
Improving a DTW-based Recognition Engine
for On-line Handwritten Characters by Using MLPs

M. J. Castro-Bleda S. España J. Gorbe F. Zamora
Depto. de Sistemas Informáticos y Computación

Universidad Politécnica de Valencia
46071 Valencia, Spain

{mcastro, sespana, jgorbe, fzamora}@dsic.upv.es

D. Llorens A. Marzal F. Prat J. M. Vilar
Dept. de Llenguatges i Sistemes Informàtics

Universitat Jaume I
12071 Castelló, Spain

{dllorens, amarzal, fprat, jvilar}@lsi.uji.es

Abstract

Our open source real-time recognition engine for on-
line isolated handwritten characters is a 3-Nearest Neigh-
bor classifier that uses approximate dynamic time warp-
ing comparisons with a set of prototypes filtered by two
fast distance-based methods. This engine achieved excel-
lent classification rates on two writer-independent tasks:
UJIpenchars and Pendigits. We present the integration of
multilayer perceptrons into our engine, an improvement
that speeds up the recognition process by taking advantage
of the independence of these networks’ classification times
from training set sizes. We also present experimental results
on our new publicly available UJIpenchars2 database and
on Pendigits.

1. Introduction

Our real-time recognition engine for isolated handwrit-
ten characters is a 3-Nearest Neighbor (3-NN) classifier that
uses approximate dynamic time warping (DTW) compar-
isons with a set of prototypes filtered by two fast distance-
based methods. This open source engine, first presented
at CCIA 2007 [17], achieved excellent classification rates,
presented at VIP 2007 [16], on two writer-independent
tasks: UJIpenchars [12, 13] and Pendigits [1]. It is currently
employed in our multimodal document processing system
STATE [9] for pen input.

We present the integration of multilayer perceptrons
(MLPs) into our engine, an improvement that speeds up
the recognition process by taking advantage of the indepen-
dence of these networks’ classification times from training
set sizes. We also present experimental results on our new
publicly available UJIpenchars2 database and on Pendigits,
comparing the improved engine with its previous version

and with the Microsoft Tablet PC SDK recognizer.
The next section summarizes the previous state of our

engine, as presented at VIP 2007. Section 3 discusses the
use of MLPs as classifiers and how we integrate them into
our engine for speeding up recognition. Our experimental
work, showing the effectiveness of such an integration, is
presented in Section 4. Finally, some conclusions are drawn
in Section 5.

2. Baseline system

As said before, the baseline is our pen-input isolated-
character recognition engine as presented at VIP 2007 [16],
which will be referred to as the “VIP engine” from now on.
The VIP engine uses a 3-NN classifier with an approximate
DTW dissimilarity measure, so it needs a corpus of labelled
samples, ie prototypes. Since DTW is a rather computation-
ally expensive process, even speeding it up with a Sakoe-
Chiba window [19], two different fast screening procedures
are applied to the prototypes in a first stage, and only a sub-
set of them is considered by the classifier. The complete
recognition process is depicted in Fig. 1.

When a sample has to be classified, it follows a prepro-
cessing procedure consisting of slant correction, a bounding
box normalization that preserves the aspect ratio, and stroke
concatenation. Then, two different parameterizations are
used: a 3 × 3 histogram of 8-direction codes (72 counts)
from a resampling of the joined strokes into 130 segments
and a resampling into 90 segments.

The 20 best prototypes according to a χ2-like distance
on the first parameterization are found. Another set of 20
prototypes are selected using a vector distance on the sec-
ond parameterization. The union of these two sets gives at
most 40 prototypes that are compared in turn with the in-
put sample by using a DTW distance, with a Sakoe-Chiba
window, on a segment-based representation.

2009 10th International Conference on Document Analysis and Recognition

978-0-7695-3725-2/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDAR.2009.209

1260

Slant correction,
bounding box
normalization,

and stroke
concatenation Resampling

(m = 90 segments)

One-to-one alignment
(α = 0.09)

candidate selection
(20 prototypes)

Resampling
(m = 130 segments)

Histogram representation
(3× 3 grid)

χ2-distance-based
candidate selection

(20 prototypes)

Approximate (d = 18)
DTW (α = 0.09)

classification (3-NN rule)

Segment-based representation
Guessed
character

class

Test glyph

Figure 1. The VIP engine.

Segments are represented by pairs consisting of a point
and an angle. Local distance between segments is computed
as a linear combination of the squared Euclidean distance
between the points and the angular difference affected by a
factor α > 0.

On the Pendigits [1] task, this engine presents an excel-
lent 0.60% error rate, significantly lower than both the error
rate of other recently published techniques [20, 21] and the
one we obtain from the Microsoft Tablet PC SDK recogni-
tion engine.

This procedure has the handicap that running time de-
pends on the size of the training set since every prototype
has to be screened. In the following section, we propose the
use of MLPs to alleviate this problem.

3. MLP classifiers and their integration

Artificial neural networks have been widely used in pat-
tern classification and, in particular, in character recogni-
tion tasks [3, 5, 8, 10, 11, 14]. The capability of neural
networks to estimate the posterior probabilities of the de-
fined classes [4] allows a natural use of these models for
classification when labelled data is available.

A particular kind of neural networks, MLPs, have been
used in this work. A major requirement to use these mod-
els is the fixed dimensionality of the input patterns. For this
reason, the original on-line ink information cannot be di-
rectly used by the MLPs and an appropriate feature extrac-
tion step is needed. We will employ histogram representa-
tions since they have a constant number of components and,
in [16], provided better results than just resampling. Fig. 2
depicts the computation of one of these histograms for the
case of applying a 3×3 grid after a 15-segment resampling.

The architecture of the networks used in this work com-
prises an input layer with as many neurons as counts in the
histogram, one or two hidden layers, and an output layer
with one neuron per class. Each layer is fully connected
to the next one. Moreover, both hidden and output units

have bias. Hidden units are logistic, ie they use the standard
sigmoid function, and the output layer uses the softmax ac-
tivation function [6].

After training, the network can be used in two ways: as a
straightforward classifier by selecting the class correspond-
ing to the neuron with the highest score or as a screener by
keeping only the c best classes according to their scores. For
our purposes, this filtering has an important advantage over
prototype-based methods because, once trained, the MLP
running time is independent of the training set size.

Summarizing, the idea is to train an MLP that performs
a class screening: only prototypes in those classes selected
by the MLP will be considered by the VIP engine.

4. Experimental work

4.1. The databases

We have experimented with two different databases of
on-line isolated handwritten characters: UJIpenchars2 and
Pendigits.

4.1.1. UJIpenchars2. This database [15], available at the
UCI Machine Learning Repository [2] and partially de-
scribed in [13], is an extension of UJIpenchars [12] con-
taining instances of letters, digits, and other symbols.

We have restricted ourselves to the 62 ASCII alphanu-
meric characters, which have been divided into 35 classes:
9 for the “1” to “9” digits and 26 for the lower and upper-
case versions of each letter, where zero is included in the
“o” class. In total, we have 4 960 training samples from 40
writers and 2 480 test samples from 20 different writers.

When needed, we have reserved 11 training writers (the
UJIpenchars ones) for validation purposes, thus splitting the
considered set of samples into three subsets: TR (proper
training set, 29 writers, 3 596 samples), VA (validation set,
11 writers, 1 364 samples), and TS (test set, 20 writers,
2 480 samples).

1261

0

0
0

0

0

0
0

0

1

0
0

0

0

1
1

0

0

0
0

0

0

0
0

0

0

0
1

0

0

0
0

0

1

0
2

0

0

0
0

0

0

0
1

0

0

1
0

0

0

0
0

2

0

0
0

0

1

0
0

0

0

0
0

0

0

1
0

0

0

1
1

0

(a) After preprocessing (b) Point and angle pairs (c) Histogram

Figure 2. Graphical representation of the computation of a histogram for a letter “t”.

Validation on UJIpenchars2 combining MLP and VIP engine

0

5

10

15

E
rr

or
ra

te
(%

)
E

rr
or

ra
te

(%
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of candidate classes, cNumber of candidate classes, c

0

5

10

15

T
im

e
(m

s/gly
p
h
)

T
im

e
(m

s/gly
p
h
)

Total error
Error due to MLP
Classification time

Validation on Pendigits combining MLP and VIP engine

0.0

0.5

1.0

1.5

2.0

E
rr

or
ra

te
(%

)
E

rr
or

ra
te

(%
)

1 2 3 4 5

Number of candidate classes, cNumber of candidate classes, c

0

5

10

15

20

T
im

e
(m

s/gly
p
h
)

T
im

e
(m

s/gly
p
h
)

Total error
Error due to MLP
Classification time

Figure 3. Experimental results for choosing how many candidate classes the MLP must select.

4.1.2. Pendigits. The Pendigits database [1] is also available
at the UCI Machine Learning Repository [2]. This corpus
contains handwritten instances of the 10 digits from several
writers: 7 494 glyphs from 30 writers are used as training
set and 3 498 glyphs from 14 different writers are used as
test data. Recently published error rates over this database
are 2.26% in 2005 [21] and 1.66% in 2006 [20].

When needed, 6 writers have been reserved for val-
idation purposes, producing the following partition: TR
(proper training set, 24 writers, 5 995 samples), VA (vali-
dation set, 6 writers, 1 499 samples), and TS (test set, 14
writers, 3 498 samples).

4.2. MLP training for UJIpenchars2

For training the MLPs, we have applied the on-line
backpropagation algorithm with momentum (see chapters 7
and 8 in [18]) to the cross-entropy penalty function [6] mea-
sured on the corresponding TR set. However, to avoid over-

fitting, the stopping criterion does not take the TR set into
account. Instead, the training stops when the classification
error on a subset of VA does not improve for 100 epochs.
Then, the MLP from the epoch with the minimum classifi-
cation error so far is chosen.

In this work, all the MLP training has been carried out
using the April toolkit [7] with scripts that include a small
decay to be applied to both learning rate and momentum
after each training epoch (they are multiplied by 0.999).

As said before, just a subset of VA is employed for stop-
ping the training of each MLP. This subset, VA1, consists of
774 samples from 6 writers. The remaining 620 validation
samples, from 5 writers, forms VA2. The classification er-
ror on this second validation set has been used for choosing
the best MLP among the networks returned for a number of
training runs.

All possible combinations of the following parameter
values have been tried in a first round of 2 640 runs (one
run per parameter combination):

1262

Resampling sizes: 10, 20, 30, . . . , 200.

Grid sizes: 3× 3, 4× 4, and 5× 5.

Hidden layer topologies: One layer with 32, 64, 96, and
128 units and two layers with sizes (32, 32), (64, 32),
(96, 32), (128, 32), (64, 64), (96, 64), and (128, 64).

Initial weight ranges: Only [−0.7, 0.7].

Learning rate and momentum pairs: (0.05, 0.01),
(0.01, 0.002), (0.075, 0.025), and (0.005, 0.0001).

Then, for the three parameter combinations showing the
best results on VA2, a second round of training runs was
performed varying the initial weight range. Three inter-
vals ([−0.1, 0.1], [−0.4, 0.4], and [−0.7, 0.7]) were con-
sidered for each parameter combination and ten different
MLPs were trained in each case, totalling 90 new runs. It is
worth noting that, in each run, randomness affects both ini-
tial weight values and the TR set shuffle before each epoch.

The network finally selected for the UJIpenchars2 task,
which achieves a 13.0% error rate on VA2, is an MLP with
128 units in just one hidden layer, trained from weights ini-
tialized in the range [−0.1, 0.1] with learning rate 0.05, mo-
mentum 0.01, and input patterns obtained from a 4× 4 grid
after a 70-segment resampling of the preprocessed glyphs.

4.3. MLP training for Pendigits

The same three parameter combinations selected after
the first round of runs in the previous section were used for
training 90 MLPs for the new task, following the same pro-
cess described above, except for the fact that there is only
one validation set, VA, to be used for both the stopping cri-
terion and choosing the best MLP.

The best performance is achieved by an MLP with two
hidden layers (128, 64), learning rate 0.05, momentum
0.01, initial weights in the range [−0.7, 0.7], and input pat-
terns obtained from a 3 × 3 grid after a 50-segment resam-
pling. The classification error rate for the validation set with
this MLP is 1.47%.

4.4. Choosing the number of candidate classes

In order to choose the number c of candidate classes the
corresponding MLP should provide to the VIP engine, new
experiments were carried out for both UJIpenchars2 and
Pendigits. In each case, we use the best MLP previously
trained and, as prototypes for the VIP engine, the corre-
sponding TR set. Classification results, measured on the
corresponding complete VA set, are shown in Fig. 3 for a
range of c values. The times correspond to executions on a
Dell Precision T3400 desktop PC with an Intel Core2 Quad
CPU Q9450 at 2.66 GHz and 4 Gb of RAM on the .NET

3.5 (with SP1) platform under the Microsoft Vista Ultimate
Edition (with SP1) operating system. The programs were
coded in C# without unsafe code and compiled on Microsoft
Visual Studio 2008 (with SP1).

Our final choice, minimizing classification errors, was
c = 10 for UJIpenchars2 and c = 3 for Pendigits, ie ap-
proximately one third of the total number of classes in each
case.

4.5. Comparative results

Comparative results are presented in Table 1. The first
row corresponds to C# experiments with the 1.7 version of
the Microsoft Tablet PC SDK recognition engine1. The fol-
lowing rows correspond to the engines explained above, us-
ing the same two MLPs as in the previous section. In Val-
idation columns, classification is measured on VA sets and
TR sets are used as VIP prototypes. In Test columns, final
results on TS sets are shown where, when needed, complete
training sets TR + VA are used by the VIP engine.

The main result is that running time has been reduced
to 50% from the baseline without significantly altering the
error rate: the difference is 0.20% on Pendigits and 0.3%
on UJIpenchars2. On UJIpenchars2, the MLP + VIP error
rate (8.2%) is clearly competitive with the Microsoft engine
(8.5%), while in Pendigits, the error rates of VIP (0.60%)
and MLP + VIP (0.80%) are definitely better than those of
Microsoft (1.89%).

5. Conclusions

The integration of MLPs into our engine approximately
halves its running time while keeping the error rates. Com-
pared to the Microsoft engine, the results are competitive
and our code is completely managed, so it can be ported to
any architecture running a .NET platform, like Windows,
Linux, and Mac OS X, among others.

The current times correspond to more than 60 characters
per second, making it suitable for real-time response.

Acknowledgments

Work partially supported by the Spanish Ministerio de
Ciencia e Innovación (TIN2006-12767, TIN2008-06856,
and Consolider Ingenio 2010 CSD2007-00018), the Con-
selleria d’Empresa, Universitat i Ciencia, Generalitat Va-
lenciana (BFPI06/250 scholarship), and Fundació Caixa
Castelló-Bancaixa (P1·1B2006-31).

1In these experiments, the Microsoft recognition engine uses a
Microsoft.Ink.RecognizerContext object with an appro-
priate WordList and flags Coerce and WordMode. We also help
the Microsoft recognizer by providing it with the dimensions of the acqui-
sition box via its Guide property.

1263

Table 1. Classification error and running time per glyph (ms) on UJIpenchars2 and Pendigits.

UJIpenchars2 Pendigits

Validation Test Validation Test

Microsoft SDK 8.4% 0.6 8.5% 0.6 0.93% 0.5 1.89% 0.5
VIP engine 8.7% 16.7 8.5% 23.6 0.27% 26.0 0.60% 32.4
MLP 12.8% 1.0 14.2% 1.0 1.47% 0.8 3.63% 0.8
MLP + VIP 8.4% 9.4 8.2% 12.4 0.27% 11.9 0.80% 14.8

References

[1] E. Alpaydın and F. Alimoğlu. Pen-Based Recognition of
Handwritten Digits (original, unnormalized version). Data
set available at [2], 1998.

[2] A. Asuncion and D. Newman. UCI Machine Learning
Repository. http://www.ics.uci.edu/~mlearn/
MLRepository.html, 2007.

[3] A. Bellili, M. Gilloux, and P. Gallinari. An MLP-SVM
combination architecture for offline handwritten digit recog-
nition. International Journal on Document Analysis and
Recognition, 5(4):244–252, 2003.

[4] C. M. Bishop. Neural networks for pattern recognition. Ox-
ford University Press, 1995.

[5] M. Blumenstein and B. Verma. A neural based segmentation
and recognition technique for handwritten words. In The
1998 IEEE International Joint Conference on Neural Net-
works Proceedings, volume 3, pages 1738–1742, Anchor-
age, Alaska, USA, 1998.

[6] R. A. Dunne and N. A. Campbell. On the pairing of the
softmax activation and cross-entropy penalty functions and
the derivation of the softmax activation function. In Pro-
ceedings of the Eighth Australasian Conference on Neural
Networks, pages 181–185, Melbourne, Australia, 1997.

[7] S. España-Boquera, F. Zamora-Martínez, M. J. Castro-
Bleda, and J. Gorbe-Moya. Efficient BP algorithms for gen-
eral feedforward neural networks. Lecture Notes in Com-
puter Science, pages 327–336, 2007.

[8] P. D. Gader, J. M. Keller, R. Krishnapuram, J.-H. Chiang,
and M. A. Mohamed. Neural and fuzzy methods in hand-
writing recognition. Computer, 30(2):79–86, 1997.

[9] A. Gordo, D. Llorens, A. Marzal, F. Prat, and J. M. Vilar.
STATE: A multimodal assisted text-transcription system for
ancient documents. In The Eighth IAPR Workshop on Doc-
ument Analysis Systems, pages 135–142, Nara, Japan, 2008.

[10] L. Jackel, M. Battista, H. Baird, J. Ben, J. Bromley,
C. Burges, E. Cosatto, J. Denker, H. Graf, H. Katseff, Y. Le-
Cun, C. Nohl, E. Sackinger, J. Shamilian, T. Shoemaker,
C. Stenard, I. Strom, R. Ting, T. Wood, and C. Zuraw.
Neural-net applications in character recognition and docu-
ment analysis. In Neural-Net Applications in Telecommuni-
cations. Kluwer Academic Publishers, 1995.

[11] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, and L. D. Jackel. Handwritten digit

recognition with a back-propagation network. In D. Touret-
zky, editor, Advances in Neural Information Processing Sys-
tems 2 (NIPS*89), Denver, Colorado, USA, 1990. Morgan
Kaufman.

[12] D. Llorens, F. Prat, A. Marzal, and J. M. Vilar. UJIpenchars:
A Pen-Based Classification Task for Isolated Handwritten
Characters. Data set available as UJI Pen Characters at [2],
2007.

[13] D. Llorens, F. Prat, A. Marzal, J. M. Vilar, M. J. Castro, J. C.
Amengual, S. Barrachina, A. Castellanos, S. España, J. A.
Gómez, J. Gorbe, A. Gordo, V. Palazón, G. Peris, R. Ramos-
Garijo, and F. Zamora. The UJIpenchars Database: A Pen-
Based Database of Isolated Handwritten Characters. In Pro-
ceedings of the 6th International Conference on Language
Resources and Evaluation (LREC 2008), Marrakech, Mo-
rocco, 2008.

[14] I.-S. Oh and C. Y. Suen. A class-modular feedforward neural
network for handwriting recognition. Pattern Recognition,
35(1):229 – 244, 2002.

[15] F. Prat, M. J. Castro, D. Llorens, A. Marzal, and J. M. Vilar.
UJIpenchars2: A Pen-Based Database with More Than 11K
Isolated Handwritten Characters. Data set available as UJI
Pen Characters (Version 2) at [2], 2008.

[16] F. Prat, A. Marzal, S. Martín, R. Ramos-Garijo, and M. J.
Castro. A template-based recognition system for on-line
handwritten characters. Journal of Information Science and
Engineering, 25(3):779–791, 2009.

[17] R. Ramos-Garijo, S. Martín, A. Marzal, F. Prat, J. M. Vi-
lar, and D. Llorens. An input panel and recognition engine
for on-line handwritten text recognition. In C. Angulo and
L. Godo, editors, Artificial Intelligence Research and De-
velopment, volume 163 of Frontiers in Artificial Intelligence
and Applications, pages 223–232. IOS Press, 2007.

[18] R. Rojas. Neural Networks: A Systematic Introduction.
Springer, 1996.

[19] H. Sakoe and S. Chiba. Dynamic programming algorithm
optimization for spoken word recognition. IEEE Trans.
on Acoustics, Speech and Signal Processing, 26(1):43–49,
1978.

[20] B. Spillmann, M. Neuhaus, H. Bunke, E. Pękalska, and
R. P. W. Duin. Transforming strings to vector spaces us-
ing prototype selection. Lecture Notes in Computer Science,
4106:287–296, 2006.

[21] J. Zhang and S. Z. Li. Adaptive nonlinear auto-associative
modeling through manifold learning. Lecture Notes in Com-
puter Science, 3518:599–604, 2005.

1264

