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1 Introduction

There are some students who find the first year’s study at UCL and many other universities
difficult. Of course there can be many reasons for this but these notes aim to help overcome
problems that may arise from:

1. Difficulties students have carrying out algebraic manipulation accurately and quickly.
The best remedy for this is practice and more practice.

2. Difficulties which arise from a lack of knowledge, or more likely application of the
students’ knowledge in new areas.

If you work through this document and do the questions you will hopefully find yourself
better prepared for starting your course at UCL. You are likely to find that the pace of a
university mathematics course is greater that is the case at school. New ideas and results
will be introduced and used in rapid sucession. You will be better able to cope with the
difficulties this can lead to if you are totally familiar with the material you have covered at
school. It is also worth starting to prepare now for the fact that in the mathematics exams
at UCL you are not allowed the use of a calculator, a book of tables or a formula sheet!

The material here concentrates on some of the knowledge and techniques required for
the first term M14A methods course although you will also find it helpful for the applied
mathematics course M13A. It does not cover everything you will need to know.

Please note carefully:

1. There is a core A-level syllabus which all students completing a single maths A-level
may be expected to know. Much of the material below is in the core A-Level syllabus
but some is on the edges of the core and you may not be familiar with it especially
those of you with a single mathematics A-level. A little material is definitely not
in the core but is presented here anyway because it follows naturally from other
material.

2. The entrance requirements at UCL do not require two A-levels in mathematics. In-
deed to insist on such qualifications could well prevent many students from studying
maths at university. At UCL a great deal of effort is expended by the lecturers in
the first year to make the course accessible to those with a single maths A-level. The
off-core and further mathematics material is covered. However it is often covered
briefly and it is in your interest to spend some time familiarising yourself with it
now. These notes will help you in that task also. Over 60% of our students do in
fact have Further Mathematics A-level.

3. It is hoped, but not guaranteed, that there will be additional lectures covering some
of the material in these notes during the first few weeks of the course at UCL. So,
should you find that these notes do not help you prepare adequately, extra support
may be available then.
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4. Be prepared to have to use your current A-level notes and texts to help answer some
of the questions.

5. Few answers are given in these notes. Remember to check an integration all you need
to do is differentiate and its good practice too. To check a division, multiply out. To
check a partial fraction, put it together again etc.

Finally any comments on the relevance and difficulty of these exercise and examples will
be gratefully received and will help enormously in improving this document for students
in years to come. Look out for mistakes. I know there are a few in there.

Robert Bowles
October 24, 2005
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2 Algebraic Manipulation

2.1 Completing the square

You should know how to complete the square and be able to write

ax2 + bx + c = a(x + b/2a)2 + c − b2/4a.

Qu. 2.A Complete the square for

a)x2 + 2x + 1, b) 3x2 + 4x − 5 c) 2 − 3x − x2, d)c + dx − 4x2.

2.2 Surds

You should know how to manipulate surds

Example √
2 + 1√
2 − 1

=

(√
2 + 1√
2 − 1

)(√
2 + 1√
2 + 1

)

=
(
√

2 + 1)2

2 − 1
,

as (u + 1)(u − 1) = u2 − 1, with u =
√

2, so

√
2 + 1√
2 − 1

=
2 + 2

√
2 + 1

1
= (3 + 2

√
2)

Qu. 2.B Show

a)
1

(1 −
√

2)2
− 1

(1 +
√

2)2
= 4

√
2, b)

3
√

2 + 2
√

3

3
√

2 − 2
√

3
= 5 + 2

√
6,

c) ln(
√

2 − 1) = − ln(
√

2 + 1), d)
x√

y +
√

x
+

x√
y −√

x
=

2x
√

y

y − x
.

Here ln x is the natural logarithm, or logarithm to base e of x. In addition we may write
ex or exp(x) to mean e raised to the power x
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3 Trigonometrical Formulae

3.1 Elementary Formulae

You should know

1. The definitions
cosec θ = 1/ sin θ

sec θ = 1/ cos θ

cot θ = 1/ tan θ

2. Pythagoras’ theorem
sin2 θ + cos2 θ = 1 (H)

sec2 θ = tan2 θ + 1

cosec2 θ = cot2 θ + 1.

(How do we get these last two from the first H? )

3. The compound angle formulae

sin(a + b) = sin a cos b + cos a sin b, (N)

sin(a − b) = sin a cos b − cos a sin b,

cos(a + b) = cos a cos b − sin a sin b,

cos(a − b) = cos a cos b + sin a sin b,

tan(a + b) =
tan a + tan b

1 − tan a tan b
,

tan(a − b) =
tan a − tan b

1 + tan a tan b
,

(Can you figure out how to derive these starting from just the first one N?.

Can you prove N?. What assumptions do you start from? )

4. The double angle formulae

sin 2a = 2 sin a cos a,

cos 2a = cos2 a − sin2 a = 1 − 2 sin2 a = 2 cos2 a − 1,

tan 2a =
2 tan a

1 − tan2 a
.

(Can you derive these from the compound angle formulae? )
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In addition you should know the sine, cosine and tangent of the angles 0, π/6,
π/4, π/3, π/2, 2π/3, 3π/4, etc and from them be able to evaluate the cosecant, secant
and cotangent. Also you should be able to use the symmetries in the graphs of the
trigonometric functions to find values for arguments outside the range 0 to π/2, including
negative values of the argument. Notice radians are now the preferred measure of angle.

Example Show 1
tan a+cot a

= sin a cos a = sin 2a
2

.

1

tan a + cot a
=

1
sin a
cos a

+ cos a
sina

=
sin a cos a

sin2 a + cos2 a
= sin a cos a

and
1

2
sin 2a =

1

2
2 sin a cos a = sin a cos a.

Qu. 3.A

1) If sin θ = 1/4, what is sin(π − θ), sin(π + θ) and sin(2π − θ).

2) If tan θ = 0.2, write down cot(π − θ), cot(3π − θ) and cot(−θ).

3) Write in surd form sin θ, cos θ, tan θ, sec θ and cot θ when θ = 5π/6, θ = 2π/3 and
θ = 7π/4.

4) Find θ in the range 0 to 2π if sin θ = −1/2 and tan θ = 1/
√

3.

5) Show

a) cot θ − tan θ = 2 cot 2θ, b) cosec 2θ − cot 2θ = cot θ,

c)
sin θ

1 + cos θ
= tan(θ/2), d)

sin 2θ + cos 2θ + 1

sin 2θ − cos 2θ + 1
= cot θ.

6) If sin a = 1/
√

10 and sin b = 1/
√

5 show sin(a + b) = 1/
√

2.

7) Show
sec θ + cosec θ

tan θ + cot θ
=

tan θ − cot θ

sec θ − cosec θ
.

8) Show

a) sec2 θ + cosec2 θ = 4 cosec2 2θ, b) tan θ + cot θ =
2

sin 2θ
,

c) sin(a + b) sin(a − b) = sin2 a − sin2 b.
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3.2 Using these results

You should know that the expression a cos θ + b sin θ may be written in the form
R cos(θ − α) or R sin(θ − β) for positive R, although α and β may be of either sign. If

R cos(θ − α) = R cos θ cos α + R sin θ sin α = a cos θ + b sin θ,

then
R cos α = a, R sin α = b,

so that squaring

R2 = a2 + b2, cos α =
a√

a2 + b2
, sin α =

b√
a2 + b2

, tan α =
b

a

Example Find the maximum and minimum value of 2 cos θ + 3 sin θ

2 cos θ + 3 sin θ = R cos(θ − α)

where
R2 = 22 + 32 = 13, tan α = 3/2

The maximum value occurs where (θ − α) = 0 so for θ = arctan(3/2). The maximum
is R =

√
13. Note I am happy to leave the answer in this form and not obtain an

approximate value of θ or R by using a calculator. You will not be allowed to use
calculators in nearly all your exams at UCL.

Qu. 3.B

1) Show cos θ + sin θ =
√

2 cos(θ − π/4) and find the solutions in the range −π to π to
the equation cos θ + sin θ = 1 together with the maximum and minimum values of
the expression.

2) Find the range of values in 0 to 2π for which a) 2 sin θ + cos θ is positive and
b) 4 cos θ − 3 sin θ is negative.
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3.3 More formulae

You should know the formulae

sin α + sin β = 2 sin

(

α + β

2

)

cos

(

α − β

2

)

,

sin α − sin β = 2 cos

(

α + β

2

)

sin

(

α − β

2

)

,

cos α + cos β = 2 cos

(

α + β

2

)

cos

(

α − β

2

)

,

cos α − cos β = −2 sin

(

α + β

2

)

sin

(

α − β

2

)

,

(How do you derive these from the compound angle formulae? )

4 Series

4.1 Geometric Series

You should know The formula for the sum to n terms of the geometric series

a + ar + ar2 + ar3 + · · ·+ arn−1 = a
1 − rn

1 − r
,

and that if |r| < 1, the sum to infinity is a/(1 − r)

Example

1. The series 2, 2/3, 2/9, 2/27, etc has first term a = 2 and common ratio r = 1/3
which has |r| < 1 and the series has a sum equal to 2/(1− 1/3) = 6/(3− 1) = 3.

2. The series
sin 2α − sin 2α cos 2α + sin 2α cos2 2α + · · · ,

has a first term a = sin 2α and a common ratio (− cos 2α) and so a sum to
infinity of sin 2α/(1 + cos 2α) = 2 sinα cos α/2 cos2 α = tan α if | cos α| < 1.
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Qu. 4.A

1) Find the sum to infinity, when it exists, of

a) 5, 10, 20, 40, . . . , b) 1/2, 1/4, 1/8, 1/16, . . . , c) 1, .1, .01, 0.001, . . . ,

d) a, a/r, a/r2, a/r3, . . . , e) x, x2/y, x3/y2, x4/y3, . . . .

2) Find the sum to infinity of

1 +
x

1 + x
+

x2

(1 + x)2
+ · · · ,

and determine the set of values of x for which the result holds.

3) Find the set of values of θ for which the series

1 + 2 cos2 θ + 4 cos4 θ + 8 cos6 θ + · · ·

has a sum to infinity and show that for these values of θ the sum is − sec 2θ.

4.2 The Binomial Expansion

You should know that, if n is a positive integer,

(a + x)n = an + nan−1x+
n(n − 1)

2!
an−2x2 + · · ·

+
n(n − 1)(n − 2) . . . (n − r + 1)

r!
an−rxr + · · ·+ xn.

and that
n(n − 1)(n − 2) . . . (n − r + 1)

r!
= nCr =

(

n

r

)

.

Example

1. (1 + 4x)4 = 1 + (4)(4x) + (4.3)/(2)(4x)2 + (4.3.2)/(3.2)(4x)3 +
(4.3.2.1)/(4.3.2.1)(4x)4 = 1 + 16x + 96x2 + 256x3 + 256x4

2. To find the term independent of x in the expansion of
(

x2 − 2
x

)6
, note that

this is
(

x2 + −2
x

)6
with a general term in its expansion

(

6
r

)

(x2)6−r
(

−2
x

)r
=

(

6
r

)

x12−3r(−2)r so that the contribution independent of x has r = 4 and is
6C4(−2)4 = 6! × 16/4!2! = 6.5.8 = 240.



4.2 The Binomial Expansion 10

Qu. 4.B

1) Find the coefficient of x3 in (1 − 2x)5.

2) Show

(2x − 3y)5 = 32x5 − 240x4y + 720x3y2 − 1080x2y3 + 810xy4 − 243y5.

3) Find the coefficient of x3 in (3 − x)10 and of y4 in (2 − 3y)7.

4) Simplify, using the binomial theorem (2x − 3)3 − (2x + 3)4.

5) What is the term independent of x in the expansion of
(

x − 3
x2

)15
?

6) Find the first three terms of (1 − 3x + x2)8—write it as (1 − 3x(1 − x/3))8 and use
the binomial theorem.

7) Find the coefficient of x5 in (1 + x + x2)4.

8) Find the coefficient of x2 in (2 + 2x + x2)n.

You may also know: If n is not a postive integer, and need not even be an integer,
then if |x| < 1,

(1 + x)n = 1 + nx +
n(n − 1)

2!
x2 + · · · + n(n − 1)(n − 2) . . . (n − r + 1)

r!
xr + · · · .

Also

exp(x) = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · ,

sin(x) = x − x3

3!
+

x5

5!
+ · · · + (−1)nx2n+1

(2n + 1)!
+ · · · ,

cos(x) = 1 − x2

2!
+

x4

4!
+ · · · + (−1)nx2n

(2n)!
+ · · · ,

ln(1 + x) = x − x2

2
+

x3

3
+ · · ·+ (−1)(n+1)xn

n!
+ · · · |x| < 1.
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5 Partial Fractions

5.1 Division of polynomials

You should know How to divide one polynomial P (x) by a second Q(x) to find the
quotient and remainder.

P (x)

Q(x)
= quotient +

remainder

Q(x)
.

Example
x4 − 2x2 + 3x − 6

x2 − 4x + 3
= x2 + 4x + 11 +

35x − 39

x2 − 4x + 3
.

x2 + 4x + 11 (quotient)

x2 − 4x + 3|x4 − 2x2 + 3x − 6

x4 − 4x3 + 3x2

4x3 − 5x2 + 3x

4x3 − 16x2 + 12x

11x2 − 9x − 6

11x2 − 44x + 33

35x − 39 (remainder).

So the quotient is x2 + 4x + 11 and the remainder is 35x− 39 and we have the result.

Qu. 5.A Find the quotient and remainder for

a) (x3 − x2 − 5x + 2)/(x + 2), b) (x4 − 2x2 + 3x − 6)/(x2 − 4x + 3),

c) (x5 + x4 + 3x3 + 5x2 + 2x + 8)/(x2 − x + 2), d) (x4 − 3x2 + 7)/(x + 3),

e) (3x5 − 5x4 + x2 + 1)/(x3 + 1), f) (x3 − x2 − 4)/(x2 − 1),

g) (2x5 − 3x2 + 1)/(x2 + 2x),
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5.2 Partial Fractions

You should know How to express a polynomial P (x)
Q(x)

as a sum of partial fractions if the

denominator Q(x) can factorise.

1. For every linear factor (ax + b) of Q(x) there will be a partial fraction of the form
A

ax+b
.

2. For every repeated linear factor (ax + b)2, there will be two terms in the partial
fraction expression: A

ax+b
+ B

(ax+b)2
.

3. For every quadratic factor in Q(x) of the form ax2+bx+c there will be a contribution
to the partial fraction expression of the form Ax+B

ax2+bx+c

Can you work out what to do if factors are repeated more than once, or for repeated
quadratic factors or for factors of degree higher than 2?

Once a partial fraction representation of the correct form, with unknown coefficients A,
B, C . . . has been chosen, as above, then one brings all the terms together to a single term
simply by adding the fractions in the usual way. Comparing the coefficients of similar
powers of x in the numerator of this single term and in P (x) one then obtains sufficient
linear equations in the unknowns A, B, C . . . to enable them to be found uniquely.
Alternative methods such as the cover-up rule may also be used.

Example

2

x2 − 1
=

A

x + 1
+

B

x − 1
=

A(x − 1) + B(x + 1)

x2 − 1
=

(A + B)x + (B − A)

x2 − 1
,

recognising the factors of the denominator and so choosing the form of the partial
fraction representation. Next, comparing coefficients of x and 1 we have

A + B = 0, B − A = 2, so A = −1, B = 1,

and
2

x2 − 1
=

1

x − 1
− 1

x + 1
.

You should also know that if the degree of P (x) is greater to equal to the degree of
Q(x), one should divide Q(x) into P (x) to obtain a quotient and a remainder R(x) and

then write R(x)
Q(x)

in partial fractions
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Example So
4x3 + 16x2 − 15x + 13

(x + 2)(2x − 1)2
= 1 +

12x2 − 8x + 11

(x + 2)(2x − 1)2
,

where we have divided 4x3 +16x2 − 15x +13 by (x +2)(2x− 1)2 = 4x3 + 4x2 − 7x +2
to get the quotient 1 and remainder 2x2 − 8x + 11. Now we write

2x2 − 8x + 11

(x + 2)(2x − 1)2
=

A

x + 2
+

B

2x − 1
+

C

(2x − 1)2

and proceed to find A = 3, B = 0 and C = 4. So

4x3 + 16x2 − 15x + 13

(x + 2)(2x − 1)2
= 1 +

3

x + 2
+

4

(2x − 1)2
.

Note that if we had to differentiate this function several times, or to integrate it, it is
much easier if the function is in its partial fraction form.

Qu. 5.B Express the following in partial fractions:

a)
x + 2

x2 − 1
, b)

4 − 3x

(1 − 2x)(2 + x)
, c)

1

(1 − 2x)(1 − 3x)
,

d)
2

(x + 7)(x + 9)
, e)

2x + 5

(x + 2)(x + 3)
, f)

x2 + 10x + 6

x2 + 2x − 8
,

g)
x3

(x + 1)(x + 2)
, h)

3x

(1 − x)2(1 + x2)
, i)

x3 + x2 + 2

x3 − x2 + x − 1
.
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6 Differentiation

6.1 Elementary results and their use

You should know the following table

f(x) f ′(x)
xn nxn−1

sin x cos x
cos x − sin x
ln x 1/x

exp(x) exp(x)

and how to use them in combination with the product rule, quotient rule, and chain rule

to evaluate derivatives of combinations of these.

y(x) y′(x)
u(x)v(x) u′(x)v(x) + u(x)v′(x) the product rule
u(x)/v(x) (v(x)u′(x) − v′(x)u(x))/v2(x) the quotient rule
f(g(x)) f ′(g(x))g′(x) the chain rule

where a ′ indicates differentiation.
Using these rules we obtain the the table

f(x) f ′(x)
sec x sec x tan x

cosec x − cosec x cot x
tan x sec2 x
cotx − cosec2 x

which you should know.
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Example

1) If y = sin3 x, then we may use the chain rule

dy

dx
=

dy

du

du

dx

and y = u3, u = sin x, so that dy
du

= 3u2 = 3 sin2 x and du
dx

= cos x so that
dy
dx

= 3 sin2 x cos x.

2) The chain rule can be used more than once to evaluate dy
dx

if y = exp(cos(x2)) for
example. Write y = y(u(v(x))) with y = exp(u), u = cos(v) and v = x2. Then

dy

dx
=

dy

du

du

dv

dv

dx
= exp(u)(− sin v)(2x) = −2x(sin x2) exp(cos(x2)).

3) If

y(x) =
x2 ln(x)

x + sin(exp(cos x))

then
dy

dx
=

v du
dx

− u dv
dx

v2

where u = x2 ln(x), v = x + sin(exp(cos x)),

du

dx
= 2x ln(x) + x2(1/x) = x(2 ln x + 1),

dv

dx
= 1 + (− sin x) exp(cos x) cos(exp(cos x)),

using the quotient rule, the product rule to differentiate x2 ln(x) and the chain
rule (twice !) to differentiate sin(exp(cos x)).

4) If y = sec x, then y = 1
cos x

so that

dy

dx
= (− sin x)

−1

(cos x)2
=

1

cos x

sin x

cos x
= sec x tan x.
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Qu. 6.A

1) Differentiate

a) y = x3 + cos x − ln x + 4, b) y = 7x4, c) y = xex

d) y =
sin x

x2
, e) y =

ln(5x)

x2
, f) y = (2x3 − 1) sinx,

g) y = ex sin x, h) y = x5 ln x + cos x. i) y = ln(x3 + sin x),

j) y = x−3/2, k) y = 2x2(x + 1) + 2, l) y =
3x4 − x

x3
,

m) y =
x cos x + sin x

x2
, n) y =

3x − 1√
x2 + 1

, o) y = tan4(2x)

p) y =
1√

4 − x2
, q) y =

2√
1 − 4x

, r) y = cosec
1

x
,

s) y =
tan 2x

2x
, t) y = cosec2 x

4
, u) y = sec x tan x,

v) y = cos3(
√

x), w) y =
tanx

1 − x
, x) y =

tan 3x

x3 + 1
.

2) Show
d

dx
(tan x − x) = tan2 x.

6.2 Maxima and minima

You should know how to use differentiation to find local maxima and minima and
points of inflection, the definition of these terms and how to use such techniques in curve
sketching.

Qu. 6.B

1) Given y = sinx−cos x
sinx+cos x

, show dy/dx = 1 + y2. When is d2y/dx2 = 0?

2) Show f(x) = x3 − x2 + x − 1 is never decreasing.

3) A curve is given by x = ln(1 + t), y = et2 for t > −1. Find dy/dx and d2y/dx2 in
terms of t. Show that the curve has only one turning point and that this must be a
minimum.
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6.3 A warning

Do not confuse the two expressions sin−1 x and (sin x)−1. The first is another way of
writing arcsin x in just the same way as you may write the inverse of f(x) as f−1(x).
The second is a shorthand for 1

sinx
. The confusion arises as we do often write sin2 x for

(sin x)2.

6.4 Differentiation of inverse functions

You should know how to differentiate inverse functions, using the fact

dy

dx
= 1/

dx

dy
.

Results you should know are

f(x) f ′(x)
sin−1 x

a
1√

a2−x2

cos−1 x
a

− 1√
a2−x2

1
a
tan−1 x

a
1

a2+x2

The first two seem to imply that sin−1 x + cos−1 x=0. Why is this not, in fact, being

implied? The answer lies in considering constants of integration.

Example If y = sin−1
(

x
a

)

then x = a sin y and differentiating with respect to y,

we find dx
dy

= a cos y. Now write a cos y = a
√

1 − sin2 y, if cos y ≥ 0, so that dx
dy

=

a
√

1 − x2/a2 =
√

a2 − x2 and so dy
dx

= 1√
a2−x2

Qu. 6.C

1) Derive the results in the table above.

2) Show
1

a

d

dx
sec−1 x

a
= −1

a

d

dx
cosec−1 x

a
=

1

x
√

x2 − a2
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7 Integration

7.1 Elementary Integration

You should know That integration is the inverse of differentiation. One should there-
fore be able to recognise integrals that may be done directly, or almost directly from
the tables of derivatives above. It cannot be overstressed how much success in integra-
tion relies on a thorough familiarity with the results of differentiating simple functions.
Also of importance is a familiarity with the forms of derivatives that arise when the
chain, product and quotient rules are used to differentiate combinations of these simple
functions.

Qu. 7.A Write down the values of

a)

∫ b

a

x10 dx, b)

∫ 1

0

x10 dx, c)

∫ 2

1

xn dx, d)

∫ 3

2

1

x
dx,

e)

∫ π/2

0

cos x dx, f)

∫ π/4

0

sec2 x dx, g)

∫ π/4

0

sec x tan x dx, h)

∫ 1

0

1

1 + x2
dx,

i)

∫ 1

0

1√
1 − x2

dx, j)

∫ b

a

x + cos x dx.

Qu. 7.B Evaluate:

a)

∫ 1

0

(3 + ex)(2 + e−x) dx, b)

∫ 4

1

(

3

x
−

√
x

)

dx, c)

∫ π/6

0

sin 3x dx,

d)

∫ 3

1

dx

2x − 1
, e)

∫ 2

1

x4 − 1

x3
dx, f)

∫ 8

1

3
√

x +
1

2 3
√

x
dx

Qu. 7.C This technique is very useful: Use trigonometrical formulae to express sin2 x
and cos2 x in terms of cos 2x and tan2 x in terms of sec2 x or similar methods to integrate

a) 2 cos2 x, b) 3 sin2 x, c) cos2 3x, d) sin2(x/2),

e) sin(2x) cos(2x), f) tan2 x, g) tan2(x/2), h) − 4 cos4 3x.
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7.2 Integration by elementary substitution

You should know that do the integral I =
∫

f(x)dx it is sometimes useful to make a
substitution and introduce a new variable u = g(x), so that du/dx = g′(x) and dx/du =
1/g′(x), say. Written in terms of u,

I =

∫

f(x)dx =

∫

F (u)
dx

du
du, where f(x) = F (u).

The new integrand must be written in terms of u by eliminating x in favour of u. In some
cases and for the correct choice of substitution u = g(x), this new form of the integral
may be easier to do than the first. If the integral has limits then the new form becomes

I =

∫ x1

x0

f(x)dx =

∫ u1

u0

F (u)
dx

du
du where u0 = g(x0) u1 = g(x1).

You should be able to recognise when to use a trigonometric substitution, suggested by
the table in section 6.4.
A good attitude to integration is to try any substitution that comes into your head. It
may work or it may not but in either case you have learnt something about the problem
you face. Practice and then more practice will make it easier to spot the substitution
that works.

Example

1) We may evaluate the integral
∫

(7 − 2x)4 dx by using the binomial theorem to
expand out the bracket and integrate term by term. Alternatively we may make
the substitution u = (7 − 2x) so that du = −2dx and the integral becomes
−
∫

u4/2 du = −u5/10 = −(7 − 2x)5/10. You should aim at being able to do
integrals of this type immediately, without explicitly using the substitution. See
section 7.3 below.
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2) In the integral
∫ cos

√
x√

x
, we make the substitution

√
x = u—after all we know the

integral of cosu so get rid of the square root which is worrying us. Now x = u2

so dx/du = 2u. The integral becomes

∫

cos
√

x√
x

=

∫

cos u

u
2u du = 2

∫

cos u du = 2 sin u + c = 2 sin
√

x + c.

3) Consider now I =
∫ 1

0
dx√

1+2x−x2
. Here it is not clear how to proceed, until we

complete the square and write 1+2x−x2 = 2−(x−1)2 so that I =
∫ 1

0
dx√

2−(x−1)2
.

This is similar to the form 1√
a2−u2

which we know is the derivative of sin−1 u
a
.

This helps us choose the correct trigonometric substitution and write (x − 1) =√
2 sin u. Thus 2− (x−1)2 = 2−2 sin2 u = 2 cos2 u and dx

du
=

√
2 cos u the limits

x = 0 and x = 1 become u = sin−1(−1/
√

2) = −π/4 and u = 0 so that

I =

∫ 0

−π/4

√
2 cos u du√
2 cos u

=
π

4

Qu. 7.D Use the given substitution to show:

a)

∫

6

(2x + 1)2
dx = c − 3

2x + 1
, (u = 2x + 1)

b)

∫

2x
√

3x + 4 dx = c + 4(3x + 4)5/2/45 − 16(3x + 4)3/2/27, (u = 3x + 4)

c)

∫ 2

0

√
4 − x2 dx =

∫ π/2

0

4 cos2 θ dθ = π, (x = 2 sin θ)

d)

∫ 2

0

x
√

4 − x2 dx = 8/3, (u = 4 − x2)

e)

∫ π/2

0

sin3 θ cos2 θ dθ = 2/15, (u = cos θ)

Qu. 7.E Differentiate ln(x +
√

x2 + k) with respect to x, where ln represents the
logarithm to base e. Hence find

a)

∫

dx√
x2 + 5

, b)

∫

dx
√

(x + 2)2 + 5
, c)

∫

dx√
x2 + 6x + 2

.
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Qu. 7.F

1) Integrate

a)

∫

2x
√

5x + 1 dx, b)

∫ 2

1

x(2 − x)7 dx, c)

∫

(3x + 2)3 dx,

d)

∫ √
4 − x dx, e)

∫

dx√
1 − 2x

, f)

∫

dx

(1
2
x + 1

3
)3

g)

∫

sin3 x cos2 x dx, h)

∫

cos x

sin2 x
dx, i)

∫

2x
√

x2 + 2 dx

j)

∫

(2x2 + x + 1)2(4x + 1) dx k)

∫

4x + 1

2x2 + x + 1
dx, l)

∫

(x3 − 3x)2(x2 − 1) dx

2) If t = tan 1
2
θ, show that dt = 1

2
(1 + t2)dθ and hence do the integrals

a)

∫

dθ

1 − cos θ
, b)

∫

dθ

1 + sin θ
,

c)

∫

dθ

5 + 4 cos θ
, d)

∫

dθ

5 − 4 cos θ
.

3) Use the substitution t = tan 1
2
x to show these results, which you should learn

f(x)
∫

f(x) dx
cosec x ln | tan 1

2
x| + c = ln | cosec x − cot x| + c

sec x ln | tan(1
4
π + 1

2
x)| + c = ln | sec x − tanx| + c

You will have to do some algebraic manipulation of trigonometric quantities to
show the equivalence of the last two forms.

4) Use the results of section 3.2 to evaluate

∫

dx

sin x +
√

3 cos x
,

∫

dx√
2 cos x +

√
3 sin x

.



7.3 Integration by recognition 22

7.3 Integration by recognition

After doing many integrals using substitution one becomes able to do integrals by im-
mediately recognising they have a special form. For example since

d

dx

[

(φ(x))n+1
]

= (n + 1)φ′(x)[φ(x)]n,

from the chain rule, then we have

∫

φ′(x)[φ(x)]n dx =
φ(x)(n+1)

n + 1
+ c

if n 6= −1. The case n = −1 is taken care of by the observation

d

dx
[ln(φ(x))] =

φ′(x)

φ(x)
,

again from the chain rule, so

∫

φ′(x)

φ(x)
= ln |φ(x)| + c.

Similarly
∫

φ′(x) exp(φ(x)) dx = exp(φ(x)) + c

Note φ is the greek letter phi and is often used instead of f for a function.

These rules give rise to the results

f(x)
∫

f(x) dx
tanx ln | sec x| + c
cot x ln | sinx| + c

which you should derive and learn.



7.3 Integration by recognition 23

Example

1)
∫

x exp(x2) dx =
1

2

∫

2x exp(x2) dx =
1

2
exp(x2) + c.

In practice one would soon learn to miss out the middle step in similar examples.

2)
∫

x

4x2 + 7
dx =

1

8

∫

8x

4x2 + 7
dx =

1

8
ln |4x2 + 7| + c.

Again practice would enable one to practically quote the result

3)
∫

x2(3x3 + 12)3 dx =
(3x3 + 12)4

36
+ c,

missing out that step.

Qu. 7.G Try these:

a)

∫

sec2 x tan2 x dx, b)

∫

sec2 x tann x dx, c)

∫

x2(8 + x3)5 dx,

d)

∫

x2(8 + x3)n dx, e)

∫

xe(1+x2) dx, f)

∫

xf ′(1 + x2) dx,

g)

∫

2ax + b

ax2 + bx + c
dx, h)

∫

sin x

cos2 x
dx, i)

∫

cos x

sin2 x
dx.

j)

∫

exp(x) + exp(−x)

exp(x) − exp(−x)
dx k)

∫

2ax + b

(ax2 + bx + c)3
dx l)

∫

(2ax + b)(ax2 + bx + c)4 dx

m)

∫

(exp(x) + a)n exp(x) dx n)

∫ 1
1+x2

tan−1 x
dx o)

∫

dx

x ln(x)
,

p)

∫

xdx√
1 + x2

, q)

∫

dx

exp(x) + exp(−x)
, r)

∫

dx

2
√

x
√

1 − x
,

s)

∫

nxn−1 cos xn, dx, t)

∫

1

x
cos(ln(x)) dx, u)

∫

3x2

1 + x6
dx.
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7.4 Integrating rational functions

You should know From above
∫

2ax + b

ax2 + bx + c
dx = ln |ax2 + bx + c| + constant.

Integrals of the form
∫

1

ax2 + bx + c
dx

may be approached by completing the square. If the quadratic has two real roots then
proceed to use partial fractions and then integrate. Alternatively, if the roots are not
real then partial fractions will not work but a trigonometric substitution may.

Integrals of the form
∫

px + q

ax2 + bx + c

may be tackled by writing the integrand as

p

2a

2ax + b

ax2 + bx + c
+

q − pb/2a

ax2 + bx + c

and both of these may be tackled using the techniques above.
Using these methods and partial frcations integrals of many rational functions of x can
be obtained.

Example The partial fraction representation of

9x + 9

(x − 3)(x2 + 9)
=

2

x − 3
+

3 − 2x

x2 + 9
,

so its integral is

2 ln |x − 3| + 9 tan−1 x

3
− ln |x2 + 9| + c = 9 tan−1 x

3
+ ln

∣

∣

∣

∣

(x − 3)2

x2 + 9

∣

∣

∣

∣

+ c.

Qu. 7.H

1) Show
∫ 1

0

x2 + 7x + 2

(1 + x2)(2 − x)
dx =

11

2
ln 2 − π

4
.

2) Show
∫

x

x2 + 4x + 5
dx =

1

2
ln |x2 + 4x + 5| − 2 tan−1(x + 2) + c.
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7.5 Integration by parts

You should know Integrating a rearranged form of the formula giving the derivative
of a product u(x)v(x),

u(x)
dv

dx
= u(x)v(x) − v(x)

du

dx
, (1)

gives the formula for integration by parts

∫

u(x)
dv

dx
dx = [u(x)v(x)] −

∫

v(x)
du

dx
dx (2)

You should also know how to use this formula.

Example

1. Choosing u = x2 and dv/dx = ex, so that du/dx = 2x and v = ex, gives

∫

x2ex = [x2ex] −
∫

2xex dx

= x2ex − [2ex] +

∫

2ex dx

= x2ex − 2ex + 2ex + c

= ex(x2 − 2x + 2) + c

where we have used integration by parts a second time with u = 2x, dv/dx = ex

and du/dx = 2, v = ex.

2. Sometimes you have to be a little ingenious in the choice of u and v. Here we
choose du/dx = 1, v = ln x so that u = x, dv/dx = 1/x.

∫

ln x dx = [x ln x] −
∫

x.(1/x) dx

= x(ln x − 1) + c.
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Qu. 7.I Integration by parts will work for these:

a)

∫

x sin x dx, b)

∫

ln x dx, c)

∫

x2 cos x dx,

d)

∫

sin−1 x dx, e)

∫

tan−1 x dx, f)

∫

x ln x dx,

g)

∫

x tan−1 x dx, h)

∫

x sec x tan x dx, i)

∫

x sec2 x dx

j)

∫

x exp(x) dx, k)

∫

x3 exp(x) dx, l)

∫

x sin x cos x dx.

Qu. 7.J These need more ingenuity:

a)

∫

e2x cos 3x dx, b)

∫

eax cos bx dx, c)

∫ √
a2 − x2 dx.

7.6 A mixture of integrals

Of course a good integrator needs no clue as to which of the above techniques to apply to
an integral and is even able to use a selection of techniques, one after the other if
necessary to succeed.

Qu. 7.K Try these:

a)

∫

e−
√

x

√
x

dx, b)

∫

x3(x4 − 3)5 dx, c)

∫

tanx dx,

d)

∫

xex2

dx, e)

∫

sin x(1 + cos2 x) dx, f)

∫

x sin 2x dx,

g)

∫

x2

√
1 + x3

dx, h)

∫

(3 + 2x)3 dx. i)

∫ 3

2

dx

(x − 1)
√

x2 − 2x
,

j)

∫ √
a2 − x2 dx, k)

∫ π

0

x sin2 x dx, l)

∫

x2 sin−1 x dx,

m)

∫

cosec 2x dx, n)

∫

dx

cos2 x − sin2 x
, o)

∫

cot x

log sin x
dx.


