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Abstract—Chaos in nonlinear dynamical systems has become a 

widely-known phenomenon and its presence has been identified 

in many different systems in virtually all the fields of science. In 

medical world, analyzing chaos in the brain and explore its 

dynamics is a challenging task to every individual. In this paper, 

an effective and a practical method for exploring such brain 

activities are studied. This paper relates a method to analyze an 

Electroencephalogram (EEG) using Correlation Dimension 

(CD) for drowsiness estimation in sleep onset and epilepsy. 

Dimension is a critical property since, it indicates how many 

independent state variables are required to reproduce the 

system dynamics in state space and this in turn indicates how 

many state variables should be included in a mathematical 

model of the system. Aside from this practical issue, the 

dimension is an indicator of the degree of "complexity" of a 

system and tracking any changes in dimension due to pathology 

or other manipulations to the system is a useful diagnostic 

criterion. For many chaotic systems, accurate calculation of the 

CD from measured data is difficult because of very slow 

convergence as the scale size is reduced. This paper proposes a 

method for collecting data at large scales, creating the time 

series and determining the possibility of constructing an 

attractor for establishing the deterministic character of 

dynamics of the underlying system.  
 

Index Terms— EEG Signals, Chaos, Sleep onset, Epilepsy, 

Correlation Dimension.  

 

I. INTRODUCTION 

   The EEG signals are highly subjective and the information 

about the various states may appear at random in the time 

scale [1]. The complexity of estimating the drowsiness and 

characterizing the EEG signal can be done using neuro-fuzzy 

models or through some computational techniques [2] [3]. 

Recent progress in the theory of nonlinear dynamical systems 

has provided new methods for the study of time series in fields 

such as hydrodynamics, chemistry, climatic variability, 

biochemistry and human brain activity [4] [5]. The study of 

such complex systems may be performed by analyzing 
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experimental data recorded as a series of measurements in 

time of a pertinent and easily accessible variable of the 

system. In most cases, such variables describe a global or 

averaged property of the system. For example, a time series 

may be obtained by recording at regular time intervals the 

mean electrical activity of a portion of the mammalian brain. 

Although it may seem that such data offer only one 

dimensional view of activity of the brain, this is not the case: it 

can be shown that a time series may provide information 

about a large number of pertinent variables, which may 

subsequently be used to explore and characterize the system's 

dynamics [6]. More specifically, by using a time series one 

can determine the possibility of constructing an attractor and 

thereby establishing the deterministic character of dynamic 

underlying system. Such methods from the non linear 

dynamical theory can be dragged for better perception of EEG 

signals. The complexity of drowsiness estimation and 

characterizing the EEG signals can be brought under some 

chaotic optimization techniques. On careful application of 

these techniques may provide excellent results and can clearly 

exhibit the hidden dynamics inside the brain. 

 

A. Chaos and Non-Linear Dynamics 

The word chaos is a piece of jargon used particularly to 

describe a complex type of behavior. It is the term used to 

describe the apparently complex behavior of what considered 

being simple, well-behaved systems [7]. Chaotic behavior, 

when looked at casually, looks erratic and almost random. 

The behavior of a system strongly influenced by outside, 

random "noise" or the complicated behavior of a system with 

many and many degrees of freedom, each "doing its own 

thing" [8]. Chaotic system are almost free of noise, these 

systems are essentially deterministic; that is, precise 

knowledge of the conditions of the system at one time allow 

us, at least in principle, to predict exactly the future behavior 

of that system. The problem of understanding chaos is to 

reconcile these apparently conflicting notions: randomness 

and determinism.  

The study of chaos has provided new conceptual and 

theoretical tools enabling us to categorize and understand 

complex behavior that had confounded previous theories. 

Chaotic behavior seems to be universal; it sums up in 

mechanical oscillators, electrical circuits, LASERS, nonlinear 

optical systems, chemical reactions, nerve cells and also in 

EEG signals [9]. Chaos is really only one type 
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of behavior exhibited by nonlinear systems. The field of study 

is more properly called nonlinear dynamics, the study of the 

dynamical behavior of a nonlinear system. A nonlinear system 

is a system whose time evolution equations are nonlinear; that 

is, the dynamical variables describing the properties of the 

system (for example position, velocity, acceleration, pressure, 

etc.) appear in the equations in a nonlinear form. 

II. MATERIALS AND METHODS 

A.  EEG Signals and Data Base 

The Electroencephalogram (EEG) is a recording of the 

electrical potentials generated by the brain. Analyzing such 

complex signals provides a better way for medical 

diagnostics, drowsiness detection, and schizophrenia [10]. 

Frequency of EEG signals is 50 Hz and its amplitude varies 

between 10-100 micro volts. Its maximum amplitude is about 

50-60 micro volts. The analog signals from the brain must be 

translated into digital signals for processing and storing the 

data. 

Typically, sixteen channels of data are recorded by 

measuring the potential difference between pairs of electrodes 

placed on the scalp. EEG patterns have shown to be modified 

by a wide range of variables including biochemical, 

metabolic, circulatory, hormonal, neuroelectric and 

behavioral factors. In the past Encephalographer, by visual 

inspection was able to qualitatively distinguish normal EEG 

activity from localized or generalized abnormalities 

contained within relatively long EEG records. The different 

types of epileptic seizures are characterized by different EEG 

waveform patterns [11].  

Sleep EEG database used in the study is encoded in 

European data format were obtained from Caucasian males 

and females (21 - 35 years old) without any medication; they 

contain FpzCz and PzOz EEG signals, each sampled at 100 

Hz. The recordings also contain the sub mental-EMG 

envelope, oro-nasal airflow, rectal body temperature and an 

event marker, all sampled at 1 Hz. The recordings contain sub 

mental EMG sampled at 100 Hz and an event marker sampled 

at 1 Hz. The epilepsy EEG data used in the study were 

acquired from eight epileptic patients who had been under the 

evaluation and treatment in the Neurology department of Sri 

Ramakrishna Hospital, Coimbatore, India. A paper record of 

16 channel EEG data is acquired from a clinical EEG 

monitoring system through 10-20 international electrode 

placing method. The EEG signal was band pass filtered 

between 0.5 Hz and 50Hz using five pole analog Butterworth 

filters to remove the artifacts. With an EEG signal free of 

artifacts, a reasonably accurate detection of epilepsy is 

possible; however, difficulties arise with artifacts. This 

problem increases the number of false detection that 

commonly plagues all classification systems. With the help of 

Neurologist artifact free EEG records with distinct features 

were selected. These records were scanned by Umax 6696 

scanner with a resolution of 600dpi.                   

III. STATE SPACE   RECONSTRUCTION 

A. State Variables and State Space 

State variables are those that change over time and reflect 

the behavior of a dynamic system. This is a mathematical 

construction, in which each state variable is plotted along one 

of the axes no matter what the initial state, some system will 

always come to rest at (0,0); this point is called an attractor, 

since it attracts all trajectories. In general an attractor can be 

much more complex than this simple point and many research 

papers [12],[13] speak loosely of "state-space attractors" 

when referring to sets of trajectories whether or not they have 

been demonstrated to be true attractors.  In order to conform 

that a physical system contains an attractor is to perturb the 

system and see if the trajectories return to some subset of the 

state space. Another feature of this simple example is that the 

trajectory does not cross itself.  In fact it is a general feature of 

the state space for a deterministic system. If the trajectory 

crosses itself, and if the state of the system at a given moment 

is at the point of intersection, then it cannot be determined 

which path the trajectory will follow. This contradicts the 

concept of determinism. Therefore, if trajectories appear to 

cross, the system is either random, or the dimension of the 

state space is not high enough to depict the trajectories 

accurately [12].   

B. Time Delay Reconstruction 

Time-delay reconstruction is almost very simple and yet 

extremely powerful. Instead of using the actual state 

variables, such as x(t) and its derivatives, the successively 

delayed values of x(t) can be used. The plotted trajectories 

spiral in to a fixed point at the origin, and they do so without 

any self-crossings. The exact shapes of the plots are slightly 

different, depending on the value chosen for the time delay 

parameter in the reconstruction [13]. 

If the original data points in the time series are represented 

by x(i), then the reconstructed attractor consists of the 

M-dimensional points y(i), generated from the time series as 

follows: 

y(1)=[x(1),x(1+L),...,x(l+(M-l)L)]                                                                                                  

                                                                                          (1) 

y(2)=[x(l+J), x(l+J+L), ..., x(l+J+(M-l)L) ]                                 

                                                                                          (2) 

y(N)=[x(l+(N-1)J), x(l+(N-l)J+L), ..., x(1+(N-l)J+(M-1)L) ]                                       

                                                                                          (3) 

 

Here N is the number of points on the reconstructed 

trajectory or attractor. M is the embedding dimension, each 

trajectory point y(i) is composed of M values from the time 

series x(i), separated by time delay L. L is the interval 

between first elements of successive attractor points, and is 

usually set to 1.  

Carrying out a proper time-delay embedding or 

reconstruction, with real data can be thorny. The key 

parameters in the process are the dimension of the embedding 

space (the embedding dimension M) and the time delay L. In 

other words, how many state variables are there, and how far 

apart in time should be the delayed elements of each point in 

the state space. The key idea in the choice of time delay L is 

that the elements that make up an attractor point y(i) has to be 

close enough in time that they loosely approximate a 

derivative and are dynamically related, yet far enough apart in 

time that they are not repetitive. Each point y(i) should 

capture some dynamic information about 
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the system, and if the elements x(i) of that point are too close 

together, the information they provide will be redundant [14]. 

 

C. Appropriate Selection of Time Delay 

One of the simplest and yet more effective method for 

choosing L is that it should be a small multiple (2 or3) of the 

correlation time of the signal x(t). The correlation time is the 

time shift at which the autocorrelation function Rxx(τ) of the 

time series x(t) has decayed to 1/e of its peak value. This is 

one way to quantify the notion that the consecutive x(i) values 

should be far enough apart in time to be somewhat but not 

completely independent (uncorrelated). This simple rule of 

thumb is a good starting point for the selection of L. Selection 

of embedding dimension M is the other major issue. The 

embedding dimension M should be large enough that the 

attractor is properly embedded in the topological sense. In 

particular, there should be no trajectory crossings if the 

system is truly deterministic (although noise of various types 

can introduce apparent intersections which can often be safely 

ignored). A promising approach to both of these questions, 

which enjoys widespread use, is that of False Nearest 

Neighbors (FNN)[14]. If an attractor is reconstructed in an 

embedding space with too small a dimension M, then points 

on the attractor that are actually far apart in space will appear 

artificially close together - the trajectories are compressed 

because the embedding space is not big enough for them to 

fully expand. These points that appear close together in M 

dimensions but are actually far apart in a higher-dimensional 

space are false neighbors and FNN quantifies this concept 

[13].  The distance between two points y(i) and y(j) in 

M-dimensional can be defined as [15] 

               

 
Here, DM denotes the distance as measured in M dimensions, 

that is, with M delayed elements in each point y(i) and y(j). 

The subscript k to the right indicates that corresponding 

delayed elements are subtracted from each other in the 

distance calculation. This is nothing more than the 

well-known Euclidean distance measure, extended to M 

dimensions. A point y(j) is a false nearest neighbor of y(i) if 

the distance between the two in M+1  dimensions is much 

greater than the distance in M dimensions [15] 

Here, Rthr is a distance-ratio threshold. If the distance 

increases by more than this factor, then these points are false 

neighbors. A value of approximately 10 for Rthr is suitable in 

many cases [15]. In operation, an initial value for embedding 

dimension M is set. Then, each point on the attractor is taken 

in turn as a reference point. The nearest neighbor to each 

reference point is found by computing the distance in 

M-dimensional space between the reference and every other 

point and identifying the minimum distance. Then, the 

distance between these same two points found in M+l 

dimensions. If the ratio of these two distances is greater than 

Rthr the points are false nearest neighbors. Across all 

reference points, the proportion of nearest neighbors that are 

false nearest neighbors is found, for the given dimension M. 

Then M is increased by one, and the process repeated.  

D. Dimension and Box Counting Dimension 

Dimension is a critical property because it indicates how 

many independent state variables are required to reproduce 

the system dynamics in state space, and this in turn indicates 

how many state variables should be included in a 

mathematical model of the system. Since brain signals are 

purely chaotic, those chaotic dynamics are termed as strange 

attractors. They occupy a well-defined and bounded region of 

the state space. Yet the system behavior is aperiodic, so no 

matter how much data acquire the attractor trajectory will 

never return to the same location in state space. One way to 

accomplish this is if the attractor forms a fractal, such that 

there is finer and finer detail as  look at it more and more 

closely; in this sense, no matter how "dense" the trajectory in 

any given area of the state space, there is always room to 

squeeze in another trajectory passage. Scaling process 

provides us a purposeful way to determine the dimension of 

an attractor in state space, where dimension is defined as the 

exponent. 

 

The box-counting dimension implements the idea of 

power-law scaling in a more general form. An object in an 

M-dimensional space, count the number N of M-dimensional 

boxes, each with side of length ε, that are needed to cover the 

object. If N increases as a power law function of ε, then we 

can define the dimension D as [16] 

 In particular, as the box size gets smaller, fewer points are 

enclosed in each box, on average, yet each box is included in 

N no matter how many points it contains. Thus information 

regarding the probability of the attractor visiting certain boxes 

is lost. For these conceptual and practical reasons, 

box-counting dimension has been almost completely 

surpassed in most applications by the correlation dimension. 

Box-counting dimension is one of a series of dimensions 

based on a more general form. 

The basic form of Renyi dimensions is[6] 

 Here, q indicates which in the series of dimensions is being 

considered (q=0 is the box-counting dimension), ε is the size 

of a box as before, and 

The quantity η(CiT) is the amount of time that a trajectory 

spends in box Ci, in the time span from 0 to T. Hence, μ(Ci)is 

the proportion of time that the trajectory spends in box Ci, (in 

the long run, as T increases), and this is essentially the 

probability that the attractor trajectory passes through box Ci. 

 If q=0, μ(Ci) is raised to the power zero in the equation for 

I{q, ε), so that μ(Ci)q is zero if Ci, is not visited at all, and one 

if it is visited by the trajectory no matter how briefly. In other 

words, I(q, ε) is a count of the number of boxes 
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Ci visited by the trajectory. Incrementing q to 1, the next in 

the series of dimensions, D1, is known as the information 

dimension and it is not used in process. The next dimension, 

when q=2, is of by far the most interest called the correlation 

dimension and the equation 10 reduces to 

A. Correlation Integral 

Grassberger and Procaccia [16]showed that the summation 

in equation (13) could be approximated by a correlation 

integral which is much easier to compute from experimental 

data: 

 Although expressed as a discrete summation, the quantity on 

the right in the upper equation is known as a correlation 

integral. The operator U(.) is a step function; as expressed 

here, it is one if the distance  between the attractor points y(i) 

and y(j) are within distance ε of each other, and zero 

otherwise. Thus, the correlation integral counts the number of 

pairs of points on the entire attractor that are within distance ε 

of each other, and divides this by N2, the total number of pairs 

of points. The demonstration of this equality can be found in 

Grassberger and Procaccia [16], but an intuitive argument can 

be made to justify it. If, at a given box size ε, the attractor 

visits box Ci, for P points out of a total number N of points on 

the attractor, then μ2(Ci)=(P/N)2. On the other hand, in box 

Ci, since there are P points there will be approximately P2 

pairs of points - that is, box Ci, will contain P2 pairs of points 

within distance ε of each other. By the definition of the 

function U, this means that Ci will contribute an amount P2 to 

the correlation integral. Since this is divided by the total 

number of point pairs N2, this contribution ((P/N) 2) is 

identical to that of the contribution of Ci, to the summation of 

μ2(Ci) and the two quantities are equal. The equality is an 

approximation, largely due to the fact that the correlation 

integral is expressed in terms of inter-point distances.The 

correlation dimension has become a standard measure of the 

fractal dimension of attractors that have been reconstructed in 

the state space. It approximates and is a lower bound for, the 

box-counting dimension (i.e., it is less than or equal to the box 

counting dimension, with equality in the case when all the 

boxes Ci are occupied equally). Its use is simple in principle, 

but nontrivial in practice. 

E. Correlation Dimension 

The correlation integral obtained in the equation (14) can 

be used to approximate the correlation dimension. 

The notation has been changed to use r (radius) rather than ε 

to designate the criterion distance; when two points yi and yj 

are closer together than r, they are "spatially correlated" and 

contribute to the correlation integral  C(r). The divisor has 

also been changed to reflect the fact that, since the case i=j is 

always skipped in the summation (since the distance between 

yi and yj is zero when i=j and counting this does not 

accurately reflect how close different points are to each 

other), the total number of inter-point pairs being compared is 

N(N-1) rather than N2. If C(r) increases as a power-law 

function of r, then C(r) versus r on a log-log plot should be a 

straight line, and the slope will be the correlation dimension 

D2. 

IV.  ESTIMATION OF ATTRACTOR DIMENSION 

FROM SLEEP SUBJECTS AND EPILEPTIC PATIENTS 

As EEG signals are Chaotic, on reconstruction the time 

series will create an attractor, estimating the attractor 

dimension directly exhibits the number of state variables 

controlling the system.  The usefulness of this parameter can 

be extended to classify the risk level of epileptic patients. 

Patients epochs were clubbed together and the resulted time 

series were involved in the classification process. your 

manuscript electronically for review.  

 

 Figure 1: Autocorrelation Plot for Patient-1 

   Figure 2:  Reconstructed Attractor for Patient 1 

 

The figure1 represents the autocorrelation plot of patient 1, 

through the autocorrelation plot the appropriate time delay 

can be estimated and the value of embedding dimension can 

be found through false nearest neighborhood method. From 

the above two parameters an attractor can be designed 

through the time delay reconstruction process. The figure 2 

represents such an attractor constructed from the patient -1 

EEG signal. The next step is to obtain the correlation integral 

value for each value of radius which is to be set manually. 
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Grassberger Procaccia algorithm can be utilized for 

estimating the suitable dimension value for each value of 

radius. The figure 3 depicts the logCr vs logr plot for the 

patient 1 EEG signal.  The slope of the log Cr vs logr plot will 

directly provides the dimension value of the reconstructed 

attractor. Since the curve obtained through the logCr vs logr 

plot is not linear, approximation can be done through linear 

regression algorithm. The figure 4 represents the linearly 

approximated plot calculated through linear regression 

algorithm. Subjects having different level of risk can be 

classified through the estimated dimension value. Similar 

approach can be applied to the normal EEG signals acquired  

during sleep; the figure shows the log Cr vs. log r plot and 

the fitted curve to easily estimate the correlation dimension 

value from the slope of the fitted straight line. The slope of the 

logCr vs logr plot will directly provides the dimension value 

of the reconstructed attractor. Since the curve obtained 

through the logCr vs logr plot is not linear, approximation can 

be done through linear regression algorithm. The figure 4 

represents the linearly approximated plot calculated through 

linear regression algorithm.  Lot of subjects having different 

levels of risk can be classified through the estimated 

dimension value. Similar approach can be applied to the 

normal EEG signals acquired during sleep; the figure shows 

the logCr vs. logr plot and the fitted curve to easily estimate 

the correlation dimension value from the slope of the fitted 

straight line.  

Figure 3: Plot of logCr vs logr for Patient-1        

 

 

Figure 4: Linear Regression for Correlation Dimension        

IV. RESULTS AND DISCUSSION 

Three subjects were involved in the sleep stage 

classification process, each window consists of hundred 

dataset and nine thousand data were used for the 

reconstruction process. The table 1 shows the correlation 

dimension value for several windows. In the epilepsy risk 

level detection process eight patients having different risk 

levels were classified. The table 2 shows the correlation 

dimension value of eight different patients and also their mean 

and standard deviation. The table 3 makes the comparison 

between the normal subjects during sleep and the epileptic 

patients; it is evident that the epileptic patients have low 

dimension value when compared to the normal subjects 

during sleep.   

     Table 1: Dimension Values for Sleep Subjects 

          

Table 2: Representation of Risk level Classifications                

Window  

Size 

CORRELATION DIMENSION VALUES 

SUBJECT 

1 

SUBJECT 

2 SUBJECT 3 

10-90 6.3074 6.3806 6.2451 

100-190 5.9902 6.7092 6.5435 

700-790 6.5141 6.8207 6.0563 

1200-1290 6.0981 6.6723 5.8714 

7000-7090 6.6138 6.5634 6.2673 

12000-1209

0 6.054 6.1254 6.3983 

Mean 6.2629 6.5452 6.2303 

PATIENT 

CORRELATION DIMENSION VALUES 

 

 

 

 

 

EPOCH-1 EPOCH-2 EPOCH-

3 

Patient-1 2.0506 
3.3164 2.1746 

 
Patient-2 4.7539 

 

6.3045 

 

6.4255 

 
Patient-3 2.4017 

 

3.2804 

 

3.1506 

 
Patient-4 3.5604 

 

3.1056 

 

4.1455 

 
Patient-5 3.0379 

 

2.7423 

 

2.4798 

 
Patient-6 3.3618 

 

6.4845 

 

4.1981 

 
Patient-7 5.2193 

 

5.2511 

 

4.4633 

 
Patient-8 

5.9284 

 

4.5029 

 

4.7645 
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 Table 3 : Comparison of Dimension Values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V.CONCLUSION 

Since non linear dynamics have the ability for the brilliant 

classification of variety of EEG signals, we have utilized the 

chaotic optimization technique to the full extent for better 

characterization of EEG signals.  Many researches on the 

characterization of brain dynamics rely only on the Machine 

learning or Neural Networks or Neuro-fuzzy models which 

cannot not be stretched to the desired extent. Using only the 

correlation dimension algorithm, the dynamics of brain at 

different states are calculated. This closely relates how many 

independent variables needed to control a system at a time. 

Low value of dimension indicates that the system is somewhat 

affected from its normal working phenomenon. Normal 

subjects while sleeping provides a dimension value of 

approximately 6 indicate normal working activity of brain. 

We have utilized this concept for the classification of risk 

levels of Epilepsy patients which closely coincides with the 

results estimated by other methods. Finally the drowsiness of 

the patient can be clearly distinguished and correlation 

dimension method is found to be better when compared to the 

other methods.  
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CORRELATION 

DIMENSION 

ACQUIRED EEG SIGNALS 

DURING 

SLEEP 

DURING 

EPILEPSY 

Average Value 6.346167 3.45256 

Standard Deviation 

Value 
0.086321 0.14502 
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