
1

Virtual OSGi Framework and Telecommunications

Sam Supakkul
Digital Pockets, LLC

Dallas, Texas
ssupakkul@computer.org

Lawrence Chung
Dept. of Computer Science
University of Texas, Dallas

chung@utdallas.edu

ABSTRACT
While embedded and telecommunication equipment is getting smaller, it is
required to provide more functionality and flexibility. The success criteria
for these equipments are often conflicting: lower cost but higher
functionality and flexibility. A new emerging platform called OSGi
Framework may be used to meet such high demands. Typical
telecommunication or embedded devices for the OSGi Framework are most
likely to have small form factor and design to be inexpensive for consumer
market. Therefore, large or upgradeable memory may not be common. As
the result, number of concurrent services is limited by the physical memory
size. This paper proposes a solution to create a virtual memory like effect
on the OSGi Framework to allow more concurrent services to run on the
OSGi Framework platform. A hypothetical everyday life scenario is used to
demonstrate how the Virtual OSGi Framework can be used to enhance the
value of the standard OSGi Framework.

1 INTRODUCTION
While embedded and telecommunication equipment is getting smaller,, it is
required to provide more functionality and flexibility. This is especially true
for consumer communication-based devices such as web phones, navigation
aid systems in automobiles, entertainment systems, and networked home
services gateways. The success criteria for these equipments are often
conflicting: lower cost but higher functionality and flexibility. The
equipment manufacturers are experiencing several problems to meet such
demands:

• Embedded software is harder to design: increasing networked devices
introduce significant complications such as downloadable modules that
dynamically reconfigure the system [4].

• Limited development resources: skilled developers and better
development tools. The industry is not able to leverage more abundant
resources from the traditional IT industry due to the use of different
programming languages and specialized real-time operating systems.

• Inflexible: embedded software is typically pre-built and installed on the
device. It is difficult to upgrade or add new functionality or
applications to the device deployed in the field or purchased by
consumers.

• Inefficient use of system storage: all programs must be available in a
local persistent storage such as FLASH memory or ROM. Therefore;
the number of applications is limited by this storage.

• Poor system serviceability: it is often difficult if not possible to
remotely diagnose and fix problems occur in the device.

Recent developments in software and telecommunication industries indicate
that these problems are being addressed:

• An industrial consortium called Open Service Gateway Initiative
(OSGi) has defined a dynamic embedded application run-time
environment based on Java language [12] called OSGi Service
Gateway specification [16]. The run-time environment of this
specification is called OSGi Framework. OSGi Framework allows
applications, in the form of Java JAR files, to be downloaded from the
network on-demand without pre-installation. This allows equipment to
be highly flexible, makes efficient use of persistent memory storage
where it is only used to store system software not the applications, and
provides a highly serviceable system where dynamic software upgrades
and downloads are naturally supported. Additionally, the use of Java
programming language offers greater cost saving and the ability to
leverage a larger pool of developers and tools from the traditional IT
industry [21].

• A new Java extension called the Real-Time Specification for Java has
been released to public through Sun’s Java Community Process [7]. It
will be possible to develop embedded software using a common
language and platform that is independent of underlying real-time

2

operating system. This will further provide cost saving and the leverage
of resource pool from the IT industry.

OSGi Service Gateway specification has gained tremendous support from
the telecommunication industry as indicated by the large number of OSGi
members from the telecommunication industry and many product initiatives
[1], [2], [5], [6], [15], [17]. Also, as high-speed broadband access (such as
DSL, cable-modem, and 3G wireless phone) is becoming more affordable
and available to consumers, this will be a catalyst of a new type of market
for telecommunication services using the OSGi Services Gateway for
dynamic on-demand services.

An example of an OSGi Services Gateway application can be depicted in
Figure 1.

Figure 1. Example of OSGi Services Gateway Application [18]

However, there is a potential problem that could happen to equipment
running an OSGi Framework. Because these consumer devices (such as
wireless phone and Service Gateway) are most likely equipped with limited
system resources (for example CPU and memory storage) for cost purposes

but they are still required to provide more functionality and applications to
consumer. As the OSGi services gateway and applications proliferate, the
equipment may not have sufficient memory to run all concurrent
applications desired by the consumer.

This paper proposes Virtual OSGi Framework concept to address this
limited memory problem. Similar to virtual memory concept, Virtual OSGi
Framework creates a perception of larger memory space for running more
concurrent applications on the device. In traditional virtual memory
mechanism, a local secondary storage (typically a hard-disk) is used to store
inactive memory pages. The inactive memory pages are brought back into
main memory when accessed by the application [14]. Unfortunately, an
embedded device is typically not equipped with a hard disk that can be used
for virtual memory mechanism.

Virtual OSGi Framework concept uses a remote server to store inactive
memory. However, due to network latency, swapping applications at
memory page level would not be practical as the device may suffer
unacceptable response time while swapping in and out memory pages.
Therefore, this paper proposes to swap memory at the application level,
where the entire application is swapped in from the remote or out when not
needed. This is to ensure that the application can provide good response
time without the penalty of memory swapping from a remote server.
However, swapping memory at the application level requires a different
scheduling scheme to ensure that the intended functions and services of the
applications are not affected. For example, interactive applications such as
an Internet phone application, if being dormant in the remote server, must
be swapped into main memory and run to answer a call within a few
seconds; otherwise, the caller may perceive that the callee’s phone is busy
or unoperational. A new scheduling scheme based on the expected Quality
of Service (QoS) of the services is also proposed in this paper to facilitate
the application swapping.

The telecommunication industry can benefit from the OSGi Service
Gateway specification by developing telecommunication equipment (such
as web phone, Service Gateway, or telecom switch) using OSGi
Framework, and optionally with the real-time for Java extension where
needed. The validity of Virtual OSGi Framework proposed in this paper is
demonstrated using a walk-through scenario approach based on network

3

appliance related applications to show that by using the proposed solution,
the service gateway can provide more functionality to the consumer without
additional cost to upgrade the hardware.

2 OSGi FRAMEWORK
This section describes the goals and motivations of OSGi Framework, its
architecture features, and limitation of a typical OSGi Framework platform
environment.

2.1 Goals and Motivations
Three key aspects of the OSGi mission are [10]:

• Multiple services,
• Wide-area networks, and
• Local networks and devices

The central component of the OSGi specification effort is the services
gateway that acts as the platform for many communications-based services.
The services gateway can enable, consolidate and mange voice, data,
Internet and multimedia communications to and from the home, office and
other locations.

In addition, the services gateway can also function as an application server
for a range of high-value services such as energy measurement and control,
safety and security services, health-care monitoring services, device control
and maintenance, electronic commerce services and more. The gateway
provides a focal point for service providers to deliver services to client
devices on the local network(s). An implementation of the OSGi gateway
may link client devices on the local network(s), such as energy meters,
smart appliances or information appliances, to external service providers.

Using an OSGi gateway, a device can dynamically download a Java
application, install it, and execute it on demand. When the application is
complete, the gateway purges the application to make room for the next
request.

2.2 Architecture
The OSGi gateway consists of two primary components: the OSGi
Framework and the Services. The OSGi Framework provides a runtime
framework that manages the loading, installation, activation, execution, and
removal of applications, called services. The services are a set of useful pre-
built and customizable applications. The deployment unit of the services is
Java JAR file, which contains a deployment descriptor file called Bundle
Manifest, and Java classes and resources to implement the services [3],
[16], [20].

Figure 2 shows the architecture of the environment. The OSGi Framework
is installed on a device running an embedded operating system. The OSGi
Framework requires a Java runtime platform, such as Java 2 Micro Edition
(J2ME) or Personal Java, or the standard J2SE JVM. The services can be
stored anywhere on the network, and they are downloaded and executed as
required.

H
T

T
P

Lo
gg

in
g

S
N

M
P

S
ec

ur
ity

C
al

en
da

r

OSGi Framework

JVM (J2ME/PersonalJava)

Embedded/Real-time OS

Dynamically Loaded
Application Services

Figure 2. OSGi Framework Architecture [19]

2.3 Limitation of OSGi Framework
Although memory cost is getting lower, but because of small form factor
and cost constraints, small telecommunications and embedded devices
seldom are equipped with large memory size, and most likely without a

4

hard disk. For those devices that are equipped with larger memory size, it is
likely that it will be outpaced by a growing number of dynamic loadable
applications as we have observed that PC large memory size have also been
outpaced by the memory requirements of applications that user wishes to
run.

3 VIRTUAL OSGi FRAMEWORK
This section describes the goals and motivations of the Virtual OSGi
Framework concept and the requirements (functional and non-functional).
The non-functional requirements are used as the criteria for deriving
architectural solution using NFR Framework methodology. The selected
architectural solution is then described in detail using Rational Unified
Process (RUP) [9] and Unified Modeling Language (UML) [8]. The UML
notations used include use case diagram for requirements, class diagram for
structural model, and state chart and collaboration diagram for behavioral
model.

3.1 Goals and Motivations
Virtual OSGi Framework is aimed to address the problem that physical
memory size limits the number of concurrent applications that may run on
the OSGi Framework. The goal is to enable more concurrent applications to
run on the services gateway.

3.2 Requirements
This section describes the requirements for the system that implements the
Virtual OSGi Framework concept.

3.2.1 Functional Requirements (FR)
The main functional requirements are:

• System deploys services to services gateway as requested by
Service Provider

• When target OSGi Framework runs out of memory, system
automatically performs memory swapping using the procedure
defined by the Virtual OSGi Framework architecture.

3.2.2 Non-Functional Requirements (NFR)
The system that imp lements Virtual OSGi Framework concept must meet
the following non-functional requirements:

• Be compatible and maintain existing features and benefits of
standard OSGi Framework

• Must provide acceptable responsiveness
• Must be practical and cost effective

3.2.3 Selection Among Architectural Choices
To determine the architectural solution that meets the non-functional
requirements, a technique called NFR Framework is used to compare
various architectural alternatives. The main concepts of the NFR
Frameworks used in this paper are [11], [13]:

• Ontology: Softgoals and interdependencies (hence the name
“softgoal interdependency graph” (SIG). A softgoal can be
categorized as NFR Softgoal, Operationalizing Softgoal, or Claim
Softgoal. NFR Softgoal (depicted as light cloud in SIG) represents
a non-functional requirement. Operationalizing Softgoal (depicted
as dark cloud in SIG) represents architectural alternative or
component. Claim Softgoal (depicted as dotted cloud in SIG)
represents the rationale used to justify the decis ion. To reduce
clutter-ness on the diagram, this paper embeds Claim Softgoals in
the rationale table. A softgoal may have interdependencies with
other Softgoals. An independency represents a type and degree of
contribution (-- for BREAK contribution, - for HURT contribution,
+ for HELP contribution, and ++ for MAKE contribution, etc.).
When applied with NFR Softgoals, the Softgoal Decomposition
shows lower level or different aspects of non-functional
requirements that are concerned by the decision process. Multiple
decomposed Softgoals may be considered using either logical
AND (depicted as single line arc) or logical OR (depicted as
double line arc). When applied with Operationizing Softgoals, the
decomposition describes sub-components or different aspects or
different aspects or factors of the Operationizing Softgoal. Softgoal
Satisficing shows the degree of how an Operationizing Softgoal

5

satisficing an NFR Softgoal, optionally justified by the rationale
described by a Claim Softgoal.

• Epistemology: Softgoal Decomposition. A decomposition can be
applied to a type and/or a topic, in an object-oriented style, namely,
classification/instantiation, aggregation/decomposition,
generalization/specialization, views, etc. The decomposition can be
observed along the interdependency directed lines and the
evolution of the labels of the Softgoals, which are expressed in the
following convention:

Type [Topic1, Topic2, …]

Where Type is a NFR and Topic is the system or another NFR to
which the Type applies.

Multiple Services
[Embedded
Devices]

Static Multiple
Services [Embedded
Devices, Networked]

Dynamic Multiple
Services [Embedded
Devices, Networked]

Platform-independent
Dynamic Multiple
Services [Embedded
Devices, Networked]

Application Hosting
Services [Embedded
Devices, Networked]

Services Installed On-
Demand [Embedded
Devices, Networked]

Multiple Services
[Embedded Devices,
Networked]

Multiple Services
[Embedded
Devices,
Standalone]

Dynamic Multiple
Services [Embedded
Devices, Networked,
Large Memory]

Dynamic Multiple
Services [Embedded
Devices, Networked,
Small Memory]

Practicality
[Embedded
Devices]

Usability
[Embedded
Devices]

Ease of
Upgrade
[Embedded
Dervices]

Responsiveness
[Embedded
Devices]

!

Figure 3. Softgoal Interdependency Graph for NFRs on Virtual OSGi

Framework

Figure 3 shows the Softgoal Interdependency Graph for NFRs to be used to
determine the architectural solution for the Virtual OSGi Framework
concept.

To determine the architectural solution for Virtual OSGi Framework, the
softgoals are further decomposed in Figure 4 with architectural alternatives
or design elements depicted as dark cloud. The satisficing relationships are
shown in diagrams with the degree of satisficing.

6

Multiple Services
[Embedded
Devices]

Static Multiple
Services [Embedded
Devices, Networked
Connected]

Dynamic Multiple
Services [Embedded
Devices, Networked]

Platform-independent
Dynamic Multiple
Services [Embedded
Devices, Networked]

Application Hosting
Services [Embedded
Devices, Networked]
(G1)

Services Installed On-
Demand [Embedded
Devices, Networked]

Multiple Services
[Embedded Devices,
Networked]

Multiple Services
[Embedded
Devices,
Standalone]

Dynamic Multiple
Services [Embedded
Devices, Networked,
Large Memory]

Dynamic Multiple
Services [Embedded
Devices, Networked,
Small Memory] (G2)

Practicality
[Embedded
Devices]

Usability
[Embedded
Devices]

Ease of
Upgrade
[Embedded
Dervices]
(G3)

Responsiveness
[Embedded
Devices] (G4)

OSGi
Framework

Platform-
independent
Binary Code

Dynamic
Services
Load/Update

Multi-
tasking

J2ME/Personal Java
Platform (G11)

Work with
Small
Devices

Virtual
OSGi
Framework

-

Swap Entire
Application
at a Time
(G10) -

Swap Memory
Page at a
Time (G9)

Add Physical
Memory (G5)

VFM-to-
AdminBundle
Interface

-
Use Virtual
Memory
(G6)

-

Swap to
Remote
Server
(G8)

-

Swap to
Local Hard-
disk (G7)

!

Remote Memory
Manager (Virtual
Framework
Manager/VFM)

VFM-to-Service
Provider
Interface

+

++

++

+
++

+

--

--

++

--
+

++

Admin
Bundle

+++

++
+

++

++

++

++

Figure 4. Softgoal Interdependency Graph for Virtual OSGi
Framework

The selected architectural solution is to use virtual memory concept.
However, instead of swapping at memory page level, the entire application

is swapped all together. The rationale of selecting this solution is described
in Table 1 below.

Softgoal Satisficing Rationale
G11 (+) à G2 OSGi Framework is likely to be deployed on

Java JVMs, such as Java 2 Micro Edition
(J2ME) or Personal Java, that are suitable for
small devices. It is uncommon that these devices
operate without any kind of virtual memory.
Therefore, number of services run on OSGi
Framework would be limited by physical
memory. With a device with small memory,
such as Web Phone or PDA, this limitation is
more severe than larger devices that are
equipped with more memory. This is the
limitation being addressed by this paper.

(+) à G2 Adding more physical memory to the device
would provide the ideal result, that is, more fast
memory to host more services. However, larger
services and more services would eventually run
out of the new larger memory.

(++) à G4 Adding more physical memory provides the best
responsive system.

G5

(--) à G3 However, adding physical memory is not a
practical option as most small
telecommunication devices are designed to be
small and inexpensive. They often do not offer a
memory upgrade option or difficult to do so.
Therefore, this design option is denied.

(++) à G6 To support the use of virtual memory, the ideal
solution is to use a local mass storage such as
hard disk for storing swapped out memory
because local I/O is well acceptable for virtual
memory technique.

G7

(++) à G4 Because the data transfer latency is low for hard
disk. Using hard disk for virtual memory would
yield a very responsive system.

7

 (--) à G3 However, using hard disk for memory swapping
is not a practical solution, as most small
embedded devices do not have hard disk. It is
also often difficult to add additional hardware
such as hard disk to these devices.

(+) à G6 It is possible to swap inactive memory to a
remote server, although not ideal due to higher
network transmission latency.

(++) à G3 Using a remote server to facilitate the virtual
memory mechanism is the most practical option,
as it does not require any hardware upgrade to
the embedded device.

G8

(++) à G1 Because a remote server (Virtual Framework
Manager) is used to manage the deployment of
services, it can also eliminate the need for
Service Provider to perform deployment
management function such as periodic
deployment of some services that need to run
regularly based on schedule.

(++) à G8 The typical virtual memory mechanism would
swap a small chunk memory (memory page) at a
time based on the virtual memory address space.
This is the desirable size for memory swapping.

G9

(--) à G4 However, because the secondary storage is on a
remote server, which data transfer would suffer
tremendous delay due to network transmission
latency that is much greater than that of a local
hard disk. As the result, the active application
may yield unresponsive when its memory pages
are being swapped in and out between memory
on the OSGi Framework and the remote server.

Claim: Network latency causes page-swapping
applications to be unresponsive for interactive or
time-critical applications.

(+) à G8 In order to achieve acceptable responsiveness,
the entire application image should reside in the
main memory of the OSGi Framework. When
the application can be swapped out to secondary
storage on the server, the service is terminated
(similar to memory swapped out effect).
Transferring the entire application would take
longer than swapping only a memory page;
however, it is necessary to make a virtual
memory concept with embedded environment.

G10

(+) à G4 Having the entire application image in the local
memory would yield good responsiveness;
however it suffers a slight network latency delay
during the initial loading of the application.

G11 (++) à G10 One main reason that swapping the entire
application is a feasible solution because 1)
Programs in Java byte-code are much more
compact than other languages, 2) the size of
services for embedded device tend to be small as
they tend to be communication-based and
control-based applications. If they have user
interface, the user interface tends to be simpler
and much lighter weight than desktop counter
part applications. For example, many useful
practical services developed at Digital Pockets
LLC were found to be in the range of 200KB or
smaller. For 1 Mbps connections as found in
DSL or 3G wireless technologies, these services
would take less than 2 seconds to swap in the
entire application, which is reasonable for even
interactive services.

Claim: Good design and Java byte code
compactness enable OSGi services to be small
enough for acceptable loading delay.

Table 1. Virtual OSGi Framework Architectural Solution Rationale

8

The Virtual OSGi Framework concept is depicted in Figure 5. The Virtual
Framework Manager provides a perception of a larger deployment OSGi
Framework platform on the target services by maintaining the current
applications on a remote server and swap them to run on the gateway as
needed.

OSGi Framework

Fixed system bundles

...

Application repository
on remote server

Active applications running
on the Service Gateway
Figure 5. Application-based Swapping Employed by Virtual OSGi

Framework Architecture

3.2.4 Revised Functional Requirements
This section presents the revised functional requirements based on the
selected architectural solution that is using a remote server to provide
virtual memory effect on the OSGi Framework. The requirements are

presented using UML Use Case Model as depicted in Figure 6 and
described in Table 2.

Figure 6. Virtual OSGi Framework System Use Case Diagram

Use Case Description

Register
Bundle

Service Provider registers a new service bundle to be
deployed on one or more services gateway(s). The
registered bundle is also given a deployment policy to
specify how the bundle should be managed. This use case
invokes Deploy Bundle use case to deploy the new
service to the target services gateway(s).

Add Gateways Service Provider specifies one or more services
gateway(s) that should receive an existing registered
bundle.

Remove
Gateways

Service Provider specifies one or more services
gateway(s) that should no longer run an existing
registered bundle.

9

Deploy Bundle This is an abstract use case. It is invoked by other use
cases to deploy a new or sleeping bundle. This use case
checks if there is any other Service(s) that this bundle
depends. If so, VFM deploys bundles that provided
dependent services before deploying this Bundle so OSGi
may resolve the Bundle dependency successfully.

Terminate
Bundle

This is an abstract use case. It is invoked by other use
cases to terminate a registered bundle, which may be
running on one or more services gateway(s).

Notify State
Change

OSGi Framework notifies the local AdminBundle, which
turns notifies the VFM that a bundle residing on the
gateway has changed its life-cycle state. If all instances of
the bundle running on all target gateways report state
changes that causes a change to the master bundle on
VFM, VFM would send a notification to the Service
Provider using the interface URL provided by the original
request.

Unregister
Bundle

Service Provider requests VFM to unregister a bundle it
has previously registered.

Table 2. Virtual OSGi Framework System Use Cases Description

3.3 Virtual OSGi Framework Structural Model
To implement the Virtual OSGi Framework concept, a new software system
is needed to manage the virtual space on the remote server as well as
interfacing with the OSGi Framework on the services gateway. The system
consists of the following components as depicted in shaded color in Figure
7 and described in Table 3:

• Virtual Framework Manager (VFM)
• Administration Bundle (AdminBundle)
• Service Provider Interface
• Gateway Interface

Service Provider

Virtual
Framework

Manager

Service Provider
Interface

Gateway Interface

Admin
Bundle

Bundle
1

Bundle
2

Bundle
...n

OSGi Framework

JVM

Embedded/Real-time OS

Services Gateway

Deployment Server

Service Provider
Server

Figure 7. Virtual OSGi Framework Components

Component Description
Virtual
Framework
Manager (VFM)

VFM is a remote server that deploys services as
requested by Service Provider. The OSGi services are
packaged in the deployment unit called bundle, which
contains a JAR comprising Java classes that make up
the services and a text file that describes properties of
the bundle called Manifest. VFM uses the deployment

10

policies provided by the Service Provider to determine
when swap applications in and out.

Administration
Bundle
(AdminBundle)

AdminBundle is an OSGi service running on the target
OSGi Framework. It acts as a remote management
agent to facilitate the deployment and management of
OSGi Bundles. It can also be developed to monitor
requests or messages sent by consumer devices
connected to the services gateway through the local
area network. For example, AdminBundle may detect
Voice over IP (VoIP) messages from connected IP
Phone; it then notifies the VFM that VoIP service
should be swapped in to service the request.

Service Provider
Interface

This interface supports data exchange and requests
between Service Provider and VFM.

Gateway Interface This interface supports data exchange and requests
between VFM and AdminBundle.

Table 3. Virtual OSGi Framework Components Description

3.3.1 Virtual Framework Manager (VFM)
This section presents the structural model of the VFM, the main component
of Virtual OSGi Framework architecture. The server is used as the remote
memory manager as well as an OSGi service deployment manager.

3.3.1.1 VFM Architecture
The VFM can be further decomposed to sub-components is depicted in
Figure 8 and described in Table 4.

registeration,
state change notification

deploy/terminate,
state change notification

Database

Service Provider

Virtual Framework Manager

registeration,
state change notification

deploy/terminate,
state change notification

bundle image,
VFM data

bundle image

bundle image

Web Server

Services Gateway

I1

I2

Provider Interface
Handler

I3

I4

Bundle Manager

I5

I6

Gateway Interface
Handler

I7

I8

Admin
Bundle

OSGi Framework

Figure 8. Virtual Framework Manager Architecture

Module Description
Provider
Interface

This module interacts with Service Provider systems for
bundle registration/de-registration and bundle life-cycle state

11

Handler change notification. It provides standard interface using
common protocol and mechanism; for example, the
information between Service Provider and VFM may be
exchanged using XML over HTTP protocol.

Bundle
Manager

This is the main module that manages the bundle deployment
and keeps track of bundles running on the target Services
Gateways, as well as bundles that are swapped out and
waiting to be executed. It uses Database to persistently store
bundle information and the executable image to be retrieved
by Services Gateway through the Web Server.

Gateway
Interface
Handler

This module encapsulates the knowledge of OSGi Framework
API for VFM. It deploys bundles requested by the Bundle
Manager using OSGi API. It monitors the notification that be
reported by the Service Gateway. It receives and forwards any
notifications to the Bundle Manager.

Database The Database is used as persistent storage for bundle
information and executable image.

Web
Server

When VFM installs a bundle on a Services Gateway, it
specifies the source of the bundle executable image in URL
The OSGi Framework on the Services Gateway would in turn
use HTTP protocol to download the bundle image from a
remote Web Server using the specified URL. The Web Server
through a database connection retrieves the bundle image in
the form of Java JAR and forward to the target Service
Gateway.

Table 4. VFM Components Description

3.3.1.2 VFM Information Model
This section presents the information to be maintained by the VFM as
shown in Figure 9. Detailed description of each class is presented in Table
5.

10..*GatewayBundle 0..* 1

0..*

0..1

1

0..*

1

0..*

service dependency

0..*

0..*

BundleGateway DeploymentPolicy

Schedule

ServiceProvider

Service

Figure 9. Virtual Framework Manager Information Model

Class Description
Service Provider Service Provider represents the organization that

provides OSGi bundles and services.

Attribute:
id is the unique identifier of Service Provider;
certificate is the secure digital certificate used to
authenticate the Service Provider; name is the textual
name of this Service Provider.

Relationship:
With Bundle: Service Provider may provide one or
more Bundle(s) to be deployed to services gateways.

Bundle Bundle is the deployment unit for OSGi applications
and services. Each Bundle may perform its function
upon the deployment or it may be developed to be
component where it provides Services to other

12

Bundles.

Attribute:
vfmAssignedBundleID is the ID generated by VFM to
uniquely identify this Bundle; name is the textual
name of this bundle as described in the bundle
manifest (see Figure 10); description is the textual
description as described in the bundle manifest (see
Figure 10); bundleJAR is the bundle deployment
image or location inside the internal VFM database
where the image is stored; state is the current life-
cycle state of this bundle (see Figure 11);
notificationURL is the Service Provider HTTP URL
for receiving bundle state change notification sent by
VFM.

Relationship:
With ServiceProvider: Bundle must be provided by a
ServiceProvider. With DeploymentPolicy: Bundle
must be given a DeploymentPolicy. With Service:
Bundle may contain one or more Service(s). With
Gateway: Bundle may be deployed to one or more
Gateway(s).

DeploymentPolicy DeploymentPolicy defines the quality of service and
how the bundle should be managed from the
deployment perspective.

Attribute:
QoS is the expected quality of service for this bundle
(see Table 6); interruptible indicates whether this
Bundle can be preempted and swapped out before it is
complete.

Relationship:
With Bundle: DeploymentPolicy may be assigned to
one or more Bundle . With Schedule:
DeploymentPolicy may be associated with a
repeatable Schedule.

Schedule Schedule defines how Bundle should be periodically
re-deployed (see Table 8). The schedule specification
is based on Unix cron-job definition.

Attribute:
minute specifies at what minutes of the hours the
Bundle should be re-deployed; hour specifies what
hours of the day for re-deployment; dayOfMonth
specifies what days of the month for re-deployment;
month specifies what months of the year for re-
deployment; dayOfWeek specifies what days of the
week for re-deployment.

Relationship:
With DeploymentPolicy: Schedule may be assigned to
one or more DeploymentPolicy.

Service Service is a functionality that is provided by a Bundle
to other Bundle(s). The Service can be registered with
the OSGi Framework so it can be invoked by other
Bundle(s). The interface to the Service is through Java
interface.

Attribute:
name is the textual name described in the Bundle
manifest; version is the version number of this
implementation of the Service; javaInterface is the
exportable Java interface [12] (see Export-Service
statement in Figure 10).

Relationship:
With Bundle: Service must be provided by a Bundle.
With Service: A Service may depend on one or more
other Service(s).

Gateway Gateway represents the OSGi services gateway.

Attribute:
ipAddress is the unique IP address of this Gateway;
adminBundleURL is the HTTP URL of the
AdminBundle that VFM uses as a remote agent to

13

facilitate the Bundle deployment.

Relationship:
With Bundle: Gateway may host and run one or more
Bundle.

GatewayBundle This is a UML association that represents the Bundle
instance being deployed on a Gateway.

Attribute:
state is the current life-cycle state of the Bundle
instance as defined by GatewayBundleState depicted
in Figure 12; priorityOffset is the offset value may be
used by VFM to increase the effective priority when
the Bundle has been sleeping longer so that it would
be given more consideration to be swapped in to run
on the Gateway; gwAssignedBundleID is the unique
identifier assigned by the Gateway upon deployment.

Relationship:
None (it is already an association class between
Gateway and Bundle).

Table 5. VFM Class Description

Bundle-Name: AdminBundle
Bundle-Description: Remote Administration Bundle
Bundle-Vendor: Digital Pockets LLC
Bundle-Version: 1.0
Bundle-DocURL: http://www.digitalpockets.com
Bundle-Activator: com.digitalpockets.osgi.adminbundle
Import-Package: org.osgi.service.http,
 javax.servlet; specification-version=2.1.1,
 javax.servlet.http; specification-version=2.1.1
Import-Service: org.osgi.service.http.HttpService
Export-Package: com.digitalpockets.osgi
Export-Service: com.digitalpockets.osgi.admin

Figure 10. An Example of OSGi Bundle Manifest

Policy Value Description
Critical For critical services that need to be started as

soon as possible. These may be health or
security related application that should be
started within a second or two.

Interactive For services that have user interaction
element, they should be responsive to user
request. Examples of these applications
include device console, IP Phone or home
entertainment. These applications should be
started within a few seconds.

High Priority
Background

For services that are not critical and do not
have user interaction, they may be able to
tolerate some delay up to several minutes,
such as furnace control or email delivery
system.

Quality
of
Service
(QoS)

Low Priority
Background

Some low priority applications may be able
tolerate delay up to hours; for example,
sprinkler control or once-a-month billing
application.

Table 6. Quality of Service Deployment Policy

Policy Value Description

Once For services that do not need repeated
deployment, such as control related applications
like door or electrical control applications. Once
the services are complete and self-terminated,
they will not be automatically re-deployed by
VFM.

Scheduling

Repeating For services that need periodic re-deployment.
After the termination, they will be re-activated by
VFM based on the schedule defined by this
policy.

Table 7. Schedule Deployment Policy

14

Policy Value Description
Yes Bundle can be interrupted and swapped out at any

time. Interruptible applications are written to handle
any abrupt interruption. Once swapped out, Virtual
Framework Manager uses Launching characteristic
to determine when the bundle should be swapped in
for execution again.

Preemption

No Bundle cannot be interrupted before completion.

Table 8. Preemption Deployment Policy

3.3.2 Admin Bundle
As shown early in Figure 7, Admin Bundle is an OSGi Service running on
the target OSGi Framework. It acts as a remote agent to facilitate VFM with
the service/bundle management.

3.3.2.1 Information Model
Admin Bundle is a stateless service. It has no need to maintain any
information or state about the deployed services. All operations are atomic
and have no inter-dependency among them. Therefore, information or state
maintenance is not required.

3.4 Virtual OSGi Framework Behavioral Model
This section presents the dynamic behavioral model of the Virtual OSGi
Framework system using UML state transition diagrams and collaboration
diagrams. The state transition diagrams describe the life cycle of two
stateful classes: Bundle and GatewayBundle classes. The collaboration
diagrams describes system-wide behaviors based on system level use cases
depicted in Figure 6. The names of the messages sent from one object to
another on the collaboration diagrams are based on interface operations
defined in Section 3.5 and the OSGi Service Gateway specification [16].

3.4.1 Bundle Object Life-Cycle
Each registered Bundle is tracked when it goes through its life-cycle state
transitions as depicted in Figure 11 and described in 10. This current state

represents the aggregate state of all instances of the bundle being deployed
on the target services gateways.

Figure 11. Bundle Object Life Cycle (BundleState)

15

State Description

Registered The bundle has been registered and scheduled for
deployment.

InService The bundle has been deployed to at least one target
services gateway.

Decommissioning Service Provider has requested to stop the bundle. The
bundle is being terminated from the target services
gateway by the VFM.

OutOfService The bundle has been terminated from all services
gateway.

Unregistered Service Provider requests VFM to remove the bundle.
This is the terminal state of BundleState.

Table 9. Bundle States Description

3.4.2 GatewayBundle Object Life-Cycle
Each instance of bundle deployment is tracked through its state transition as
depicted in Figure 12 and described in Table 10.

State Description

Scheduled The bundle has been registered and scheduled for deployment
to the target services gateway.

Deployed The bundle is now deployed to the target services gateway.
OSGi Bundle must be explicitly installed (Installed state) and
started to be active and running (Started state). To remove the
bundle from the gateway, the bundle must be stopped
(Stopped state), then uninstalled (Uninstalled state).

Sleeping The bundle is preempted and swapped out (removed) from
the services gateway.

Terminated The bundle is no longer needed for deployment.

Table 10. GatewayBundle States Description

Figure 12. GatewayBundle Life Cycle

3.4.3 Register Bundle Use Case
This use case starts when a Service Provider sends a request to VFM to
register a new Bundle for deployment to one or more services gateways.
VFM verifies the provided information. If valid, VFM stores the
information and schedules the Bundle for deployment. If the target services
gateways do not have enough available memory for the Bundle, VFM
initiates the swap out process (Terminate Bundle abstract use case) to
terminate one or more lower priority Bundles to free up the memory for the
new Bundle. When the Bundle is installed (by Deploy Bundle abstract use

16

case) to the gateway, the underlying OSGi Framework would automatically
retrieves the Bundle JAR file from the Web Server specified in the URL
provided by the VFM. Detailed behavior is depicted in Figure 13.

Figure 13. Register Bundle Use Case Collaboration Diagram

3.4.4 Add Gateways Use Case
This use case starts when a Service Provider sends a request to VFM to
request to add one or more services gateways to the deployment of a
previously registered Bundle. VFM verifies the information provided by the
provider. If valid, it schedules the bundle for deployment to the new
services gateways, which will be carried out by Deploy Bundle use case.
The detailed behavior is depicted in Figure 14.

Figure 14 Add Gateways Use Case Collaboration Diagram

3.4.5 Remove Gateways Use Case
This use case starts when a Service Provider sends a request to VFM to
remove one or more services gateways from the deployment list of a
previously registered Bundle. VFM verifies the information provided. If
valid, it initiates the process to terminate the bundle from the specified
services gateways (Terminate Bundle use case). Detailed behavior is
depicted in Figure 15.

17

Figure 15 Remove Gateways Use Case Collaboration Diagram

3.4.6 Decommission Bundle Use Case
This use case starts when a Service Provider sends a request to
decommission a previously registered Bundle. VFM verifies the provided
information. If valid, VFM starts the process to terminate the bundle from
all target services gateways. Detailed behavior is depicted in Figure 16.

Figure 16 Decommission Bundle Use Case Collaboration Diagram

3.4.7 Unregister Bundle Use Case
This use case starts when a Service Provider sends a request to unregister a
previously decommissioned Bundle. VFM verifies the provided

18

information, including whether the Bundle is in Decommissioned state. If
so, VFM removes the Bundle from managed Bundle repository. Detailed
behavior is depicted in Figure 17.

Figure 17 Unregister Bundle Use Case Collaboration Diagram

3.4.8 Notify State Change Use Case
This use case starts when OSGi Framework sends a notification to the local
AdminBundle to report that a bundle has changed state. AdminBundle
forwards the notification to the VFM, which in turn updates the state of the
associated GatewayBundle to reflect the new state of this Bundle instance.
The master Bundle object is also checked if it needs to change state as
defined by BundleState definition in Table 9. If Bundle state is changed, a
notification is sent to the Service Provider who deployed this Bundle.
Detailed behavior is depicted in Figure 18.

Figure 18. Notify State Change Use Case Collaboration Diagram

3.5 Virtual OSGi Framework Interface Specification
This section presents the details of interfaces between components. The
interfaces are labeled Interface 1 to Interface 8 as depicted in Figure 8. The
interfaces are presented from semantic perspective, without the specific
details of the protocol. Each operation of the interfaces is presented with
pre-conditions and post-conditions, and input, output, and exception
specifications. Pre-conditions describe the states of the system before the
operation. Post-conditions describe the states of the system after the
operation if successful. Input specifies the operation parameters. Output
specifies the return parameters of the operations. Exception specifies the
error conditions reported if the post-conditions cannot be met.

19

3.5.1 Interface I1
This interface is protocol dependent based on the protocols to be supported
by the system.

3.5.1.1 notifyBundleStateChange Operation
Pre-conditions: None
Post-conditions: None

Input:
Integer bundleID,
String oldState,
String newState
Output:
None
Exception: None

VFM sends a notification to Service Provider to report that a bundle has
changed its life-cycle state.

Input: bundleID is the unique ID of the bundle whose state has changed;
oldState is the previous state before the transition; newState is the new state
after the transition.

Output: None.

Exception: None

3.5.2 Interface I2
This interface is protocol dependent based on the protocols to be supported
by the system. It allows Service Provider to make requests using different
protocol.

3.5.2.1 registerBundle Operation

Pre-conditions: None.
Post-conditions: Bundle related information and executable image (JAR)
are created, stored, and scheduled to be deployed as specified by the
deployment policy.

Input:
Integer providerID,
Certificate providerCertificate,
String bundleURL,
DeploymentPolicy bundlePolicy,
StringList gatewayIPs,
String notificationListenerURL
Output:
Integer bundleID
Exception:
InvalidProvider,
InvalidBundleLoc,
InvalidBundlePolicy,
InvalidGateways(StringList gatewayIPs),
InvalidEventListener,
BundleNotDeployable

Service Provider registers a new bundle for deployment.

Input: providerID uniquely identifies the Service Provider making the
request; providerCertificate securely authenticates the provider using digital
certificate; bundleURL is the URL where the bundle JAR file is located;
bundlePolicy specifies policy for managing the bundle; gatewayIPs
contains IP addresses of one or more target services gateways for the
deployment of this bundle; notificationListenerURL is the URL of HTTP
web page to post bundle state change notification unless
notificationListenerURL is undefined.

Output: bundleID is assigned identifier of the bundle once it has been
successfully registered.

Exception: InvalidProvider indicates that the provided service provider
certificate is invalid; InvalidBundleURL indicates that the provided URL
does not exist or not reachable; InvalidBundlePolicy indicates that the
provided deployment policy is missing or invalid; InvalidGateways
indicates that the IP addresses of some target gateways are invalid or not
reachable; InvalidEventListener indicates the event listener web page is
invalid or not reachable; BundleNotDeployable indicates that VFM has

20

verifies and determined that the bundle is not deployable, for instance the
service with the specified service signature already registered and deployed
by other Service Provider.

3.5.2.2 addGateways Operation

Pre-conditions: The bundle exists and was registered by this Service
Provider.
Post-conditions: Bundle is scheduled to be deployed to the new services
gateway.

Input:
Certificate providerCertificate,
Integer bundleID,
StringList gatewayIPs
Output: None
Exception:
InvalidProvider,
InvalidBundle,
InvalidGateways(StringList gatewayIPs)

Service Provider requests to deploy a previously registered bundle to one or
more services gateways.

Input: providerCertificate authenticates that the Service Provider is indeed
the same provider that previously registered the Bundle; bundleID is
identifier of the bundle for this request; gatewayIPs contains IP addresses of
one or more services gateways to deploy the bundle.

Output: No output is required.

Exception: InvalidProvider indicates the provided certificate is invalid or
the provider is not the provider that has originally registered the bundle;
InvalidBundle indicates the bundle ID is unknown or not currently active;
InvalidGateways indicates that the gateways with IP addresses defined in
gatewayIPs are invalid or unreachable.

3.5.2.3 removeGateways Operation

Pre-conditions: The bundle exists and was registered by this Service
Provider.
Post-conditions: Bundle is scheduled to be removed from the specified
services gateways.

Input:
Certificate providerCertificate,
Integer bundleID,
StringList gatewayIPs
Output: None
Exception:
InvalidProvider,
InvalidBundle,
InvalidGateways(StringList gatewayIPs)

Service Provider requests to remove one or more services gateways from
bundle deployment of a previously registered bundle. The gateways would
no longer host the specified bundle.

Input: providerCertificate authenticates the Service Provider making sure
the request is indeed the original provider that registered; bundleID is
identifier of the desirable bundle for this request; gatewayIPs contains IP
address of one or more services gateways to deploy the bundle.

Output: No output is required.

Exception: InvalidProvider indicates the provided certificate is invalid or
the provider is not the provider that has originally registered the bundle;
InvalidBundle indicates the bundle ID is unknown or not currently active;
InvalidGateways indicates that the gateways with IP addresses defined in
gatewayIPs are invalid or unreachable.

21

3.5.2.4 decommissionBundle Operation

Pre-conditions: The bundle exists and was registered by this Service
Provider.
Post-conditions:
The bundle is in Decommissioning state.

Input:
Certificate: providerCertificate,
Integer bundleID,
Output: None
Exception:
InvalidProvider,
InvalidBundle

Service Provider requests to stop the service of a particular Bundle. After
the control is returned to the request, VFM starts to terminate the bundle
from all target services gateways of this Bundle.

Input: providerCertificate authenticates that the provider making the
request is indeed the original provider that registered the Bundle; bundleID
identifies the bundle to be decommissioned.

Output: no output is required.

Exception: InvalidProvider indicates the provided certificate is invalid or
the provider is not the provider that has originally registered the bundle;
InvalidBundle indicates the bundle ID is unknown or not currently active.

3.5.2.5 unregisterBundle Operation

Pre-conditions:
The bundle is in Decommissioned state.
Post-conditions:
The bundle is removed and no longer managed by VFM.

Input:
Certificate: providerProvider,
Integer bundleID

Output: None
Exception:
InvalidProvider,
InvalidBundle
InvalidBundleState

Service Provider requests to remove a particular bundle from the system.

Input: providerCertificate authenticates that Service Provider is the correct
owner of the Bundle; bundleID identifies the bundle the provider wishes to
unregister.

Output: no output is required.

Exception: InvalidProvider indicates the provided certificate is invalid or
the provider is not the provider that has originally registered the bundle;
InvalidBundle indicates the bundle ID is unknown or not currently active;
InvalidBundleState indicates the bundle is not in the correct state for this
operation.

3.5.3 Interface I3
3.5.3.1 notifyBundleStateChange Operation

Pre-conditions: None
Post-conditions: None

Input:
String providerListenerURL,
Integer bundleID,
String oldState,
String newState
Output: None
Exception: None

Bundle Manager module sends a notification to a provider’s listener located
at providerListenerURL to indicate that the bundle identified by bundleID
has performed a state transition from oldState to newState.

22

3.5.4 Interface I4
Semantically, I4 is the same as Service Provider Interface I2. The difference
is that I4 is an internal interface, where I2 is protocol specific interface
based on the protocols to be supported by the system. For instance, HTTP,
IIOP, or RMI.

3.5.5 Interface I5
3.5.5.1 notifyBundleStateChange Operation

Pre-conditions: None
Post-conditions: None

Input:
String gatewayIP,,
Integer bundleID,
String newState
Output: None
Exception: None

Bundle Manager is notified that a bundle (identified by bundleID) on a
gateway (identified by gatewayIP) has changed bundle state to newState.

3.5.5.2 requestService Operation

Pre-conditions: None
Post-conditions: None

Input:
String serviceName
Output:
String bundleURL
Exception:
UnknownService

Bundle Manager is requested for a bundle (would be available at location
bundleURL) that supports OSGi service identified by serviceName .

3.5.6 Interface I6
3.5.6.1 deployBundle Operation

Pre-conditions: None.
Post-conditions: The bundle is successfully installed and started on the
target services gateways.

Input:
String bundleURL,
StringList gatewayIPs
Output:
List of {String successfulGatewayIPs, Integer bundleID},
List of {String failedGatewayIPs, String description}
Exception:
InvalidGateways(StringList gatewayIPs)

Bundle Manager requests to deploy a bundle to one or more target services
gateways.

Input: bundleURL specifies the location on VFM where the bundle JAR is
located; gatewayIPs contains IP addresses of one or more target services
gateways to run the bundle.

Output: A list of data structure, each contains successfulGatewayIPs to
indicate the gateways that have successfully deployed the bundle, and
bundleID to report the bundle ID assigned by the gateway, and a list of
failedGatewayIPs to indicate the gateways that failed to start the bundle
with the reason described in description.

Exception: InvalidGateways indicates that some of the services gateways
identified by the provided gatewayIPs are invalid or unreachable.

3.5.6.2 terminateBundle Operation

Pre-conditions: Bundle is deployed to the target services gateways.
Post-conditions: The bundle is not running on some of the specified
services gateways.

Input:
List of {String gatewayIPs, Integer bundleID}

23

Output:
StringList successfulGatewayIPs,
List of {String failedGatewayIP, String description}
Exception:
InvalidGateways(StringList gatewayIPs)

Bundle Manager requests to terminate a bundle on target services gateways.

Input: A list of gatewayIPs that specifies the target services gateways to
terminate the bundle identified by bundleID on that gateway.

Output: A list of data structure, each contains successfulGatewayIPs to
indicate the gateways that have successfully deployed the bundle, and
bundleID to report the bundle ID assigned by the gateways and a list of
failedGatewayIPs of the gateways that failed to start the bundle and
description of the failure.

Exception: InvalidGateways indicates that some of the services gateways
identified by the provided gatewayIPs are invalid or unreachable.

3.5.7 Interface I7
Semantically, I7 is the same as Bundle Manager Interface I5. The difference
is that I5 is an internal interface, where I7 is protocol specific interface
based on the protocols to be supported by the target services gateways, for
instance, HTTP, Jini, or RMI.

3.5.8 Interface I8
Semantically, I8 is the same as Bundle Manager Interface I6. The difference
is that I6 is an internal interface, where I8 is protocol specific interface
based on the protocols to be supported by the AdminBundle and the target
services gateway, for instance, HTTP, Jini, or RMI.

4 APPLICATION OF VIRTUAL OSGi FRAMEWORK
This section shows an example how Virtual OSGi Framework architecture
can be used to provide a perceived larger memory space for OSGi
Framework on a hypothetical services gateway using a real-life connected
home scenario.

4.1 Scenario
One evening not so far in the future in a networked home connected to the
Internet through a device called Residential Services Gateway, Mary has
finished her dinner and loaded the dishes into the dishwasher. She instructs
the washer to start in economy mode, meaning it would let the utility
company start the machine automatically when the electricity rate is at the
lowest of the day. The built-in application in the dishwasher sends the
request to the “Appliance Manager” application running on the Gateway to
handle the request. The “Appliance Manager” contacts the server at TXU,
the utility company, and registers an agent program to be activated when the
electricity rate is dropped to discounted rate.

Mary is now relaxing with a glass of her favorite wine. She feels like
talking to her mother to check to see if her mother has received the birthday
present Mary sent last week, so she picks up the home remote control,
which is equipped with a voice recognition feature, and says, “call mom”.
The remote control recognizes the command and forwards the translated
English text to the “Internet Phone” application on the Gateway to handle
the command. The application looks up the Internet phone book from the
directory then makes a call to Mary’s mother. Unfortunately, there is
nobody to answer the phone, so Mary places a request for her mother to call
back when she is available.

Sipping on her wine and winding down from her busy day, maybe a
romantic movie would be nice Mary thinks. So she picks up the home
remote control and pushes “Movie” button. The Java TV applet running on
the digital TV contacts the “TV manager” application on the Gateway for
her movie profile, which includes the watch-list items, to display on the
screen. Mary browses through the watch-list, and clicks “Play” after
highlighting “Sleepless in Seattle” her favorite movie she wanted to watch
one more time. The TV applet requests the “TV manager” for an MPEG
stream of the selected movie title. The “Movie Manager” downloads a
“Movie Finder” application, then requests it to find “Sleepless in Seattle”
from the Internet. The “Movie Finder” application issues a request for
lowest price bidding on a designated movie auction site. Using automated
agents deployed at the site, the participating movie suppliers take less a
minute to conclude the bidding with “Movie.com”as the winner, which won

24

the bidding by just 5 cents. The auction web site then exchanges payment
information with the “Movie Finder”, which in turn retrieves the digital
wallet and digital certificate from the smart card inserted to the smart card
reader on the digital TV. Once the transaction has been confirmed,
“Movie.com” starts streaming the movie to “Movie Finder” application,
which in turn forwards the stream to the digital TV to be played on the
screen. The “Movie Manager” then notifies the “Smart Home Control” that
a movie has started. The “Smart Home Control” looks up the profile
database and finds that the “Movie Watching” home control setting is
enabled. The “Smart Home Control” then sends a series of commands to
“Basic Home Control” application to dim the light in the living room, close
the blind, postpone the dish washer, set the phone to ringer-off and block all
calls except for the ones from her family. Mary is now enjoying her favorite
movie on the comfy couch.

Half way through the movie, a call is made from Mary’s mother. The “IP
Phone” application notices from the caller ID that it is from her mother, so
it sends a request to the Java TV applet to indicate on the screen that a
phone call from her mother is ringing and prompts whether she wants to
answer. Since Mary has watched this movie many times and has been
waiting for the call, so she would not mind the interruption. Mary pushes
the “Pause” button on the remote and clicks the “Yes” button on the screen
to answer the phone. The “IP Phone” then streams her mother’s voice and
video to the digital TV, which in turn streams Mary’s voice and video
captured from the microphone and camera equipped on the TV back to her
mother’s IP phone. In the meantime, the “Movie Finder” application
requests the “Movie.com” server to pause the movie stream while Mary is
talking to her mother.

Having talked for a long time, her mother excuses herself to prepare dinner.
Mary says good-bye and clicks the “Hang-up” button on the screen and
pushes “Play” button on the remote. The movie stream is then resumed
from the “Movie.com” server and then played on the screen. Mary
continues watching and enjoys her favorite happy ending of the movie.

4.2 Walk-through of OSGi Framework Memory
Snap-shots

 For illustration purposes, the memory usage is simplified as follows and
depicted in Figure 19.

• Target OSGi Framework has 1000 KB available memory for all
bundles

• Each bundle consumes approximately100 KB of Framework
memory

• There are 6 non-interruptible bundles that are resident in the
memory to perform system level or core functions of the Gateway
device, including HTTP services, Servlet services, Logging
services, Remote Administration services (AdminBundle), System
Monitoring services, Device Monitoring services. These services
take up 600 KB combined.

• The remaining 400 KB is available for 4 concurrent bundles to
support Mary’s activities mentioned in the scenario.

OSGi Framework

100 KB

1000 KB

fixed system bundles applications

Legend

Non-interruptible Bundle

Interruptible Bundle

Figure 19 Example of an OSGi Framework Memory Layout

25

OSGi Framework

Fixed system bundles

Figure 20 Before Mary Turns on the Dishwasher Memory Layout.

Figure 20 shows the active bundles before the scenario starts, that is, before
Mary has turned on the dishwasher.

OSGi Framework

Virtual Framework
Manager downloaded

Fixed system bundles

forced terminated
(swapped out)

Figure 21 After Mary Activates Dishwasher

Figure 21 depicts the active bundles after Mary has activated the dishwasher
and is placing an Internet phone call to her mother. Appliance Manager is
downloaded from the bundle repository on the Virtual Framework Manager.
To free up memory for the two new bundles, the lowest priority bundles
(Meter Reading and Sprinkler Control bundles) are temporarily terminated
(swapped out).

26

OSGi Framework

Fixed system bundles

Virtual Framework
Manager

self terminated
restarted

Figure 22 After Mary hung up the Telephone Memory Layout

Figure 22 depicts the active bundles after Mary has hung up the phone after
placing a request for her mother to call back. The IP Phone bundle
terminates and removes itself from the Framework. The bundle termination
event prompts VFM to restart Meter Reading bundle that it has temporarily
terminated (swapped out).

OSGi Framework

Fixed system bundles

Virtual Framework
Manager

downloaded
forced terminated
(swapped out)

Figure 23 Memory Layout After Mary has Requested to See Her Movie

Figure 23 depicts the active bundles after Mary has requested to see her
movie profile. Movie Manager bundle is downloaded from VFM’s bundle
repository. Being a low priority bundle, The Meter Reading bundle is again
swapped out to free memory for Movie Manager bundle.

27

OSGi Framework

Fixed system bundles

Virtual Framework
Manager force terminated

(swapped out)downloaded

terminates

Figure 24 Memory Layout after Mary Requested to See "Sleepless in
Seattle"

Figure 24 depicts the active bundles after Mary has requested to see
“Sleepless in Seattle” the movie. Email bundle is temporarily terminated
(swapped out) to free up memory for Movie Finder bundle.

OSGi Framework

Fixed system bundles

Virtual Framework
Manager force terminated

(swapped out)downloaded

terminates

Figure 25 Memory Layout after the Movie is Found

Figure 25 depicts the active bundles after Movie Finder has found a movie
supplier from the auction site. Being a lower priority, Calendar bundle is
temporarily terminated. The Digital Wallet bundle is then downloaded to
exchange electronic payment information with “Movie.com” site that has
won the bidding.

28

OSGi Framework

Fixed system bundles

Virtual Framework
Manager self terminatedrestarts

Figure 26 Memory Map after the Movie has Started

Figure 26 depicts active bundles after the movie has started. Having
completed their intended tasks, Movie Manager and Digital Wallet bundles
automatically terminate and remove themselves from the Framework. The
Email and Calendar bundles are then restarted.

OSGi Framework

Fixed system bundles

Virtual Framework
Manager force terminated

(swapped out)downloaded

terminates

Figure 27 Memory Map after Mary has Accepted a Call from Mom

Figure 27 depicts active bundles after Mary has accepted the call from her
mother. Email bundle is swapped to free up memory for non-interruptible
IP Phone bundle.

29

OSGi Framework

Fixed system bundles

Virtual Framework
Manager self terminated

restarted

Figure 28 Memory Map after Mary has Hung up the Phone

Figure 28 depicts active bundles after Mary has hung up phone with her
mother. IP Phone automatically terminates and removes itself from the
Framework. Email bundle is then restarted to resume its function.

5 CONCLUSION
This paper makes the following technical contributions:

• A solution to address fixed limited memory in small
telecommunication and embedded devices for dynamic loadable
application services environment using a remotely swappable
application concept,

• A demonstration on 2 software methodological frameworks: NFR
Framework to derive architectural decisions, and RUP/UML to
develop software architectural designs. It has been the first time
that the NFR Framework has been used together with RUP/UML
in a software requirement engineering and software architectural
design process.

Virtual OSGi Framework architecture is proposed as an example how the
technique may solve the problem in the emerging Services Gateway market.
The Virtual OSGi Framework uses a remote server to manage the
deployment of OSGi Bundles and ensures the right services are brought into
the main memory of OSGi Framework for execution at the right moment.
The concept of Deployment Policy is introduced to facilitate the services
scheduling so that services with different Quality of Service (QoS)
requirements can be scheduled accordingly so that the intended functions
and acceptable responsiveness are maintained.

This paper uses the NFR Framework to systematically evaluate various
architectural options in order to meet the established goals. The solution is
selected based on NFR satisficing with extensive rationale and claims given
to support the decision. With the selected architectural solution, a detailed
architectural design is modeled using RUP/UML to demonstrate how the
Virtual OSGi Framework architecture may be constructed. It is the first
time that the two software development frameworks have been used
together to demonstrate how a system may be developed from requirement
engineering phase to architectural and software design phase. Finally, a
hypothetical everyday life scenario is used to demonstrate how Virtual
OSGi Framework may be used in a connected home using a Services
Gateway connected to the Internet.

There is room to improve the proposed architecture. For example, this paper
has defined an attribute for GatewayBundle class called priorityOffset so
that services that are sleeping for a long period of time may be given higher
effective priority the longer it waits. However, this paper does not define
the algorithm for such dynamic scheduling. Also, for simplicity, this paper
has shown only the design for the core concept of Virtual OSGi Framework.
Some more detailed design may be needed for complex commercial
environment. For example, Bundle life cycle requires that a Bundle may be
unregistered only from Decommissioned state. However, in some situations,
a Service Provider or Services Gateway Operator may wish to unregister the
Bundle even though some services gateways may be considered having the
bundle running. A more elaborate architectural solution (such as leasing
concept [22], [23]) may be used to solve dangling services on the services
gateways that have no managed Bundle counterpart on the remote server
(VFM).

30

REFERENCES
[1] allNetDevices.com, Coactive Unveils New Series Of Residential

Gateways,
http://www.allnetdevices.com/news/0005/000503coactive.htm

[2] allNetDevices.com, IBM Ships OSGi Toolkit,
http://www.allnetdevices.com/news/0005/000505ibm.htm

[3] D. Jordan, “Java in the Home: OSGi Residential Gateways”, Java
Report, September, 2000, pp 38-42, 104.

[4] E. A. Lee, “What’s Ahead for Embedded Software?”, Computer,
September 2000, pp. 18-26.

[5] ElectronicNewsOnline, Novell, TI demonstrate broadband gateway
technology, http://www.electronicnews.com/news/3377-
129NewsDetail.asp

[6] Ericsson, Ericsson and Skandia Set Up New Company,
http://www.ericsson.com/press/20010115-0027.html

[7] G. Bollella, The Real-Time Specification for Java, Addison-Wesley,
2000.

[8] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modeling
Language User Guide, Addison-Wesley, 1999.

[9] I. Jacobson, G. Booch, J. Rumbaugh, The Unified Software
Development Process, Addison-Wesley, 1999.

[10] J. Barr and R. Mata, “OSGi: spec basics, interface issues”, EE Times,
December 11, 2000, Issue 1144, http://www.eetimes.com

[11] J. Mylopoulos, L. Chung, S. S. Y. Liao, H. Wang and E. Yu,
 "Extending Object-Oriented Analysis to Explore Alternatives",
IEEE Software, Jan./Feb., 2001. pp. 2-6.

[12] K. Arnold and J. Gosling, The Java Programming Language Second
Edition, Addison-Wesley, 1998.

[13] L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos, Non-Functional
Requirements in Software Engineering, Kluwer Academic

Publishers, Boston, 2000.

[14] M. Bach, The Design of The UNIX Operating System, Prentice-Hall
Software Series, 1986.

[15] OSGi, Home Gateway Platform Unveiled,
http://www.osgi.org/news/news271100.html

[16] OSGi, OSGi Service Gateway Specification, release 1.0, May, 200.

[17] OSGi, The Internet-Enabled Car,
http://www.osgi.org/news/news020101.html

[18] Sun Microsystems, Java Embedded Server Software Overview,
http://www.sun.com/software/embeddedserver/overview/index.html

[19] Sun Microsystems, Java Embedded Server Software White Papers
#1, http://www.sun.com/software/embeddedserver/whitepaper1.html

[20] Sun Microsystems, Java Embedded Server Software White Papers
#2, http://www.sun.com/software/embeddedserver/whitepaper2.html

[21] Sun Microsystems, SOFTSWITCH: ON. Nortel Wins with JavaTM
Technology, http://www.java.sun.com/features/2001/02/nortel.html

[22] The Internet Engineering Task Force, RFC 2131 Dynamic Host
Configuration Protocol, http://www.dhcp.org/rfc2131.html

[23] W. K. Edwards, Core JINI, Prentice-Hall PTR, 1999

