
Efficient Viterbi algorithms for lexical tree based models

S. España-Boquera, M.J. Castro-Bleda, F. Zamora-Martı́nez, J. Gorbe-Moya

Departamento de Sistemas Informáticos y Computación
Universidad Politécnica de Valencia

sespana@dsic.upv.es

Abstract
In this paper we propose a family of Viterbi algorithms spe-
cialized for lexical tree based FSA and HMM acoustic mod-
els. Two algorithms to decode a tree lexicon with left-to-right
models with or without skips and other algorithm which takes
a directed acyclic graph as input and performs error correcting
decoding are presented. They store the set of active states topo-
logically sorted in contiguous memory queues. The number of
basic operations needed to update each hypothesis is reduced
and also more locality in memory is obtained reducing the ex-
pected number of cache misses and achieving a speed-up over
other implementations.

1. Introduction
Most of large vocabulary Viterbi based recognizers (for speech,
handwritten or other recognition tasks, although speech termi-
nology is used in this work with no loss of generality) make
use of a lexicon tree organization which has many advantages
over a linear lexicon representation [1, 2]. As it is shown in the
literature, more compact representations are possible (using a
lexicon network [3], which is a minimized Finite State Automa-
ton –FSA–) but the gain in space is accompanied with a more
complex Viterbi decoder. Therefore, lexical tree organization is
a very good tradeoff between compact space representation and
adequacy for decoding.

The search space in a recognizer can be huge and the key
to achieve practical performance is to consider only the set of
active hypothesis (those with non trivial zero probability) and
to apply pruning techniques such as beam search which only
maintain active the best hypothesis.

Large vocabulary one-step decoders [4] usually keep a set
of lexical tree based Viterbi parsers in parallel. Two common
approaches are the time-start copies and language model history
copies [5, 6]. In the time-start approach, all hypothesis com-
peting in a tree parsing share the same word start time. When
a trigram language model is used, the language model history
copies approach maintains a tree parsing for every bigram his-
tory (w1, w2). This second approach has a loss of optimality
which is known as word-pair approximation [6]. In both cases,
it is straightforward to use a specialized Viterbi algorithm for
the lexical tree model and, as the core of an automatic speech
recognizer lies in the search process, every little improvement
in performing specialized decoding of lexical tree models has
a great impact in the overall performance. Therefore, it is not
strange to find specialized algorithms which take advantage of
the properties of tree based HMM models which integrate the
tree lexicon and the acoustic HMM models.

This work has been partially supported by the Spanish Government
(TIN2006-12767) and by the Generalitat Valenciana (GVA06/302).

When the acoustic models are strict left-to-right without
skips, the resulting expanded HMM model is acyclic if loops are
ignored, and every node has only zero or one preceding state to
take into account in the dynamic programming equation. Left-
to-right units with skips are known as Bakis topology and have a
widespread use as acoustic models in most recognizers. When
those models are used in conjunction with a tree lexicon, the
number of predecessors given an active state can be zero, one
or two.

Not expanding the acoustic models in the tree lexicon and
maintaining a pure tree structure which matches a phone-graph
is another possibility. In this case, the input is no longer a se-
quence of acoustic frames but a phone-graph (a directed acyclic
graph –DAG– labelled with phones and acoustic scores). Be-
sides the capability of using a directed acyclic input, the pos-
sibility of insertions, deletions and substitutions of phones is
needed to tolerate the errors in the phone-graph generation.

In this work, three specialized Viterbi algorithms based
on contiguous memory queues (FIFO data structures) are pro-
posed. When performing a Viterbi step, a new result queue is
created with the help of one or several auxiliary queues.

The basic algorithm uses left-to-right HMM acoustic mod-
els with no skips. This algorithm can be applied whenever
acoustic left-to-right models without skips are used: it can be
used for isolated word or continuous speech recognition, either
with a one-step or a two-step approach, with time-start or lan-
guage model history copies, and also within-word or across-
word context dependent units (triphones, quinphones, etc.). A
simple extension is presented to show how to use it with across-
word context dependent models [7].

A second version of the algorithm extends the first one to
allow the use of skips in the acoustic units with a negligible
additional cost.

The last proposed algorithm performs an error correcting
Viterbi decoding and is capable of analyzing a DAG instead of
a sequence. This algorithm can be used, for instance, to obtain
a word-graph from a phone-graph.

2. Left-to-right without skips algorithm
If a lexicon tree is expanded with left-to-right acoustic HMM
models without skips, the following observations about the ex-
panded tree models are straightforward:

• Every state has at most two predecessors: itself and pos-
sibly his parent.

• If we ignore the loops, the expanded model is acyclic.
Therefore, a topological order is possible in general.

• A level traversal of the tree provides a topological order
with some additional features:92

ITRW on Nonlinear Speech
Processing (NOLISP 07)

Paris, France
May 22-25, 2007

ISCA Archive
http://www.isca-speech.org/archive



– The children of a given node occupy contiguous
positions. The grandchildren also occupy contigu-
ous positions.

– If a subset of states is stored in topological order
and we generate the children of every active state
following that order, the resulting list also is or-
dered with respect to the topological order.

2.1. Model representation

A tree model T of n states is represented with three vectors of
size n and one of size n + 1 as follows:

• loop prob stores the loop transition probabilities.

• from prob stores the parent incoming transition proba-
bilities.

• e index stores the index of the associated emission
probability class associated to the acoustic frame to be
observed. The vector of emission probabilities can be
obtained with a multilayer perceptron in a hybrid model
[8] or with a set of mixture of Gaussian distributions in a
conventional continuous density HMM.

• first child stores the index of the first child. The last
child is deduced by looking the first child of the next
state thanks to the topological sorting. This representa-
tion allows specifying an empty set of children. A sen-
tinel in position n + 1 is needed for the last state.

2.2. Viterbi-Merge algorithm

The Viterbi-M algorithm takes a sequence of acoustic frames
as input and updates a set of active states after observing every
frame (a Viterbi step). An active state is composed by an index
state and a score (i, s). A queue α(t) (a FIFO data structure) is
used to store the set of active states at time t. The purpose of a
Viterbi step consists of creating another queue α(t + 1) given
the model T , the current queue α(t) and the vector of emis-
sion probabilities emission associated to the observed acoustic
frame.

An auxiliary queue aux child is used to store temporally
the scores of states produced by the transitions from parent to
child. The algorithm proceeds as follows (see Figure 1):

1. best prob← 0.

2. For every active state (i, s) of the queue α(t) whose
score s is above the beam threshold:

(a) s next← s · loop prob[i].

(b) While the first active state (i′, s′) of the queue
aux child satisfies i′ < i, extract it and place
(i′, s′ · emission[e index [i′]]) in α(t + 1).

(c) If the first active state (i′, s′) of the queue
aux child satisfies i′ = i, drop it and update the
score s next← max(s next, s′).

(d) s next ← s next · emission[e index [i]], insert
(i, s next) in the queue α(t + 1) and update
best prob← max(best prob, s next).

(e) For every state j from first child [i] to
first child [i + 1] − 1, add (j, s · from prob[j])
to the queue aux child.

3. For every active state (i′, s′) of the queue aux child, ex-
tract it and place (i′, s′ · emission[e index [i′]) in the
queue α(t + 1).

α (t)

α

merge

(t+1)

generate children

generate grandchildren

>= beam threshold?

*loop probability

*emission probability
update best probability

aux_child

aux_gchild

Figure 1: Viterbi-M and Viterbi-MS algorithms. The queue
aux gchild (dotted part) is only used in Viterbi-MS.

phonetic contexts
Different

G
en

er
al

 t
o

p
o

lo
g

y
 H

M
M

 m
o

d
el

C
o
ar

ti
cu

la
te

d
 w

o
rd

 t
ra

n
si

ti
o

n

Tree lexicon HMM models

Figure 2: HMM model for across-word context dependent units.
The general topology HMM model represents only the first con-
text dependent phones of the words.

The active states of α(t) whose score is below the beam
threshold are discarded. Whenever an active state is placed in
the queue α(t + 1), the emission probability associated to it is
applied, and the best probability is updated. This value is used
to obtain the beam threshold for the following Viterbi step.

This algorithm is linear with the number of active states
and the number of children of active states which is an upper
bound to the number of active states in the resulting queue. In
total, the global cost is linear with the number of active states,
which is the same as any reasonable implementation of a con-
ventional Viterbi implementation. The main advantage of this
algorithm is the use of contiguous memory FIFO queues to store
the active states. Therefore, a better cache performance and an
internal loop with less overhead is obtained compared to other
algorithms that use linked lists or use hash tables to store and
look up the set of active states. Therefore, the asymptotic cost
is the same but a practical speed-up is obtained.

2.3. Extension to across-word context dependent units

Since this algorithm is used on lexical tree models with ex-
panded acoustic HMM models, the use of context dependent
units is straightforward for within-word context modeling.

Across-word models consider a different context dependent
unit at the beginning of a word to take into account the last
phones of the preceding word during continuous speech recog-
nition. It would be very inefficient to use a different tree model
for every possible context since they only differ in the first con-
text dependent acoustic models. Therefore, a model which re-
sembles a tree lexicon excepting the root is used. This model
can be composed of two models: a general HMM connecting a
set of tree lexicon models (see Figure 2).93



A set of trees can be traversed by levels as if they were just
one tree and the resulting model can be used with the same al-
gorithm with no modification. Therefore, a conventional Viterbi
algorithm can be used to update the scores of the states of the
general topology HMM part of the model, and the rest of the
model (a forest) can be computed with the Viterbi-M algorithm.

3. Left-to-right with skips algorithm
This algorithm generalizes the previous one by allowing the use
of Bakis HMM acoustic models.

3.1. Model representation

The model representation is similar to the previous section.
The only difference is another vector skip prob which stores,
for every state, the incoming skip transition probabilities.
In order to iterate over the set of grandchildren of a given
state i, the algorithm loops from first child [first child [i]] to
first child [first child [i + 1]]− 1.

3.2. Viterbi-Merge algorithm with skips

The Viterbi-MS algorithm is the same of previous section but
another auxiliary queue aux gchild is used to store the active
states with scores computed by means of the skip transitions.
Every time an active state is extracted from α(t), the set of
grandchildren is used to add items to the queue aux gchild just
as the set of children is used to add items to the other auxiliary
queue. Now, the resulting queue α(t + 1) is obtained by merg-
ing the loop transition score of the processed active state with
the states from the two auxiliary queues (see Figure 1).

This algorithm is linear with the number of active states and
the number of children and grandchildren of active states. The
resulting cost is thus linear with the number of active states.

3.3. Extension to across-word context dependent units

The same observations of previous algorithm are also applicable
here.

4. Error-Correcting Viterbi for DAGs
The last proposed algorithm performs an error correcting
Viterbi decoding and is capable of analyzing a DAG instead of
a sequence.

4.1. Model representation

A tree model T of n states where symbols are placed at the
transitions is represented with two vectors of size n and other
of size n + 1 as follows:

• symbol stores the incoming transition label.

• from prob stores the incoming transition probability.

• first child stores the index of the first child as in the
previous algorithms.

A table with the costs of insertions, deletions and substitution
of every symbol is also required.

4.2. Error-Correcting Viterbi-Merge algorithm for DAGs

The Viterbi-MEC-DAG algorithm takes a DAG as input. Con-
sider the phone-graph of Figure 3. A set of active states is
associated to every vertex of the input DAG. The algorithm
applies two different procedures associated to the input DAG,

2 51

3

4

b

a

b

a

a

a,b

Figure 3: Phone-graph example.

origin

aux

destination

merge

generate children with

substitution operation

deletion operation

>= beam threshold?

updated destination

update best probability

Figure 4: Viterbi-MEC-DAG edge-step procedure.

which must be applied following the DAG topological order:
the vertex-step procedure must be applied to every vertex before
using this set of active states as the origin of an edge edge-step
procedure.

4.2.1. Edge-step

For every edge, a Viterbi step takes the set of active states of
the origin vertex and use them to update the active states of the
destination vertex. This procedure only considers the cost of
deletions and substitutions. As can be observed in Figure 4,
this algorithm is similar to the Viterbi-M algorithm where loop
probability updating is replaced by the deletion operation, the
generation of children states corresponds to the substitution op-
eration (including a symbol by itself or a correct transition).
Another difference, which can be also used in Viterbi-M and
Viterbi-MS to process a DAG as input data, is the presence of
second input queue which stores the active states already up-
dated at the destination vertex by means of other edges of the
DAG. These values are simply merged and this queue is not
needed when the input data is a sequence. The cost of this pro-
cedure is linear with the number of active states in both input
queues because the number of generated successor states grows
linearly with the number of active states.

4.2.2. Vertex-step

Once all edges arriving at a given vertex have been processed,
the insertion operation is considered. This operation updates a
set of active states without consuming any symbol. As can be
observed in Figure 5, the output of the auxiliary queue is used to
insert more active states in the same queue to take into account
the possibility of several insertion operations. The cost is not
linear with the number of active states: a sole active state at
the root could, in principle, activate all the states of the model,
but most of them are expected to be pruned by the beam search
depending on the cost of insertions and the beam width. The
cost of this operation is linear with the number of active states
before applying the procedure plus the number of active states
after the procedure, which is bounded by the number of states
in the model.94



merge

aux

vertex active states

updated vertex active states

(compare with beam threshold at this point)

generate children with insertion operation

Figure 5: Viterbi-MEC-DAG vertex-step procedure.

Num. states Hash swap A. Envelope Viterbi-M
9 571 3.001 16.082 29.350

76 189 2.761 12.924 28.036
310 888 1.922 6.442 24.534

Table 1: Experimental results. The results are shown in millions
of active states or hypothesis updated per second.

5. Experimental results
A previous work related to lexical tree Viterbi decoding we were
aware of after our algorithms were developed is the active enve-
lope algorithm [9]. This algorithm also uses a total order which
subsumes the partial order of the states of the model and places
siblings contiguously. This algorithm is specified for left-to-
right models without skips, so it is only comparable to our first
algorithm Viterbi-M. The active envelope algorithm uses a sin-
gle linked list to perform a Viterbi step, which is an advantage
in memory usage. Since this algorithm modifies the original
set of active states, it is restricted to sequential input data and
cannot be used when the input data is a DAG. In order to use
only a list, the active hypothesis in active envelope algorithm
are traversed in reverse topological order. The “price to pay”
for this advantage is the need of linked lists instead of contigu-
ous memory arrays. Since the use of linked lists cannot assure
memory locality and the cost of traversing them is greater than
traversing memory arrays, it is expected to perform worse than
Viterbi-M algorithm. The memory occupied by an active hy-
pothesis is an index state and a score; if linked lists are used,
a pointer is also needed: so a linked list needs approximately
50% or 100% more memory per active state depending on the
computer architecture. On the other hand, the use of memory
arrays needs an estimation of the number of active states.

In order to compare the performance of our Viterbi-M al-
gorithm, two more algorithms have been implemented: a con-
ventional Viterbi algorithm based on hash tables with chaining
to store and to look up the active states and the active envelope
algorithm. All algorithms have been implemented in C++ and
use the same data structures to represent the tree based HMM
models as described in section 2.1.

The experiments were done on a Pentium D machine at
3GHz with 2 Gbytes of RAM using a Linux with kernel
2.6.18 and the gcc compiler version 4.1.2 with -O3 op-
timization. The lexical trees used in the experiments were ob-
tained by expanding 3-state left-to-right without skips hybrid
neural/HMM acoustic models in the tree lexicon. The size of
these trees varies from 9 571 to 310 888 states. Only the Viterbi
decoding time has been measured (the emission scores calcula-
tion and other preprocessing steps were not taken into account).
The result is shown in Table 1. The speed is measured in mil-
lions of active states updated per second.

6. Conclusions
In this paper, three Viterbi algorithms specialized for lexi-
cal tree based FSA and HMM acoustic models have been de-
scribed. Two of these algorithms are useful to decode a set of
words given a sequence of acoustic frames and the third one
is useful to parse a phone-graph with error-correcting edition
operations. These algorithms are based on contiguous mem-
ory queues which contain the set of active states topologically
sorted.

Although the asymptotic cost of these algorithms is the
same as any reasonable implementation of the Viterbi algo-
rithm, the experimental comparison between the Viterbi-M al-
gorithm, a conventional Hash-table swapping algorithm and the
active envelope algorithm, shows that our algorithm is approxi-
mately 10 times faster than the hash-table swapping implemen-
tation and from 2 to 4 times faster than the active envelope al-
gorithm. A decrease in speed with the size of the models is
observed in the three algorithms, which is possibly related with
the main memory and the cache relative speeds. For this reason,
more experimentation is needed in order to better understand
this behaviour and also to study the effect of other parameters
such as the beam width of the pruning during the search.

7. References
[1] J. Klovstad and L. Mondshein, “The CASPERS linguistic

analysis system,” IEEE Transactions on Acoustic, Speech
and Signal Processing, vol. 23, no. 1, pp. 118–123, Feb.
1975.

[2] D. Klatt, Trends in Speech Recognition. Prentice-Hall,
1980, ch. Scriber and Lafs: Two New Approaches to
Speech Analysis, pp. 529–525.

[3] K. Demuynck, J. Duchateau, and D. V. Compernolle, “A
Static Lexicon Network Representation for Cross-word
Context Dependent Phones,” in Proc. European Conference
on Speech Communication and Technology, vol. I, Rhodes,
Greece, September 1997, pp. 143–146.

[4] X. L. Aubert, “An overview of decoding techniques for
large vocabulary continuous speech recognition,” in Com-
puter Speech and Language, vol. 16, 2002, pp. 89–114.

[5] S. Ortmanns, H. Ney, F. Seide, and I. Lindam, “A compari-
son of time conditioned and word conditioned search tech-
niques for large vocabulary speech recognition,” in Proc.
ICSLP ’96, vol. 4, Philadelphia, PA, 1996, pp. 2091–2094.

[6] H. Ney and S. Ortmanns, “Dynamic programming search
for continuous speech recognition,” IEEE Signal Process-
ing Magazine, vol. 16, no. 5, pp. 64–83, 1999.

[7] S. Kanthak, A. Sixtus, S. Molau, and H. Ney, “Within-word
vs. across-word decoding for online speech recognition,”
2000.

[8] Y. Konig, H. Bourlard, and N. Morgan, “REMAP: Recur-
sive estimation and maximization of A posteriori probabili-
ties — application to transition-based connectionist speech
recognition,” in Advances in Neural Information Process-
ing Systems, D. S. Touretzky, M. C. Mozer, and M. E. Has-
selmo, Eds., vol. 8. The MIT Press, 1996, pp. 388–394.

[9] P. Nguyen, L. Rigazio, and J.-C. Junqua, “EWAVES: An
efficient decoding algorithm for lexical tree based speech
recognition,” in ICSLP-2000, vol. 4, 2000, pp. 286–289.

95


