n

Φn
G,i(∅, . . . , ∅),
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which proves that the least fixed-point of the map ΦG is the m-tuple of languages

(L(GA1
), . . . , L(GAm

)).

We now show how theorem 2.9.3 can be used to give a short proof that every context-free grammar can be
converted to Greibach Normal Form.

2.10 Least Fixed-Points and the Greibach Normal Form

The hard part in converting a grammar G = (V, Σ, P, S) to Greibach Normal Form is to convert it to a
grammar in so-called weak Greibach Normal Form, where the productions are of the form

A→ aα, or

S → ǫ,

where a ∈ Σ, α ∈ V ∗, and if S → ǫ is a rule, then S does not occur on the right-hand side of any rule. Indeed,
if we first convert G to Chomsky Normal Form, it turns out that we will get rules of the form A → aBC,
A→ aBC or A→ a.

Using the algorithm for eliminating ǫ-rules and chain rules, we can first convert the original grammar to a
grammar with no chain rules and no ǫ-rules except possibly S → ǫ, in which case, S does not appear on
the right-hand side of rules. Thus, for the purpose of converting to weak Greibach Normal Form, we can
assume that we are dealing with grammars without chain rules and without ǫ-rules. Let us also assume
that we computed the set T (G) of nonterminals that actually derive some terminal string, and that useless
productions involving symbols not in T (G) have been deleted.

Let us explain the idea of the conversion using the following grammar:

A→ AaB + BB + b.

B → Bd + BAa + aA + c.

The first step is to group the right-hand sides α into two categories: those whose leftmost symbol is a
terminal (α ∈ ΣV ∗) and those whose leftmost symbol is a nonterminal (α ∈ NV ∗). It is also convenient to
adopt a matrix notation, and we can write the above grammar as

(A, B) = (A, B)

(
aB ∅

B {d, Aa}

)
+ (b, {aA, c})

Thus, we are dealing with matrices (and row vectors) whose entries are finite subsets of V ∗. For notational
simplicity, braces around singleton sets are omitted. The finite subsets of V ∗ form a semiring, where addition
is union, and multiplication is concatenation. Addition and multiplication of matrices are as usual, except
that the semiring operations are used. We will also consider matrices whose entries are languages over Σ.
Again, the languages over Σ form a semiring, where addition is union, and multiplication is concatenation.
The identity element for addition is ∅, and the identity element for multiplication is {ǫ}. As above, addition
and multiplication of matrices are as usual, except that the semiring operations are used. For example, given
any languages Ai,j and Bi,j over Σ, where i, j ∈ {1, 2}, we have

(
A1,1 A1,2

A2,1 A2,2

)(
B1,1 B1,2

B2,1 B2,2

)
=

(
A1,1B1,1 ∪A1,2B2,1 A1,1B1,2 ∪A1,2B2,2

A2,1B1,1 ∪A2,2B2,1 A2,1B1,2 ∪A2,2B2,2

)
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Letting X = (A, B), K = (b, {aA, c}), and

H =

(
aB ∅

B {d, Aa}

)

the above grammar can be concisely written as

X = XH + K.

More generally, given any context-free grammar G = (V, Σ, P, S) with m nonterminals A1, . . ., Am, assuming
that there are no chain rules, no ǫ-rules, and that every nonterminal belongs to T (G), letting

X = (A1, . . . , Am),

we can write G as
X = XH + K,

for some appropriate m×m matrix H in in which every entry contains a set (possibly empty) of strings in
V +, and some row vector K in which every entry contains a set (possibly empty) of strings α each beginning
with a terminal (α ∈ ΣV ∗).

Given an m ×m square matrix A = (Ai,j) of languages over Σ, we can define the matrix A∗ whose entry
A∗

i,j is given by

A∗
i,j =

⋃

n≥0

An
i,j ,

where A0 = Idm, the identity matrix, and An is the n-th power of A. Similarly, we define

A+ = (
⋃

n≥1

An
i,j).

Given a matrix A where the entries are finite subset of V ∗, where A = {A1, . . . , Am}, for any m-tuple
Λ = (L1, . . . , Lm) of languages over Σ, we let

Φ[Λ](A) = (Φ[Λ](Ai,j)).

Given a system X = XH + K where H is an m×m matrix and X, K are row matrices, if H and K do not
contain any nonterminals, we claim that the least fixed-point of the grammar G associated with X = XH+K
is KH∗. This is easily seen by computing the approximations Xn = Φn

G(∅, . . . , ∅). Indeed, X0 = K, and

Xn = KHn + KHn−1 + · · ·+ KH + K = K(Hn + Hn−1 + · · ·+ H + Im).

Similarly, if Y is an m × m matrix of nonterminals, the least fixed-point of the grammar associated with
Y = HY + H is H+ (provided that H does not contain any nonterminals).

Given any context-free grammar G = (V, Σ, P, S) with m nonterminals A1, . . ., Am, writing G as X =
XH + K as explained earlier, we can form another grammar GH by creating m2 new nonterminals Yi,j ,
where the rules of this new grammar are defined by the system of two matrix equations

X = KY + K,

Y = HY + H,

where Y = (Yi,j).

The following lemma is the key to the Greibach Normal Form.
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Lemma 2.10.1 Given any context-free grammar G = (V, Σ, P, S) with m nonterminals A1, . . ., Am, writing
G as

X = XH + K

as explained earlier, if GH is the grammar defined by the system of two matrix equations

X = KY + K,

Y = HY + H,

as explained above, then the components in X of the least-fixed points of the maps ΦG and ΦGH are equal.

Proof . Let U be the least-fixed point of ΦG, and let (V, W ) be the least fixed-point of ΦGH . We shall prove
that U = V . For notational simplicity, let us denote Φ[U ](H) as H [U ] and Φ[U ](K) as K[U ].

Since U is the least fixed-point of X = XH + K, we have

U = UH [U ] + K[U ].

Since H [U ] and K[U ] do not contain any nonterminals, by a previous remark, K[U ]H∗[U ] is the least-fixed
point of X = XH [U ] + K[U ], and thus,

K[U ]H∗[U ] ≤ U.

On the other hand, by monotonicity,

K[U ]H∗[U ]H
[
K[U ]H∗[U ]

]
+ K

[
K[U ]H∗[U ]

]
≤ K[U ]H∗[U ]H [U ] + K[U ] = K[U ]H∗[U ],

and since U is the least fixed-point of X = XH + K,

U ≤ K[U ]H∗[U ].

Therefore, U = K[U ]H∗[U ]. We can prove in a similar manner that W = H [V ]+.

Let Z = H [U ]+. We have

K[U ]Z + K[U ] = K[U ]H [U ]+ + K[U ] = K[U ]H [U ]∗ = U,

and
H [U ]Z + H [U ] = H [U ]H [U ]+ + H [U ] = H [U ]+ = Z,

and since (V, W ) is the least fixed-point of X = KY +K and Y = HY +H , we get V ≤ U and W ≤ H [U ]+.

We also have
V = K[V ]W + K[V ] = K[V ]H [V ]+ + K[V ] = K[V ]H [V ]∗,

and
V H [V ] + K[V ] = K[V ]H [V ]∗H [V ] + K[V ] = K[V ]H [V ]∗ = V,

and since U is the least fixed-point of X = XH + K, we get U ≤ V . Therefore, U = V , as claimed.

Note that the above lemma actually applies to any grammar. Applying lemma 2.10.1 to our example
grammar, we get the following new grammar:

(A, B) = (b, {aA, c})
(

Y1 Y2

Y3 Y4

)
+ (b, {aA, c}),

(
Y1 Y2

Y3 Y4

)
=

(
aB ∅

B {d, Aa}

)(
Y1 Y2

Y3 Y4

)
+

(
aB ∅

B {d, Aa}

)
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There are still some nonterminals appearing as leftmost symbols, but using the equations defining A and B,
we can replace A with

{bY1, aAY3, cY3, b}
and B with

{bY2, aAY4, cY4, aA, c},
obtaining a system in weak Greibach Normal Form. This amounts to converting the matrix

H =

(
aB ∅

B {d, Aa}

)

to the matrix

L =

(
aB ∅

{bY2, aAY4, cY4, aA, c} {d, bY1a, aAY3a, cY3a, ba}

)

The weak Greibach Normal Form corresponds to the new system

X = KY + K,

Y = LY + L.

This method works in general for any input grammar with no ǫ-rules, no chain rules, and such that every
nonterminal belongs to T (G). Under these conditions, the row vector K contains some nonempty entry, all
strings in K are in ΣV ∗, and all strings in H are in V +. After obtaining the grammar GH defined by the
system

X = KY + K,

Y = HY + H,

we use the system X = KY + K to express every nonterminal Ai in terms of expressions containing strings
αi,j involving a terminal as the leftmost symbol (αi,j ∈ ΣV ∗), and we replace all leftmost occurrences of
nonterminals in H (occurrences Ai in strings of the form Aiβ, where β ∈ V ∗) using the above expressions.
In this fashion, we obtain a matrix L, and it is immediately shown that the system

X = KY + K,

Y = LY + L,

generates the same tuple of languages. Furthermore, this last system corresponds to a weak Greibach Normal
Form.

It we start with a grammar in Chomsky Normal Form (with no production S → ǫ) such that every nonter-
minal belongs to T (G), we actually get a Greibach Normal Form (the entries in K are terminals, and the
entries in H are nonterminals). Thus, we have justified lemma 2.7.1. The method is also quite economical,
since it introduces only m2 new nonterminals. However, the resulting grammar may contain some useless
nonterminals.
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2.11 Tree Domains and Gorn Trees

Derivation trees play a very important role in parsing theory and in the proof of a strong version of the
pumping lemma for the context-free languages known as Ogden’s lemma. Thus, it is important to define
derivation trees rigorously. We do so using Gorn trees.

Let N+ = {1, 2, 3, . . .}.

Definition 2.11.1 A tree domain D is a nonempty subset of strings in N∗
+ satisfying the conditions:

(1) For all u, v ∈ D, if uv ∈ D, then u ∈ D.

(2) For all u ∈ D, for every i ∈ N+, if ui ∈ D then uj ∈ D for every j, 1 ≤ j ≤ i.

The tree domain
D = {ǫ, 1, 2, 11, 21, 22, 221, 222, 2211}

is represented as follows:

ǫ
ւ ց

1 2
ւ ւ ց

11 21 22
ւ ց

221 222
↓

2211

A tree labeled with symbols from a set ∆ is defined as follows.

Definition 2.11.2 Given a set ∆ of labels, a ∆-tree (for short, a tree) is a total function t : D → ∆, where
D is a tree domain.

The domain of a tree t is denoted as dom(t). Every string u ∈ dom(t) is called a tree address or a node.

Let ∆ = {f, g, h, a, b}. The tree t : D → ∆, where D is the tree domain of the previous example and t is the
function whose graph is

{(ǫ, f), (1, h), (2, g), (11, a), (21, a), (22, f), (221, h), (222, b), (2211, a)}

is represented as follows:

f
ւ ց

h g
ւ ւ ց

a a f
ւ ց

h b
↓
a
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The outdegree (sometimes called ramification) r(u) of a node u is the cardinality of the set

{i | ui ∈ dom(t)}.

Note that the outdegree of a node can be infinite. Most of the trees that we shall consider will be finite-
branching, that is, for every node u, r(u) will be an integer, and hence finite. If the oudegree of all nodes in
a tree is bounded by n, then we can view the domain of the tree as being defined over {1, 2, . . . , n}∗.

A node of outdegree 0 is called a leaf . The node whose address is ǫ is called the root of the tree. A tree
is finite if its domain dom(t) is finite. Given a node u in dom(t), every node of the form ui in dom(t) with
i ∈ N+ is called a son (or immediate successor) of u.

Tree addresses are totally ordered lexicographically: u ≤ v if either u is a prefix of v or, there exist strings
x, y, z ∈ N∗

+ and i, j ∈ N+, with i < j, such that u = xiy and v = xjz.

In the first case, we say that u is an ancestor (or predecessor) of v (or u dominates v) and in the second
case, that u is to the left of v.

If y = ǫ and z = ǫ, we say that xi is a left brother (or left sibling) of xj, (i < j). Two tree addresses u and
v are independent if u is not a prefix of v and v is not a prefix of u.

Given a finite tree t, the yield of t is the string

t(u1)t(u2) · · · t(uk),

where u1, u2, . . . , uk is the sequence of leaves of t in lexicographic order.
For example, the yield of the tree below is aaab:

f
ւ ց

h g
ւ ւ ց

a a f
ւ ց

h b
↓
a

Given a finite tree t, the depth of t is the integer

d(t) = max{|u| | u ∈ dom(t)}.

Given a tree t and a node u in dom(t), the subtree rooted at u is the tree t/u, whose domain is the set

{v | uv ∈ dom(t)}

and such that t/u(v) = t(uv) for all v in dom(t/u).

Another important operation is the operation of tree replacement (or tree substitution).

Definition 2.11.3 Given two trees t1 and t2 and a tree address u in t1, the result of replacing t2 at u in t1,
denoted by t1[u← t2], is the function whose graph is the set of pairs

{(v, t1(v)) | u is not a prefix of v} ∪ {(uv, t2(v)}.
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Let t1 and t2 be the trees defined by the following diagrams:

Tree t1

f
ւ ց

h g
ւ ւ ց

a a f
ւ ց

h b
↓
a

Tree t2

g
ւ ց

a b

The tree t1[22← t2] is defined by the following diagram:

f
ւ ց

h g
ւ ւ ց

a a g
ւ ց

a b

We can now define derivation trees and relate derivations to derivation trees.

2.12 Derivations Trees

Definition 2.12.1 Given a context-free grammar G = (V, Σ, P, S), for any A ∈ N , an A-derivation tree for
G is a (V ∪ {ǫ})-tree t such that:

(1) t(ǫ) = A;

(2) For every nonleaf node u ∈ dom(t), if u1, . . . , uk are the successors of u, then either there is a production
A → X1 · · ·Xk in P such that t(u) = A and t(ui) = Xi for all i, 1 ≤ i ≤ k, or A → ǫ ∈ P , t(u) = A and
t(u1) = ǫ. A complete derivation (or parse tree) is an S-tree whose yield belongs to Σ∗.

A derivation tree for the grammar

G3 = ({E, T, F, +, ∗, (, ), a}, {+, ∗, (, ), a}, E, P ),
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where P is the set of rules

E −→ E + T,

E −→ T,

T −→ T ∗ F,

T −→ F,

F −→ (E),

F −→ a,

is shown below. The yield of the derivation tree is a + a ∗ a.

(* Picture of tree goes here *)

Derivations trees are associated to derivations inductively as follows.

Definition 2.12.2 Given a context-free grammar G = (V, Σ, P, S), for any A ∈ N , if π : A
n

=⇒ α is a
derivation in G, we construct an A-derivation tree tπ with yield α as follows.

(1) If n = 0, then tπ is the one-node tree such that dom(tπ) = {ǫ} and tπ(ǫ) = A.

(2) If A
n−1
=⇒ λBρ =⇒ λγρ = α, then if t1 is the A-derivation tree with yield λBρ associated with the

derivation A
n−1
=⇒ λBρ, and if t2 is the tree associated with the production A→ γ (that is, if

γ = X1 · · ·Xk,

then dom(t2) = {ǫ, 1, . . . , k}, t2(ǫ) = A, and t2(i) = Xi for all i, 1 ≤ i ≤ k, or if γ = ǫ, then dom(t2) = {ǫ, 1},
t2(ǫ) = A, and t2(1) = ǫ), then

tπ = t1[u← t2],

where u is the address of the leaf labeled B in t1. The tree tπ is the A-derivation tree associated with the
derivation A

n
=⇒ α.

Given the grammar
G2 = ({E, +, ∗, (, ), a}, {+, ∗, (, ), a}, E, P ),

where P is the set of rules

E −→ E + E,

E −→ E ∗ E,

E −→ (E),

E −→ a,

the parse trees associated with two derivations of the string a + a ∗ a are shown below.

(* insert picture of trees here *)

The following lemma is easily shown.

Lemma 2.12.3 Let G = (V, Σ, P, S) be a context-free grammar. For any derivation A
n

=⇒ α, there is a
unique A-derivation tree associated with this derivation, with yield α. Conversely, for any A-derivation tree
t with yield α, there is a unique leftmost derivation A

∗
=⇒
lm

α in G having t as its associated derivation tree.

We will now prove a strong version of the pumping lemma for context-free languages due to Bill Ogden
(1968).
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2.13 Ogden’s Lemma

Ogden’s lemma states some combinatorial properties of parse trees that are deep enough. The yield w of
such a parse tree can be split into 5 substrings u, v, x, y, z such that

w = uvxyz,

where u, v, x, y, z satisfy certain conditions. It turns out that we get a more powerful version of the lemma is
we allow ouselves to mark certain occurrences of symbols in w before invoking the lemma. We can imagine
that marked occurrences in a nonempty string w are occurrences of symbols in w in boldface, or red, or any
given color. For example, given w = aaababbbaa, we can mark the symbols of even index as follows:

aaababbbaa.

In view of lemma 2.4.1, we can assume without loss of generality that we are considering grammars without
ǫ-rules (except perhaps S′ → ǫ). Ogden’s lemma only yields useful information for grammars G generating
an infinite language. We could make this hypothesis, but it seems more elegant to use the precondition that
the lemma only applies to strings w ∈ L(D) such that w contains at least K marked occurrences, for a
constant K large enough. If K is large enough, L(G) will indeed be infinite.

Lemma 2.13.1 For every context-free grammar (without ǫ-rules), there is some integer K > 1 such that,
for every marked string w ∈ Σ+, if w ∈ L(G) and w contains at least K marked occurrences, then there
exists some decomposition of w as w = uvxyz, and some A ∈ N , such that the following properties hold:

(1) There are derivations S
+

=⇒ uAz, A
+

=⇒ vAy, and A
+

=⇒ x, so that

uvnxynz ∈ L(G)

for all n ≥ 0 (the pumping property);

(2) x contains some marked occurrence;

(3) Either (both u and v contain some marked occurrence), or (both y and z contain some marked occurrence);

(4) vxy contains less than K marked occurrences.

Proof . Let t be any parse tree for w. We call a leaf of t a marked leaf if its label is a marked occurrence in
the marked string w. The general idea is to make sure that K is large enough so that parse trees with yield
w contain enough repeated nonterminals along some path from the root to some marked leaf. Let r = |N |,
and let

p = max{2, max{|α| | (A→ α) ∈ P}}.
We claim that K = p2r+3 does the job.

Is is easily shown by induction on the depth of trees that if the outdegree of a tree t is bounded by p ≥ 2,
then if t has at least pd leaves, the depth of t is at least d (and the maximum outdegree of nodes in t is at
least 2. This is false for p = 1). Thus, if K = p2r+3, since p ≥ 2 and we are assuming that the marked input
w has at least K marked occurrences, the depth of any parse tree for w is a least 2r + 3.

The key concept in the proof is the notion of a B-node. Given a parse tree t, a B-node is a node with at least
two immediate successors u1, u2, such that for i = 1, 2, either ui is a marked leaf, or ui has some marked
leaf as a descendant. We consider all paths from the root to some marked leaf maximizing the number of
B-nodes. Among such paths, define a path (s0, . . . , sn) from the root to some marked leaf, such that:

(i) s0 is the root of t;
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(ii) If sj is in the path, sj is not a leaf, and sj has a single descendant which is a marked leaf v, let sj+1 be
the immediate successor of sj on the unique path from sj to the marked leaf v;

(iii) If sj is a B-node in the path, then let sj+1 be the leftmost immediate successors of sj with the maximum
number of marked leaves as descendants (assuming that if sj+1 is a marked leaf, then it is its own descendant).

(iv) If sj is a leaf, then it is a marked leaf and n = j.

We will show that the path (s0, . . . , sn) contains at least 2r + 3 B-nodes.

Claim: For every i, 0 ≤ i ≤ n, if the path (si, . . . , sn) contains at most b B-nodes, then si has at most pb

marked leaves as descendants.

Proof . We proceed by “backward induction”, i.e., by induction on n− i. For i = n, there are no B-nodes,
so that b = 0, and there is indeed p0 = 1 marked leaf sn. Assume that the claim holds for the path
(si+1, . . . , sn).

If si is not a B-node, then the number b of B-nodes in the path (si+1, . . . , sn) is the same as the number
of B-nodes in the path (si, . . . , sn), and si+1 is the only immediate successor of si having a marked leaf as
descendant. By the induction hypothesis, si+1 has at most pb marked leaves as descendants, and this is also
an upper bound on the number of marked leaves which are descendants of si.

If si is a B-node, then if there are b B-nodes in the path (si+1, . . . , sn), there are b + 1 B-nodes in the
path (si, . . . , sn). By the induction hypothesis, si+1 has at most pb marked leaves as descendants. Since
si is a B-node, si+1 was chosen to be the leftmost immediate successor of si having the maximum number
of marked leaves as descendants. Thus, since the outdegree of si is at most p, and each of its immediate
successors has at most pb marked leaves as descendants, the node si has at most ppd = pd+1 marked leaves
as descendants, as desired.

Applying the claim to s0, since w has at least K = p2r+3 marked occurrences, the path (s0, . . . , sn) contains
at least 2r + 3 B-nodes.

Let us now select the lowest 2r +3 B-nodes in the path, (s0, . . . , sn), and denote them (b1, . . . , b2r+3). Every
B-node bi has at least two immediate successors ui < vi such that ui or vi is on the path (s0, . . . , sn). If the
path goes through ui, we say that bi is a right B-node and if the path goes through vi, we say that bi is a
left B-node. Since 2r + 3 = r + 2 + r + 1, either there are r + 2 left B-nodes or there are r + 2 right B nodes
in the path (b1, . . . , b2r+3). Let us assume that there are r + 2 left B nodes, the other case being similar.

Let (d1, . . . , dr+2) be the lowest r + 2 left B-nodes in the path. Since there are r + 1 B-nodes in the
sequence (d2, . . . , dr+2), and there are only r distinct nonterminals, there are two nodes di and dj , with
2 ≤ i < j ≤ r + 2, such that t(di) = t(dj) = A, for some A ∈ N . We can assume that di is an ancestor of dj ,
and thus, dj = div, for some v 6= ǫ.

If we prune out the subtree t/di rooted at di from t, we get an S-derivation tree having a yield of the form

uAz, and we have a derivation of the form S
+

=⇒ uAz, since there are at least r + 2 left B-nodes on the
path, and we are looking at the lowest r + 1 left B-nodes. Considering the subtree t/di, pruning out the
subtree t/dj rooted at v in t/di, we get an A-derivation tree having a yield of the form vAy, and we have

a derivation of the form A
+

=⇒ vAy. Finally, the subtree t/dj is an A-derivation tree with yield x, and we

have a derivation A
+

=⇒ x. This proves (1) of the lemma.

Since sn is a marked leaf and a descendant of dj , x contains some marked occurrence, proving (2).

Since d1 is a left B-node, one of its immediate successors to the left of di leads to some marked leaf, and
thus u contains some marked occurrence. Similarly, since di is a left B-node, one of its immediate successors
to the left of di+1 leads to some marked leaf, and thus v contains some marked occurrence. This proves (3).

Finally, since (b1, . . . , b2r+3) are the lowest 2r + 3 B-nodes in the path, and (d1, . . . , dr+2) is a subsequence
of (b1, . . . , b2r+3), the sequence (dj , . . . , b2r+3) has at most 2r + 2 B-nodes, and by the claim shown earlier,
dj has at most p2r+2 marked leaves as descendants. Since p2r+2 < p2r+3 = K, this proves (4).

85



Observe that condition (2) implies that x 6= ǫ, and condition (3) implies that either u 6= ǫ and v 6= ǫ, or y 6= ǫ
and z 6= ǫ. Thus, the pumping condition (1) implies that the set {uvnxynz | n} is an infinite subset of L(G),
and L(G) is indeed infinite, as we mentioned earlier. The “standard pumping lemma” due to Bar-Hillel,
Perles, and Shamir, is obtained by letting all occurrences be marked in w ∈ L(G).

Lemma 2.13.2 For every context-free grammar (without ǫ-rules), there is some integer K > 1 such that,
for every string w ∈ Σ+, if w ∈ L(G) and |w| ≥ K, then there exists some decomposition of w as w = uvxyz,
and some A ∈ N , such that the following properties hold:

(1) There are derivations S
+

=⇒ uAz, A
+

=⇒ vAy, and A
+

=⇒ x, so that

uvnxynz ∈ L(G)

for all n ≥ 0 (the pumping property);

(2) x 6= ǫ;

(3) Either v 6= ǫ or y 6= ǫ;

(4) |vxy| ≤ K.

A stronger version could be stated, and we are just following tradition in stating this standard version of
the pumping lemma.

The pumping lemma or Ogden’s lemma can be used to show that certain languages are not context-free. As
an illustration, we show that the language

L = {anbncn | n ≥ 1}

is not context-free. Since L is infinite, we will be able to use the pumping lemma.

The proof proceeds by contradiction. If L was context-free, there would be some context-free grammar G
such that L = L(G), and some constant K > 1 as in Ogden’s lemma. Let w = aKbKcK , and choose the
b′s as marked occurrences. Then by Ogden’s lemma, x contains some marked occurrence, and either both
u, v or both y, z contain some marked occurrence. Assume that both u and v contain some b. We have the
following situation:

a · · ·ab · · · b︸ ︷︷ ︸
u

b · · · b︸ ︷︷ ︸
v

b · · · bc · · · c︸ ︷︷ ︸
xyz

.

If we consider the string uvvxyyz, the number of a’s is still K, but the number of b’s is strictly greater than
K since v contains at least one b, and thus uvvxyyz /∈ L, a contradiction.

If both y and z contain some b we will also reach a contradiction because in the string uvvxyyz, the number
of c’s is still K, but the number of b’s is strictly greater than K. Having reached a contradiction in all cases,
we conclude that L is not context-free.

Let us now show that the language
L = {ambncmdn | m, n ≥ 1}

is not context-free.

Again, we proceed by contradiction. This time, let

w = aKbKcKdK ,

where the b’s and c’s are marked occurrences.

86



By Ogden’s lemma, either both u, v contain some marked occurrence, or both y, z contain some marked
occurrence, and x contains some marked occurrence. Let us first consider the case where both u, v contain
some marked occurrence.

If v contains some b, since uvvxyyz ∈ L, v must contain only b’s, since otherwise we would have a bad string
in L, and we have the following situation:

a · · · ab · · · b︸ ︷︷ ︸
u

b · · · b︸ ︷︷ ︸
v

b · · · bc · · · cd · · · d︸ ︷︷ ︸
xyz

.

Since uvvxyyz ∈ L, the only way to preserve an equal number of b’s and d’s is to have y ∈ d+. But then,
vxy contains cK , which contradicts (4) of Ogden’s lemma.

If v contains some c, since uvvxyyz ∈ L, v must contain only c’s, since otherwise we would have a bad string
in L, and we have the following situation:

a · · ·ab · · · bc · · · c︸ ︷︷ ︸
u

c · · · c︸ ︷︷ ︸
v

c · · · cd · · ·d︸ ︷︷ ︸
xyz

.

Since uvvxyyz ∈ L and the number of a’s is still K whereas the number of c’s is strictly more than K, this
case is impossible.

Let us now consider the case where both y, z contain some marked occurrence. Reasoning as before, the
only possibility is that v ∈ a+ and y ∈ c+:

a · · · a︸ ︷︷ ︸
u

a · · ·a︸ ︷︷ ︸
v

a · · ·ab · · · bc · · · c︸ ︷︷ ︸
x

c · · · c︸ ︷︷ ︸
y

c · · · cd · · ·d︸ ︷︷ ︸
z

.

But then, vxy contains bK , which contradicts (4) of Ogden’s Lemma. Since a contradiction was obtained in
all cases, L is not context-free.

Ogden’s lemma can also be used to show that the language

{ambncn | m, n ≥ 1} ∪ {ambmcn | m, n ≥ 1}

is inherently ambiguous. The proof is quite involved.

Another corollary of the pumping lemma is that it is decidable whether a context-free grammar generates
an infinite language.

Lemma 2.13.3 Given any context-free grammar G (without ǫ-rules), there is some K > 1 such that L(G)
is infinite iff there is some w ∈ L(G) such that K ≤ |w| < 2K.

Proof . If there is some w ∈ L(G) such that |w| ≥ K, we already observed that the pumping lemma implies
that L(G) contains an infinite subset of the form {uvnxynz | n ≥ 0}. Conversely, assume that L(G) is infinite.
If |w| < K for all w ∈ L(G), then L(G) is finite. Thus, there is some w ∈ L(G) such that |w| ≥ K. Let
w ∈ L(G) be a minimal string such that |w| ≥ K. By the pumping lemma, we can write w as w = uvxyxz,
where x 6= ǫ, vy 6= ǫ, and |vxy| ≤ K. By the pumping property, uxz ∈ L(G). If |w| ≥ 2K, then

|uxz| = |uvxyz| − |vy| > |uvxyz| − |vxy| ≥ 2K −K = K,

and |uxz| < |uvxyz|, contradicting the minimality of w. Thus, we must have |w| < 2K.

In particular, if G is in Chomsky Normal Form, it can be shown that we just have to consider derivations of
length at most 4K − 3.
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2.14 Pushdown Automata

We have seen that the regular languages are exactly the languages accepted by DFA’s or NFA’s. The context-
free languages are exactly the languages accepted by pushdown automata, for short, PDA’s. However,
although there are two versions of PDA’s, deterministic and nondeterministic, contrary to the fact that
every NFA can be converted to a DFA, nondeterministic PDA’s are strictly more powerful than deterministic
PDA’s (DPDA’s). Indeed, there are context-free languages that cannot be accepted by DPDA’s. Thus, the
natural machine model for the context-free languages is nondeterministic, and for this reason, we just use
the abbreviation PDA, as opposed to NPDA.

We adopt a definition of a PDA in which the pushdown store, or stack, must not be empty for a move to
take place. Other authors allow PDA’s to make move when the stack is empty. Novices seem to be confused
by such moves, and this is why we do not allow moves with an empty stack.

Intuitively, a PDA consists of an input tape, a nondeterministic finite-state control, and a stack.

Given any set X possibly infinite, let Pfin(X) be the set of all finite subsets of X .

Definition 2.14.1 A pushdown automaton is a 7-tuple
M = (Q, Σ, Γ, δ, q0, Z0, F ), where

• Q is a finite set of states ;

• Σ is a finite input alphabet ;

• Γ is a finite pushdown store (or stack) alphabet ;

• q0 ∈ Q is the start state (or initial state);

• Z0 ∈ Γ is the initial stack symbol (or bottom marker);

• F ⊆ Q is the set of final (or accepting) states ;

• δ: Q× (Σ ∪ {ǫ})× Γ→ Pfin(Q× Γ∗) is the transition function.

A transition is of the form (q, γ) ∈ δ(p, a, Z), where p, q ∈ Q, Z ∈ Γ, and a ∈ Σ ∪ {ǫ}. A transition of the
form (q, γ) ∈ δ(p, ǫ, Z) is called an ǫ-transition (or ǫ-move).

The way a PDA operates is explained in terms of Instantaneous Descriptions , for short ID’s. Intuitively, an
Instantaneous Description is a snapshot of the PDA. An ID is a triple of the form

(p, u, α) ∈ Q× Σ∗ × Γ∗.

The idea is that p is the current state, u is the remaining input, and α represents the stack.

It is important to note that we use the convention that the leftmost symbol in α represents the topmost
stack symbol.

Given a PDA M , we define a relation ⊢M between pairs of ID’s. This is very similar to the derivation relation
=⇒G associated with a context-free grammar.
Intuitively, a PDA scans the input tape symbol by symbol from left to right, making moves that cause a
change of state, an update to the stack (but only at the top), and either advancing the reading head to the
next symbol, or not moving the reading head during an ǫ-move.
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Definition 2.14.2 Given a PDA
M = (Q, Σ, Γ, δ, q0, Z0, F ),

the relation ⊢M is defined as follows:

(1) For any move (q, γ) ∈ δ(p, a, Z), where p, q ∈ Q, Z ∈ Γ, a ∈ Σ, for every ID of the form (p, au, Zα), we
have

(p, au, Zα) ⊢M (q, u, γα).

(2) For any move (q, γ) ∈ δ(p, ǫ, Z), where p, q ∈ Q, Z ∈ Γ, for every ID of the form (p, u, Zα), we have

(p, u, Zα) ⊢M (q, u, γα).

As usual, ⊢+
M is the transitive closure of ⊢M , and ⊢∗M is the reflexive and transitive closure of ⊢M .

A move of the form
(p, au, Zα) ⊢M (q, u, α)

where a ∈ Σ ∪ {ǫ}, is called a pop move.

A move on a real input symbol a ∈ Σ causes this input symbol to be consumed, and the reading head
advances to the next input symbol. On the other hand, during an ǫ-move, the reading head stays put.

When
(p, u, α) ⊢∗M (q, v, β)

we say that we have a computation.

There are several equivalent ways of defining acceptance by a PDA.
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Definition 2.14.3 Given a PDA
M = (Q, Σ, Γ, δ, q0, Z0, F ),

the following languages are defined:

(1) T (M) = {w ∈ Σ∗ | (q0, w, Z0) ⊢∗M (f, ǫ, α), where f ∈ F , and α ∈ Γ∗}.
We say that T (M) is the language accepted by M by final state.

(2) N(M) = {w ∈ Σ∗ | (q0, w, Z0) ⊢∗M (q, ǫ, ǫ), where q ∈ Q}.
We say that N(M) is the language accepted by M by empty stack .

(3) L(M) = {w ∈ Σ∗ | (q0, w, Z0) ⊢∗M (f, ǫ, ǫ), where f ∈ F}.
We say that L(M) is the language accepted by M by final state and empty stack .

In all cases, note that the input w must be consumed entirely.

The following lemma shows that the acceptance mode does not matter for PDA’s. As we will see shortly, it
does matter for DPDAs.

Lemma 2.14.4 For any language L, the following facts hold.

(1) If L = T (M) for some PDA M , then L = L(M ′) for some PDA M ′.

(2) If L = N(M) for some PDA M , then L = L(M ′) for some PDA M ′.

(3) If L = L(M) for some PDA M , then L = T (M ′) for some PDA M ′.

(4) If L = L(M) for some PDA M , then L = N(M ′) for some PDA M ′.

In view of lemma 2.14.4, the three acceptance modes T, N, L are equivalent.
The following PDA accepts the language

L = {anbn | n ≥ 1}

by empty stack.

Q = {1, 2}, Γ = {Z0, a};
(1, a) ∈ δ(1, a, Z0),

(1, aa) ∈ δ(1, a, a),

(2, ǫ) ∈ δ(1, b, a),

(2, ǫ) ∈ δ(2, b, a).

The following PDA accepts the language

L = {anbn | n ≥ 1}

by final state and empty stack.

Q = {1, 2, 3}, Γ = {Z0, A, a}, F = {3};
(1, A) ∈ δ(1, a, Z0),

(1, aA) ∈ δ(1, a, A),
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(1, aa) ∈ δ(1, a, a),

(2, ǫ) ∈ δ(1, b, a),

(2, ǫ) ∈ δ(2, b, a),

(3, ǫ) ∈ δ(1, b, A),

(3, ǫ) ∈ δ(2, b, A).
DPDA’s are defined as follows.

Definition 2.14.5 A PDA
M = (Q, Σ, Γ, δ, q0, Z0, F )

is a deterministic PDA (for short, DPDA), iff the following conditions hold for all (p, Z) ∈ Q× Γ: either

(1) |δ(p, a, Z)| = 1 for all a ∈ Σ, and δ(p, ǫ, Z) = ∅,
or

(2) δ(p, a, Z) = ∅ for all a ∈ Σ, and |δ(p, ǫ, Z)| = 1.

A DPDA operates in realtime iff it has no ǫ-transitions.

It turns out that for DPDA’s the most general acceptance mode is by final state. Indeed, there are language
that can only be accepted deterministically as T (M). The language

L = {ambn | m ≥ n ≥ 1}

is such an example. The problem is that amb is a prefix of all strings ambn, with m ≥ n ≥ 2.
A language L is a deterministic context-free language iff L = T (M) for some DPDA M .

A PDA is unambiguous iff for every w ∈ Σ∗, there is at most one computation

(q0, w, Z0) ⊢∗ IDn,

where IDn is an accepting ID.

We now show that every context-free language is accepted by a PDA.
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2.15 From Context-Free Grammars To PDA’s

We show how a PDA can be easily constructed from a context-free grammar. Although simple, the con-
struction is not practical for parsing purposes, since the resulting PDA is horribly nondeterministic.

Given a context-free grammar G = (V, Σ, P, S), we define a one-state PDA M as follows:

Q = {q0}; Γ = V ; q0 = S; Z0 = S; F = ∅;

For every rule (A→ α) ∈ P , there is a transition

(q0, α) ∈ δ(q0, ǫ, A).

For every a ∈ Σ, there is a transition
(q0, ǫ) ∈ δ(q0, a, a).

The intuition is that a computation of M mimics a leftmost derivation in G. One might say that we have a
“pop/expand” PDA.
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Lemma 2.15.1 Given any context-free grammar
G = (V, Σ, P, S), the PDA M just described accepts L(G) by empty stack, i.e., L(G) = N(M).

Proof . The following two claims are proved by induction.

Claim 1:

For all u, v ∈ Σ∗ and all α ∈ NV ∗ ∪ {ǫ}, if S
∗

=⇒
lm

uα, then

(q0, uv, S) ⊢∗ (q0, v, α).

Claim 2:

For all u, v ∈ Σ∗ and all α ∈ V ∗, if
(q0, uv, S) ⊢∗ (q0, v, α)

then S
∗

=⇒
lm

uα.

We now show how a PDA can be converted to a context-free grammar
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2.16 From PDA’s To Context-Free Grammars

The construction of a context-free grammar from a PDA is not really difficult, but it is quite messy. The
construction is simplified if we first convert a PDA to an equivalent PDA such that for every move (q, γ) ∈
δ(p, a, Z) (where a ∈ Σ ∪ {ǫ}), we have |γ| ≤ 2. In some sense, we form a kind of PDA in Chomsky Normal
Form.

Lemma 2.16.1 Given any PDA
M = (Q, Σ, Γ, δ, q0, Z0, F ),

another PDA
M = (Q′, Σ, Γ′, δ′, q′0, Z

′
0, F

′)

can be constructed, such that L(M) = L(M ′) and the following conditions hold:

(1) There is a one-to-one correspondence between accepting computations of M and M ′;

(2) If M has no ǫ-moves, then M ′ has no ǫ-moves; If M is unambiguous, then M ′ is unambiguous;

(3) For all p ∈ Q′, all a ∈ Σ ∪ {ǫ}, and all Z ∈ Γ′, if (q, γ) ∈ δ′(p, a, Z), then q 6= q′0 and |γ| ≤ 2.

The crucial point of the construction is that accepting computations of a PDA accepting by empty stack
and final state can be decomposed into subcomputations of the form

(p, uv, Zα) ⊢∗ (q, v, α),

where for every intermediate ID (s, w, β), we have β = γα for some γ 6= ǫ.

The nonterminals of the grammar constructed from the PDA M are triples of the form [p, Z, q] such that

(p, u, Z) ⊢+ (q, ǫ, ǫ)

for some u ∈ Σ∗.

Given a PDA
M = (Q, Σ, Γ, δ, q0, Z0, F )

satisfying the conditions of lemma 2.16.1, we construct a context-free grammar G = (V, Σ, P, S) as follows:

V = {[p, Z, q] | p, q ∈ Q, Z ∈ Γ} ∪ Σ ∪ {S},
where S is a new symbol, and the productions are defined as follows: for all p, q ∈ Q, all a ∈ Σ ∪ {ǫ}, all
X, Y, Z ∈ Γ, we have:

(1) S → ǫ ∈ P , if q0 ∈ F ;

(2) S → a ∈ P , if (f, ǫ) ∈ δ(q0, a, Z0), and f ∈ F ;

(3) S → a[p, X, f ] ∈ P , for every f ∈ F , if (p, X) ∈ δ(q0, a, Z0);

(4) S → a[p, X, s][s, Y, f ] ∈ P , for every f ∈ F , for every s ∈ Q, if (p, XY ) ∈ δ(q0, a, Z0);

(5) [p, Z, q]→ a ∈ P , if (q, ǫ) ∈ δ(p, a, Z) and p 6= q0;

(6) [p, Z, s]→ a[q, X, s] ∈ P , for every s ∈ Q, if (q, X) ∈ δ(p, a, Z) and p 6= q0;

(7) [p, Z, t]→ a[q, X, s][s, Y, t] ∈ P , for every s, t ∈ Q, if (q, XY ) ∈ δ(p, a, Z) and p 6= q0.
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Lemma 2.16.2 Given any PDA
M = (Q, Σ, Γ, δ, q0, Z0, F )

satisfying the conditions of lemma 2.16.1, the context-free grammar G = (V, Σ, P, S) constructed as above
generates L(M), i.e., L(G) = L(M). Furthermore, G is unambiguous iff M is unambiguous.

Proof . We have to prove that

L(G) = {w ∈ Σ+ | (q0, w, Z0) ⊢+ (f, ǫ, ǫ), f ∈ F}
∪ {ǫ | q0 ∈ F}.

For this, the following claim is proved by induction.

Claim:

For all p, q ∈ Q, all Z ∈ Γ, all k ≥ 1, and all w ∈ Σ∗,

[p, Z, q]
k

=⇒
lm

w iff (p, w, Z) ⊢+ (q, ǫ, ǫ).

Using the claim, it is possible to prove that L(G) = L(M),
In view of lemmas 2.16.1 and 2.16.2, the family of context-free languages is exactly the family of languages
accepted by PDA’s. It is harder to give a grammatical characterization of the deterministic context-free
languages. One method is to use Knuth LR(k)-grammars.

Another characterization can be given in terms of strict deterministic grammars due to Harrison and Havel.

95



Chapter 3

Computability

The subject of computability is about defining mathematically what computation might be and then using
those definitions for exploration of the subject. For example, before we talk about complexity of an algorithm
it is probably a good idea to define first what our model of computation we are using.
When did people first start studying computability ? This is a fuzzy thing, since the subject of computability
is intermixed with many different things. But what is clear is that the subject as we present it here came in to
being in the 1930’s due to the work of Church, Godel, Kleene, Post and Turing. At least one influence was that
real computers were being developed. But the subject was also of interest to other types of mathematician of
the time. In particular, a great deal of work was initiated by Hilbert in his 1900 address at the international
congress of mathematicians. There Hilbert gave a list of 21 problems that he thought were important. The
so-called 10th, was to find an algorithm that would check if any given set of polynomial equations (i.e. a
Diophantine system) had solutions. This problem was not settled until 1971, when Matiyasevich, building
on the work of Davis, Putnam and ??? showed that no such algorithm could exist. But the point is, that in
1900 there was no good definition of algorithm. Hilbert’s 10th problem may be considered just one of the
pressures that were building to have such a definition.
As for the ‘fuzzy‘ aspect mentioned above, there are a number of things that can be said. As was mentioned
above, in 1900 no one was sure what was really meant precisely by an algorithm or procedure. Despite
this, in the 19th century when non-constructive methods were first introduced (noticed?), they were not
‘accepted’ by all mathematicians. Intuitively, by a non-constructive proof we mean a proof that doesn’t
give an algorithm that produces the required object, but just abstractly shows the existence of the object.
This led to something of an argument among mathematicians, notably between Hilbert and Brouwer as to
whether the non-constructive proofs were ‘right’. This eventually led to a branch of mathematics known as
constructive analysis. Thus, in constructive analysis, for example, if a real-valued function is to be shown to
have a root, then an algorithm for generating the root must be given.
Looking further back, a notion that is analogous to computation is the greek idea of a constructible number.
Here we are given a few tools, usually a ruler and compass, (i.e. presumably a means of drawing) and use
them to draw figures. We then can ask what lengths may be constructed with these tools. Thus a number
is be constructible if there was a finite sequence of operations with these tools resulting in a segment whose
length was that number. With the ruler and compass it turns out that only real algebraic numbers that are
expressible with nested square roots of rational numbers may be constructed. We mean this analogy of a
construction of a number with straight edge and compass with the computation of a function as only a rough
analogy to help guide the reader with familiar examples. But it brings up an interesting point. For two
thousand years it was an open problem as to whether an angle could be tri-sected with a ruler and compass.
But it was known to Archimedes that if other tools (quadric surfaces, essentially) were allowed, then the
angle could be tri-sected. This sort of phenomenon was troublesome when in the 1920’s people started
making attempts at defining what computable should mean. Namely, what operations should be allowed?
A reasonable seeming choice leads to the definition of the primitive recursive functions. Unfortunately, this
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class of functions turns out to be a little too small for the study of the subject. Interestingly though most of
the programs that are written today are essentially primitive recursive. One really has to look hard to find
a computable function that is not primitive recursive.
Clearly, early mechanical devices for doing arithmetic, such as the one designed and built by Pascal in the
17th century, and the sophisticated machines of Babbage in the early 19th century may be considered as
ancestors of the modern computer. But one should be aware that these machines, like modern computers,
are finite state machines. The models that we will present for computation below are not finite state, i.e.
they have an unbounded amount of memory. For studying the theoretical aspects of computation this is
appropriate, but often leads to results that are impractical or irrelevant in real life computing. Nevertheless,
it is a suitable foundation and a first step towards making a mathematical model of computing. If we want
to worry about space and time limitations then we can impose them on our model and engage in what is
know as complexity theory.
In order to define what we mean for something to be computable, it is good to first settle on what the
‘something’ should be. A reasonable seeming place would be functions from the natural numbers to the
natural numbers. But clearly we would like to be able to compute things with several inputs, so we first
settle on functions from n-tuples of natural numbers to the natural numbers.
We now define the Turing machine model, which computes functions

f : Σ∗ × · · · × Σ∗

︸ ︷︷ ︸
m

→ Σ∗,

where Σ = {a1, . . . , aN} is some input alphabet. We only consider deterministic Turing machines.

A Turing machine also uses a tape alphabet Γ such that Σ ⊆ Γ. The tape alphabet contains a distinguished
symbol B /∈ Σ,called the blank . In the model that we will be considering, a Turing machine uses a single
‘tape’ to store information. This tape can be viewed as a string over Γ. The tape is used both as an input
tape and a storage mechanism. Symbols on the tape can be overwritten and the tape can grow in either the
left or right direction. There is a read/write head that is, any any given instant during the computation,
pointing to a symbol on the tape. Unlike Pushdown automata or NFA’s, the read/write head can move to
the left or the right. We now give the formal definition:

Definition 3.0.3 A (deterministic) Turing machine (or TM ) M is a sextuple M = (Q, Σ, Γ, {L, R}, δ, q0),
where

• Q is a finite set of states ;

• Σ is a finite input alphabet ;

• Γ is a finite tape alphabet , s.t. Σ ⊆ Γ, Q ∩ Γ = ∅, and with blank B /∈ Σ;

• q0 ∈ Q is the start state (or initial state);

• δ is the transition function, a (finite) set of quintuples

δ ⊆ Q× Γ× Γ× {L, R} ×K,

such that for all (p, a) ∈ Q×Γ, there is at most one triple (b, m, q) ∈ Γ×{L, R}×Q such that (p, a, b, m, q) ∈ δ.

A quintuple (p, a, b, m, q) ∈ δ is called an instruction. It is also denoted as

p, a→ b, m, q.

The effect of an instruction is to switch from state p to state q, overwrite the symbol currently scanned a
with b, and move the read/write head either left or right, according to m. There is a convenient way to
represent an instruction with a diagram. If the instruction is p, a → b, m, q. as above then we draw the
diagram
A Turing machine can be represented by drawing a circle for each state and then connecting the states as
described above.
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Example 3.0.4 Consider the Turing machine

3.1 Computations of Turing Machines

To explain how a Turing machine works, we describe its action on Instantaneous descriptions . We take
advantage of the fact that K ∩ Γ = ∅ to define instantaneous descriptions.

Definition 3.1.1 Given a Turing machine

M = (K, Σ, Γ, {L, R}, δ, q0),

an instantaneous description (for short an ID) is a (nonempty) string in Γ∗KΓ+, that is, a string of the form

upav,

where u, v ∈ Γ∗, p ∈ K, and a ∈ Γ.

The intuition is that an ID upav describes a snapshot of a TM in the current state p, whose tape contains
the string uav, and with the read/write head pointing to the symbol a.

Thus, in upav, the state p is just to the left of the symbol presently scanned by the read/write head.

We explain how a TM works by showing how it acts on ID’s.

Definition 3.1.2 Given a Turing machine

M = (K, Σ, Γ, {L, R}, δ, q0),

the yield relation (or compute relation) ⊢ is a binary relation defined on the set of ID’s as follows. For any
two ID’s ID1 and ID2, we have ID1 ⊢ ID2 iff either

1. (p, a, b, R, q) ∈ δ, and either

(a) ID1 = upacv, c ∈ Γ, and ID2 = ubqcv, or

(b) ID1 = upa and ID2 = ubqB;

or

2. (p, a, b, L, q) ∈ δ, and either

(a) ID1 = ucpav, c ∈ Γ, and ID2 = uqcbv, or

(b) ID1 = pav and ID2 = qBbv.

Note how the tape is extended by one blank after the rightmost symbol in case (1)(b), and by one blank
before the leftmost symbol in case (2)(b).

As usual, we let ⊢+ denote the transitive closure of ⊢, and we let ⊢∗ denote the reflexive and transitive
closure of ⊢.

We can now explain how a Turing function computes a partial function

f : Σ∗ × · · · × Σ∗

︸ ︷︷ ︸
m

→ Σ∗.

Since we allow functions taking m ≥ 1 input strings, we assume that Γ contains the special delimiter , not
in Σ, used to separate the various input strings.

It is convenient to assume that a Turing machine “cleans up” its tape when it halts, before returning its
output. For this, we will define proper ID’s. We also define starting and blocking ID’s.
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Definition 3.1.3 Given a Turing machine

M = (K, Σ, Γ, {L, R}, δ, q0),

where Γ contains some delimiter , not in Σ in addition to the blank B, a starting ID is of the form

q0w1,w2, . . . ,wm

where w1, . . . , wm ∈ Σ∗ and m ≥ 2, or q0w with w ∈ Σ+, or q0B.

A blocking (or halting) ID is an ID upav such that there are no instructions (p, a, b, m, q) ∈ δ for any
(b, m, q) ∈ Γ× {L, R} ×K.

A proper ID is a halting ID of the form
BkpwBl,

where w ∈ Σ∗, and k, l ≥ 0 (with l ≥ 1 when w = ǫ).

Computation sequences are defined as follows.

Definition 3.1.4 Given a Turing machine

M = (K, Σ, Γ, {L, R}, δ, q0),

a computation sequence (or computation) is a finite or infinite sequence of ID’s

ID0, ID1, . . . , IDi, IDi+1, . . . ,

such that IDi ⊢ IDi+1 for all i ≥ 0.

A computation sequence halts iff it is a finite sequence of ID’s, so that

ID0 ⊢∗ IDn,

and IDn is a halting ID.

A computation sequence diverges if it is an infinite sequence of ID’s.

We now explain how a Turing machine computes a partial function.

Definition 3.1.5 A Turing machine

M = (K, Σ, Γ, {L, R}, δ, q0)

computes the partial function
f : Σ∗ × · · · × Σ∗

︸ ︷︷ ︸
m

→ Σ∗

iff the following conditions hold:

1. For every w1, . . . , wm ∈ Σ∗, given the starting ID

ID0 = q0w1,w2, . . . ,wm

or q0w with w ∈ Σ+, or q0B, the computation sequence of M from ID0 halts in a proper ID iff f(w1, . . . , wm)
is defined.

2. If f(w1, . . . , wm) is defined, then M halts in a proper ID of the form

IDn = Bkpf(w1, . . . , wm)Bh,

which means that it computes the right value.
A function f (over Σ∗) is Turing computable iff it is computed by some Turing machine M .
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Note that by (1), the TM M may halt in an improper ID, in which case f(w1, . . . , wm) must be undefined.
This corresponds to the fact that we only accept to retrieve the output of a computation if the TM has
cleaned up its tape, i.e., produced a proper ID. In particular, intermediate calculations have to be erased
before halting.
Example.

K = {q0, q1, q2, q3};
Σ = {a, b};
Γ = {a, b, B};
The instructions in δ are:

q0, B → B, R, q3,

q0, a→ b, R, q1,

q0, b→ a, R, q1,

q1, a→ b, R, q1,

q1, b→ a, R, q1,

q1, B → B, L, q2,

q2, a→ a, L, q2,

q2, b→ b, L, q2,

q2, B → B, R, q3.

The reader can easily verify that this machine exchanges the a’s and b’s in a string. For example, on input
w = aaababb, the output is bbbabaa.

It turns out that the class of Turing computable functions coincides with the class of partial recursive
functions . First, we define the primitive recursive functions.

3.2 The Primitive Recursive Functions

The primitive recursive functions were first formally defined by Goedel in 1929, although they were known
to Hilbert. Like finite state automata, they are a simplified model of computation. But unlike regular
languages, most functions (languages) that we encounter are primitive recursive. One has to look around a
bit to find a function that is computable but not primitive recursive. And once such a function is found, it
is usually not an easy task to show that it is not primitive recursive and it will be a very hard function to
compute.
It seems reasonable that if two functions are computable then their composition should also be. Likewise
for recursion. Also there are some ‘primitive’ functions that we definitely want to consider computable
: projection functions, the zero function, and the successor function. These are called the initial or base
functions. Given these, we may use the above two operations to generate a class of functions closed under
those operations. This class is known as the class of primitive recursive functions. To continue with the ruler
and compass analogy, the rational lengths are like the initial functions and the operations of composition
and recursion are like the ruler and compass. We now begin the formal definitions:

Definition 3.2.1 Let Σ = {a1, . . . , aN}. The base functions over Σ are the following functions:

1. The erase function E, defined such that E(w) = ǫ, for all w ∈ Σ∗;

2. For every j, 1 ≤ j ≤ N , the j-successor function Sj , defined such that Sj(w) = waj , for all w ∈ Σ∗;
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3. The projection functions Pn
i , defined such that

Pn
i (w1, . . . , wn) = wi,

for every n ≥ 1, every i, 1 ≤ i ≤ n, and for all w1, . . . , wn ∈ Σ∗.

Note that P 1
1 is the identity function on Σ∗. Projection functions can be used to permute the arguments of

another function.

A crucial closure operation is (extended) composition.

Definition 3.2.2 Let Σ = {a1, . . . , aN}. For any function

g: Σ∗ × · · · × Σ∗

︸ ︷︷ ︸
m

→ Σ∗,

and any m functions
hi: Σ∗ × · · · × Σ∗

︸ ︷︷ ︸
n

→ Σ∗,

the composition of g and the hi is the function

f : Σ∗ × · · · × Σ∗

︸ ︷︷ ︸
n

→ Σ∗,

denoted as g ◦ (h1, . . . , hm), such that

f(w1, . . . , wn) = g(h1(w1, . . . , wn), . . . , hm(w1, . . . , wn)),

for all w1, . . . , wn ∈ Σ∗.

As an example, f = g ◦ (P 2
2 , P 2

1 ) is such that

f(w1, w2) = g(w2, w1).

Another crucial closure operation is primitive recursion.

Definition 3.2.3 Let Σ = {a1, . . . , aN}. For any function

g: Σ∗ × · · · × Σ∗

︸ ︷︷ ︸
m−1

→ Σ∗,

where m ≥ 2, and any N functions
hi: Σ∗ × · · · × Σ∗

︸ ︷︷ ︸
m+1

→ Σ∗,

the function
f : Σ∗ × · · · × Σ∗

︸ ︷︷ ︸
m

→ Σ∗,

is defined by primitive recursion from g and h1, . . . , hN , if

f(ǫ, w2, . . . , wm) = g(w2, . . . , wm),

f(ua1, w2, . . . , wm) = h1(u, f(u, w2, . . . , wm), w2, . . . , wm),

. . . = . . .

f(uaN , w2, . . . , wm) = hN (u, f(u, w2, . . . , wm), w2, . . . , wm),
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for all u, w2, . . . , wm ∈ Σ∗. When m = 1, for some fixed w ∈ Σ∗, we have

f(ǫ) = w,

f(ua1) = h1(u, f(u)),

. . . = . . .

f(uaN) = hN (u, f(u)),

for all u ∈ Σ∗.

As an example, the following function g: Σ∗ × Σ∗ → Σ∗, is defined by primitive recursion:

g(ǫ, v) = P 1
1 (v),

g(uai, v) = Si(P
3
2 (u, g(u, v), v)),

where 1 ≤ i ≤ N . It is easily verified that g(u, v) = vu. Then,

f = g ◦ (P 2
2 , P 2

1 )

computes the concatenation function, i.e. f(u, v) = uv.

Definition 3.2.4 Let Σ = {a1, . . . , aN}. The class of primitive recursive functions is the smallest class
of functions (over Σ∗) which contains the base functions and is closed under composition and primitive
recursion.

We leave as an exercise to show that every primitive function is a total function. The class of primitive
recursive functions may not seem very big, but it contains just about any total function that anyone would
ever want to compute.

Although it is rather tedious to prove, the following theorem can be shown.

Theorem 3.2.5 For an alphabet Σ = {a1, . . . , aN}, every primitive recursive function is Turing computable.

The best way to prove the above theorem is probably to introduce yet another model of computation, RAM
programs . Then, it can be shown that every Turing machine can simulate a RAM program. It is also rather
easy to show that the RAM-computable functions contain the primitive recursive functions.
It is very instructive to consider some examples of the primitive recursive functions over the natural numbers,
the way they were originally defined. To do this within the definitions given above we simply let Σ = {a}.
Then we identify the sting an with the natural number n. Thus the erase function becomes the zero function

E(x) = 0

the successor becomes addition by 1
S(x) = x + 1,

and the projections become the usual projections on the natural numbers

Pn
i (x1, ..., xn) = xi.

This doesn’t look like much to work with. But the amazing thing is that very complex functions can be
made out of them.
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Example 3.2.6 As a first example let’s work backwards. Consider the factorial function, f(n) = n!, which
is given by the equations

f(0) = 0,

f(n + 1) = nf(n).

How do we show that this function is primitive recursive ? We must demonstrate that we can construct
it within the above formalism. Beware - it is not automatic that this function is primitive recursive. For
example, the defining equations contain a multiplication. But we did show that concatenation was primitive
recursive. What does this translate into over the natural numbers ? Addition, i.e. we now know that the
function

+(x, y) = x + y

is primitive recursive. We want to show that the multiplication function, m(x, y) =xy, is primitive recursive.
We may define m by the equations

m(x, 0) = x,

m(x + 1, y) = +(m(x, y), y).

This is still technically not enough, since we need to exhibit two the functions g and h used in the definition
of primitive recursive. But it is not hard to see that we may take g = P 2

1 and h = + ◦ (P 3
2 , P 3

3 ).

So far, the primitive recursive functions do not yield all the Turing-computable functions. In order to get a
larger class of functions, we need the closure operation known as minimization.

3.3 The Partial Recursive Functions

The operation of minimization (sometimes called minimalization) is defined as follows.

Definition 3.3.1 Let Σ = {a1, . . . , aN}. For any function

g: Σ∗ × · · · × Σ∗

︸ ︷︷ ︸
m+1

→ Σ∗,

where m ≥ 0, for every j, 1 ≤ j ≤ N , the function

f : Σ∗ × · · · × Σ∗

︸ ︷︷ ︸
m

→ Σ∗,

is defined by minimization over {aj}∗ from g, if the following conditions hold for all w1, . . . , wm ∈ Σ∗:

1. f(w1, . . . , wm) is defined iff there is some n ≥ 0 such that
g(ap

j , w1, . . . , wm) is defined for all p, 0 ≤ p ≤ n, and

g(an
j , w1, . . . , wm) = ǫ.

2. When f(w1, . . . , wm) is defined,
f(w1, . . . , wm) = an

j ,

where n is such that
g(an

j , w1, . . . , wm) = ǫ

and
g(ap

j , w1, . . . , wm) 6= ǫ

for every p, 0 ≤ p ≤ n− 1. The value f(w1, . . . , wm) is also denoted as

minju[g(u, w1, . . . , wm) = ǫ].
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Note: When f(w1, . . . , wm) is defined,
f(w1, . . . , wm) = an

j ,

where n is the smallest integer such that condition (1) holds. It is very important to require that all the
values g(ap

j , w1, . . . , wm) be defined for all p, 0 ≤ p ≤ n, when defining f(w1, . . . , wm). Failure to do so allows
non-computable functions.

The class of partial computable functions is defined as follows.

Definition 3.3.2 Let Σ = {a1, . . . , aN}. The class of partial recursive functions is the smallest class of
functions (over Σ∗) which contains the base functions and is closed under composition, primitive recursion,
and minimization. The class of recursive functions is the subset of the class of partial recursive functions
consisting of functions defined for every input.

One of the major results of computability theory is the following theorem.

Theorem 3.3.3 For an alphabet Σ = {a1, . . . , aN}, every partial recursive function is Turing-computable.
Conversely, every Turing-computable function is a partial recursive function. Similarly, the class of recursive
functions is equal to the class of Turing-computable functions that halt in a proper ID for every input.

To prove that every partial recursive function is indeed Turing-computable, the simplest thing to do is to
show that every partial recursive function is RAM-computable. For the converse, one can show that given a
Turing machine, there is a primitive recursive function describing how to go from one ID to the next. Then,
minimization is used to guess whether a computation halts. The proof shows that every partial recursive
function needs minimization at most once. The characterization of the recursive functions in terms of TM’s
follows easily.

We can also deal with languages.

3.4 Recursively Enumerable Languages and Recursive Languages

The idea behind a set being recursively enumerable can be expressed by the following example. Suppose
that we are seeking a integer solution to the equation

x2 + y2 = z2 + z4.

We may try to find a solution to this equation by enumerating all integer triples and then plugging them
into the equation one by one, each time checking to see if the triple is a solution. As we go along, if we get a
triple that is a solution then we are done, otherwise we forget about it and move on to the next triple. This
is fine except that, if there is no solution we will go on forever plugging in triples to the equation, and hence
be caught in an infinite loop. But we may get lucky and find that there is a solution.
Now let’s generalize a little. Suppose that we wanted to write a program that would take as input a system of
polynomial equations in several variables as input and determine if the system had a solution in the integers.
Applying the above scheme to each equation seems like a good idea. But there is a problem: if the system of
equations given to the program has no solution we get caught in an infinite loop. So if our program returns
an answer, it will be ‘yes, the system has a solution.’ But otherwise we have to sit and wait, and there is no
way of telling if the wait is going to be forever!
This is one way of looking at recursively enumerable sets. The other way, which is equivalent, is that a
recursively enumerable set is the simply the range of a recursive function. That is where the name comes
from.
In the definition that follows we assume that the TM’s under consideration have a tape alphabet. containing
the special symbols 0 and 1.
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Definition 3.4.1 Let Σ = {a1, . . . , aN}. A language L ⊆ Σ∗ is recursively enumerable (for short, an r.e.
set) iff there is some TM M such that for every w ∈ L, M halts in a proper ID with the output 1, and for
every w /∈ L, either M halts in a proper ID with the output 0, or it runs forever. A language L ⊆ Σ∗ is
recursive iff there is some TM M such that for every w ∈ L, M halts in a proper ID with the output 1, and
for every w /∈ L, M halts in a proper ID with the output 0.

Thus, given a recursively enumerable language L, for some w /∈ L, it is possible that a TM accepting L runs
forever on input w. On the other hand, for a recursive language L, a TM accepting L always halts in a
proper ID.
When dealing with languages, it is often useful to consider nondeterministic Turing machines. Such machines
are defined just like deterministic Turing machines, except that their transition function δ is just a (finite)
set of quintuples

δ ⊆ K × Γ× Γ× {L, R} ×K,

with no particular extra condition.

It can be shown that every nondeterministic Turing machine can be simulated by a deterministic Turing
machine, and thus, nondeterministic Turing machines also accept the class of r.e. sets.

It can be shown that a recursively enumerable language is the range of some recursive function. It can also
be shown that a language L is recursive iff both L and its complement are recursively enumerable. There
are recursively enumerable languages that are not recursive.
Turing machines were invented by Turing around 1935. The primitive recursive functions were known to
Hilbert circa 1890. Gödel formalized their definition in 1929. The partial recursive functions were defined by
Kleene around 1934. Church also introduced the λ-calculus as a model of computation around 1934. Other
models: Post systems, Markov systems. The equivalence of the various models of computation was shown
around 1935/36. RAM programs were only defined around 1963.

A further study of the partial recursive functions requires the notions of pairing functions and of universal
functions (or universal Turing machines).

3.5 Phrase-Structure Grammars

Context-free grammars can be generalized in various ways. The most general grammars generate exactly
the recursively enumerable languages. Between the context-free languages and the recursively enumerable
languages, there is a natural class of languages, the context-sensitive languages. The context-sensitive
languages also have a Turing-machine characterization. We begin with phrase-structure grammars.

Definition 3.5.1 A phrase-structure grammar is a
quadruple G = (V, Σ, P, S), where

• V is a finite set of symbols called the vocabulary (or set of grammar symbols);

• Σ ⊆ V is the set of terminal symbols (for short, terminals);

• S ∈ (V − Σ) is a designated symbol called the start symbol ;

The set N = V − Σ is called the set of nonterminal symbols (for short, nonterminals).

• P ⊆ V ∗NV ∗×V ∗ is a finite set of productions (or rewrite rules, or rules). Every production 〈α, β〉 is also
denoted as α→ β. A production of the form α→ ǫ is called an epsilon rule, or null rule.
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Example 1.
G1 = ({S, A, B, C, D, E, a, b}, {a, b}, S, P ),

where P is the set of rules

S −→ ABC,

AB −→ aAD,

AB −→ bAE,

DC −→ BaC,

EC −→ BbC,

Da −→ aD,

Db −→ bD,

Ea −→ aE,

Eb −→ bE,

AB −→ ǫ,

C −→ ǫ,

aB −→ Ba,

bB −→ Bb.

It can be shown that this grammar generates the language

L = {ww | w ∈ {a, b}∗},

which is not context-free.

3.6 Derivations and Type-0 Languages

The productions of a grammar are used to derive strings. In this process, the productions are used as rewrite
rules.

Definition 3.6.1 Given a phrase-structure grammar G = (V, Σ, P, S), the (one-step) derivation relation
=⇒G associated with G is the binary relation =⇒G ⊆ V ∗× V ∗ defined as follows: for all α, β ∈ V ∗, we have

α =⇒G β

iff there exist λ, ρ ∈ V ∗, and some production (γ → δ) ∈ P , such that

α = λγρ and β = λδρ.

The transitive closure of =⇒G is denoted as
+

=⇒G and the reflexive and transitive closure of =⇒G is denoted
as

∗
=⇒G.

When the grammar G is clear from the context, we usually omit the subscript G in =⇒G,
+

=⇒G, and
∗

=⇒G.
The language generated by a phrase-structure grammar is defined as follows.

Definition 3.6.2 Given a phrase-structure grammar G = (V, Σ, P, S), the language generated by G is the
set

L(G) = {w ∈ Σ∗ | S +
=⇒ w}.

A language L ⊆ Σ∗ is a type-0 language iff L = L(G) for some phrase-structure grammar G.
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The following lemma can be shown.

Lemma 3.6.3 A language L is recursively enumerable iff it generated by some phrase-structure grammar
G.

In one direction, we can construct a nondeterministic Turing machine simulating the derivations of the
grammar G. In the other direction, we construct a grammar simulating the computations of a Turing
machine.

We now consider some variants of the phrase-structure grammars.

3.7 Type-0 Grammars and Context-Sensitive Grammars

We begin with type-0 grammars. At first glance, it may appear that they are more restrictive than phrase-
structure grammars, but this is not so.

Definition 3.7.1 A type-0 grammar is a phrase-structure grammar G = (V, Σ, P, S), such that the produc-
tions are of the form

α→ β,

where α ∈ N+. A production of the form α→ ǫ is called an epsilon rule, or null rule.

Lemma 3.7.2 A language L is generated by a phrase-structure grammar iff it is generated by some type-0
grammar.

We now place additional restrictions on productions, obtaining context-sensitive grammars.

Definition 3.7.3 A context-sensitive grammar
(for short, csg) is a phrase-structure grammar G = (V, Σ, P, S), such that the productions are of the form

αAβ → αγβ,

with A ∈ N , γ ∈ V +, α, β ∈ V ∗, or
S → ǫ,

and if S → ǫ ∈ P , then S does not appear on the right-hand side of any production.

The notion of derivation is defined as before. A language L is context-sensitive iff it is generated by some
context-sensitive grammar.

We can also define monotonic grammars.

Definition 3.7.4 A monotonic grammar is a phrase-
structure grammar G = (V, Σ, P, S), such that the productions are of the form

α→ β

with α, β ∈ V + and |α| ≤ |β|, or
S → ǫ,

and if S → ǫ ∈ P , then S does not appear on the right-hand side of any production.
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Example 2.
G2 = ({S, A, B, C, a, b, c}, {a, b, c}, S, P ),

where P is the set of rules

S −→ ABC,

S −→ ABCS,

AB −→ BA,

AC −→ CA,

BC −→ CB,

BA −→ AB,

CA −→ AC,

CB −→ BC,

A −→ a,

B −→ b,

C −→ c.

It can be shown that this grammar generates the language

L = {w ∈ {a, b, c}+ | #(a) = #(b) = #(c)},

which is not context-free.

Lemma 3.7.5 A language L is generated by a context-sensitive grammar iff it is generated by some mono-
tonic grammar.

The context-sensitive languages are accepted by space-bounded Turing machines, defined as follows.

Definition 3.7.6 A linear-bounded automaton
(for short, lba) is a nondeterministic Turing machine such that for every input w ∈ Σ∗, there is some
accepting computation in which at most |w|+ 1 tape symbols are scanned.

Lemma 3.7.7 A language L is generated by a context-sensitive grammar iff it is accepted by a linear-bounded
automaton.

The class of context-sensitive languages is very large. The main problem is that no practical methods for
constructing parsers from csg’s are known.

3.8 The Halting Problem

3.9 A Univeral Machine

3.10 The Parameter Theorem

3.11 Recursively Enumerable Languages

3.12 Hilbert’s Tenth Problem

108



Chapter 4

Current Topics

4.1 DNA Computing

4.2 Analog Computing

4.3 Scientific Computing/Dynamical Systems

4.4 Quantum Computing
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