
Secrets of Macro Quoting Functions – How and Why

Susan O’Connor, SAS Institute Inc., Cary, NC

ABSTRACT

How, why, when and where to use macro
quoting functions are tricky questions for all
users. Macro quoting is not, as some think,
putting single and double quotation marks in or
around SAS tokens. Macro quoting is actually
masking special characters and mnemonic
expressions in the SAS® System so that these
characters are not confused or ambiguous in their
context during tokenization and execution of
SAS or SAS macro. SAS macro quoting
functions also are used to mark starting and
ending delimiters.

The terms compile-time and run-time should be
understood as related to macro for mastery of
macro quoting functions. The differences and
timing of the compile-time macro quoting
functions, %STR and %NRSTR, will be
emphasized. The meaning of run-time macro
quoting functions and the individual implications
in your code will be covered and the differences
between run-time and compile-time macro
quoting functions will be illustrated.

Details and history of %QUOTE and
%BQUOTE may help users remember the
differences in what is masked in each function.
Also, the implementation of macro quoting
functions with the NR-prefixes will be detailed.

Macro masking of special characters is achieved
by using "delta" characters, unprintable ASCII or
EBCDIC characters. Just what these characters
are and how to examine them and debug them
will be covered. Mnemonic expressions are
macro quoted during explicit or implicit
evaluation.

For debugging purposes, suggestions will be
made about when macro quoting is stripped.

INTRODUCTION

In this paper I will use the emoticon J to
symbolize macro delta characters in macro
quoting. The use of J is just a symbol of delta

characters to illustrate the position of a macro
delta character in macro quoting.

I want to briefly define the term compiler and
relate it to the SAS System and to the SAS
macro facility particularly.

A classic definition of a compiler is a program
that decodes instructions written in pseudo code
and produces a machine language program to be
executed at a later time. A compiler is a program
that translates instructions written in a high level
programming language into a lower-level
language or set of instructions that can be
executed.

There are several parts of the SAS System that
can be referred to as a compiler: SCL, the DATA
step, some PROCs and macro. Sometimes, the
term compiler is used in a cavalier manner and,
in one sentence, “compiler” can mean DATA
step compiler or macro compiler. This confusion
is found in SAS documentation and in SAS
courses. While there are many compilers in the
SAS System, they are all different. The SAS
macro compiler will be the focus of this paper
because it is in the SAS macro facility that macro
quoting occurs. For the purpose of illustration, I
will create a simple macro pseudo code to
suggest compiled macro instructions and
constant text.

A macro definition is the code found between the
%MACRO statement and the %MEND
statement. In one compilation phase with two
passes, the SAS macro facility translates all
statements inside a SAS macro definition into
compiled instructions or constant text. This is
referred to as compile-time and is completed
with the %MEND statement. Later, when the
compiled macro is invoked, the macro facility
executes or runs these instructions in another
phase, the run-time phase.

Macro compilation creates instructions and
constant text and this is a compile-time phase.
Macro execution runs or executes the
instructions in a run-time phase. Macro quoting
functions perform the macro quoting at run-time,

except for the compile-time macro quoting
functions %STR and %NRSTR.

Finally, the last term to clarify is tokenization.
Tokenization is the breaking of a character string
into the smallest independent unit, a token that
has meaning to the programming language.

WHY WE QUOTE TOKENS

One of the main jobs of the SAS supervisor is to
split incoming character strings of code into
tokens. These tokens are classified into SAS
token types: words, numbers, integers,
compound words, missing values, semicolons,
special characters, formats and string literals.
There are also subtypes of token types, for
example, double or single quoted strings in string
literals. Some examples of token types include:

• String literals - "O’Connor", ’This is easy’,
’54321’x, ’010111010101’b

• Word tokens - DATA, WORK, x, EQ,
ALL , Y2K, MIN

• Integers -100, 700,000, 0, 123456
• Numbers - 123.50, 1.2e23, 0c1x
• Date, time, and date time constants – '9:25't,

'01jan2000'd
• Special tokens - =, *, !, %, &, /, ;, +, “, ‘

Basic SAS tokens are then processed by different
parts of SAS with different compilers, different
grammars, and parsers. Identical tokens may
have different meanings in the macro compiler
than in other parts of the SAS System.

The reason we may need macro quoting is to
avoid confusion and ambiguity with what token
types we intend to use. For example, do we want
the token OR to mean an abbreviation for the
state of Oregon or the mnemonic logical operator
OR? Do we want a semicolon to end a macro
statement or a PROC statement? Is the name
O'Connor an unclosed single quoted string or the
Irish surname?

One of the simplest examples used to explain
macro quoting is:

PROC PRINT; RUN;

This example contains two SAS statements
ending in semicolons. By definition SAS
statements end in semicolons. Confusion comes

in because macro statements end in semicolons
also. If we want to make these tokens including
the semicolons into a macro variable value with
a %LET statement, we would have confusion.
The %LET statement begins with %LET and
ends with a semicolon. Let's try:

%LET EXAMPLE= PROC PRINT; RUN;;

This code would create a macro variable
EXAMPLE with a value of PROC PRINT in the
macro symbol table, the storage location of
macro variables and their values:

EXAMPLE PROC PRINT

The first semicolon would be consumed by the
%LET when it ends at the first semicolon. The
tokens RUN and the other semicolons would be
left over tokens that would be sent up to the rest
of the SAS System from the word scanner where
they could create a 180 ERROR.

To make this example work as we intended, we
need to mask or macro quote the two
semicolons.

%LET EXAMPLE=%STR(PROC PRINT;
RUN;);

Internally, this would mask the two semicolons
in question, while they are inside the macro
facility. The macro name would be EXAMPLE
and the value internally would look like:

J PROC PRINTJRUNJJ

So the macro symbol table would contain:

EXAMPLE J PROC PRINTJRUNJJ

The J represents macro delta characters. Notice
that starting and ending delimiters are macro
quoted as well as the two semicolons.

When the macro variable name was referenced
later in the SAS session:

&EXAMPLE

the delimiters are removed and the printable
special characters replace the unprintable delta
characters as each token is sent out of the word
scanner:

 PROC PRINT;RUN;

One helpful hint to see the delimiters when
debugging macro quoting is to place an asterisk
adjacent to the macro variable name in a %PUT
statement. For example,

%PUT *&EXAMPLE*;

will print the following to the SAS log so you
can see the starting and ending delimiter marked
by the asterisk:

* PROC PRINT;RUN;*

HOW IS MACRO QUOTING DONE?

Inside the macro facility we have a set of tables
that allow the macro subsystem to translate
special characters into delta characters and to
translate delta characters into special characters.
Changing a special character to a delta character
is macro quoting. Changing a delta character
back to its original character is unquoting.

The characters to be masked with delta
characters may be either special characters, such
as ampersand, percent, and semicolon, or
delimiters surrounding a series of tokens, telling
the macro processor to do something special
with the delimited tokens.

Characters used in SAS come from ASCII or
EBCDIC code tables with decimal (and
corresponding hex) values. For example, the
upper case A in ASCII is represented with the
decimal value 65 (hex 41) and in EBCDIC is
represented with the decimal value 193 (hex C1).
In ASCII the semicolon is represented with the
decimal value 59 (hex 3B) and in EBCDIC the
semicolon is represented with the decimal value
94 (hex 5E). These are printable characters in the
code tables, but there are unprintable characters
too.

The delta characters are unprintable characters
available for use in ASCII or EBCDIC character
sets. The unprintable characters available for use
as delta characters in ASCII are those with
decimal representations 1-8, 11, 14-26, 28-31,
and 127-255. On EBCDIC machines the
characters that may be used as deltas are 1-7, 16-
23, 28-36, 38-39, 43-46, and 50.

We define these available unprintable characters
as delta characters. Some unprintable characters
are mapped as delimiters: %STR/%NRSTR start

and stop, %QUOTE start, %NRQUOTE start,
%BQUOTE start, %NRBQUOTE start,
%UNQUOTE stop, and stop macro function. We
also map the unprintable characters as delta
characters to represent special characters that
could be ambiguous in the SAS System:

DELTA SEMICOLON ;
DELTA AMPERSAND &
DELTA PERCENT %
DELTA SINGLE QUOTATION ’
DELTA DOUBLE QUOTATION "
DELTA OPEN PARENTHESIS (
DELTA CLOSE PARENTHESIS)
DELTA PLUS +
DELTA MINUS -
DELTA STAR *
DELTA SLASH /
DELTA LESS THAN <
DELTA GREATER THAN >
DELTA NOT ^
DELTA EQUAL =
DELTA OR |
DELTA COMMA ,
DELTA TILDE ~

For example, to represent a DELTA
SEMICOLON we map the unprintable ASCII
decimal character 14 (hex 0E) as a DELTA
SEMICOLON and we map the unprintable
EBCDIC decimal character 38 (hex 26) as a
DELTA SEMICOLON.

On most operating systems these unprintable
characters if reflected on the monitor will look
like garbage characters. Sometimes, machine
specific items, such as the glyphs for an OEM or
how the monitor itself is set, may define
unprintable special characters as unexpected
surprises, for example, a happy face. Regardless,
how these "unprintable" characters are reflected
on your term monitor should not be a concern.
Internally the macro processor knows that these
unprintable delta characters are masking special
characters.

For debugging purposes there are ways to see
these delta characters which may look like
garbage characters and ways to have them
converted to the printable characters they
represent, unquoting. One way to detect a delta
character at your monitor is to use OPTION
MLOGIC. On the other hand, OPTION
SYMBOLGEN strips delta characters and
converts them to the special characters. %PUT

does convert the delta characters to printable
characters. However, %PUT _USER_ and the
other underscore %PUT versions do not convert
the delta characters when printing to the log.
But enough of the tedious internal details. For
simplicity’s sake, I will use the emoticon J to
illustrate those tedious unprintable delta
characters, instead of using decimal or hex
values.

WORD SCANNER

Tokens are generated by the word scanner one
token at a time. The word scanner examines
incoming streams of code looking at every
character and following rules for making SAS
tokens.

The word scanner is the lowest level where input
is separated into tokens and it is also a logical
place to insert new tokens or streams of code.
The word scanner is also the main location in the
system where the macro facility is called. The
word scanner knows how to handle delta
characters and treats them as tokens when
appropriate.

TRIGGERS IN THE SCANNER

The macro facility is triggered in the word
scanner as it is looking at each character in a
string of incoming code and the scanner sees a
percent sign or an ampersand.

Consider the following incoming code, which
will be sent on as tokens from the word scanner
to TITLE processing. The developer wants the
TITLE to reflect the date with format
ddmmmyyyy.

TITLE "&SYSDATE9";

As this string of code comes into the scanner
each character is examined. The first token
TITLE, a word token, is sent on up to the global
statement handler of the SAS System.

The next character is examined. It is a double
quotation mark and the scanner is going to build
double quoted string until is locates a closing
double quotation mark. The scanner also is going
to honor the macro triggers, percent and
ampersand, while building the tokens inside this
double quoted string. If, instead of a double
quoted string, a single quoted string was being

built, the scanner would "turn off" the macro
triggers, percent and ampersand.

In this case, after the double quotation mark, the
next character is examined. It is the special
character & that is a trigger for the macro
facility. When the word scanner examines the
character &, the scanner calls the macro
facility’s macro symbolic substitutor.

The macro symbolic substitution part of the
macro facility needs a token to decide what to
do. Like the rest of the SAS System, macro calls
the word scanner to get the next token, which is
SYSDATE9. This call by macro into the word
scanner is recursive. The scanner is waiting to
see if the macro facility is going to add a new
string of code, while the macro facility is waiting
for the scanner to pass it a new token to see if
there is anything to substitute.

In this case, the date the session was initialized is
substituted and passed to the scanner by the
macro symbolic substitution.

31OCT1999

(The new macro variable SYSDATE9 has been
back ported from 7.01 to version 6 releases of
SAS at the request of users after SUGI 24.)

The scanner uses these new characters and
continues building the token:

"31OCT1999

When it locates the closing double quotation
mark it passes the token "31OCT1999" up to the
TITLE processing. This token is a string literal
type with a subtype of double quotation.

The scanner examines the next character, which
is the special token semicolon, and it passes it up
to the TITLE processor. The semicolon signals
the end of the TITLE statement and the TITLE is
created.

The SAS word scanner is recursive and
repeatedly calls into itself to substitute strings of
code and to build tokens for the rest of the
system. Macro triggers in the word scanner are
the ampersand and the percent sign. Most parts
of the SAS System that are waiting for tokens
allow these triggers to call macro. However,
sometimes a part of the system might "turn off"
these triggers in order to build a string that

would not substitute text. While macro triggers
are rarely "turned off", one case this happens is
inside single quoted strings. For example, the
macro triggers would be "turned off" and no
resolution would take place inside:

TITLE ’&SYSDATE9’;

Another case where the macro triggers are
"turned off", while not in the scope of this paper,
is when SAS/CONNECT® is building a buffer
on the client after it has seen RSUBMIT.

OPEN CODE

Open code is code that is not inside compiling or
executing macros. When a macro statement in
open code is executed, it completes its task
immediately. Macro statements that are allowed
in open code are %PUT, %LET, %GLOBAL,
%SYSEXEC, %WINDOW, %DISPLAY, and
%INPUT.

The key here is that in open code the macro
statements are immediately executed. The
%LET statement immediately creates the macro
variables in the global symbol table. The %PUT
statement immediately writes the immediately
resolved string until the semicolon to the SAS
log. %GLOBAL immediately creates macro
variables with null values in the global symbol
table.

MACRO COMPILATION – A SIMPLE
CASE

Macro compilation is the process that happens
between a %MACRO statement and a matching
%MEND statement, the macro definition. When
the percent sign is seen in the word scanner, the
open code handler is called. The open code
handler calls the scanner for the next token,
MACRO. This keyword MACRO causes the
macro facility to begin compiling a macro. This
is compile-time.

%MACRO SIMPLE;
 DATA A;
 X=1;
 RUN;
 %LET NAME =FRED;
%MEND SIMPLE;

The open code handler calls the word scanner for
the next token, SIMPLE, and makes sure it is a
valid macro name. If everything looks good, the

statement is read until the semicolon is detected
and a compiled macro header instruction is
made. The rest of SAS cannot read this
instruction but later the macro compiler can
interpret it when the macro is executed. The
compiled macro header instruction is a record
containing information such as the date
compiled, version, keyword or positional
parameters, and options.

In addition to the header instruction there are
pseudo instructions for parameters, constant text,
%MEND, %IF, %PUT, left and right hand parts
of %LET, %LOCAL, %GLOBAL, labels,
%GOTO, jumps around unexecuted code,
iterative %DO, %DO %WHILE and %DO
%UNTIL, ends of the various do instructions and
so on. For illustration purposes, I will use only a
few of these instructions and represent them in a
simple readable manner using a pseudo code
language.

Using a type of pseudo language we can
understand the compiler instruction might look
like the following and be numbered in order with
a zero base:

0 HDR SIMPLE key=0 pos=0 ver=8.00
 date=13998
1 TEXT leng=20 DATA A; X=1; RUN;
2 LETL leng=4 NAME
3 LETR leng=4 FRED
4 MEND

These instructions are written as five records in
an object SIMPLE in the SAS macro catalog in
WORK.SASMACR. This represents compiled
code.

%STR COMPILE-TIME FUNCTION

The simplest macro quoting function to describe
is %STR. Whenever %STR occurs, even inside
macro compilation, it turns off all macro
functions and uppercasing and collects
everything between the parentheses, matching
pairs of parentheses. During collection, nesting
of parentheses is honored. The very first closing
parenthesis seen is not necessarily the one that
ends the function. For example,

 %STR(((FOO)))

ends at the third close parenthesis.

There is no macro resolution yet, but we reduce
the double special characters used to create
single quotation marks, parentheses and percents.
%STR reduce any double special characters such
as %", %% and %) to the single special character
", % and) respectively. In other words with
%STR or %NSTR if you have an unmatched
quotation mark or parenthesis, place a percent
sign before that character. Use double percent
signs to produce a single percent sign. For
example, the following %STR code:

%PUT %STR(1.%) O%’CONNOR->
MACGRORY->CARROLL);

would first internally mask the closing
parenthesis and the single quotation mark that
were indicated above by the percent signs.

1.J OJCONNOR->MACGRORY
->CARROLL

The building of the string is complete when the
matching closing parenthesis is found. The delta
quoting is applied, in this case to the minus and
greater than sign. Delimiter deltas marking
%STR start and %STR stop are placed where the
opening and closing parenthesis were to preserve
leading and trailing blanks. Internally it looks
like:

J1.J OJCONNORJJMACGRORY
JJCARROLLJ

The macro quoted string is pushed back on the
scanner and the macro functions are turned on.
The following would be printed to the log when
the delta characters are replaced with the
printable characters:

1.) O’CONNOR->MACGRORY->CARROLL

For another example, without %STR this %LET
statement would end with the first semicolon.

%LET X = %STR(THIS IS A ; I LIKE IT);

Using the emoticon to illustrate %STR, it I
stored in the macro symbol table:

X JTHIS IS A J I LIKE ITJ

When debugging the %PUT statement:

%PUT *&X*;

would strip the macro delta characters masking
the semicolons and print the following to the log:

THIS IS A ; I LIKE IT
When using OPTIONS SYMBOLGEN,
stripping of the macro delta characters would
produce the debugging SYMBOLGEN
information and a second additional NOTE to
the log that unquoting had occurred:

SYMBOLGEN: Macro variable X resolves to THIS IS A ; I
LIKE IT

SYMBOLGEN: Some characters in the above value, which
were subject to macro quoting, have been unquoted for
printing.

One last %STR example is for comments of the
/* comments */ type. The word scanner
normally consumes these. So if you wanted to
%PUT them to the log the following code:

%PUT OUT /* IN */ OUT;

would print to the log consuming the inside
comment:

OUT OUT

To mask the meaning of the /* comment */ style
comments, you could mask the meaning in the
scanner using %STRs around the special
characters / and *, for example %STR(/)STR(*):

%PUT OUT %STR(/)%STR(*) IN
%STR(*)%STR(/) OUT;

Internally to the scanner it would mask
beginning and ending delimiters and the special
characters, looking like:

OUT JJJJJJ IN JJJJJJ OUT

would print to the log:

 OUT /* IN */ OUT

since the meaning of the comments has been
removed.

%NRSTR COMPILE-TIME
FUNCTION

%NRSTR behaves the same way that %STR
works except it does not resolve the % and & but
"turns off" the macro triggers. In macro, most

quoting functions come in pairs. One pair has a
prefix of NR which "turns off" the macro
triggers, ampersand and percent, so that they will
not resolve. Internally the percent and ampersand
are replaced with delta characters. For example,
you might want a TITLE statement to illustrate
the behavior of SYSDATE9 and to include the
tokens &SYSDATE9 themselves. The single
quotation mark string literal example suggested
earlier would not work because you want
SYSDATE9 to both resolve and not resolve in
one TITLE statement. You might use %NRSTR
inside a double quotation string literal.

TITLE "USE %NRSTR(&SYSDATE9) TO
GET THIS FULL DATE &SYSDATE9";

This would create a string literal in the word
scanner:

"USE JJSYSDATE9J TO GET THIS FULL
DATE 31OCT1999"

and as the string literal leaves the word scanner
the delta characters are replaced with the special
characters they represent and the delimiters are
honored.

“USE &SYSDATE9 TO GET THIS FULL
DATE 31OCT1999”

WHAT COMPILE-TIME MEANS

The macro quoting functions %STR and
%NRSTR take affect during compile-time. All
other macro quoting functions take effect during
run-time. This is a distinction which is important
and may best be illustrated with an example and
some pseudo code of a compiled macro.
Remember that the %LET macro statement ends
in a semicolon as you examine the macro
definition EXAMPLE. Also remember that
macro quoting only occurs during compilation
for %STR and %NRSTR.

During the compilation phase, instructions and
constant text are written to WORK.SASMACR
from the %MACRO statement to the %MEND.

%MACRO EXAMPLE;
%LET S=%STR(DO:+=;&SYSDAY);
%LET N =%NRSTR(DO:+=;&SYSDAY);
%LET Q=%QUOTE(DO:+=;&SYSDAY);
%LET NRQ=
%NRQUOTE(DO:+=;&SYSDAY);

%LET BQ= %BQUOTE(DO:+ =;&SYSDAY
);
%LET NRB=
%NRBQUOTE(DO:+=;&SYSDAY);
%PUT _LOCAL_;
%MEND;

The pseudo code can be represented as follows.

0 HDR EXAMPLE date=14195 ver=8.00 pos=0
kwd=0
1 LETL leng=1 S
2 LETR leng=15 JDO:JJJ&SYSDAYJ
3 LETL leng=1 N
4 LETR leng=15 JDO:JJJJSYSDAYJ
5 LETL leng=1 Q
6 LETR leng=12 %QUOTE(DO:+=
7 TEXT leng=9 &SYSDAY);
8 LETL leng=3 NRQ
9 LETR leng=14 %NRQUOTE(DO:+=
10 TEXT leng=9 &SYSDAY);
11 LETL leng=2 BQ
12 LETR leng=13 %BQUOTE(DO:+=
13 TEXT leng=9 &SYSDAY);
14 LETL leng=3 NRB
15 LETR leng=15 %NRBQUOTE(DO:+=
16 TEXT leng=9 &SYSDAY);
17 PUT leng=7 _LOCAL_
18 MEND

When you execute this macro you would get four
ERROR 180 messages. Why? Look at the
pseudo code again. Because the %LET values
ended with the first semicolon, there are four
constant text statements that create errors:

&SYSDAY);

Let’s turn on OPTIONS MLOGIC and execute
EXAMPLE to debug and illustrate:

OPTIONS MLOGIC;
%EXAMPLE
 MLOGIC(EXAMPLE):Beginning execution.
MLOGIC(EXAMPLE):%LET (variable name is S)
MLOGIC(EXAMPLE):%LET (variable name is N)
MLOGIC(EXAMPLE):%LET (variable name is Q)
NOTE: Line generated by the macro variable "SYSDAY".
13 Thursday

 180
ERROR 180-322: Statement is not valid or it is used out of
proper order.
MLOGIC(EXAMPLE):%LET (variable name is NRQ)
NOTE: Line generated by the macro variable "SYSDAY".
13 Thursday

 180
ERROR 180-322: Statement is not valid or it is used out of
proper order.

MLOGIC(EXAMPLE): %LET (variable name is BQ)
ERROR: Expected close parenthesis after macro function
invocation not found.
NOTE: Line generated by the macro variable "SYSDAY".
13 Thursday

 180
ERROR 180-322: Statement is not valid or it is used out of
proper order.
MLOGIC(EXAMPLE): %LET (variable name is NRB)
ERROR: Expected close parenthesis after macro function
invocation not found.
NOTE: Line generated by the macro variable "SYSDAY".
13 Thursday

 180
ERROR 180-322: Statement is not valid or it is used out of
proper order.
MLOGIC(EXAMPLE): %PUT _LOCAL_
EXAMPLE S JDO:JJJThursdayJ
EXAMPLE N JDO:JJJJSYSDAYJ
EXAMPLE Q JDO:JJ
EXAMPLE NRQ JDO:JJ
EXAMPLE BQ
EXAMPLE NRB
MLOGIC(EXAMPLE): Ending execution.

Looking at the local variables in the %PUT
LOCAL statement indicates that there are no
values for the %BQUOTE and NRBQUOTE.
The log reflects that the closing parentheses are
missing and, therefore, the values were not
created. There are values for %QUOTE and
%NRQUOTE but not what we expected because
the semicolons truncated the %LET values.

%QUOTE AND %NRQUOTE
RUN-TIME FUNCTIONS

%QUOTE and %NRQUOTE are run-time macro
functions. This means nothing happens during
macro compilation. During macro compilation
the effect is to treat the function as text. Looking
at the pseudo code for EXAMPLE you see that
the values for the right hand side of the %LET
statements are truncated at the first semicolon.

For these paired functions, behavior will be
identical except that percent and ampersand will
be NOT RESOLVED for %NRQUOTE. When
the argument for %QUOTE (and %NRQUOTE)
is executed at run-time (or in open code) the
delimiter for %QUOTE start is set when the first
parenthesis is seen. Each special token coming
out of the scanner will be set to the delta
character defined for it. When the matching
closing parenthesis is found the stop macro
function delimiter replaces it.

%QUOTE and %NRQUOTE, like %STR and
%NRSTR, use the percent sign to mask the
single percent, parenthesis, and quotation mark.
So in open code, using %QUOTE instead of
%STR, in the example from above the quoting
internally appears the same:

%PUT %QUOTE(1.%) O%’CONNOR->
MACGRORY->CARROLL);

In open code the macro quoting internally looks
the same:

J1.J OJCONNORJJ MACGRORY
JJCARROLLJ

The result on the log looks identical :

1.) O’CONNOR-> MACGRORY->CARROLL

However if this had been inside a macro
definition:

%MACRO TEST;
 %PUT %QUOTE(1.%) O%’CONNOR->
MACGRORY->CARROLL);
%MEND TEST;

the macro would not compile. Since the
%QUOTE does not happen until the run-time the
word scanner would be trying to build a single
quoted string literal when it sees the single
quote.

COMPILE-TIME VERUS RUN-TIME

One way to illustrate compile-time versus run-
time is to write a macro that will print a
WARNING sad face if there is no parameter:

WARNING==> ;-(missing parameter

or a NOTE happy face with the parameter, here
indicated with the blank, like the following:

NOTE==>;-) a parameter: ___

Since in this contrived example we have a
semicolon as the wink, we will need to macro
quote that semicolon at compile-time with
%STR so that it does not end the %PUT
statement earlier than intended. But we do not
know the value of the parameter to macro quote
until run-time so we can use a %QUOTE that
will quote at run-time:

%MACRO EX (P);
%IF %QUOTE(&P)= %THEN
 %PUT %STR(WARNING ==>;-%(missing
parameter);
%ELSE
 %PUT %STR(NOTE==>;-%) a parameter:
&P);
%MEND EX;

To see the pseudo code gives us the idea of
run-time versus compile-time quoting.

0 HDR EX key=0 pos=1 date=14056 ver=8.00
1 PARMAC pos? 1 PARM initvallen=0 init=
2 IF falseaddr=5 leng=11 %QUOTE(&P)=
3 PUT leng=35 JWARNINGJJJJJJ
missing parameterJ
4 JUMP addr=6 leng=0
5 PUT leng=25JNOTEJJJJJJa parameter:
&PJ
6 MEND

In this pseudo code you can see that the %STR
function quoted the special characters as the
macro compiled. But the %QUOTE function in
the %IF instruction will delta quote during
execution.

Executing this code with invocations and copies
of the log show that these run as intended:

%EX()
WARNING==> ;-(missing parameter

%EX(HIGH-LOW)
NOTE==> ;-) a parameter: HIGH-LOW

%EX(^)
NOTE==> ;-) a parameter: ^

This is because the delta character substitution
with %QUOTE happens as the macro executes.
If we had not macro quoted at run-time and had
the following %IF statement:

%MACRO EXBAD (P);
%IF &P= %THEN
 %PUT %STR(WARNING ==>;-%(missing
parameter);
%ELSE
 %PUT %STR(NOTE==>;-%) a parameter:
&P);
%MEND EXBAD;

Note the pseudo code change:

0 HDR EXBAD key=0 pos=1 date=14056
ver=8.00
1 PARMAC pos? 1 PARM initvallen=0 init=
2 IF falseaddr=5 leng=3 &P)=
3 PUT leng=35 JWARNINGJJJJJJ
missing parameterJ
4 JUMP addr=6 leng=0
5 PUT leng=41JNOTEJJJJJJa parameter:
&PJ
6 MEND

The evaluation at run-time of value of the
parameter P would cause the following
examples to have ERRORS during implicit
evaluation:

%EX(HIGH-LOW)

%EX(^)

ERROR: A character operand was found in the %EVAL
function or %IF condition where a numeric operand is
required. The condition was: &P =

ERROR: The macro EXBAD will stop executing.

This is because during evaluation the substitution
for &P is either HIGH-LOW or ^ which are not
quoted to prevent unintended evaluations at run-
time.

%BQUOTE AND %NRBQUOTE
RUN-TIME FUNCTIONS

%BQUOTE and %NRBQUOTE are run-time
macro functions. This means nothing happens
during macro compilation. During macro
compilation the effect is to treat the function like
text. Like all paired macro quoting functions
with the NR prefix, %NRBQUOTE does NOT
RESOLVE percents and ampersands.

%BQUOTE and %NRBQUOTE are also more
mature and robust since these macro functions
treat parentheses and quotation marks as single
characters during run-time.

How could it be especially useful to allow a
single unmatched quotation? Consider a DATA
step that creates a macro variable value with
CALL SYMPUT:

DATA A;
WORD="O’CONNOR";
CALL SYMPUT(’VAR’; WORD);
RUN;

Executing this DATA step creates following
macro variables in the symbol table:

VAR O’CONNOR

This macro variable value with the single
quotation mark might cause problems with an
unclosed single quote. But you want to use such
a macro variable value with an unclosed
quotation mark.

%MACRO ONE;
%IF %BQUOTE(&VAR) = %THEN %PUT
THERE IS NO VALUE ;
%ELSE %PUT HELLO, %BQUOTE(&VAR);
%MEND;

The pseudo code for this looks like:

0 HDR ONE pos=0 key=0 date=14062
ver=8.00
1 IF falseaddr=4 leng=15
%BQUOTE(&VAR) =
2 PUT leng=17 THERE IS NO VALUE
3 JUMP addr=5 leng=0
4 PUT leng=26 Hello, %BQUOTE(&VAR)
5 MEND

Invoking this macro:

%ONE

would cause the macro variable VAR to use the
value O’CONNOR. The use of the %BQUOTE
run-time macro quoting function would allow the
macro quoting of OJCONNOR during run-time.
The single quotation mark would not appear as
an unclosed quote and would allow the macro to
execute and print the name to the log when it
unquotes the token for printing. If %QUOTE
had been used, we would have a string literal
with unmatched quotes and the macro would
have stopped executing.

%UNQUOTE RUN-TIME FUNCTION

The %UNQUOTE run-time function during
compile-time treats the arguments like text.
During run-time it collects the tokens between
the parentheses, letting macro items resolve. It
throws away the non-translatable deltas such the
delimiters. It replaces the other delta characters
with the original special characters.

%UNQUOTE is most useful if something is
macro quoted inside an executing macro and you

want to use it in an unquoted manner. Another
use is when the text "looks" right in the log but
the generated text will not work as expected.

%SUPERQ RUN-TIME FUNCTION

%SUPERQ takes effect during run-time.
In macro compilation it is treated as text.

To use %SUPERQ reference the macro variable
name with no leading ampersand. It immediately
gets the macro variable value from the macro
symbol table with a straight copy and not
scanning in the scanner. %SUPERQ applies
%NRBQUOTE behavior to the value. Since
%SUPERQ does not attempt resolution of its
argument there is no warning if the macro
variable does not resolve. If you do not want the
warning with %NRBQUOTE if something does
not resolve then %SUPERQ may be the ticket.

For example consider:

DATA _NULL_;
CALL SYMPUT(’WORD’, ’BEN&JERRY’);
RUN;

which would create a macro variable in the
symbol table:

WORD BEN&JERRY

With the TITLE statement below:

TITLE "SEE YOU &SYSDAY AT &WORD";

You would get the warning:

WARNING: Apparent symbolic reference JERRY not
resolved.

There would be no such warning with:

TITLE "SEE YOU &SYSDAY AT
%SUPERQ(WORD)";

Notice that no ampersand is used with
%SUPERQ function.

%QUPCASE, %QSUBSTR, AND
%QSAN RUN-TIME FUNCTIONS

%QUPCASE, %QSUBSTR and %QSCAN take
place during macro execution and they are
treated as text during compile-time. During run-
time the functions are performed like uppercase,

substring or scan. Then, if this is the %Q version,
the leading and trailing delimiters are preserved.

The key to remember here is that %UPCASE,
%SUBSTR and %SCAN returns the unquoted
results, even if the argument was quoted.

Let’s look at a few examples. This:

%LET X=%NRSTR(%eval(1+2));

looks like the following internally when stored in
the macro symbol table:

X JJeval(1J2)J

Since the %PUT removes macro quoting:

%PUT &X;

would print to the log:

%eval(1+2)

If the debugging developer had turned on
OPTION SYMBOLGEN, the debugging
information would indicate that the macro
quoting had been removed for printing:

SYMBOLGEN: Macro variable X resolves to
%eval(1+2)

SYMBOLGEN: Some characters in the above value, which
were subject to macro quoting, have been unquoted for
printing.

Remember that %UPCASE macro function will
return the unquoted result even if the value was
macro quoted. So the following %UPCASE
would print 3 to the log:

%PUT %UPCASE(&X);

While the %QUPCASE version would print the
unquoted value to the log, %EVAL(1+2):

%PUT %QUPCASE(&X);

Consider another example:

%LET A=1;
%LET ABC=5;
%LET DEF=%NRSTR(&ABC);

Internally these would be stored in the macro
symbol table as:

A 1
ABC 5
DEF JJABCJ

Since the %PUT removes macro quoting the
%PUT statement below would print &ABC to
the log but OPTION SYMBOLGEN would have
indicated that macro quoting had been removed:

%PUT &DEF;

Remember that %SUBSTR macro function will
return the unquoted result even if the value was
macro quoted. So the following %SUBSTR
would print 1 to the log:

%PUT %SUBSTR(&DEF,1,2);

This is because the %SUBSTR would substring
&A which has the macro variable of 1 in the
symbol table.

However, in the %QSUBSTR version the quoted
results are returned and &A would be printed to
the log since that is the quoted result:

%PUT %QSUBSTR(&DEF,1,2);

QUOTING MNEMONIC OPERATORS

The macro facility has mnemonic operators:
AND, EQ, GE, GT, LE, LT, NE, NOT, and OR.

These mnemonic operators can be used in
explicit or implicit macro evaluation. %EVAL is
the explicit macro evaluation for integer
arithmetic and logical expressions. Implicit
macro evaluation occurs in the following macro
statements: iterative %DO, %DO %UNTIL,
%DO %WHILE, and %IF %THEN.

If a macro quoting function is active during
macro evaluation and a mnemonic operator is
detected inside the macro quoting delimiters, the
quoted mnemonic will not be treated as a
mnemonic operator. Consider

%MACRO TEST(PARM);
 %IF &PARM EQ %THEN %PUT MISSING
PARAMETER;
%MEND TEST;

Invoking this with a mnemonic parameter such
as OR:

%TEST(OR)

would confuse implicit evaluation in %IF. The
ERROR messages would print to the log.

ERROR: A character operand was found in the %EVAL
function or %IF condition where a numeric operand is
required. The condition was: &VAL EQ.

ERROR: The macro will stop executing.

This is because internally it appears the implicit
evaluation is comparing two mnemonic
operators:

 OR EQ

If you quoted PARM in the implicit %IF
evaluation, at invocation a mnemonic like OR
would be masked in the evaluation:

%MACRO TEST(PARM);
%IF %QUOTE(&PARM) EQ %THEN
 %PUT MISSING PAREMATER;
%MEND TEST;

Internally the implicit evaluation would look
like:

JORJ EQ

which would mask the OR token so it would not
look like a character mnemonic operator.

All macro quoting functions mask mnemonic
operators only during explicit or implicit
evaluation.

CONCLUSION

As you write or revise macros and as you use
macro quoting functions, it is useful to
understand what is happening internally.
Unprintable delta characters replace special
characters during macro quoting in open code,
and at compile-time and run-time. These
characters are restored to the special printable
characters during unquoting. It may be useful to
consider what is happening as a macro definition
is compiling and to imagine the pseudo
instructions. Knowledge about the difference
between compile-time and run-time could help
you with timing issues when writing or
debugging macros.

ACKNOWLEDGEMENTS

I would like to thank my current manager,
Amitava Ghosh, Director of Advanced Server
Development, for his support regarding my
previous commitment to this technical macro
paper.

Thanks also go to my predecessor in SAS macro
design and development who contributed
(wittingly or not) to macro internals as reflected
in this paper: Robert Cross, Doug Cockrell, and
Bruce Tindall.

REFERENCES

SAS Institute Inc. (1997), SAS Macro Language:
Reference, First Edition, Cary, NC: SAS
Institute Inc.

SAS and all other SAS Institute Inc. product or
service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and
other countries. ® indicates USA registration.
All other brand names and product names are
trademarks of their respective companies.

