Abstract

A method for automatic identification of PubMed abstracts discussing func-
tional aspects of a given gene is presented. This identification task is ad-
dressed as a combination of document retrieval followed by subsequent classi-
fication. The Retrieval problem involves finding documents that are relevant
to particular genes; we formulate and use a set of rules for query expansion
to improve the recall. The Classification problem is addressed from a super-
vised machine learning perspective and solved using document classification
techniques, using both the abstract text as well as domain knowledge derived
from existing ontologies. Several different variations of the basic approach
have been tried and evaluated in terms of precision and recall on document
collections of different sizes. We conclude with a discussion of the results
and their interpretation with respect to the information used in each case.

Contents

Introduction

Related Work

2.1 Gene name identificationo L
2.1.1 Synonym Extraction
2.1.2 Biological terminology disambiguation
Gene interactions identification
2.2.1 Gene-protein interaction
2.2.2 Gene-drug interactions
2.2.3 Gene-gene functional similarity
2.2.4 Protein-protein interaction
2.2.5 Other Interactions
2.3 Classification,

1
2
2.2
3
3.1
3.2
3.3
3.4
4
4.1
4.2
4.3

Classification Module

Preparation and Preprocessing
3.1.1 Abstracts from the documents
3.1.2 MeSH Headings
3.1.3 MeSH Hierarchy Tree Numbers

Training

Evaluation Method oo
Experimental Results 0L

Retrieval Module

Challenges o
Identifying variations in gene names
421 N-Gram Overlap
4.2.2 Inspection and Rule generation
Retrieving the Documents

11
12
13
13
15
15
16
17

CONTENTS ii

4.3.1 Organism Filtering 27

4.3.2 Experimental Evaluation 29

4.3.3 Improving it Furthero 32

4.4 Combining the Modules, 33
4.4.1 Generating a Combined Score 33

4.4.2 Experimental Evaluation 34

5 Conclusions 36
5.1 Future Work 36

List of Figures

3.1
3.2

3.3

3.4

3.5

3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5

4.6

4.7

Number of Different abstracts each word appearsin 14
Classification accuracy with different methods of preprocess-
ing abstracts: (a)Without Preprocessing (b)Removing Stop-
words (c)Removing less frequent words in addition (d)With
addition of stemming oo 17
Classification accuracy with different methods of preprocess-
ing MeSH tree labels: (a) Tree numbers from level 1 (b) Tree
numbers from level 2 (¢) Numbers from levels 1 and 2 (d)
Complete tree numbers oL 18
Classification accuracy with different methods of using the
MeSH headings: (a) descriptors with separate word (b) de-
criptor words together (c) qualifier as separate words (d) qual-
ifiers as part of descriptor L. 19
Classification accuracy for different feature sets: (a)descriptors
as phrases (b) Whole tree numbers (c) Abstracts cleaned and

stemmed (d) descriptors together with tree numbers 20
Performance of the classifier using the different feature sets. . 21
F-measure for the different feature sets. 21
F-measure for different input sizes. 22

Some selected Overlap Pairs for gene names and their variants 26

Rules for expanding gene names 26
Most Frequent Mesh terms for documents grouped by organism 28
MeSH terms used to map documents to organisms 29

Recall with different variation schemes: (a) No variations (b)
With rule-based expansions (¢) With normalization (d) Both
normalization and expansion 30
Mean Average precision with different combinations of (A)
Expansion, (B) Normalization and (C) Organism Filtering . . 30
Interpolated precision vs recall for different combinations. . . 31

iii

4.8

4.9

Recall with different combinations of (A)Expansion, (B) Nor-
malization and (C) Organism Filtering (over a total of 308
documents). 32
Mean Average Precision with different weights for score com-
bination 35

Acknowledgements

I would like to thank my advisor Prof. Marti Hearst for all the discussion,
ideas and help in moulding this work and this report. Her guidance was
invaluable in the realization of this work.

I would also like to thank Preslav Nakov for his text processing code,
related work that was taken out of the term project that we did together
and useful ideas that germinated during the course of our discussions. In
addition, I would like to thank Ariel Schwartz for his help in downloading
and maintaining the databases and installing the DB2 text search module.
Finally I would like to thank IBM for allowing the research use of DB2 and
their Text Search module. This material is based upon work supported in
part by the National Science Foundation under Grant No. EIA-0122599.

Chapter 1

Introduction

Recently, a large number of genetic discoveries have been reported in the
bioscience (molecular biology, biomedicine, medicine, etc.) literature. An
enormous amount of data is available via websites maintained by the Na-
tional Center for Biotechnology Information (NCBI) [3] and by other re-
search groups around the world. This wealth of electronically published
knowledge can be used by scientists and clinicians seeking information in
a new area or wanting to find information on a particular topic. One such
database is PubMed ([6], referred also as Medline), which nowadays con-
tains 6.6 plus abstracts over a vast corpus of bioscience literature, and is
growing by more than 40K citations each month. While some part of the
document representation in PubMed is structured, much is in the form of
article abstracts.

Finding information relevant to one’s interest without being overwhelmed
by all the non-relevant information is a daunting task. This can be addressed
using automated methods to integrate raw and processed data from variety
of sources, and evaluate and digest the contents to present them in a more
usable format. With the multi-fold increase of the size and complexity of
biological information [30], such automated methods also become critical to
assist human operators in collecting, curating and maintaining the various
databases. An example of a database that could benefit from automated
curation methods is LocusLink [5]. LocusLink contains PubMed references
for documents related to genes and their functions. We describe LocusLink
in detail in later chapters.

Swanson and Smalheiser [44] demonstrated the potential of literature
text mining, by discovering an important but previously unknown relation-
ship between magnesium and migraine headaches by using simple word co-

CHAPTER 1. INTRODUCTION 2

occurrence statistics in article titles. This success inspired researchers from
the machine learning and information retrieval community to do further
work in the application of text mining and natural language processing tech-
niques to biomedical texts (e.g., Hearst [24]). The bioinformatics community
is increasingly applying machine learning, natural language and information
retrieval tools to the bioscience literature. Current tasks of interest include
named entity recognition, terminology disambiguation, gene protein inter-
action identification, relations extraction, etc. We describe the state of the
art in some of these in our related work section.

In this report we present a method that attempts to find, for a gene
name or synonym, a set of articles or documents that talk about some of
its functional aspects. This work is inspired by the GenomicsTrack [1] of
the Text REtrieval Conference (TREC) [8]. TREC is an IR forum that is
sponsored by the National Institute of Standards and Technology (NIST)
and several other government agencies. It was designed to encourage and
support large scale information retrieval research. Each year TREC consists
of a main retrieval task and a number of specialized tracks. The Genomic-
sTrack consists of two tasks, the first one requires ad hoc retrieval and the
second one requires information extraction from the retrieved documents.
Our work focuses on the first task that consists of finding all journal articles
in a collection of documents that describe some aspect of a function related
to a particular gene belonging to a given organism.

This work consists of two parts. In the first part we present a Classifica-
tion Module, where we identify the documents that talk about a function of
a given gene. We address the problem from a supervised machine learning
perspective and solve it using document classification techniques. We iden-
tify various features in the input documents using both the abstract text as
well as domain knowledge derived from existing ontologies. These features
are then converted into a feature vector and fed into a Naive Bayes [33]
classifier to learn a model which is used subsequently to predict the class of
a new document.

In the second part we present a Retrieval Module, where we identify the
subset of documents that are associated with a given gene. An easy way to
do this would be to use the information contained in online databases like
LocusLink', but these databases are not exhaustive and contain only a small
subset of documents related to the gene. We obtain a more complete set by
searching for the gene name and synonyms in the PubMed documents. The

LocusLink contains references to relevant journal articles called PubMed references
for some of the genes

CHAPTER 1. INTRODUCTION 3

task of retrieving documents related to a gene is non-trivial since the gene
names may be used in the documents in various different lexical forms and
the same names may be used for genes that belong to different organisms.

Finally we show how these two systems could be combined together
to perform the trec task that was described before. We use the classifier
to assist the retrieval module in ranking the documents. The scores from
the classifier, that denote the likelihood of documents belonging to one of
the classes (being function references or not), are interpreted as relative
relevance of the documents and used in ranking them. We find that this
combination achieves only a marginal improvement in performance.

The rest of the report is organized as follows: In chapter 2 we describe
related work. We talk about our Classification module in chapter 3, where
we describe how we filter documents that are potential Gene References
into Function. In chapter 4 we talk about our retrieval module and how we
apply the classifier to the retrieved documents to obtain final results for our
task. Finally, in chapter 5, we conclude the discussion with the summary
and implications of the results and outline possible future work.

Chapter 2

Related Work

2.1 Gene name identification

An important step in every text processing algorithm is the identification of
the terms of interest: the so-called named entities, according to the terminol-
ogy adopted in information extraction. For the case of protein identification
the problem has been proved easy. Probably the most sophisticated iden-
tification of protein names is due to Fukuda et al. [20], who propose a
rule-based approach and achieve 94.70% precision and 98.84% recall. The
problem has also been addressed by Proux et al. [37], who are interested
in gene name identification and apply a combination of rules and statistics
(precision 91%, recall 94%). Collier et al. [14] extract both genes and gene
products names using hidden Markov model (F-measure 73%). Tanabe and
Wilbur [47] apply tagging. Part of Speech (POS) tagging as well as phrasal
chunking is used by the EDGAR system [39].

Next step after identifying the named entities is to map them to a known
gene or gene product. This mapping can be difficult because there is no
accepted standard way of representing these names. Naming conventions do
exist for some types of biological concepts, e.g., genes, alleles and proteins
[35]. There are formal bodies, such as Enzyme Commission and Human Gene
Nomenclature Committee, whose responsibilities involve assigning unique
symbols and descriptive names to specific types of concepts. Still, these are
only guidelines and as such do not impose restrictions to domain experts. In
addition they only apply to a subset of terms, while the rest of the bioscience
terminology remains highly non-standardized.

At present, we do not address the identification problem in full, but
rather just perform a mapping against a predefined list of genes and other

CHAPTER 2. RELATED WORK 5

biological terms from the MeSH hierarchy. We also identify syntactic vari-
ations of gene names by matching known names against all possible sub-
sequences of words that appear in actual text (see chapter 4). Below we
discuss related work in two tasks that help with the above mapping, syn-
onym extraction and terminology disambiguation.

2.1.1 Synonym Extraction

Most approaches to synonym identification work with the content of the
strings representing gene and protein names. Humphreys and Lindberg [27]
used a semi-automatic method to identify multi-word synonyms in UMLS
(the Unified Medical Language System, a large biomedical taxonomy) by
linking terms as candidate synonyms if they shared any words (Hole and
Srinivasan [25]). E.g. the term cerebrospinal fluid leads to cerebrospinal
fluid protein assay. The candidate synonym terms were then evaluated by
human curators. This approach is tedious for a large scale system due to the
need for human marking of results. Hanisch et al. [22] used a token model
of protein names to construct a synonym list. Their assumption is that the
order of words in names does not matter and they partition words into token
classes according to semantic significance. Given a protein name they find
the list of candidate synonym sets based on the token classes that match
and then assign the names to the set with the best score. A scoring scheme
is learned using Robust Linear Programming. They achieve a specificity of
0.78 and sensitivity of 0.82 without curation on a set of 611 associations
(141 objects in 470 abstracts).

Yu and Agichtein [51] use the surrounding context of gene and protein
names to identify synonyms. They explore four complementary approaches
for discovering contextual similarity for words in text, namely unsupervised,
partially supervised, and supervised machine learning techniques, as well as
a manual knowledge-based approach. They retrieve only synonym pairs that
appear together in a sentence. Their best system combines these approaches
and gives a very low precision of 0.15 at 0.5 recall on a set of 588 synonym
pairs. Wilbur and Kim [48] employ a trigram-matching algorithm to identify
similar multi word phrases. They treat phrases as documents made up of
character trigrams which are then represented in the vector space model and
similarity computed as the cosine of the angle between the corresponding
vectors. We use a similar approach to identify lexical variations of gene
names, which are then used to generate rules for matching.

CHAPTER 2. RELATED WORK 6

2.1.2 Biological terminology disambiguation

Another important problem related to gene name identification is ambigu-
ity. It is common in the biological literature to use the same graphemic form
to refer to gene, protein, gene transcripts (mRNA, rRNA, tRNA) etc. The
problem can be addressed as a word sense disambiguation (document classi-
fication) task. Liu et al. [32] propose an automatic method that constructs
sense-tagged corpora for ambiguous abbreviations in the UMLS using Med-
line abstracts. They achieve overall precision of 92.9% and an overall recall
of 47.4% on a set of 35 frequently occurring ambiguous biomedical abbrevi-
ations. Hatzivassiloglou [23] tried Naive Bayes, decision trees and RIPPER,
exploiting various features (position, capitalization, POS, word distribution,
stop-words removal and stemming) and achieved accuracy of 78 — 84% over
a set of 550 manually labelled ambiguous occurrences.

2.2 Gene interactions identification

Gene function can be can expressed as a binary relation in several differ-
ent ways, including: gene-gene, gene-protein, gene-drug, gene-disease, gene-
process etc. We will describe some interesting approaches to extracting them
below, as well as some related ones: e.g., protein-protein interactions, which
do not describe a function of a gene.

2.2.1 Gene-protein interaction

Sekimizu et al. [42] have adopted an elaborate and linguistically motivated
approach to this task. They use a list of predefined verbs (activate, bind,
interact, requlate, encode, signal, function etc.) and perform a shallow pars-
ing using EngCG to identify the interacting proteins. They infer that genes
and/or gene products interact only in those cases in which they are the
subject and the object of that verb. (An experiment for the verb activate
shows that about 65% of its arguments are genes or proteins.) A precision of
90% is reported for the noun phrases bracketing (using regular expressions
over the output of EngCG) and 73%, for the subject and object recognition
given the target verb. The method is further extended to handle conjugate
forms: e.g., activate - activation, activate, activates, activator, inactive,
...-activated, ...-activating. Although the system is described as the first
step toward building genome-related thesaurus and hierarchies in a fully
automatic way, it is fully functional and has been formally evaluated: the
precision of interaction identification is between 67.8% and 83.3% for the

CHAPTER 2. RELATED WORK 7

different verbs. No recall information is provided.

2.2.2 Gene-drug interactions

Kamvar et al. are interested in extracting gene-drug relationships from
biomedical literature [29]. They address the problem from a supervised ma-
chine learning perspective. Their algorithm uses a training set of known
gene-drug interactions and representative literature about each gene and
drug as a training set and tries to identify new unknown interactions that
cannot be inferred trivially (e.g., by lexical similarity between a new gene/drug
and one in the training set). The relation is predicted for a gene-drug pair
G2-D2 (from the literature) for which there is a pair G1-D1 in the training
set such that G1 and G2, as well as D1 and D2, are similar enough. The
probability of interaction P(int(G2,D2)) between G2 and D2 is estimated as
P(int(G2,D2)) = P(int(G1,D1)) x sim(G1,G2) x sim(D1, D2). A vector
space model is used to estimate the similarity between two genes or drugs.
Each gene and drug is assigned a vector based on the words that appear in
their description in literature (they use LocusLink[5] for genes and USP DI[9]
for drugs descriptions). The similarity is then calculated as a dot product
between the corresponding normalized vectors (the cosine). The approach is
carefully evaluated on a set of 258 gene-drug pairs and a precision of 60% is
reported (which is amazing, given its simplicity), but no recall is calculated.

2.2.3 Gene-gene functional similarity

Shatkay et al. [43] try to identify functionally similar genes from biomedical
text using information retrieval techniques. Given a list of genes and a
starting (kernel) document for each, they find 50 additional documents that
are most similar along with a list of characteristic words. The idea is that
if the kernel document is used to discuss the functional role of a gene, so
will the highly similar ones. Thus two genes are considered similar if the
corresponding sets of 50 documents are similar, which is measured in a
standard way: as the cosine between the corresponding vectors. They report
some preliminary experiments but do not perform any objective evaluation
of their technique.

2.2.4 Protein-protein interaction

Blaschke et al. [11] describe a system for automatic extraction of protein-
protein interactions from PubMed [6] abstracts by means of pre-specified
lists of protein names and 14 verbs (acetylate, activate, associated with,

CHAPTER 2. RELATED WORK 8

bind, destabilize, inhibit, interact, is conjugated to, modulate, phosphorylate,
requlate, stabilize, suppress and target), indicating actions related to genes
interactions. They look for instances of a pattern of the form protein-verb-
protein, all three met in the same (part of the) sentence and in that order
(with possibly some other words in between). The extraction is performed
over a set of documents and only the most frequent instances are retained,
the rest being ruled out as likely to be due to chance. The method has not
been quantitatively evaluated but has been applied over a set of proteins,
where it recovered most of the known interactions (and suggested some ad-
ditional unknown ones). Although it has been proposed for protein-protein
interactions, it would be easily adaptable to gene-protein and gene-gene
interactions.

Thomas et al. [45] address protein-protein interaction from an Informa-
tion Extraction (IE) perspective: they adapt the general-purpose IE engine
HIGHLIGHT!, which allows them to build elaborate contextual rules, com-
bining syntactic and lexical information. They developed mapping rules for
over 30 verbs, but concentrated on just three of them: interact, associate
and bind. They use frequency of occurrence of relations, the context in which
a relation is found and the confidence that the NP arguments are really pro-
teins to score the rules. The reported precision varies from 60% to 81%, but
the recall is low: from 24% to 63%.

2.2.5 Other Interactions

An interesting IE system is PASTA[21]. It extracts information concern-
ing the roles of amino acids in protein molecules. It identifies and tags 12
different kinds of biological named entities (protein, species, residue, site, re-
gion, secondary structure, supersecondary structure, quarternary structure,
base, atom, non-protein compound and interaction), then classifies these into
three template elements (RESIDUE, PROTEIN and SPECIES) and looks
for two templates (IN_.PROTEIN and IN_.SPECIES). The entity recognition
task proceeds in three steps: morphological analysis (identifies if individ-
ual token have interesting biochemical affixes), lezical lookup (for term type
classification) and terminology parsing (combination of component terms
into single multi-token unit using a rule based parser). POS tagging is then
used to convert sentences into predicate-argument expressions, which are
subsequently combined to generate templates. The precision/recall figures
for named entity, template element and template relation are: 84%/82%,

"http:/ /www.cam.sri.com

CHAPTER 2. RELATED WORK 9

66%/75% and 65%/68%.

Other interesting natural language processing (NLP) techniques applied
to the field of gene and gene product relations extraction use preposition-
based shallow parsing (Leroy and Chen [31], precision 70%, recall 47%),
categorical grammar parsing (Park et al. [36], precision 80%, recall 48%) and
XHPSG parsing (Yakushiji ([49]). Pustejovsky et al. [38] go even further: in
addition to performing shallow parsing and using domain knowledge (UMLS
ontology), they use an anaphora resolution (sortal and pronominal) module
to boost the relation extraction accuracy.

2.3 Classification

One of the tasks we are interested in is to identify if a given document
discusses gene function. Since we are mot interested in the specific rela-
tion/function but just in the fact of its existence we can address the problem
as a document classification task.

Classification is a basic machine learning task. It uses a two-stage pro-
cess: training and testing. During training the program is provided with
a set of labelled examples which are used for learning algorithm param-
eters. While testing the system is asked to predict the class for unseen
example(s). A broad range of algorithms have been used for classification,
including: Naive Bayes [19], decision trees, decision lists, support vector
machines, neural networks, k-nearest neighbor, Rocchio etc. (see [33]) Clas-
sification algorithms are useful for NLP tasks that can be formulated as
classification /discrimination problems, e.g., word sense disambiguation and
in particular, biological terminology disambiguation that we discussed in
section 2.1.2.

Other tasks, like relations extraction can also be reformulated as a clas-
sification problem. Rosario and Hearst [40] identify semantic relations be-
tween constituents in bioscience text. They identify a set of eight pos-
sible relations that can hold in natural language sentences between enti-
ties treatment and disease. They use neural network to classify these enti-
ties/relations and achieve 96.9%/76.5% accuracy in relationship extraction
when entities are given/hidden. Craven and Kumlien [15] also address the
relation extraction from a text classification perspective. They work at the
sentence level and learn a Naive Bayes classifier which predicts whether
a specific sentence is an instance of the target relation, e.g., associated-
diseases(Protein, Disease). We follow a similar approach, but at the docu-
ment level: given a set of labelled example documents we learn classifiers to

CHAPTER 2. RELATED WORK 10

predict whether a new document, containing a given gene name, discusses
about some function of that gene. We are not interested in the particular
function type but rather in the single fact that it is being discussed there.

Chapter 3

Classification Module

Our approach to document classification is based on the idea that articles
which discuss gene function contain a distinct set of features which can be
learned using automated techniques. The resulting models can be used to
classify new documents.

The LocusLink([5] database from NLM contains information about gene
functions. This information can be collected via a handcrafted crawler,
but more recently it has been made available as a down-loadable database.
Each LocusLink record refers to a set of PubMed documents that are asso-
ciated with the gene that talk about its mapping, identification or function
(PubMed references). A subset of these are annotated as GeneRIFs (Gene
Reference Into Function), i.e., they talk about a functional aspect of the
gene in question. Each GeneRIF consists of a short phrase describing one or
more functions of the gene, and a PubMed identifier (PMID) that identifies
a citation in the PubMed database for a published paper that describes this
function. For example, “amyloid beta (A4) precursor protein” (LocusID-
351) that is a biomarker for Alzheimer’s disease contains 83 PubMed refer-
ences and 60 GeneRIFs; two of the GeneRIFs are:

11500807 Mutations in APP may predispose to very-late-onset
Alzheimer disease

11915326 forms a seed of amyloid beta protein aggregation via
binding to G(M1)ganglioside

We describe in the following section how we use this information to
generate training and testing sets for our classifier.

11

CHAPTER 3. CLASSIFICATION MODULE 12

3.1 Preparation and Preprocessing

We first obtain the genes for which there is a GeneRIF entry in the Lo-
cusLink database (Some of the genes do not have either of the references
described above). For each such gene we collect the documents annotated
in the GeneRIF field of the LocusLink record. We have a local copy of
the PubMed database created for the purpose, which contains bibliographic
and other information for over 12M! documents from 4, 600 journals. These
GeneRIFs serve as the set of positive instances for our algorithm. The re-
maining PubMed documents for which there is a reference from LocusLink,
but no annotation with GeneRIF, serve as the negative set for our algo-
rithm. The assumption is that since the documents are referenced from
LocusLink, they discuss something about the gene; but since there was no
GeneRIF annotation, they do not discuss function. The GeneRIF references
are not exhaustive since their annotation in LocusLink is done by manual
curation, there is a possibility that some of the function references have been
missed, i.e., there could be false negatives in the database. We found some
of the documents belong to both the positive and the negative sets, and
we removed them (they constitute less than 1% of total) because they may
reflect possible human errors in annotation.

Next we extract the set of features we will use. Once the features have
been identified, they are fed into a classifier in order to learn to classify new
documents, i.e., to recognize whether or not they talk about the functional
aspects of the target gene.

We do not have full text for most of the PubMed articles, so we have
somewhat restricted our scope to consider a scientific genre involving ab-
stracts, together with other important features that have been extracted
out of an annotated set of documents. Fortunately, PubMed contains a
good collection of human curated information that can be used as features.
Once we have identified the features that are to be used for the given doc-
uments; we need to preprocess them. This step generates a feature vector
representation of the documents that appear as instances of the two classes.
The specific features used are described below. We also experiment with
combining different feature sets.

1Out of this 6.6M citations also have the abstracts from the corresponding journal
article.

CHAPTER 3. CLASSIFICATION MODULE 13

3.1.1 Abstracts from the documents

Abstracts generally summarize the content of the document or article they
belong to, and contain useful information that are features for gene function
information detection. To speed up the processing we remove all the stop
words from the abstracts. Stop words are commonly occurring words in text
that do not discriminate the content. E.g., words like a, the, as, to, etc. are
common across both the positive and the negative classes. One method to
identify stopwords would be to generate domain specific words that appear
in more than 75% of the documents. This method of identifying stop words
has been used with success in similar applications [12, 50], but in our case
it did not work well. We did not find many words, beyond those that are
known standard stop words, common to more than 50% of the set (2,000
abstracts). We ran a small experiment to count the frequency of the most
common words. Those with frequency > 50% are shown in figure 3.1. The
only word corresponding to the bioscience domain is “protein” which we add
to our stoplist. The lack of domain specific stopwords may be explained by
the fact that we use abstracts only (as opposed to full documents), which are
short enough so that the chance for any two of them to share a particular
word (even a stop-word) is reduced dramatically. Moreover abstracts may
differ from full text in sense that they might use an abbreviated and more
compact style of representation. So we use a standard list of around 321
stop words commonly used in Information Retrieval with the word “protein”
added to it. After removing the stop words we also remove those words that
appear less than a given frequency across the whole set of documents. This
number is a parameter for the preprocessing module and is currently set
to 5. The intuition behind removing the less frequent words is that this
prevents the model from over-fitting to the training set.

Next, for each document in the training and testing set we construct
word vectors that have as dimensions the distinct words found across the
combined set. Each dimension for individual document vector is assigned
the value 1 if the corresponding word is present in the abstract for the
document, else it is assigned the value 0.

3.1.2 MeSH Headings

We use NLM’s[4] controlled vocabulary, Medical Subject Headings (MeSH
[2]), to characterize the content of the articles represented by PubMed ci-
tations. These headings appear in the form of descriptors and qualifiers for
those descriptors (they are present in PubMed as annotation for each cita-

CHAPTER 3. CLASSIFICATION MODULE 14

Word | No. of documents | Frequency in %
the 1875 93.75
of 1873 93.65
and 1861 93.05
in 1851 92.55
to 1747 87.35

that 1633 81.65
is 1508 75.40

with 1429 71.45
we 1414 70.70
by 1377 68.85
for 1320 66.00

protein 1018 50.90
this 1008 50.40

Figure 3.1: Number of Different abstracts each word appears in

tion it contains). For example the PubMed document titled “The impor-
tance of an innervated and intact antrum and pylorus in preventing post-
operative duodenogastric reflux and gastritis” (PubMedID 123), contains
19 descriptors (Adult, Bilirubin, Duodenal Diseases, Duodenal Ulcer, En-
doscopy, Female, Gastric Juice, Gastric Mucosa, Gastritis, Heartburn, Hu-
man, Hydrogen-Ion Concentration, Male, Middle Age, Postoperative Com-
plications, Pyloric Antrum, Pylorus, Stomach Diseases, Vagotomy).

Qualifier names are known as subheadings, which, when combined with
the descriptor names, form the central concept of the article. Some descrip-
tors do not have associated qualifier names when the heading alone is the
central concept of the article. E.g., amongst the descriptors in the above
example, Adult, Endoscopy, Female, Human,Hydrogen-Ion Concentration,
Male, Middle Age and Vagotomy have no associated qualifiers, Duodenal
Diseases and Gastritis have two qualifiers each ([prevention & control; ra-
diography] and [pathology; prevention and control] respectively) while the
rest of them have a single qualifier each. We use the descriptors alone and
in combination with the qualifiers as different features for document repre-
sentation. As before the feature vectors for documents contain these MeSH
descriptors and qualifiers as individual dimension, each dimension being 1
if the corresponding descriptor/qualifier is present and 0 otherwise.

CHAPTER 3. CLASSIFICATION MODULE 15

3.1.3 MeSH Hierarchy Tree Numbers

MeSH consists of concepts in the form of descriptor terms or headings ar-
ranged in a hierarchical structure that permits searching at various levels of
specificity. At the most general level of the hierarchical structure are very
broad headings such as “Anatomy” or “Mental Disorders.” At more narrow
levels are found more specific headings such as “Ankle” and “Conduct Disor-
der.” We downloaded this information from NLM into a locally maintained
database. We added the associated tree labels to the feature set for each
of the descriptors in PubMed for a given document. We also experimented
with cutting the tree labels at various hierarchy levels in order to understand
how the specificity of MeSH terms affects the learning. In MeSH, each con-
cept is assigned one or more alphanumeric descriptor codes corresponding
to particular positions in the hierarchy?: e.g. A (Anatomy), A0 (Body Re-
gions), A01.456 (Head), A01.456.505 (Face), A01.456.505.420 (Eye). Eye
is ambiguous according to MeSH and has a second code: A09.371 (A09
represents Sense Organs) [34]. The mapping ambiguity could potentially
introduce additional noise when the tree labels are used as features.

3.2 Training

Once the feature vectors are obtained, we train a classifier to build a model
that can predict whether a document talks about gene function. We use a
Naive Bayes classifier [19, 33] to train the model. Its fundamental idea is the
assumption that the values of the feature variables F' = (F}, Fs, ..., F},) are
conditionally independent given the class variable S. The joint probability
is given by the expression:

N
p(S, F) = p(S) [[n(FilS) (3.1)

=1

The model parameters are given by the probabilities p(S) and p(F;|S), which
are usually estimated from the text by means of maximum likelihood esti-
mates (MLE). The classification of a new concept is determined by the most
likely category:

Smr = arg 1%2Xp(5k|F) (3.2)

2There are 15 main categories or branches in the MeSH hierarchy, these branches then
have others branching off them and so on with each branch becoming more and more
specific. The current hierarchy is nine levels deep and there are a total of 39824 nodes
over all the levels.

CHAPTER 3. CLASSIFICATION MODULE 16

Naive Bayes classifiers are among the most successful known algorithms
for document classification. The Naive Bayes classifier is known to be op-
timal when attributes are independent given the class, but Domingos et al.
[18] show that it will often outperform more powerful classifiers for com-
mon training set sizes and numbers of attributes even if the independence
assumption is not met.

The implementation of the Naive Bayes classifier we currently use is part
of the open source machine learning package called WEKA (Waikato Envi-
ronment for Knowledge Analysis [10, 28]) from the University of Waikato,
New Zealand. They provide excellent Java implementation of Naive Bayes
and other machine learning algorithms.

3.3 Evaluation Method

We evaluate the model generated during training using a ten fold stratified
cross-validation. We split the data into 10 sets using a random number
generator with a fixed seed. These partitions are then combined to generate
10 different train/test sets: 90% for training and 10% for testing.

We obtain the average values for the number of correctly classified in-
stances from cross-validation. We also obtain a confusion matrix giving
the number of True Positives (TP), True Negatives (TN), False Positives
(FP) and False Negatives (FN) averaged over the 10 runs. Precision and
recall are easily computed using these values. Precision(P) is the ratio
of the number of relevant documents over the total number of documents
retrieved. It is a measure of the amount of useful information produced
by the system. Recall(R) is the ratio of relevant documents retrieved over
the number of relevant documents in the database. Recall is a measure of
how completely the set of relevant documents were retrieved. P and R are
computed as follows:

TP
Po= TP+ FP
TP
R = 55 7N (3:3)

Having more complete results comes at the cost of more non-relevant doc-
uments in the result set, and having less non-relevant documents in the
result set tends to be associated with less complete retrieval of the intended
documents or results. So, there tends to be a trade-off between precision
and recall. Different measures have been proposed in the literature to com-
bine them into a single measure based on their relative importance. Van

CHAPTER 3. CLASSIFICATION MODULE 17

1=}
L3}

1]
o

=]
m

o
o

mAccuracy on Training Set
mAccuracy on Cross Validation

Accuracy
s
m
)

-
o
!

]
m
!

]
)

Features Sets

Figure 3.2: Classification accuracy with different methods of preprocessing
abstracts: (a)Without Preprocessing (b)Removing Stopwords (c)Removing
less frequent words in addition (d)With addition of stemming

Rijsbergen [46] defines and justifies the so-called F-measure as follows:

(b* +1)PR

3.4
V’P+ R (34)

b=

We use b =1, i.e., recall and precision are equally weighted.

3.4 Experimental Results

We use 1000 instances from each of the positive and negative classes as input
to the algorithm. We simply choose the first 1000 documents for each class
from the sets created before, see section 3.1 (we later show how the accuracy
varies with the training set size). In the first experiment the abstracts are
fed straight into the system, without any preprocessing. Next we remove the
stop words and train again. As a further improvement we remove the words
that occur less than 5 times across the whole set. Finally, we incorporate
stemming which is sometimes found to improve recall [17, 26]. The results
in the form of classification accuracy over the training set and averaged
over cross-validation runs are presented in figure 3.2 (we use 10-fold cross
validation as described in the previous section). With raw abstracts we get
a classification accuracy of 72.29% using cross-validation. Removing the

CHAPTER 3. CLASSIFICATION MODULE 18

g5
a0 —I
& 7h —
" mAccuracy on Training Set
E W Accuracy on Cross Validation
g 0
B5 -
60
[Y 3
& -d \‘E@\ o
b b & 2
@ - o &
<& & o _\’6
@ @ & N
&
@‘\
Features Sets

Figure 3.3: Classification accuracy with different methods of preprocessing
MeSH tree labels: (a) Tree numbers from level 1 (b) Tree numbers from
level 2 (¢) Numbers from levels 1 and 2 (d) Complete tree numbers

stop words increases it to 72.72%, and further to 72.88% when less frequent
words are also removed. Stemming gives a further improvement of 0.21% in
accuracy.

We see that filtering of stop words helps improve the classification ac-
curacy. This is expected since these words do not have any discriminative
effect. Removing the words with very low frequency helps improve the per-
formance slightly, by preventing the model from over-fitting. Stemming
might be helping since it normalizes the data, where similar words with
slightly different syntactic structure get grouped together. It also results in
an efficiency gain. The training time for the model with stemming reduces
from 49.42 seconds to 37.91 seconds and the evaluation time goes down from
125.53 seconds to 85.58 seconds.

Next, we evaluated how the MeSH tree labels perform as features. In
one of the cases we considered the whole tree label as given in MeSH
(e.g., A01.456.505.420 which corresponds to eye, D03.438.221.173 for Cal-
cimycin). Next, we considered only the top level hierarchy for each of the
tree labels (e.g., A01, D03), then the second level (e.g., A01.456, D03.438)
and also a combination of the two. The comparative classification accuracy
over the training data as well as averaged over the cross-validation runs is
shown in figure 3.3. Using the whole tree labels gives a classification accu-

CHAPTER 3. CLASSIFICATION MODULE 19

mAccuracy on Training Set
mAccuracy on Cross Validation

Accuracy
=
[}

-
o
!

Features Sets

Figure 3.4: Classification accuracy with different methods of using the MeSH
headings: (a) descriptors with separate word (b) decriptor words together
(c) qualifier as separate words (d) qualifiers as part of descriptor

racy of 76.58% over the cross-validation set. Using only level one numbers
we get 71.28%, with level two 71.63% and, using both the levels, a slightly
lower:- 71.58%. It is interesting to note that generalization of the tree hier-
archy (e.g., using the top or the second level) hurts the performance.

We then evaluate the different ways in which the MeSH descriptors per-
form as features. First, we use the MeSH descriptors alone, interpreting
the different words in each descriptor as separate: e.g., “Heart Disease”
would be interpreted as two separate words “heart” and “disease”. Next,
we use the MeSH descriptors interpreting different words in the descriptors
as one, e.g “Heart Disease” becomes a single word “heart_disease”. Finally,
we combine the qualifier (see section 3.1.2) information to generate spe-
cific concepts for the documents together with the descriptors that appear
without any qualifying term. Looking at figure 3.4, we can see that using
MeSH descriptors alone, while interpreting the different words in the same
term as part of the same phrase, gives the best performance. Descriptors
interpreted as separate words give a classification accuracy of 77.14% over
the cross-validation set. Interpreting them as phrases (which should be the
more obvious choice) gives an accuracy of 78.29%, which is also the highest
we achieve over all the different feature sets. A combination with a qualifier
in any form decreases the accuracy substantially to around 70%.

CHAPTER 3. CLASSIFICATION MODULE 20

a0

DAccuracy on Training Set
mAccuracy on Cross Validation

75—

Accuracy

70—

B5 1+

&0

Features Sets

Figure 3.5: Classification accuracy for different feature sets: (a)descriptors
as phrases (b) Whole tree numbers (c) Abstracts cleaned and stemmed (d)
descriptors together with tree numbers

Next, we compare the classification accuracy of the different feature sets
in figure 3.5. The first one is (a)MeSH descriptors, then the (b)tree labels,
next the (c)abstracts with stemming and finally the (d)MeSH descriptors
combined with tree labels from levels one and two. We see that the use of
MeSH descriptors as features outperforms all the rest. Descriptors do better
since they tend to use standardized terms and omit details like experimen-
tal setup, etc. The tree labels, though capturing the complete document
information, contain some noise in the form of ambiguity due to the terms
mapping against the MeSH hierarchy [34].

For each experiment, we obtain the number of true positives and true
negatives averaged over the number of cross-validation sets. We use them to
compute the precision and recall values for each of the cases (see figure 3.6).
When only abstracts are involved, the number of false positives and false
negatives are pretty much the same. Using qualifiers in any combination
reduces the precision (by adding spurious matches). When using descriptors,
the precision is a bit higher than recall. When combining descriptors and
tree labels, the recall is much higher than precision. Figure 3.7 contains the
comparison of the F-Measure obtained using different feature sets.

We observe that the classification using MeSH descriptors as features
gives the best accuracy in terms of both precision and recall. We performed

CHAPTER 3. CLASSIFICATION MODULE 21
Feature Set TN FN TP FP Precision Recall Fmeasure
abstracts_cleaned 673 255 695 254 73.235 73.1579 73.1964
abstracts_cleaned (only_stop_words) | 705 223 660 289 69.5469 74.7452 72.0524
abstracts_cleaned _stemmed 679 249 693 256 73.0242 73.5669 = 73.2946
descriptors 843 157 722 277 72.2723 82.1388 76.8903
desc_and_quals_with_spaces 874 126 538 461 53.8539 81.0241 64.7023
desc_and_quals 883 117 486 513 48.6486 80.597 60.6742
tree_level 1 756 244 669 330 @ 66.967 73.2749 69.9791
tree_level 2 786 214 646 353 64.6647 75.1163 69.4997
tree_whole 796 204 735 264 73.5736 78.2748 75.8514
desc_and_tree 790 210 742 257 74.2743 77.9412 76.0636

Figure 3.6: Performance of the classifier using the different feature sets.

F-Measurs

0.7a
0.76 1

0.74 4

0.72 4

07 4

0.65 1
0.66
0.64
062 4
06

2PR/P+RY

Features Sets

Figure 3.7: F-measure for the different feature sets.

CHAPTER 3. CLASSIFICATION MODULE 22

0.82

0.8

/‘

=
“
o

r

N

—e— Average F-Measure over
crogs validation Runs

=
B
o

F-Measure

=
g
=

07

0 2000 4000 G000 @000 10000 12000

Number of Instances from Each Class

Figure 3.8: F-measure for different input sizes.

another experiment where we trained the model, using MeSH descriptors, on
different sizes of training instances: we started with 500 instances of each
class and trained till 10K instances. We compare the classifier accuracy
in terms of the F-Measure in figure 3.8. We see that the accuracy of the
model increases with the size of the input class instances. We think that
this is because the data used from PubMed ranges over a period of 40 years,
causing differences in representation styles and terminology. To test this
we construct a new training set using documents that are sampled over the
whole time range. We get 83.37% classification accuracy over this set using
cross validation; supporting our explanation.

Chapter 4

Retrieval Module

The task for retrieval is to find all documents that are associated with a
given gene. Normally a document that contains the gene name talks about
some aspects of the gene (identification, mapping or function). So the task of
the retrieval module is to retrieve all documents that contain the gene name.
We match the gene names against the abstracts and titles of the PubMed
articles since the full text is not available for most articles. It should rarely
happen that an article that talks about a gene does not have the gene name
in the abstract or title. Most of the time such cases occur when the article
has a loose association with the gene'. Since we are interested in articles
that talk about gene functions, we can safely ignore such cases.

The names and symbols for the genes are contained in the LocusLink
database, so the retrieval should essentially be just a simple match using
a text index over the PubMed articles. However there are some challenges
that make the task interesting, which we discuss in the following section.

4.1 Challenges

Gene names appear in several alias forms (synonyms), e.g., the gene for
LocusID-123 could be represented using “adipose differentiation-related pro-
tein” or “adipophilin”. Since there is no accepted standard way of repre-
senting gene names, different authors use different forms of the same names
to refer to the gene. E.g., “adrenergic receptor alpha 1d” vs. “alpha(ld)-

One example of such an article is PubMedID-11076861 titled “RIKEN integrated
sequence analysis (RISA) system—384-format sequencing pipeline with 384 multicapillary
sequencer” which is associated with 6990 Mice genes out of the total of 58498 contained
in LocusLink.

23

CHAPTER 4. RETRIEVAL MODULE 24

adrenergic receptor”. Sometimes in the abstract we might find references
like “FGF-1, -2, -4, -5, and -7” which could match any of “FGF-1", “FGF-
27 “FGF-4”, “FGF-5" or “FGF-7". Authors could simply use “FGF 1-7”
if all the numbers are applicable. Another example of variation is the use
of abbreviations; “GlyR alphal” instead of “Glycerine Receptor alpha-1”.
This is one of the difficult cases to detect. The easier ones to detect could
be simple things like use of different separators, e.g., “alpha-1” instead of
“alpha(1)”. We need to normalize and expand the gene names to capture
these variations.

Names for different genes could also have large overlap. E.g., “arylamide
acetylase 2” and “arylamide acetylase pseudogene”. Such variations lend the
use of fuzzy matches imprecise; more so for cases with higher overlap like
“ATP” and “ADP” or “Agpatl” and “Agpat2”.

Document search for a gene should include all the possible aliases that
can be used to represent it. LocusLink contains alias names and symbols
for genes but it is not exhaustive. We could use synonym information con-
tained in SWISSPROT [7], but a study by Hong et al.[51] as part of their
experiments reveals that there are many synonym pairs in SWISSPROT
that domain experts disagree on (318 out of 989 pairs). We restrict our
list to that obtained from LocusLink augmented with the morpho-syntactic
variations that could occur in the representations. In the next section we
show how we detect and generate such variations for gene names.

4.2 Identifying variations in gene names

Our goal is to discover the possible variations that can occur in gene name
representations. This should be automated with minimum of human effort.
We present a semi-automated technique to identify such variations. We also
present a way to discover further variations that were not caught using the
semi-automated procedure.

4.2.1 N-Gram Overlap

We want to find the form in which a gene is represented in articles that are
known to talk about it. Through LocusLink we have a rich collection of
genes and references to the articles associated with the genes. The first step
in identifying patterns of variation is to locate the variant form of the gene
name in the article text. We automate this step by using the N-Gram overlap
measure [16]. “N-Grams” are simply n-long strings of continuous characters
in a given document /string. The distribution of n-grams between pairs of

CHAPTER 4. RETRIEVAL MODULE 25

strings is compared, and a score is computed that represents the similarity
between them. The main idea behind using n-grams is that similar words
will have a high proportion of n-grams in common.

Typical values for n are 2 or 3 corresponding to the use of digrams or
trigrams, respectively. For example, the string “arylamide acetylase” results
in generation of the following grams:

Digrams = A{ar, ry, yl, la, am, mi, de, e, a, ac,
ce, et, ty, yl, la, as, se}
Trigrams = {ary, ryl, yla, lam, ami, mid, ide, de ,

e a, ac, ace, cet, ety, tyl, yla, las, ase}

To compute the similarity of two strings using this method, we first
compute the n-gram sets for both the strings and then calculate the overlap
using the “Dice Coefficient” [46]. The Dice coefficient D for two sets A and
B of sizes |A| and |B| is given by

_ 2|An B

D=2 =l
Al + | B

(4.1)

This overlap measure penalizes the presence of extra characters beyond the
ones common to the two strings. Thus two strings with same overlap get
higher score when the non-overlapping regions are smaller in size.

We take the abstract and title of the articles associated with the genes
and compute the N-gram overlap of all the possible subsequences of words
against all known alias forms of the gene. We use character level digrams and
trigrams with Dice Coeflicient as the overlap measure. The word sequences
in the abstracts/title that have high similarity to one of the known alias
forms of the query gene are reported as an output of the module.

4.2.2 Inspection and Rule generation

The procedure outlined above yields high similarity pairs of strings with one
of them corresponding to the known alias form of a gene name and the other
to the actual variant form of representation found in article text. We process
this list to remove the ones that are exactly identical (note that identical
strings will receive the highest similarity coefficient of 1). Next we remove
those that lie below a threshold, that is obtained using quick inspection of
the list (we used a threshold of 0.5). This yields a set of original forms and
their variants. Selected overlap matches are shown in figure 4.1.

CHAPTER 4. RETRIEVAL MODULE 26

Known Alias Name Best match variant in text

HLA-DQBI1 hla-dgb

DNA synthesis inhibitor inhibitors of dna synthesis

phospholipase C, gamma 1 phospholipase ¢ gamma 1

adrenergic receptor, alpha 1d alpha 1d-adrenergic receptor

Janus kinase 2 (a protein tyrosine kinase) | protein tyrosine kynase

golgi protein, 73-kD golgi protein

luteinizing hormone/choriogonadotropin | luteinizing hormone—choriogonadotropin (lh/hcg)
receptor receptor

Figure 4.1: Some selected Overlap Pairs for gene names and their variants

AB N { A B removal of comma

’ B A rearrangement of tokens

A([n])

A_[n] = A [n] where [n] is the set of numerals

A-[n]
Aln] = A [n] addition of spaces (normalization of numerals)
A [n] = Aln] removal of spaces (denormalization of numerals)
A(B) { A B removal of parentheses

A removal of terms in parentheses

Figure 4.2: Rules for expanding gene names

We inspect the pairs obtained to identify the patterns of variation in
gene names. These patterns are used to generate rules to transform the
names to obtain a broader set of alias forms for the gene names. The rules
that we generate are shown in figure 4.2. Such rules are syntactic in nature,
sometimes there are variations of semantic nature that cannot be captured
this way. We plan to explore semantic variations as part of our future work.

4.3 Retrieving the Documents

We use IBM’s DB2 Universal Database to store PubMed documents includ-
ing the abstracts, titles and other annotations. We build text indexes on
these fields using DB2 Text Extender, which is then used to search for doc-
uments that contain a given set of terms. We retrieve all the documents
that match one of the known alias forms of the gene or the variations cre-
ated using the rules discovered above (variant forms are generated for all

CHAPTER 4. RETRIEVAL MODULE 27

the aliases). We also normalize the word sequences in abstract/titles before
matching against the known alias names. During normalization we replace
all delimiters by spaces. E.g., “alpha(1)” and “alpha-1” become “alpha 1”.
We also remove commas and sentence terminators like “.” and “?”. The
retrieval score for each document is obtained by combining the frequency of
occurrence of the term in the document and the relative size of the retrieved
document. The exact details of this scoring function were not available to
us at the time of writing this report.

We also filter out documents that do not correspond to the organism that
the query gene belongs to (note that each query in the trec task consists of a
gene name and a corresponding organism). This filtering is needed because
similar genes from two organisms can have the same name. We describe in
next section the procedure to filter out such documents.

4.3.1 Organism Filtering

Similar genes with same name can occur in multiple organisms, e.g., the
gene named c-myc which stands for “cellular myelocytomatosis oncogene”
can be found in different organisms including humans and chickens. In
humans it is located on chromosome 8 and is involved in the pathogenesis of
Burkitt’s lymphoma. In chickens, c-myc activation by avian leukosis virus
appears to result in the development of lymphoid leukosis. Most of the time
we are interested in documents that talk about the function of the gene
corresponding to a given organism.

PubMed records do not contain an “organism annotation” for the docu-
ments. However this information can be inferred from other data present for
each document, one of them is MeSH (Medical Subject Heading) descrip-
tor. Looking at these MeSH descriptors we can identify the organism corre-
sponding to a document. For example a document that talks about fruitfly
“Drosophila melanogaster” contains the term Drosophila melanogaster as
one of the mesh headings. The trick however is that not all the organ-
ism names are used as is ; e.g., the term Human is used instead of “Homo
sapiens” which is the species name?.

We use the combined information in LocusLink and PubMed to identify
the descriptors used to characterize the organisms for PubMed documents.
We collect the PubMed references (as described before, LocusLink has a
set of references to PubMed documents relevant to the gene) for documents
corresponding to each of the organisms?® in LocusLink, this gives us different

2Note that one term is from LocusLink while the other is from MeSH.
3LocusLink contains genes from eight different organisms

CHAPTER 4. RETRIEVAL MODULE 28

Animal

Bos taurus Cattle

Molecular Sequence Data
Animal

Caenorhabditis elegans Caenorhabditis elegans
Support, Non-U.S. Gov’t
Animal

Danio rerio Zebrafish

Support, Non-U.S. Gov’t
Animal

Drosophila melanogaster Support, Non-U.S. Gov’t
Drosophila melanogaster
Human

Homo sapiens Support, Non-U.S. Gov’t
Molecular Sequence Data

Human

Human immunodeficiency virus 1 | Support, Non-U.S. Gov’t
HIV-1

Animal

Mus musculus Mice

Support, Non-U.S. Gov’t
Animal

Rattus norvegicus Rats

Support, Non-U.S. Gov’t

Figure 4.3: Most Frequent Mesh terms for documents grouped by organism

document classes each corresponding to one organism. We then run a query
against the database to find the top MeSH terms for each of the document
classes created above. The top three terms for each organism are shown in
figure 4.3. The MeSH terms that could possibly map to LocusLink organism
names are shown in boldface.

Looking at the most frequent MeSH descriptors for each of the document
classes, we can infer the term that is used to denote the organism in PubMed.
We also check if the LocusLink organism name in full or part is used in
PubMed for the same; e.g., the terms Drosophila and Caenorhabditis also
appear in the MeSH headings contained in PubMed. None of the other
organism names appear in their original LocusLink form. The terms that

CHAPTER 4. RETRIEVAL MODULE 29

Organism name from LocusLink | MeSH descriptor to look for

Bos taurus Cattle

Caenorhabditis elegans Caenorhabditis elegans, Caenorhabditis
Danio rerio Zebrafish

Drosophila melanogaster Drosophila melanogaster, Drosophila
Homo sapiens Human

Human immunodeficiency virus 1 | HIV-I

Mus musculus Mice

Rattus norvegicus Rats

Figure 4.4: MeSH terms used to map documents to organisms

we use in our system finally for the mapping are shown in the figure 4.4.
Using these terms we map the documents in our collection to organisms.
Some of the documents map to multiple organisms and a few map to none.

4.3.2 Experimental Evaluation

We use the PubMed references contained in LocusLink to evaluate our re-
trieval module. As described before, PubMed references in LocusLink refer
to the list of PubMed documents associated with the genes. We used a
subset of 50 genes from LocusLink and retrieved the documents relevant to
them using our module. For measuring the recall we measure the number
of known PubMed references (using full PubMed) that are retrieved.

Figure 4.5 shows the recall that was obtained using this set. We had a
total 606 known PubMed references for this set. We see that using expansion
and normalization results in significant improvement of recall.

PubMed references are a good collection but are in no way exhaustive
(and are sometimes incorrect) making it impossible to use them for precision
judgments. However since our retrieval algorithm requires exact matches of
gene names and their variations, high recall is a fair indicator of performance
(we do not introduce any variations that will match names of other genes).
However the PubMed references were more carefully annotated (still not
exhaustive but fairly accurate) for the period April 15¢, 2002 onwards. We
create a subset of PubMed for the range 4/1/2002 to 4/1/2003 and use that
to evaluate how our algorithm effects precision.

We construct a query set of 50 genes and retrieve the documents relevant
to them. We also construct a relevance set that contains known PubMed
references for each gene (we obtain 308 references from LocusLink). The

CHAPTER 4.

RETRIEVAL MODULE

0.7a

Recall on Training Topics

o
w

0.Es

o
m

055

]
[y}
'

0.45 4

o
=

mRecall on Training Topics

Recall over the known pubmeds

o
&

Different Schemes

30

Figure 4.5: Recall with different variation schemes: (a) No variations (b)
With rule-based expansions (c) With normalization (d) Both normalization

and expansion

Mean Average Precision

0.45

0.4

0.35

Precision

03

0.25 4

nz

Maive (Mo Using A Using B Using ¢ Using A, Using A,
AB, ar B B, C
)
Retrieval Scheme

O Mean Average Precision

Figure 4.6: Mean Average precision with different combinations of (A) Ex-
pansion, (B) Normalization and (C) Organism Filtering

CHAPTER 4. RETRIEVAL MODULE 31

Precision vs Recall

0.7

0.6 —a—Jsing all three
ne \\ —a— Jsing Organism Filter
—a&— lUsing Expansion and

04 "‘\“‘-w Mormalization
: \q\\k\\\‘\ —w— Using Expansion
0.3 —— lJzing Mormalization
\\‘. —e— Maive

01 T T T T T T T T T
01 02 03 04 05 06 07 08 08 1

Recall

Precision

0.2

Figure 4.7: Interpolated precision vs recall for different combinations.

results of retrieval are compared against this set using TREC [8] style eval-
uation. Precision is computed for each query gene at different points of
recall and average precision is obtained for the query. The mean of these
average precision values for the individual queries is used as an indicator
of overall performance. For each query (gene name) we output a set of top
1000 documents that are relevant to its function.Figure 4.6 shows the mean
average precision (MAP) obtained in different cases with and without ex-
pansion, normalization and organism filtering. We also report the recall for
each of the cases in figure 4.8. Organism filtering reduces the number of
PubMed references that are retrieved (from the above set) but it improves
the precision significantly (goes from 0.27 to 0.38). Note that organism fil-
tering hugely reduces the total number of documents retrieved (from 89981
to 3322). Also the use of expansion and normalization helps with both preci-
sion and recall. We obtain the best precision of 0.4428 using normalization,
expansion and organism filtering together. Note that the final precision is
low because the set of PubMeds we use to evaluate are not exhaustive. So,
we also plot the precision obtained in each scheme at different points of re-
trieval. Figure 4.7 shows the interpolated recall* at different retrieval points

4“Interpolated” means that, for example, precision at recall 0.10 is taken to be MAX-
IMUM of precision at all recall points > 0.10.

CHAPTER 4. RETRIEVAL MODULE 32

Retrieval Scheme # Relevant Retrieved | Total # Retrieved
Naive (Without A, B or C) 235 89981
Using A 247 93933
Using B 239 90279
Using C 230 3322
Using A, B 258 94338
Using A, B, C 253 4739

Figure 4.8: Recall with different combinations of (A)Expansion, (B) Nor-
malization and (C) Organism Filtering (over a total of 308 documents).

for each scheme. Values are averaged over all queries.

4.3.3 Improving it Further

We identify a set of false negatives for our best system above (normalization
combined with expansion). False negatives are those documents that appear
in the PubMed references for the gene in LocusLink, but for which we could
not find a gene name match in the abstract/title.

Inspecting these false negatives we discovered variations that were missed
by our gene name overlap module. Around 10% of the missed documents
were general in nature, in a sense that they were not associated with any
particular gene but talked about a group of them, so the gene name did
not appear in the corresponding abstracts or titles. For around 20% of the
misses (5% of the total) the gene name did not appear in the abstract or the
title. Of the remaining misses, some were of the kind that could be captured
by our gene name expansion modules if we used a combination of the rules
in sequence. E.g., the PubMed document for identifier 11580237 appears in
the reference list of Locus ID 2741. The article contains “glycine receptor
alphal” instead of “glycine receptor, alpha 1 (startle disease/hyperekplexia,
stiff man syndrome)”. We would have found this match if we applied our
rules for removal of strings in parentheses and normalization of numerals
in sequence. We added this rule combination to our expansion module and
that results in 3% increase in recall.

We also find few interesting misses that would have required more in-
telligent matching of the semantics. E.g., at one place the authors first
report the abbreviation “GlyR” for “Glycine receptor” and then use the
term “GlyRalphal” for “Glycine Receptor alpha-1”. Sometime the gene is
mentioned as part of a sequence of genes, e.g., “FGF-1, -2, -4, -5, and -7”
instead of “FGF7”. Lastly there were some variations that would need a se-

CHAPTER 4. RETRIEVAL MODULE 33

mantic parse of the text, e.g., “Two cDNAs encoding variants (alpha 1 and
alpha 2) of the strychnine binding subunit of the inhibitory glycine recep-
tor (GlyR)” should match to genes “glycine receptor alphal” and “glycine
receptor alpha2”.

4.4 Combining the Modules

Once we have the classification and the retrieval modules, they can be com-
bined to generate for a given gene a set of documents that talk about its
function. The algorithm for generating such GeneRIFs is outlined in algo-
rithm 1. The algorithm proceeds by expanding the set of aliases names for
the query gene and finding the documents that contain one of the name
forms. These aliases are used to retrieve documents that match them. The
retrieval engine provides a score that reflects how well the document matches
the query terms. Next we compute the score that the classifier assigns to
the document (this is simply the probability of the document talking about
gene function). The two scores are combined to get the final score that is
used for producing a ranked output.

Algorithm 1 RetrieveReferencesIntoFunction(L)
1: for alll € L do
2: A(l) = GetAliases(l)
3: A(l) = ExpandNames(A(1))
4 Dl)=¢
5. for alln € A'(l) do
6: D(l) = D(I)U RetrieveMatchingDocs(n)
7.
8
9

D'(l) = FilterOrganism(D(1))
for all d € D'(I) do
S1(d) = getClassificationScore(d)
10: S(d) = getRetrievalScore(d)
11: S(d) = combineScores(S1, S2)
122 F(l) = getTopRankedDocs(D'(1), S)
13: return F

4.4.1 Generating a Combined Score

As described above we get two sets of scores for every document d that is
retrieved. S;(d) is the score from the retrieval module that tells how much
confidence we have in the document being relevant to the query gene. Sa(d)

CHAPTER 4. RETRIEVAL MODULE 34

is the score from the classification module that tells how likely the document
is to be talking about gene function. We need to combine the two scores to
get the final score that will be used for ranking. This is not a “two heads
better than one” case. A document needs to get a high score from both the
modules to be ranked high. We thus combine the scores using a weighted
multiplicative combination. The combined score S(d) is given as follows

S(d) = 81 (d)™ * Sy(d)™ (4.2)

Where A1 and A9 are the weights. We perform retrieval with different
values of these weights, the results are reported in the next section.

4.4.2 Experimental Evaluation

We use data from LocusLink to create a test set consisting of 50 different
genes and associated GeneRIF's that serve as relevance documents (see chap-
ter 3 for details on LocusLink and GeneRIFs). We use the data from the
remaining genes in LocusLink to retrain the best classifier that we obtained
earlier®. We measure the performance of the combined system using an ex-
perimental setup similar to that used for evaluating precision of the retrieval
module (see section 4.3.2), but for relevance measure we use the GeneRIF's
corresponding to the query genes instead of the PubMed references that
were used earlier (we obtain 299 GeneRIFs from LocusLink).

We rank the retrieved documents using a combination of scores from the
retrieval and classification modules as described in the previous section. We
fix A2 (the weight assigned to the retrieval score) to 1.0 and vary A; (the
weight assigned to the classifier score). Figure 4.9 shows the mean aver-
age precision for different values of the weight A;. The precision improves
marginally with very low values of A1, compared to the one obtained without
using the classifier (using a weight of 0). The best performance is observed
when A1 equals 0.0032. The precision goes down with higher values of the
weight, for weights above 0.008 precision is lower than that obtained without
using the classifier and it drops further as the weight is increased.

The classifier does not provide any significant improvement to retrieval
even though we obtained good results when it was used in isolation (as re-
ported in chapter 3). It may be because the classifier when used in isolation
does not rely on the fact that there is a detailed query describing the rel-
evant documents, rather it classifies documents as being GeneRIFs or not
independent of the query. Thus, it is more generally applicable. Moreover

5The best classification is achieved by using MeSH descriptors for the documents.

CHAPTER 4. RETRIEVAL MODULE 35

hean average precision of the combined system

0.449

0.447 // \/""\
0.445

N
]
e

s

g0 \/,\\ /._./ A \

o

o A

& 0.441 \/ jug \
0.439 \‘
0.437
0.435

Q & I & 9 ok 4
& & B & & Ff
FFFFI ST

Weight given to the classification scores

Figure 4.9: Mean Average Precision with different weights for score combi-
nation

producing a list of ranked results on a subset of documents (as done in the
retrieval task) is different than making a yes/no decision on every individual
document (as in the isolated classification task).

Chapter 5

Conclusions

We presented a system for identifying documents that talk about function
of a given gene. Identifying such information is an important task for bio-
science researchers who could use the system to narrow down the subset
of documents and localize the information needed during the research pro-
cess. Another possible use of the system could be to aid human curators of
the bioscience resources, e.g., adding gene function information of the kind
contained in the GeneRIF field in LocusLink database.

The main contributions of this work are (a)Classifying gene function in-
formation for documents based on domain knowledge derived from MeSH,
(b)Semi-automatic rule-based expansion of gene names to identify variant
forms that are used in literature, (c)a simple and effective means of identi-
fying organism information for PubMed documents.

5.1 Future Work

The present system is an initial attempt and several extensions and im-
provements are possible. One such extension could be the usage of social
information available for the PubMed documents, e.g., the journal in which
the document appears could give important cues about its main focus etc.
We would also like to experiment with other features from PubMed: e.g., list
of chemicals associated with a document (available as a separate hierarchy
in MeSH), semantic categories for MeSH terms, etc.

It would be also interesting to try to go to the sentence level: whether an
abstract talks about some function of the gene or not, is determined locally.
So, if we extract positive and negative sentences, we could train a classifier
which identifies sentences that talk about gene function. Another possible

36

CHAPTER 5. CONCLUSIONS 37

future direction would be to parse the text and identify lexico-semantic fea-
tures that determine the presence of function information in a piece of text.
This would also enable us to identify cases when an article talks about mul-
tiple genes but the function of only one of them. Chang et al. [13] describe a
computational formalism that captures structural relationships among par-
ticipants in a dynamic scenario. This structured event representation using
frame semantics enables them to make context sensitive inferences.

Further as we observed in chapter-4.3.2 there are many semantic varia-
tions in representation of the gene names. The retrieval performance could
be improved if we do an intelligent semantic analysis of the text, e.g., using
normalization of abbreviations appearing in the abstract text (see Schwartz
and Hearst [41]).

Bibliography

[10]

[11]

Genomics track of the 2003 text retrieval conference home page.
http://medir.ohsu.edu/~genomics/ .

Medical subject headings. http://www.nlm.nih.gov/mesh/meshhome.html.

National center for biotechnology information.
http://www.ncbi.nlm.nih.gov/.

National library of medicine (nlm). http://www.nlm.nih.gov/.

Ncbi locuslink. http://www.ncbi.nlm.nih.gov/LocusLink/.

Nlm medline/pubmed. http://www.nlm.nih.gov/pubs/factsheets/medline.html.
Swiss-prot protein knowledgebase. http://us.expasy.org/sprot/.

Text retrieval conference (trec) home page. http://trec.nist.gov/.

Usp di - united states pharmacopeia drug information.
http://www.usp.org/.

Waikato environment for knowledge engineering.
http://www.cs.waikato.ac.nz/ml/weka/.

Blaschke, C., Andrade, M., Ouzounis, C., and Valencia, A. Automatic
extraction of biological information from scientific text: protein-protein
interactions. In International Conference on Intelligent Systems for
Molecular Biology:ISMB (1999), pp. 60-67.

Chang, J., Raychaudhuri, S., and Altman, R. Using biological litera-
ture improves homology search. In Pacific Symposium on Biocomputing
(2001), pp. 374-383.

38

BIBLIOGRAPHY 39

[13]

[14]

Chang, N., Narayanan, S., and Petruck, M. R. Putting frames in per-
spective. In International Conference on Computational Linguistics
(2002).

Collier, N., Nobata, C., and Tsujii, J. Extracting the names of genes
and gene products with a hidden markov model. In 18th International
Conference on Computational Linguistics (COLING) (2000), pp. 201—
207.

Craven, M., and Kumlien, J. Constructing biological knowledge-bases
by extracting information from text sources. In Seventh International
Conference on Intelligent Systems for Molecular Biology (Germany,
1999), pp. 77-86.

Damashek, M. Gauging similarity with n-grams: Language-
independent categorization of text. In Science (February 1995),
vol. 267, pp. 843 — 848.

Dawson, J. Suffix removal for word conflation. In Bulletin of the Associ-
ation for Literary € Linguistic Computing (1974), vol. 2(3), pp. 33—46.

Domingos, P., and Pazzani, M. Beyond independence: Conditions for
the optimality of the simple bayesian. In International Conference on
Machine Learning, ICML (1996).

Duda, R., and Hart, P. Pattern classification and scene analysis, 1973.

Fukuda, K., Tamura, A., Tsunoda, T., and Takagi, T. Toward infor-
mation extraction: identifying protein names from biological papers. In
In Pac. Symp. Biocomput. (1998), pp. 707-718.

Gaizauskas, R., Demetriou, G., Artymiuk, P. J., and Willet, P. Protein
structures and information extraction from biological texts: The pasta
system. In Bioinformatics (2003), vol. 19(1), pp. 135-143.

Hanisch, D., Fluck, J., Mevissen, H.-T., and Zimmer, R. Playing bi-
ology’s name game: Identifying protein names in scientific texts. In
Pacific Symposium on Biocomputing (2003), pp. 403-414.

Hatzivassiloglou, V., Duboue, P., and Rzhetsky, A. Disambiguating
proteins, genes, and rna in text: a machine learning approach. In
Bioinformatics (2001), vol. 17(1), pp. S97-S106.

BIBLIOGRAPHY 40

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]

Hearst, M. A. Untangling text data mining. In Association for Com-
putational Linguistics (1999). invited paper.

Hole, W., and Srinivasan, S. Discovering missed synonyms in a large
concept-oriented metathesaurus. In AMIA Symposium (2000), pp. 354—
358.

Hull, D. Stemming algorithms: A case study for detailed evaluation.
In Journal of The American Society of Information Science (1996),
vol. 47(1), pp. 70-84.

Humphreys, B., and Lindberg, D. The umls project: making the con-
ceptual connection between the users and the information they need,
1993.

lan H. Witten, E. F. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, 1999.

Kamvar, S. D., Oliver, D. E., Manning, C. D., and Altman, R. B.
Inducing novel gene-drug interactions from the biomedical literature.
In Stanford University Technical Report (2002).

Kyrpides, N. Completed and ongoing genome projects. Online. Internet.
Available WWW: http://wit.integratedgenomics.com/GOLD/.

Leroy, G., and Chen, H. Filling preposition-based templates to capture
information from medical abstracts. In Pacific Symposium on Biocom-
puting (2002), pp. 350-361.

Liu, H., Johnson, S. B., and Friedman, C. Automatic resolution of
ambiguous terms based on machine learning and conceptual relations in

the umls. In Journal of the American Medical Informatics Association
(2002).

Mitchell, T. Machine Learning. McGraw Hill, 1997.

Nakov, P., and Hearst, M. Category-based pseudowords. In Companion
Volume of the Proceedings of HLT-NAACL (2003).

Oliver, D. E., Rubin, D. L., Stuart, J. M., Hewett, M., Klein, T. E.,
and Altman, R. B. Ontology development for a pharmacogenetics
knowledge base. In Pacific Symposium on Biocomputing (2002), vol. 7,
pp. 65—76.

BIBLIOGRAPHY 41

[36]

[37]

[40]

[41]

[44]

[45]

Park, J., Kim, H., and Kim, J. Bidirectional incremental parsing for au-
tomatic pathway identification with combinatory categorial grammar.
In Pacific Symposium on Biocomputing (2001), vol. 6, pp. 396-407.

Proux, D., Rechenmann, F., Julliard, L., Pillet, V., and Jacq, B. De-
tecting gene symbols and names in biological texts: A first step toward
pertinent information extraction. In Genome Informatics (1998), vol. 9,
pp. 72-80.

Pustejovsky, J., Castao, J., Zhang, J., and Cochran, M. K. B. Ro-
bust relational parsing over biomedical literature: Extracting inhibit
relations. In Pacific Symposium on Biocomputing (2002), pp. 362-373.

Rindflesch, T., Tanabe, L., Weinstein, J., and Hunter, L. Edgar: ex-
traction of drugs, genes and relations from the biomedical literature. In
Pacific Symposium on Biocomputing (2000), pp. 517-528.

Rosario, B., and Hearst, M. Classifying semantic relations in bioscience
texts. Submitted for publication.

Schwartz, A., and Hearst, M. A simple algorithm for identifying ab-
breviation definitions in biomedical text. In Proceedings of the Pacific
Symposium on Biocomputing (PSB 2003), Kauai (2003).

Sekimizu, T., Park, H., and Tsujii, J. Identifying the interaction
between genes and gene products based on frequently seen verbs in
medline abstracts. In Genome Informatics (1998), vol. 9, Universal
Academy Press, pp. 62-71.

Shatkay, H., Edwards, S., Wilbur, W., and Boguski, M. Genes, themes,
and microarrays: using information retrieval for large-scale gene analy-
sis. In 8th Int. Conf. on Intelligent Systems for Mol. Bio. (ISMB 2000)
(2000).

Swanson, D., and Smalheiser, N. An interactive system for finding com-
plementary literatures: A stimulus to scientific discovery. In Artificial
Intelligence (1997), vol. 91(2), pp. 183-203.

Thomas, J., Milward, D., Ouzounis, C., Pulman, S., and Carroll,
M. Automatic extraction of protein interactions from scientific ab-

stracts. In Proceedings of the Pacific Symposium on Biocomputing
(2000), pp. 541-551.

BIBLIOGRAPHY 42

[46]

[47]

[50]

[51]

van Rijsbergen, C. J. Information Retrieval, 2nd ed. Butterworth-
Heinemann, 1979.

Wilbur, L. T. W. Tagging gene and protein names in full text articles. In
Workshop on Natural Language Processing in the Biomedical Domain
(2002), pp. 9-13.

Wilbur, W., and Kim, W. Flexible phrase based query handling algo-
rithms. In ASIST (2001).

Yakushiji, A., Tateisi, Y., Miyao, Y., and Tsujii, J. Event extraction
from biomedical papers using a full parser. In Pacific Symposium on
Biocomputing (2001), pp. 408-419.

Yang, Y., and Pedersen, J. A comparative study on feature selection
in text categorization. In Proceedings of the Fourtheenth Intenational
Conference on Machine Learning (1997).

Yu, H., and Agichtein, E. Extracting synonymous gene and protein
terms from biological literature. In Bioinformatics (2003), vol. 19,
pp. 1340-i349.

