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ABSTRACT

Many of the modern optimization algorithms contain a number of
parameters that require tuning before the algorithm can be applied
to a particular class of optimization problems. A proper choice
of parameters may have a substantial effect on the accuracy and
efficiency of the algorithm. Until recently, parameter tuning has
mostly been performed using brute force strategies, such as grid
search and random search. Guesses and insights about the algo-
rithm are also used to find suitable parameters or suggest strate-
gies to adjust them. More recent trends include the use of meta-
optimization techniques. Most of these approaches are computa-
tionally expensive and do not scale when the number of parameters
increases. In this paper, we propose that the parameter tuning prob-
lem is inherently a bilevel programming problem. Based on this in-
sight, we introduce an evolutionary bilevel algorithm for parameter
tuning. A few commonly used optimization algorithms (Differen-
tial Evolution and Nelder-Mead) have been chosen as test cases,
whose parameters are tuned on a number of standard test problems.
The bilevel approach is found to quickly converge towards the re-
gion of efficient parameters. The code for the proposed algorithm
can be accessed from the website http://bilevel.org.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—Nonlinear program-

ming, Stochastic programming; I.2.2 [Artificial Intelligence]: Au-
tomatic Programming—Automatic analysis of algorithms

Keywords

Bilevel optimization, evolutionary algorithms, parameter tuning,
automatic algorithm configuration

1. INTRODUCTION
When conventional solution procedures fail and exhaustive search

is impractical, heuristic approaches like evolutionary algorithms
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are often used to optimize difficult problems. Over the past few
decades, such approaches have been successful in solving a number
of practical optimization problems. This has led to the design and
development of problem-specific evolutionary algorithms to handle
problems that are otherwise difficult to solve. Most of the heuristic
procedures involve parameters that often require tuning during the
design and development phase. The choice of parameter values has
a significant influence on the performance of the algorithms. The
task is particularly challenging when the algorithm to be tuned is
stochastic in nature.

Parameter tuning is a necessary step during the algorithm de-
sign phase. Though a number of strategies have been proposed,
most of the techniques become computational very expensive when
the number of parameters increases. Common strategies that re-
searchers often use for parameter tuning are grid search and ran-
dom search. These procedures are brute-force approaches that are
applicable only when the number of parameters to be optimized is
small. Researchers working on automated parameter tuning have
proposed some structured search techniques based on grid search
like Full factorial design [30]. Attempts have also been made to-
wards more efficient techniques, such as model based methods [15,
34] and meta-evolutionary algorithms [17, 21]. Although consid-
erable progress has been in this direction, there is still a significant
need for more efficient strategies.

In this paper, we propose an evolutionary strategy for automated
parameter tuning that can be used to tune both deterministic and
stochastic optimization algorithms. The method differs from ex-
isting approaches as it draws insights from the domain of bilevel
optimization. The contributions of the paper can be summarized as
follows:

1. Formulating the automated parameter tuning task as a bilevel
optimization problem

2. Proposing an algorithm based on bilevel optimization for au-
tomated parameter tuning

3. Suggesting a termination criterion for stochastic optimiza-
tion problems.

The paper is organized as follows. In Section 2 we provide a
literature survey of the parameter tuning approaches proposed in
the past. We also discuss about the relevant studies on bilevel op-
timization. In Section 3 we provide a brief description of bilevel
optimization problem. This is followed by the bilevel formulation
of the parameter tuning problem in Section 4. In Section 5 we
propose the algorithm based on the bilevel approach to handle pa-
rameter tuning problems. Thereafter, we create the test cases for
evaluating our approach in Section 6, and provide the results of the
approach in Section 7. Finally, we conclude the paper in Section 8.
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2. PAST STUDIES
In this paper, we show that the parameter tuning problem is in-

herently a bilevel optimization task. Although the problem of pa-
rameter tuning has been handled as a two layer optimization task, a
direct link between parameter tuning and bilevel optimization has
not been established. Therefore, we highlight the past studies on
parameter tuning and bilevel optimization separately. This section
has been divided into two parts. In the first part, we discuss the
prior research on automated parameter tuning. In the second part,
we highlight some of the past studies on evolutionary bilevel opti-
mization.

2.1 Parameter Tuning
The parameter tuning problem has been widely studied and a

number of different techniques have been proposed to find suitable
parameters. In this section, we provide a brief survey of these tech-
niques. For a detailed overview, we refer the readers to a study by
Eiben and Smit [14], which also provides a conceptual framework
for parameter tuning along with categorizations for the existing ap-
proaches.

One of the early approaches for parameter tuning is full facto-
rial design, which is a straightforward technique for a comprehen-
sive search. However, due to its computational expense it is often
avoided and many of the new algorithms in the domain of evo-
lutionary computing still rely on individual parameter-wise search
to obtain suitable parameters. One way to reduce the computa-
tional expense in full factorial design is Graeco-latin square [30].
In this method, a few combinations are taken in order to allow a
wide exploration in the factor range. Even though this dimension-
ality reduction diminishes the search effort, such a square still gets
computationally expensive for larger number of parameters. Fur-
ther, dimensionality reduction lowers the search potential by not
accounting for possible interactions between parameters. Another
method relying on a similar strategy is CALIBRA [1] that acts it-
eratively by refining and re-sampling in the area with better perfor-
mance measures.

Model-based techniques are also used for computationally ex-
pensive problems. In these techniques, the target is to create a sur-
rogate model that imitates the original problem. Since finding opti-
mal parameters is a computationally expensive problem, a number
of model-based techniques have been proposed. In these techniques
a model is generated that approximates the performance measures
for a given parameter vector without solving the corresponding op-
timization problem. Some of the model-based approaches are Least
Square and Gradient Methods [22], Gaussian Models [15], and Lo-
gistic Regressions [34]. A natural extension of the technique would
be to follow an iterative model construction to converge to the best
parameter vector that has been proposed by Coy [9]. There also
exist a number of screening methods [23, 7] that attempt to select
the best parameter vector with as few simulations as possible.

Meta-evolutionary techniques have also been employed to opti-
mize the parameters. These procedures follow a nested structure
where an evolutionary algorithm at the meta-level acts on the pa-
rameters of another evolutionary algorithm that operates at a lower
level. This is a classic example of a brute-force technique to solve
bilevel optimization problems, and is a common strategy in the
evolutionary bilevel optimization field. One of the first studies on
meta-evolutionary algorithms was performed by Mercer and Samp-
son in 1978 [29] that optimized the genetic parameters. The study
by Mercer and Sampson was preliminary and presented the results
only from a single run. Greffenstette [17] did a more extensive
study on meta-evolutionary algorithm by providing the experimen-
tal results from multiple runs of a genetic algorithm (GA). The per-

formance of the GA was evaluated using two metrics, online and
offline performances [12]. Some new extensions of the techniques
in meta-optimization have been addressed in FocusedILS [21] and
ParamILS [20].

2.2 Bilevel Optimization
We briefly highlight some of the studies in classical and evo-

lutionary optimization literature on bilevel optimization. Bracken
and Mcgill [6] introduced bilevel programming to the domain of
mathematical programming in the early seventies. Since then a
number of studies have been conducted on bilevel programming
[8, 41, 13].

Researchers in the classical optimization community have at-
tempted to solve bilevel programming problems using the Karush-
Kuhn-Tucker approach [5, 19], branch-and-bound approach [4],
and the use of penalty functions [2]. Commonly, the methodolo-
gies are suitable for problems adhering to simplifying assumptions
of smoothness, linearity or convexity. One often needs to resort to
other approaches like evolutionary techniques when bilevel prob-
lems get complex.

Many of the proposed evolutionary bilevel optimization algo-
rithms are nested strategies [28, 45, 26, 39, 3], that is, they solve
the lower level optimization problem completely for any given up-
per level decision. For instance, in [28, 45, 26] the upper level op-
timization task is handled using an evolutionary algorithm and the
lower level is handled using a classical approach. In [39, 3] both
levels are handled using an evolutionary technique. Researchers
in the evolutionary community have also used the Karush-Kuhn-
Tucker conditions at the lower level [42, 25, 27] to convert bilevel
optimization into a single level constrained optimization task. Co-
evolutionary approaches to handle bilevel optimization problems
have been attempted in [32, 24]. Studies where mathematical in-
sights have been successfully used with evolutionary algorithms to
handle bilevel problems are [43, 44, 38]. Researchers have also
worked on multi-objective extensions of bilevel optimization. Some
of the studies in this direction are [18, 36, 11, 37, 35, 46].

3. A BRIEF DESCRIPTION OF BILEVEL

OPTIMIZATION
Bilevel optimization involves two levels of optimization tasks

with one level nested within the other. The outer optimization task
is commonly referred as the upper level optimization task, and the
inner optimization task is commonly referred as lower level opti-
mization task. The nested structure of the problem puts a constraint
that only the optimal solutions to the lower level optimization task
may be acceptable as possible feasible candidates to the upper level
optimization task. There are two kinds of variables in a bilevel op-
timization problem: the upper level variables xu, and the lower
level variables xl. Optimization at the lower level is performed
with respect to the lower level variables xl, while the upper level
variables xu act as parameters. An optimal lower level vector and
the corresponding upper level vector xu constitute a feasible upper
level solution, provided that the pair also satisfies the upper level
constraints. Below, we provide two equivalent formulations for a
general bilevel optimization problem:

DEFINITION 1 (BILEVEL OPTIMIZATION PROBLEM). Let X
= XU × XL denote the product of the upper level decision space

XU and the lower level decision space XL, i.e. x = (xu, xl) ∈ X ,

if xu ∈ XU and xl ∈ XL. For the upper level objective function

F : X → R and the lower level objective function f : X → R, a
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general bilevel optimization problem is given by

Min
x∈X

F (x),

s.t. xl ∈ argmin
xl∈XL

{

f(x)
∣

∣ gi(x) ≥ 0, i ∈ I
}

,

Gj(x) ≥ 0, j ∈ J.

(1)

where the functions gi : X → R, i ∈ I , represent the lower level

constraints and Gj : X → R, j ∈ J , is the collection of upper

level constraints.

The above formulation requires that a member x(0) = (x
(0)
u , x

(0)
l )

can be considered feasible at the upper level if it satisfies the upper

level constraints and x
(0)
l be an optimal solution to the lower level

problem corresponding to x
(0)
u . Therefore, in a bilevel program

the lower level problem appears as a parameterized constraint to
the upper level problem. Next, we provide an equivalent formu-
lation of the bilevel optimization problem by replacing the lower
level optimization problem with a set-valued function that maps
the given upper level decision vector to the corresponding set of
optimal lower level solutions.

DEFINITION 2 (ALTERNATIVE DEFINITION). Let a set-valued

function Ψ : XU ⇒ XL, denote the optimal-solution set mapping

of the lower level problem, i.e.

Ψ(xu) = argmin
xl∈XL

{

f(x)
∣

∣ gi(x) ≥ 0, i ∈ I
}

.

A general bilevel optimization problem (BLOP) is then given by

Min
x∈X

F (x),

s.t. xl ∈ Ψ(xu),
Gj(x) ≥ 0, j ∈ J.

(2)

where the function Ψ may be a single-vector valued or a multi-

vector valued function depending on whether the lower level func-

tion has multiple global optimal solutions or not.

4. BILEVEL FORMULATION FOR PARAM-

ETER TUNING
To the best knowledge of the authors, there does not exist a well-

defined mathematical formulation of the parameter tuning problem.
A close look at the bilevel optimization formulation reveals the
“nested” connection between the parameter tuning problem and a
bilevel optimization problem. Given this similarity, it is possible to
write the parameter tuning problem as a bilevel program. Such for-
mulation would allow bilevel solution approaches to be applicable
for parameter tuning. Consider that AP represents an algorithm
A operating on a problem P for which the algorithm parameters θ
are supposed to be optimized. The performance of the algorithm is
given by γ that follows an unknown distribution DAP

. The prob-
lem of finding the optimal set of parameters θ can be written as the
following bilevel optimization problem:

minimize
θ∈Θ

F (γ, θ) = E[γ|θ]

subject to γ = AP (θ),

The problem P on which the algorithm A operates is given as fol-
lows:

minimize
z∈Z

f
p(z)

subject to g
p
k(z) ≤ 0, k ∈ K.

where fp represents an objective function to be optimized with re-
spect to vector z subject to the constraints g

p
k. The above bilevel

formulation for parameter tuning is a special case of Definition 1,
where xu = θ and xl = γ.

5. ALGORITHM DESCRIPTION
In this section, we provide a description for the parameter tun-

ing algorithm under the bilevel framework. The algorithm is moti-
vated by a recently proposed bilevel evolutionary algorithm based
on quadratic approximations (BLEAQ) [38] that bears similarities
with the iterative model-based strategies attempted in the automated
parameter tuning literature. In this paper we extend BLEAQ so
that it can be applied to the problem of parameter tuning. The ex-
tended approach is referred as Bilevel Automated Parameter Tun-
ing (BAPT) Algorithm.

The BAPT optimization strategy is based on quadratic approx-
imation of the lower level optimal vector as a function of the up-
per level vector. In other words, the approach attempts to approx-
imate the Ψ-mapping in the bilevel optimization case. However,
the lower level optimization task in this case is noisy leading to
different performance values in different runs of AP for a fixed
θ. Therefore, multiple executions may be required for any given θ

to be able to compute the expectation at the upper level. A high
number of executions to compute the expectation might make the
algorithm very expensive and a low number of executions would
lead to a large noise causing problems in determining the fitness of
solutions at the upper level. In the proposed BAPT approach we
avoid large number of runs at the lower level and at the same time
suppress noise arising from the lower level runs.

The operation of the BAPT algorithm can be summarized as fol-
lows. To begin with, we initialize an upper level population of
size N with random θi, i ∈ {1, . . . , N}. For each θi, q lower
level optimization runs of AP are executed leading to an array of
performance values given as γi,j , j ∈ {1, . . . , q}. Let these per-
formance values1 be collectively represented as γi. An expectation
over γi,j (Fi =

1
q
Σq

j=1γi,j ) leads to the upper level objective value

for (θi, γi). Based on these results we construct a quadratic approx-
imation of F (or E[γ|θ]) using θ. The approximation step serves
a dual purpose in the algorithm. First, the quadratic approximation
is used to determine F (or E[γ|θ]) for θ when AP is not executed
leading to savings in the executions of AP . Second, the quadratic
approximation is used to assign fitness values (Fiti) to upper level
population members that leads to a reduction in noise. Below we
provide a step-by-step procedure for the BAPT algorithm.

S. 1 Initialize a random population of θi vectors of size N . For
each θi, i ∈ {1, . . . , N} execute AP q times and store γi,j , j ∈
{1, . . . , q}.

S. 2 Compute upper level function F (γi; θi) = 1
q
Σq

j=1γi,j value

for all i ∈ {1, . . . , N}. Tag all the population members as 1.

S. 3 Copy all the population members (θi, γi), i ∈ {1, . . . , N}
into an archive A.

S. 4 Perform a localized quadratic approximation of F (or E[γ|θ])
over θ about each population member by choosing
(dim(θ)+1)(dim(θ)+2)

2
+ dim(θ) closest members 2 from the

1In the later part of this paper, we will propose q = 1, thus produc-
ing a single performance value for a given θi. This avoids multiple
computations at the lower level for a given θi leading to savings in
computation.
2At least

(dim(θ)+1)(dim(θ)+2)
2

points are required for a quadratic
approximation. Extra points are chosen to avoid over-fitting.
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archive A. Use the value of the quadratic function to assign
fitness to the respective population and archive members.

S. 5 Given the current population, choose the best member by fit-
ness as one of the parents. Choose µ − 1 more parents by
performing a tournament selection among 2(µ − 1) mem-
bers randomly chosen from the population.

S. 6 Perform crossover among the chosen parents by using the best
parent as an index parent. Create λ offspring from the cross-
over operation.

S. 7 Assign fitness to the λ offspring using a quadratic approxima-
tion in a similar manner as in Step 4..

S. 8 If the number of tag 1 members in the population is less than
N
2

, then execute AP q times on the offspring and compute
the objective function value for the offspring; tag the off-
spring as 1 and copy them to the archive. If the number of
tag 1 members in the population is greater than or equal to
N
2

then assign fitness from quadratic approximation as the
objective function value for the offspring; tag the offspring
as 0 and do not copy them to the archive.

S. 9 Choose r members from the parent population. Form a pool of
chosen r members and λ offspring. The best r members (in
terms of fitness) from the pool replace the chosen r members
from the population. A termination check (refer Subsection
5.4) is performed and the algorithm moves to the next gener-
ation (Step 4) if the termination check is false.

5.1 Constraint handling
In the current setting, there are no equality or inequality con-

straints. The formulation contains only box constraints that are
taken care by assigning the boundary value if one or more of the
upper level variables (θ) violate it. However, there could be situ-
ations when the user might like to have a functional dependence
between two or more variables at the upper level. This could give
rise to equality or inequality constraints. In such situations we use
the constraint handling procedure proposed in [10]. The overall
constraint violation for any solution is the summation of the viola-
tions of all the equality and inequality constraints. A solution x(i)

is said to ‘constraint dominate’ a solution x(j) if any of the follow-
ing conditions are true:

1. Solution x(i) is feasible and solution x(j) is not.

2. Solution x(i) and x(j) are both infeasible but solution x(i)

has a smaller overall constraint violation.

3. Solution x(i) and x(j) are both feasible but the objective
value of x(i) is less than that of xj .

5.2 Parameters
The parameters in the algorithm are fixed as µ = 3, λ = 2 and

r = 2. The crossover and mutation probabilities are fixed as 0.9
and 0.1 respectively. The upper level population size N is fixed as
50 and the number of lower level executions q for a given parameter
vector is fixed as 1.

5.3 Crossover Operator
The crossover operator used in the algorithm is similar to the

PCX operator proposed in [40] with minor modifications. The op-
erator creates a new solution from µ = 3 parents as follows:

c = x
(p) + ωξd+ ωη

p(2) − p(1)

2
(3)

The terms used in the above equation are defined as follows:

• x(p) is the index parent which is always the best parent in this
algorithm

• d = x(p) − g, where g is the mean of µ parents

• p(1) and p(2) are the other two parents

• ωξ = 0.1 and ωη = dim(x(p))

||x(p)−g||1
are the two parameters.

Parameters ωξ and ωη , describe the extent of variations along the
respective directions.

5.4 Termination
In this paper, we suggest a termination criterion inspired by [16],

which is commonly used with Markov chain Monte Carlo (MCMC)
algorithms. The criterion is used to determine the stationarity of a
time variant chain. It is noteworthy that the stochasticity at the
lower level causes the mean of the population at the upper level to
vary from one generation to the other. At every generation of the
algorithm we extract the population means (say θm) from the past
gl generations. The criterion is based on the analysis of two parts
(usually start and end) of the extracted chain. A z-score from two
parts of the chain, say p1 and p2, is computed as follows:

z12 =
θ̄mp1 − θ̄mp2

√

V ar(θ̄mp1) + V ar(θ̄mp2)

Note that the terms in the numerator represent the means of the two
parts of the chain while the terms in the denominator represent the
asymptotic variances of θ̄mp1 and θ̄mp2 . The asymptotic variances are
estimated from the spectral density at zero.

In this paper we choose gl = 100 and divide the chain as p1 =
(1, 10), p2 = (11, 20), p3 = (21, 30), p4 = (31, 40), p5 = (41, 50)
and p6 = (51, 100). Five different z-scores, z16, z26, z36, z46 and
z56 are computed, and if all the absolute z-scores are smaller than
0.0125 then we terminate the algorithm.

6. TEST CASES
To evaluate the BAPT procedure, we construct 2 different test

cases. Each test case represents an algorithm whose parameters we
want to optimize. Within each test case there are 8 test problems
for which we optimize the parameters of the algorithms. The algo-
rithms that we have used in this paper are: Differential Evolution
(DE) [33] and Nelder-Mead (NM) [31]. Table 1 provides a brief
description for the basic versions of the algorithms and their param-
eters that are optimized using the BAPT approach on the chosen set
of 8 test problems. The test problems on which the parameters of
these algorithms are optimized are given in Table 2. The chosen test
problems are small dimensional unconstrained optimization tasks.

7. RESULTS
In this section, we present the results obtained from BAPT for the

two test cases i.e. DE and NM. For each test case, when executed
on a specific test problem, we provide the mean and the standard
deviation for the optimal parameter values obtained from 21 runs
of BAPT. To evaluate the algorithm performance we consider grid
search as the baseline. At each grid point we perform 101 optimiza-
tion runs with DE and NM for every test problem. We provide the
results for the test cases separately in the following sub-sections.
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Table 1: Description of the chosen algorithms and their parameters to be optimized. The bounds chosen for the parameters to be

optimized in this study are also provided.

Algo. Description Parameters to be optimized

DE Differential evolution is a population based search heuristic that uses vector differences to proceed
towards the optimum. In differential evolution, at each generation of the algorithm a mutant vector
is constructed for different members in the population. In a simple DE algorithm, the mutation
operation is based on adding differences between randomly selected members to another member,
though other variants are also possible. This is followed by a recombination operation where a
trial vector is constructed using the initial member and the mutant vector. The trial member com-
petes with the current population members in order to enter the population. A number of variants
are possible for DE by varying the mutation and the recombination operation. In this paper, we
use DE/rand/1/bin variant, which means that the mutation vector is constructed by choosing the
members randomly from the population, a single difference is used to arrive at the mutant vector,
and the crossover type is binomial.

Differential Weight: F ∈ [0, 2]
Crossover Probability: CR ∈ [0, 1]

NM Nelder-Mead method is a non-linear derivative-free optimization technique to find the local mini-
mum of a function. For a function with d dimensions or variables, the method starts with a simplex
that is a polytope with d + 1 vertices in the hyperspace. It is a heuristic based on pattern search
that compares the function values at the vertices and updates the simplex. The method involves the
steps of reflection, expansion and contraction to converge towards a minimum. The simplex gets
updated at each of these steps based on the respective coefficients that appear as parameters in the
Nelder-Mead algorithm. We use the basic version of the Nelder-Mead algorithm proposed in [31]
in our computations.

Reflection Coefficient: α ∈ [0, 2]
Expansion Coefficient: γ ∈ [1, 4]
Contraction Coefficient: ρ ∈ [0, 1]
Shrink Coefficient, σ, has not been
considered in this study.

Table 2: Description of the selected test problems (TP1-TP8).

Problem Formulation Optimal Solution

TP1 (Sphere)

dim(z) = 2 Min
z

fp(z) = z2
1 + z2

2 . fp = 0.0, z = (0.0, 0.0).

TP2 (Himmelblau)

dim(z) = 2 Min
z

fp(z) = (z2
1 + z2 − 11)2 + (z1 + z2

2 − 7)2.

fp = 0.0, z = (3.0, 3.0),
fp = 0.0, z = (3.58439,−1.84813),
fp = 0.0, z = (−3.77934,−3.28317),
fp = 0.0, z = (−2.80512, 3.13134).

TP3 (Schwefel)

dim(z) = 2 Min
z

fp(z) = Σ2
i=1

(

Σi
j=1zj

)2
. fp = 0.0, z = (1.0, 1.0).

TP4 (Bohachevsky)

dim(z) = 2 Min
z

fp(z) = z2
1 − 0.3 cos(3πz1) + 2z2

2 − 0.4 cos(4πz2) + 0.7. fp = 0.0, z = (0.0, 0.0).

TP5 (Goldstein-Price)

dim(z) = 2

Min
z

fp(z) =
(

1 + a(z)2b(z)
)(

30 + c(z)2d(z)
)

,

where
a(z) = z1 + z2 + 1.0,
b(z) = 19 − 14z1 + 3z2

1 − 14z2 + 6.0z1z2 + 3z2
2 ,

c(z) = 2z1 − 3z2,
d(z) = 18 − 32z1 + 12z2

1 + 48z2 − 36z1z2 + 27z2
2 .

fp = 3.0, z = (0.0,−1.0).

TP6 (Mckinnon)

dim(z) = 2
Min
z

fp(z) =

{

αβ|z1|
τ + z2(1.0 + z2) z1 ≤ 0

αzτ
1 + z2(1.0 + z2) z1 > 0

}

.

where
α = 6, τ = 2, β = 60.

fp = −0.25, z = (0.0,−0.5).

TP7 (Beale)

dim(z) = 2
Min
z

fp(z) =
(

1.5 − z1(1 − z2)
)2 +

(

2.25 − z1(1 − z2
2)

)2

+
(

2.625 − z1(1 − z3
2)

)2
fp = 0.0, z = (3.0, 0.5).

TP8 (Powell)

dim(z) = 4
Min
z

fp(z) =
(

z1 + 10z2
)2 +

(

z3 − z4
)2 +

(

z2 − 2z3
)2

+
(

z1 − z4
)2

.
fp = 0.0, z = (0.0, 0.0, 0.0, 0.0).
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Figure 1: Performance of different DE parameters obtained

using grid search is shown with contours when the DE is exe-

cuted on sphere. The good parameters obtained using BAPT

from 21 runs for DE-Sphere are shown as points in the flat

valley.
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Figure 2: Performance of different DE parameters obtained

using grid search is shown with contours when the DE is exe-

cuted on schwefel. The good parameters obtained using BAPT

from 21 runs for DE-Schwefel are shown as points in the flat

valley.

7.1 DE Results
The results of the BAPT approach, when used to optimize the

parameters of differential evolution, are presented in Table 3 for
individual test problems. The table shows the mean value and the
standard deviation of the best parameters obtained from 21 runs of
BAPT for each test problem. The small standard deviations sug-
gest that the BAPT approach converges in the same region in most
of its runs. The results have been contrasted with the grid search
approach that has an accuracy of (±0.1,±0.1). It can be seen that
the mean result obtained from the algorithm lies close to the result
obtained from grid search. To give a better idea of the performance
of BAPT, we have plotted the best parameter values obtained from
21 runs for Sphere and Schwefel functions in Figures 1 and 2 re-
spectively. The contours in the figures represent the average perfor-
mance of the parameters obtained using a fine-grained grid search
at equally spaced points in the 2-D plane. The dark region rep-
resents better performaing parameters and the lighter region rep-
resents worse performing parameters. It can be observed that the
good parameter region is a flat valley suggesting a range of possible
parameters that would perform well on the problems. Our approach
converges close to the optimal region in all of the 21 runs.

7.2 NM Results
Nelder-Mead algorithm requires a few starting points equal to

one more than the number of dimensions of the test problem being
solved. In the experimental runs we initialized the starting points
randomly in a cubic polyhedron (size 1) about the optimum. The
results of the BAPT approach for Nelder-Mead algorithm are pre-
sented in Table 4. For this test case as well the standard devia-
tions suggest that the BAPT algorithm converges with respect to
α, γ and ρ. Once again the optimal landscape is expected to be
a stochastic flat valley. The results have once again been com-
pared with grid search. The accuracy of grid search in this case
is (±0.2,±0.2,±0.2). The number of lower level calls required

by BAPT to optimize DE and NM on respective test problems is
given in Table 5.

7.3 Algorithm Analysis
One of the important aspects to be analyzed is the number of

lower level runs, q, that should be performed for any given param-
eter vector. Keeping all the other aspects in the algorithm fixed,
we varied q as {1, 3, 5, 10, 20} for DE-Sphere and DE-Schwefel in
order to determine the appropriate number of lower level runs that
should be performed for a given parameter vector. For each q we
determined the accuracy (with respect to fined grained grid search)
and total number of lower level optimization calls required to op-
timize the problem. The normalized average results are given in
Figure 3, where surprisingly q = 1 performed significantly better
than any other q. One of the reasons for this is that performing a
large number of runs at a single point in a region provides the al-
gorithm an accurate performance estimate at that point. However,
performing the same number of runs at different points in the same
region may lead to more information, i.e. it provides an approx-
imate performance estimate for the region and it also provides an
indication to the algorithm of the direction in which further search
should be performed. For example, at the start of the algorithm, if a
number of parameter vectors in a particular region perform poorly
in single runs, then the region is quickly eliminated without wasting
computational effort for computing accurate performance values.

8. CONCLUSIONS
In this paper, we have formulated the parameter tuning problem

as a stochastic bilevel optimization problem. An algorithm (BAPT)
has been proposed that draws ideas from the domain of bilevel op-
timization and automated parameter tuning to solve the parame-
ter tuning problem. A new termination criterion is also suggested
that can be used for evolutionary algorithms operating on stochastic
problems. The results using the BAPT approach has been provided
on two test cases and have been contrasted with grid search. The
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Table 3: Parameter values obtained using BAPT and grid

search for Differential Evolution.

Differential Evolution Grid Search

mean std.
TP F CR F CR F CR
1 0.3703 0.8760 0.0531 0.0657 0.4 1
2 0.3903 0.9199 0.0472 0.0611 0.4 1
3 0.3622 0.9331 0.0880 0.0389 0.3 1
4 0.3502 0.8584 0.0236 0.0693 0.4 0.8
5 0.4168 0.9586 0.0559 0.0290 0.5 0.9
6 0.4537 0.8627 0.0525 0.0671 0.4 0.9
7 0.4544 0.9488 0.0620 0.0347 0.5 1
8 0.5109 0.9142 0.0405 0.0487 0.5 0.9

Table 4: Parameter values obtained using BAPT and grid

search for Nelder-Mead.

Nelder-Mead Grid Search Results

mean std.

TP α γ ρ α γ ρ α γ ρ

1 1.1627 2.6741 0.3984 0.1958 0.2582 0.0474 1.0 2.8 0.4

2 1.1053 2.7099 0.4086 0.1493 0.3272 0.0352 1.0 3.0 0.4

3 1.0238 2.5320 0.3233 0.1082 0.3484 0.0830 1.2 2.0 0.2
4 1.4371 2.7394 0.5249 0.1550 0.4335 0.0677 1.0 2.8 0.4

5 1.3602 2.4991 0.4896 0.1443 0.3673 0.0743 1.2 3.8 0.4

6 0.9580 2.6641 0.4483 0.1161 0.3699 0.0543 0.8 2.8 0.4

7 1.1833 2.5826 0.4271 0.1612 0.3797 0.0663 1.0 2.2 0.4

8 1.0380 2.4765 0.5223 0.0546 0.3251 0.0461 1.0 2.4 0.4

Table 5: Number of lower level optimization calls required by

the BAPT approach.

TP Differential Evolution Nelder-Mead

min median max min median max
1 360 588 1034 500 790 1088
2 374 634 1000 486 752 960
3 380 494 996 458 696 1026
4 310 572 944 914 1038 1192
5 372 740 1096 488 936 1172
6 334 632 1062 466 778 1068
7 480 906 1104 538 638 1054
8 340 620 1008 294 790 1128
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Figure 3: Computational expense and accuracy (distance from

the best grid search point) against number of lower level runs

q for a given parameter vector.

algorithm is found to converge close to the best parameter for most
of the cases.
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