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1. Introduction 
Problems involving nonlinear differential equations are 

extremely diverse, and methods of solutions or analysis 
are problem dependent. Nonlinear systems are interesting 
for engineers, physicists and mathematicians because most 
physical systems are nonlinear in nature. Resonance of 
oscillating systems may lead to their damage or 
destruction, so it is important to study the behavior of 
vibrating system under different resonance conditions [1]. 
The non-linear behavior of a single-link flexible visco-
elastic Cartesian manipulator is investigated [2], and the 
responses obtained using method of multiple scales 
compared with those obtained by solving numerically the 
temporal equation of motion. A single-degree-of-freedom 
non-linear oscillating system subject to multi-parametric 
and external excitations was studied [3,4]. In addition the 
multiple time scale perturbation technique was applied to 
obtain solution up to the third order approximation to 
extract and investigate the available resonance cases. The 
occurrence of saturation phenomena at different 
parameters values is reported. The nonlinear instability 
problem of two superposed dielectric fluids is solved by 
using the method of multiple scales. Numerical solutions 
were presented graphically for the effects of the different 
parameters on the system stability, response and chaos [5]. 
The method of multiple time scales is applied to 
investigate the response of nonlinear mechanical systems 
with internal and external resonances [6, 7]. The stability 
of vibrating systems was studied applying both the 
frequency response equation and the phase plane methods. 
The numerical solutions were focused on both the effects 
of the different parameters and the behavior of the system 
at the considered resonance cases. The motion of a 
flexible cantilever beam carrying a moving spring-mass 
system was investigated [8]. The system was described by 
a set of two nonlinear coupled partial differential 

equations where the coupling terms have to be evaluated 
at the position of the mass. The equations of motion are 
solved numerically using the Rayleigh-Ritz method and an 
automatic ODE solver. The analysis of the local and 
codimension-3 degenerate bifurcations in a simply 
supported flexible beam with quintic nonlinear terms 
subjected to a harmonic axial excitation is presented [9]. 
Moreover numerical method is used to compute the 
bifurcation response curves based on the averaged 
equations and the stability of trivial solution analyzed, 
where new jumping phenomena were discovered in 
amplitude modulated oscillations. Two types of 
resonances, which are fundamental and subharmonic, 
were considered in a post-buckled beam to harmonic 
excitation [10]. The regions of instability and chaotic 
response are shown for different damping levels. The 
measured data are illustrated through time histories and 
phase plots. The dynamics of two oscillators coupled with 
quadratic nonlinearities in the case of two-to-one internal 
resonance is investigated when the higher mode is 
subjected to a principal parametric excitation [11]. The 
method of multiple scales is used to obtain an approximate 
solution to the equations of motion and to investigate the 
stability of the system. Experimental work is conducted to 
validate the theoretical results. The theoretical and 
experimental results indicated that the system exhibits 
complicated responses, such as jumps, saturation 
phenomenon, types I and II intermittency, as well as 
periodically, and chaotically modulated motions. The 
asymptotic solutions and transition curves for the 
generalized form of the non-homogeneous Mathieu 
differential equation are studied [12]. The problem of 
suppressing the vibrations of a hinged–hinged flexible 
beam that is subjected to primary and principal parametric 
excitations is investigated [13]. Different control laws are 
proposed, and saturation phenomenon is studied to 
suppress the vibrations of the system. 

In this paper, a two degree of freedom model of flexible 
beam system subjected to axial or tuned forces is studied. 
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The method of multiple scales perturbation technique is 
used to obtain a first order approximate solution. Some 
possible resonance cases were extracted and studied 
applying Runge-Kutta fourth order method. The stability 
of the model is studied using both frequency response 
function and the phase-plane method. The resonant 
frequency response curves indicated the phenomenon of 
multiple solutions, soft- and hardening-spring types. 

2. A Two d.o.f Nonlinear Model of 
Flexible Beam 

In this section, The nonlinear partial differential 
equation governing the flexural deflection ( ),u x t  of the 
beam, shown in Figure 1, subject to harmonic axial 
excitation 0 1 cosp p p t= − Ω  is given by [13] 

 
Figure 1. The model of the beam 
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The model of the flexible beam is studied under the 
following boundary conditions: 

 ( ) 0 and 0 at 0,uu x x x l
x
∂

= = = =
∂

 (2) 

where m is the mass per unit length of the beam, E is the 
young’s modulus of the beam, I is the moment of inertia 
of the beam cross section, and c is the damping coefficient.  

For the purpose of analysis of Eq. (1), the Galerkin’s 
procedure is introduced. Substituting the expression 

( ) ( ) ( ) 2, sin sinx xu x t q t R t
l l
π π   = +   
   

, where q(t), R(t) 

are the amplitudes of the two modes of vibration, 
performing integration and using the following non-

dimensional quantities
4 2 2, , ,EI l lt t q q R R

ml r r
∗ = ∗ = ∗ =  

4ml
EI

Ω∗ = Ω , where r is the radius of gyration of the 

cross-section area of the beam. Then dropping the overbar, 
we obtain a two-degree-of-freedom differential equation 

governing the motion of the beam in the horizontal and 
vertical directions 
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Introducing the perturbation parameter ε, the above 
equations can be expressed in the following form: 
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3. Analytical and Numerical Approaches 
The analytical solution of equations (5) and (6) is 

studied using the method of multiple scales by assuming q, 
R in the form  

 ( ) ( ) ( )0 1 0 0 1 1 0 1, , , ...,q T T q T T q T Tε= + +  (7) 

 ( ) ( ) ( )0 1 0 0 1 1 0 1, , , ...,R T T R T T R T Tε= + +  (8) 

where, n
nT tε= , T0 is the fast time scale associated with 

changes occurring at the frequencies ω, ω1 and Ω, T1 is the 
slow time scale associated with modulations in the 



24 Journal of Mathematical Sciences and Applications  

 

amplitudes and phases caused by the nonlinearity, 
damping, and resonances. 

In terms of T0 and T1, the time derivatives become: 
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Using equations (7-9), Substituting , , ,q q q′ ′′ , ,R R R′ ′′  
into equations (5), (6) and equating the coefficient of same 
powers of ε  yields: 
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The general solution of equations (10) and (11) is given 
by 

 ( ) ( ) ( )0 00 0 1 0 1 0 1, i T i Tq T T A T e A T eω ω−= +  (14) 
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where A0, B0 are complex functions in T1. 
Thus the general solution of equations (12) and (13) can 

be written in the form 
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4. Stability Analysis  
In this section, we consider the resonance case when Ω 

tends to 12 2ω ω+  where 1ω ω= , which can be expressed as  
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Substituting equations (14), (15) and (18) into equations 
(12) and (13) and eliminating the secular terms, yields  
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Using the following forms for A0, B0  
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where 1 2,a a  and 1 2,θ θ  are functions in 1T  called the 
steady-state amplitudes and the phases of motions in the 
horizontal and vertical directions. 

Substituting A0 ,B0 from equation (21) into equations 
(19) and (20), then separating real and imaginary parts 
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The steady-state solutions correspond to constant 
1 2 1 3, , ,a a ν ν  that is 1 2 1 3 0a a ν ν′ ′ ′ ′= = = = . Thus, equations 

(22)- (25) can be reduced to the following nonlinear 
algebraic equations 
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4 3 2
4 1 2 5 1 2

2 2 2
3 4 2 5 1 1 2 1

1 1 1
cos cos cos

16 8 8

3 5 12
2 4 8 2
3 3

8 8
1 1 3 cos

4 4 16

a a f a f a a

a a a a a

a a a a

a a a a

α ν ν ν
ω ω ω

σ σ α α α
ω ω ω

α α
ω ω

α α α ν
ω ω ω

+ − −

− + + − +

− −

 = − + + 
 

(27) 
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and  

2 2 2
2 3 4 1 5 2 1 2 2

1 1 1

2 3 3 2
5 1 2 1 2 5 3 1 2 321 1 1

1 1 3
sin

4 4 16

1 1 1
sin sin sin ,

16 8 8

a a a a a

a a f a f a a

µ β β β ν
ω ω ω

β ν ν ν
ω ω ω

= − + +

+ − −

 
 
  (28) 

 

( ) 3 5 22
2 1 1 2 2 2 3 1 2

1 1 1

4 2 3
4 1 2 5 1 2

1 1

2 2 2
3 4 1 5 2 1 2 2

1 1 1

2 3 3
5 1 2 1 2 2 5

1 1

2
3 1 2 3

1

3 5 12
2 4 8 2

3 3
8 8

1 1 3 cos
4 4 16

1 1cos cos
16 8

1 cos
8

.

a a a a a

a a a a

a a a a

a a f a

f a a

σ σ β β β
ω ω ω

β β
ω ω

β β β ν
ω ω ω

β ν ν
ω ω

ν
ω

− + − +

− −

 
= − + + 
 

+ −

−

(29) 

Squaring equations (26)-(29) then adding (25) to (26) 
and (27) to (29), and simplifying we obtain  

 10 8 6 4 2
1 1 2 1 3 1 4 1 5 1 0,a a a a aΓ +Γ + Γ + Γ + Γ =  (30) 

 10 8 6 4 2
6 2 7 2 8 2 9 2 10 2 0.a a a a aΓ +Γ + Γ + Γ + Γ =  (31) 

The coefficients , 1, 2,...,10i iΓ =  are given by 

 

( )

( ) ( )

2 ,1 22

2
2 1 2 2 5 22

2 2
3 2 1 2 1 1 5 22 2

2 4
2 3 2 2 4 22 2

2 4 2 2
5 2 2 5 2 22 2 2

2
4 1 1 2 5 1 2 2

2 4
1 3 2 1 4 2 3 52 2 2

25
64

15 15
3216

5 9 92
8 16 16

5 15
8 32

5 1 1 ,
16 16 64

3 32 2
4 8

3 9 1
4 16 4

a

a

a a

a f a f

a

a a

α
ω

α α α α
ω

α σ σ α α α
ω ω ω

α α α α
ω ω

α α
ω ω ω

α σ σ α σ σ
ω ω

α α α α α α
ω ω ω

Γ =

−
Γ = +

Γ = + + −

− +

+ + −

−
Γ = + + +

+ − −

6 2 4
4 5 2 2 3 2 2 4 22 2 2

2 4
2 3 2 3 5 22 2

5 1 1
32 16 16

1 1
32 16

a f a f a

f f a f a

α α α α
ω ω ω

α
ω ω

+ − +

− +

 

 

( ) ( )

( )

22 2
5 1 2 3 1 2 2

4 2 4 6
4 1 2 2 3 2 3 4 22 2

2 8 4
4 2 3 3 22 2

6 2 4
3 4 2 3 22 2

2
6 22

1

1 12 2
4 2

3 3 12
8 16 4

5 1
64 16

1 1 ,
16 64

25 ,
64

a

a a a

a f a

f a f a

µ σ σ α σ σ
ω

α σ σ α α α
ω ω ω

α α
ω ω

α
ω ω

β
ω

Γ = + + − +

+ + + −

+ −

+ −

Γ =

 

 
( )

2
7 1 2 2 5 12 2

1 1

2 2
8 2 2 1 1 1 5 12 2

1 1 1

2 4 2 4
2 3 1 2 4 1 5 12 2 2

1 1 1

2 2
2 5 1 22 2

1 1

15 15 ,
16 32

5 9 92
8 16 16

5 15 5
8 32 64

1 1 ,
16 64

a

a

a a a

f a f

β β β β
ω ω

β σ σ β β β
ω ω ω

β β β β β
ω ω ω

β
ω ω

Γ = − +

Γ = − − + −

− + +

+ −

 

 

( ) ( ) 2
9 1 2 1 5 2 1 1

1 1

2 4 4
1 3 1 1 4 1 3 5 12 2 2

1 1 1

6 2 4
4 5 1 2 3 1 2 4 12 2 2

1 1 1

2 4
2 3 1 3 5 12 2

1 1

3 32 2
4 8

3 9 1
4 16 4

5 1 1
32 16 16

1 1 ,
32 16

a

a a a

a f a f a

f f a f a

β σ σ β σ σ
ω ω

β β β β β β
ω ω ω

β β β β
ω ω ω

β
ω ω

Γ = − − −

+ − −

+ − +

− +

 

 
( ) ( )

( )

22 2
10 2 1 3 2 1 1

1

4 2 4
4 2 1 1 3 12

1 1

1 12 2
4 2

3 32 .
8 16

a

a a

µ σ σ β σ σ
ω

β σ σ β
ω ω

Γ = + − + −

− − +
 

5. Numerical Results and Discussions 
In this section, the solution of the frequency response 

equations (30), (31) are obtained numerically. Results are 
presented graphically as the steady-state amplitude of both 
modes against the detuning parameters to give the 
frequency response curves. The stability of the steady-
state solution is investigated using the phase plane method 
and frequency response function and the numerical results 
are focused on the effect of different parameters.  

5.1. Time-response (Numerical) Solution 
A non-resonant time response for both modes of the 

system is shown in Figure 2(a). Different resonance cases 
are listed and an approximate percentage of increase in 
maximum steady-state amplitude compared to that in the 
non-resonant case is indicated. 
(a) Internal resonance  

( )1ω ω= , (150%,None) Figure 2(b), 

( )12ω ω= , (None,150%) Figure 2(c) 
(b) Sub-harmonic resonance  

( )2ωΩ = , (None,125%) Figure 2(e) 

( )2ωΩ = , (150%,125%) Figure 2(f) 

( )4ωΩ = , (None,125%) Figure 2(m) 

( )14ωΩ = , (None,125%) Figure 2(n) 
(c) Simultaneous resonance 

( )12 2ω ωΩ = = , (150%,None) Figure 2(i) 
(d) Combination resonance 

( )12 2ω ωΩ = + , (None,125%) Figure 2(g) 
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( )1 12 2 ,ω ω ω ωΩ = + = , (150%,125%) Figure 2(j) 

( )1 12 2 , 2ω ω ω ωΩ = + = ,(125%,125%) Figure 2(k) 

It can be noticed that steady-state amplitudes have 
maximum peak at the simultaneous resonance case in 
Figure 2(j) and hence is considered as the worst resonance 
cases of the systems behavior. 
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Figure 2. Nonresonant and different resonant time solution of the 2-D model to axial excitation u1, u2 denote the amplitudes in the horizontal and 
vertical directions q and R, respectively. 

1 2 3 4 5 1 2 33.5, 4.1, 7.9, 7.2, 2.1, 0.0001, 0.03, 0.08, 0.04f f fα α α α α µ= = = = = = = = = .

1 2 3 4 5 10.2, 1, 2.55, 3.07, 12.29, 3, 2.5, 1.7β β β β β ω ω= = = = = Ω = = =  
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5.2. Theoretical Frequency Response solution 
The solution of equations (30) and (31) is plotted in 

Figure 3 and Figure 4, respectively, as the amplitudes 1a

and 2a  against the detuning parameters σ1 and σ2 for 
different values of system parameters. Each figure consists 
of two branches that are bent to the right, except for 
Figure 3(d). 

 
Figure 3. Frequency response curves of the first mode of the system at resonance 

2 3 1 2 3 42.7, 0.01, 0.6, 3.1, 7, 0.4, 90, 10.4,f fω µ α α α α= = = = = = = =  5 2 27.3, 0.08, 0.01.aα σ= = =  
 

Considering Figure 3(a) as basic case to compare with, 
it can be seen from Figures 3(b), (d), (e) and (f) that the 
steady-state amplitude a1 increases as each of the natural 
frequency ω and the nonlinear coefficients 1 2,α α  and 3α  
are increased. But in Figures 3(c) and 3(h), the steady- 
state amplitude a1 decreases as each of the force amplitude 

3f  and the second mode amplitude a2 are increased. 

Moreover the frequency response curves are bent to the 
right and left if 1α  > 0, and 1α  < 0, respectively. Whereas 
the frequency response curves are shifted to the right and 
to the left if 3α  > 0 and 3α  < 0, respectively.  

Considering Figure 4(a) as basic case to compare with, 
it can be seen from Figures 4(d), (e) and (f) that the 
steady-state amplitude a2 increases as each of the force 
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amplitudes 1f , 3f  and the nonlinear coefficients 1β  are 
increasing. But in Figures. 4(g) the steady- state amplitude 
a2 decreases as the nonlinear coefficient 2β  increasing. 
The behavior of the frequency response curves with linear 
damping coefficient and natural frequency are illustrated 

in Figures 4(b) and 4(c). On the other hand, the frequency 
response curves are shifted to the right or to the left, 
shown in Figures. 4(i), 4(k), and 4(l) as the non linear 
coefficient 3β , the first mode amplitude a1, and the 
detuning parameter σ1 are varied, respectively. 

 
Figure 4. Frequency response curves of second mode of the system at resonance 

2 3 1 2 3 4 5 1 14.5, 0.01, 4.5, 6, 7.1, 1.4, 20, 2.5, 2.3, 0.2, 0.3.f f aω µ β β β β β σ= = = = = − = = = = = =  

6. Conclusions 
The analytic and numerical solutions of a second degree 

of freedom model of nonlinear dynamic beam system to 

axial harmonic excitation force are investigated. The 
method of multiple scales is utilized to solve the nonlinear 
ordinary differential equations up to and including the first 
order approximation. Some possible resonance cases were 
extracted and studied applying Runge-Kutta fourth order 
method. The stability of the model is studied using both 
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frequency response function and the phase-plane method. 
The numerical solutions are focused on the effect of the 
system parameters and the behavior of the nonlinear 
system at resonant condition, where the variations of the 
response due to the change of different parameters are 
investigated and studied. We may conclude the following: 

1. The resonant frequency response curves show the 
phenomenon of multiple solutions, soft-spring 
type and hardening-spring type. 

2. The steady-state amplitude of the first mode of 
vibration is a monotonic increasing function in 
the second mode amplitude and in the axial and 
tuned force amplitudes f1, f2, f3 and F, 
respectively. 

3. The first mode amplitude is a monotonic 
decreasing function in the linear damping 
coefficient μ and the nonlinear coefficient α3. 

4. The second mode amplitude is a monotonic 
increasing function in the first mode amplitude 
and in the axial force amplitude f2. 

5. The steady-state amplitude of the second mode of 
the beam is a monotonic decreasing function in 
the natural frequency of the first mode ω. 

6. The nonlinear parameters α1 and β1 show the 
nonlinearity effect of hardening- and softening-
spring type. 
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