

Social Network System Design

 A L B E R Z A K R A W I

 Master of Science Thesis
 Stockholm, Sweden 2010

Social Network System Design

 A L B E R Z A K R A W I

 Master’s Thesis in Computer Science (30 ECTS credits)
 at the School of Computer Science and Engineering
 Royal Institute of Technology year 2010
 Supervisor at CSC was Dilian Gurov
 Examiner was Stefan Arnborg

 TRITA-CSC-E 2010:168
 ISRN-KTH/CSC/E--10/168--SE
 ISSN-1653-5715

 Royal Institute of Technology
 School of Computer Science and Communication

 KTH CSC
 SE-100 44 Stockholm, Sweden

 URL: www.kth.se/csc

Abstract

A stable and well-functional Social Network System that is flexible through market

changes and market needs, requires a well-defined development environment infra-

structure. All levels of a social network’s development environment have to be ana-

lyzed to find out the best techniques and tools, for instance, programming language,

application server, web server, frameworks and database solution.

Interest in social networks is growing more and faster than before, and because of that,

the data volumes of such platforms increase drastically. A fundamental question is

which data storage system is the most suitable one for a social network system accor-

ding to data volume changes and increasing of functionalities in such platforms. To

answer the question, you have to find out the best suitable data model for your appli-

cation. You can then find out the best database solution for your data model based on

the properties like changeability, performance, scalability, and easy-to-use. Relational

databases, Cassandra as a key-value store and Neo4J as a graph database are compa-

red to each other in this paper. A Proof-Of-Concept application shows which database

system is the best solution for a social network system.

Design av sociala nätverk

Sammanfattning

Ett fullt funktionellt och stabilt socialt nätverkssystem kräver en väldefinierad infras-

truktur för utvecklingsmiljön. För att uppnå ett sådant system måste man undersöka

alla aspekter som är involverade i en utvecklingsmiljö, för att sedan hitta de bästa tek-

niker och verktyg som finns ute i marknaden.

Intresset för sociala nätverk växer mer och snabbare än förut och det gör att datamäng-

den ökar drastiskt för sådana system. En viktig aspekt är att ta reda på vilken databas-

teknik som skulle kunna vara den bästa lösningen för ett socialt nätverkssystem som

kan svara till systemets ökande datamängd och funktionalitet. För att ta reda på den

bästa databastekniken måste man först ta reda på systemets datamodell och baserad på

datamodellen jämföra de databaslösningar som stödjer datamodellen och därefter hitta

den bästa utav dem. Jämförelsen kan baseras på egenskaper som databaslösningens

förändringsbarhet, användarvänlighet, skalbarhet och prestanda. Relationsdatabaser,

Cassandra som en nyckel-värde databas och Neo4J som en grafdatabas jämfördes med

varandra med en prototyp i detta arbete.

Contents

I Specification & Market Researches And Analysis 1

1 Introduction 2

1.1 Method And Purpose . 2

1.2 Limitations . 4

1.3 Chapter Description . 4

2 Project Specification and Analysis 7

2.1 What Is Value4All? . 7

2.2 General Problem Description . 8

2.3 Problems And Alternative Solutions . 10

3 Market Researches 13

3.1 Market’s Database Solutions . 13

3.1.1 Results And Analysis . 15

3.2 The Popularity Of The Market’s Social Platforms 16

3.3 Market’s Development Environment Solutions 19

II Theory 20

4 Web Development 21

4.1 Client Side Programming . 21

4.2 Server Side Programming . 21

4.3 Persistence Layer . 22

4.4 Security Considerations . 22

4.5 Value4All Three Tier Design . 23

5 A Social Network System 25

5.1 Design Considerations . 26

5.2 Social Network As A Living System . 27

5.3 Social Network System Functionalities . 30

5.3.1 Social Network System Dangers 30

III Development Environment And Database Solution Proposal 32

6 Development Environment 33

6.1 Development Language . 33

6.2 Integrated Development Environment . 33

6.3 Build Tools . 34

6.4 Versioning Tools . 35

6.5 Applications Server, Web Server . 36

6.6 Persistence technique . 37

6.7 Java Frameworks . 37

6.8 Test automation control . 37

6.9 Other Techniques and Tools . 37

6.10 Results . 38

6.11 Download Pages . 39

7 Persistence Layer - Solution Proposal 40

7.1 Introduction . 40

7.2 Value4All Data Structure . 40

7.3 Data Models . 41

7.3.1 Flat model . 41

7.3.2 Hierarchical model . 42

7.3.3 Network model . 42

7.3.4 Relational model . 43

7.3.5 Entity-relationship model . 44

7.3.6 Object model . 44

7.3.7 Graph model . 44

7.3.8 Key-Value model . 44

7.3.9 Document model . 45

7.4 Data Models Comparison Analysis . 45

7.5 Data Models - Comparison Result . 46

8 Why Not Relational Databases For Value4All? 48

8.1 Relational Databases - Scalability Analysis 49

8.2 Types Of NoSQL Databases . 53

9 Why Choose Cassandra? 56

9.1 Introduction . 56

9.2 Distributed hash table . 56

9.3 Consistency Levels . 57

9.4 Example of Key-Value Stores . 58

9.5 Cassandra . 59

9.5.1 Read And Write Operations . 61

9.5.2 Partitioning . 63

9.5.3 Replication And Consistency Level 63

9.5.4 Cluster Membership . 64

9.5.5 Sorting . 64

10 Why Choose Neo4J? 66

10.1 Introduction . 66

10.2 What Is A Graph? . 67

10.2.1 Traversing A Graph . 68

10.3 Graph Databases - Analysis . 69

10.4 Neo4J . 71

10.4.1 Traversal . 74

IV Proof-Of-Concept 75

11 Proof-Of-Concept Application 76

11.1 Development Method . 76

11.2 Prototype’s Iterative Stages . 76

11.3 Choosing Softwares and Tools . 77

11.4 Softwares And Tools Installation and Configuration 77

11.5 Designing A Data Model For Value4All In Cassandra and Neo4J 77

11.5.1 The Data Model In Cassandra . 79

11.6 Prototype Implementation . 80

11.6.1 Transactions in Neo4J . 81

11.6.2 Transactions in Cassandra . 82

11.6.3 Data Model Implementation In Neo4J 83

11.6.4 Data Model Implementation In Cassandra 85

11.7 Comparison Test Cases . 87

11.7.1 Changeability . 87

11.7.2 Easy-To-Use . 95

11.7.3 Performance . 98

11.7.4 Scalability . 103

11.7.5 Conclusion . 105

V Future Of Value4All & Final Words 107

12 Which Social Networks Can be Integrated In Value4All? 108

12.1 Facebook . 108

12.2 Twitter . 109

12.3 LinkedIn . 109

12.4 Result . 110

12.5 OAuth Protocol . 110

13 The Future Of Social Network Systems 113

14 Final Words 115

VI References & Appendices 117

References 118

Appendices

A Graph Databases - A Complete Comparison 122

B Social Network Creators - Comparison 125

C NoSQL Databases - Comparison 127

D The Popularity Of The Market’s Social Platforms 130

E Market’s Development Environment Solutions 131

F Application Installations 132

F.1 What we’ll need? . 132

F.2 Applications And Their Versions . 133

F.3 IntelliJ IDEA Installation . 133

F.4 Git Installation . 134

F.4.1 Git Installation in Intellij IDEA . 136

F.5 Maven and Junit Installation . 136

F.6 Subversion Installation . 138

F.7 Selenium Installation . 141

F.8 Jetty Installation . 142

F.9 Neo4J Installation . 143

F.9.1 Testing Neo4J Installation By An Example 145

F.9.2 Indexing In Neo4J . 146

F.10 Cassandra And Cassandra Client Installations 147

F.10.1 Cassandra Installation . 148

F.10.2 Cassandra-Thrift Installation . 149

F.10.3 Cassandra-Hector Installation . 155

F.11 Master Thesis Hardware Environment . 157

Part I

Specification & Market Researches And

Analysis

1

Chapter 1

Introduction

My name is Alberz Akrawi, and I am a student of School of Computer Science and

Communication at KTH Royal Institute of Technology. From the beginning, my thoughts

were to take an extensive master thesis within an interesting area of technique in ex-

pansion and because of that, I took this master thesis that is about design of a Social

Network System. Today, there are many social network systems that are growing fast,

which causes some difficulties for them to manage the huge amount of data. It is also

critical for them to choose the right developing environment to maximize the durabi-

lity and minimize the risks.

Today, there is no social network platform for:

• Entrepreneurs with no experiences to write a business plan or run a company.

• Investors who looking for other profitable investments.

• Service Providers that looking for new customers offering their service packages.

Value4All has planned to be a such durable social network system dedicated to entre-

preneurs, investors and service providers. Value4All has also planned to be integrated

with already stabilized popular social network systems in Sweden, for instance, Lin-

kedIn, Twitter or Facebook to create a more valuable environment for their members.

1.1 Method And Purpose

There were several comparison studies during the master thesis:

1. Find out the best data models suitable for Value4All based on the structure of

Value4All’s data.

2

2. Find out the best database solutions for the results from the first comparison.

3. Compare the databases from the second comparison.

The second and the third comparisons were based on properties:

• Easy-To-Use

• Changeability

• Performance

• Scalability

These comparison studies took also advantages of the market’s available social net-

work systems to find out how they had solved their database needs and which data-

base models are used by them. For more information about that, see the chapter 3.1

(Market’s Database Solutions). Comparison analysis was based on the results from dif-

ferent test-cases from a "Proof-Of-Concept" application. During the whole work, I made

notes from analysis of different test-data.

A very important comparison property between the database solutions was how easy

or difficult it was to migrate from a presentation of one database model to another

changed one. To understand the changeability power of databases, I presented a model

to show how much work there were needed to migrate from one version data model

implementation to another changed model with a description on what we needed to

do manually by a script or something else. This fundamental property was very im-

portant for Value4All to become a durable system through market changes and market

needs. This is also an important property that most companies take it into considera-

tion when they design their applications. On the other hand, there are many systems

that are implemented without thinking about this property and because of that they

maybe need to change the whole system to overcome the complexity problems which

is a difficult task and require much money.

The points that are mentioned below are also included in this paper.

• A recommendation on which developing environment are the best choice for Va-

lue4All.

• A description on what a three tier architecture is and how Value4All can be de-

veloped as a such system.

• A description on what a social network system is.

3

• Introducing some popular social network platforms in Sweden and how they can

be integrated with Value4All.

• A description of the prototype, installation and configuration guide.

• A description about the future of social networks.

The purpose of the master thesis is to propose a durable, well-defined solution with

high market acceptance to the entire development environment of Value4All, including

a scalable database solution to be used as a basic data for decision-making.

1.2 Limitations

The paper doesn’t contain detailed information about every technical term and all tech-

niques used during the master thesis. All data models and all database solutions were

not described in this paper in details. Only some database solutions were compared to

each other to find out the best database solution for Value4All. A "Proof-Of-concept"

application was developed for comparing only two database solutions with different

comparison properties like easy-to-use, scalability, changeability and performance wi-

thout thinking about other design aspects like interface design or security measure-

ments.

1.3 Chapter Description

Here is a summary about the contents of all chapters in this paper.

PART I - Specification & Market Researches And Analysis

• Chapter 1. This chapter contains a brief introduction of what the master thesis is

about, background, method and purpose of the master thesis.

• Chapter 2. This chapter contains the specification of the master thesis, a general

solution proposal and the problems that I faced during the master thesis.

• Chapter 3. This chapter is about some market researches that were done du-

ring the master thesis. The researches are about the market’s most used database

solutions and their popularity and also market’s development environment so-

lutions.

4

PART II - Theory

• Chapter 4. Value4All is a web application with a three tier architecture. This

chapter contains a brief introduction about what web development is and how

Value4All can be developed as a three tier architecture.

• Chapter 5. This chapter contains a brief introduction about what a social network

system like Value4All is.

PART III - Development Environment And Database Solution Proposal

• Chapter 6. A solution proposal for the entire development environment of Va-

lue4All.

• Chapter 7. A solution proposal for Value4All’s database solution.

• Chapter 8. A description about why relational databases are not enough for Va-

lue4All.

• Chapter 9. A description about what Key-Value stores are, what are the market’s

most popular key-Value store and why we choose Cassandra?

• Chapter 10. This chapter contains an introduction about what graph databases

are, what are the market’s most popular graph databases and why we choose

Neo4J?

PART IV - Proof-Of-Concept

• Chapter 11. This chapter is about the implementation of the prototype (Proof-

Of-Concept application), result, analysis and conclusion of Neo4J and Cassandra

comparison test-cases.

PART V - Future Of Value4All & Final Words

• Chapter 12. This chapter is about which popular social network systems can be

integrated with Value4All.

• Chapter 13. A brief description about the future of social networks.

5

• Chapter 14. This chapter contains final words of the master thesis.

At the end of this paper, there is a presentation of the references to information re-

sources and appendices.

6

Chapter 2

Project Specification and Analysis

2.1 What Is Value4All?

The first version of Value4All contains three groups of people. That was important to

take this into account, to make the first prototype interested to all of these three groups

of people, which means that, the application had to contain some functionality to all of

these three groups.

• Entrepreneurs. Entrepreneurs are the people with an idea who look for investors

and a place to learn how to start and realize their idea (a lifestyle idea or an aca-

demic startup idea) to a real business. Value4All helps them to create a business

plan from the business idea and find capital to their business.

• Investors. They want to see how an entrepreneur has thought about the incomes

and if the idea is profitable. The other important aspect for them is to know if the

idea was scalable (the ability to grow).

• Service Providers. In Value4All, service providers can help other people with

different services. For example, they can offer an entrepreneur with the creation

of a home page, a company logotype, a company name.

7

The picture above, shows the dependencies between these groups of people based on

their interest in different projects in the first version of Value4All. When these groups

of people agreed on the idea then they can agree on the profit percentage point bet-

ween each other. Value4All is also connected to social banks to help entrepreneurs

with some investment opportunities like non-risk capital investments.

2.2 General Problem Description

To make it possible for Value4All to success in the market and become a popular, well-

defined social network system, there was important to look for solutions used in the

market by other social networks for the entire development environment. For instance,

which programming language was the best choice (Java, .Net, Scala, Ruby, and, etc.)

or maybe a mixed of programming languages could be a better solution.

An easy example that shows how Value4All’s data model can look like is as follows.

8

"Kalle", "Hasse" and "Project A" are the nodes of the graph. "Knows", "Works" and

"Owns" are the edges of the graph which indicate the relationships between the nodes.

Of course, this data structure can be designed by other data models, such as a relatio-

nal model. For example:

Three tables are created for designing three relations (Knows, Works and Owns) for

two persons ("Kalle" and "Hasse") and a project ("Project A"). A table for persons and

a table for the project.

The question was which data models were the best choices for Value4All’s data. In

this paper, there is comparison analysis by a prototype to find out a good database

solution for Value4All.

9

2.3 Problems And Alternative Solutions

During the master thesis, I came across some problems. Some of these problems are

described here:

1. There is some social network creator in the market. The question was if we could

use a such system for development of Value4All instead of developing it from

scratch?

2. How to find good material about NoSql databases?

3. How to decide the development environment without any inputs from the com-

panies that were asked by a questionnaire?

4. Writing the chapter 13 (The Future Of Social Network System) without any in-

puts from the companies that were asked by a questionnaire?

Problem Solution:

1. I found some open source social network creator in the market that are develo-

ped for a different purpose. I couldn’t find any information about these application’s

performance and scalability strategies and also what will happen in the case who, the

amount of data increases drastically and how difficult it was to migrate from one da-

tabase solution to another one. Almost all of these applications are based on relational

databases and because of that, there will be a limitation for the growth of the Value4All

since relational databases are not good enough to be used as a database solution in so-

cial network systems. For more information, see the chapter 8.1 (Relational Databases

- Scalability Problem). Another problem with these applications is that there are a li-

mitation on how much influence you can have on the interface of your application. A

complete comparison between these social network creators is available in the appen-

dix B (Social Network Creator - Comparison).

There is some free and open source software for creation of social networks on the

internet with different functionalities.

• Elgg. Elgg won the best open source social network creator for the year 2008, and

is a powerful free software that offers a blog, networking, community, collection

of news using feeds aggregation and file sharing. Elgg works on a LAMP (Linux,

Apache, MySql and Php) environment.

10

Download page: http://www.elgg.org/

• Mahara. The purpose of Mahara is to allow its user to view their life-long lear-

ning, skills and development to their friends. Some functionalities in Mahara

include a blog, file managers, and, maintaining a list of friends. Mahara runs on

LAMP (Postgres is preferred over MySql).

Download page: http://mahara.org/

• Lovd By Less. Lovd By Less is built on Ruby on Rails. Some functionalities of

Lovd By Less include a blog, photo gallery, searching for friends, user-to-user

messaging with Flickr and YouTube integrated on it.

Download page: http://lovdbyless.com/

• Xoops with Yogurt extension. XOOPS is an extensible Content Management Sys-

tem (CMS) that allows you to build pages based on your needs. You can first

build a blog and then include social activities, forum and, etc. Yogurt is the mo-

dule that allows to build a social site with XOOPS with functionalities like a per-

sonal album of pictures, videos from YouTube, mp3 files, and a list of friends.

XOOPS is based on php in a LAMP environment.

Download page: http://www.xoops.org/

• AROUNDMe. AROUNDMe is different from the other social network creators.

Instead of building a social network platform, it allows you to set up your ser-

vers who enable your users to create their own social network page, community

or webspace like Google Groups, Snappville, CollectiveX. It allows your users to

have access to a guest book, a blog, a forum and, etc. PHP is used as the pro-

gramming language.

Download page: http://www.barnraiser.org/aroundme

AROUNDMe was not what we were looking for. The question was if any of the other

social network creators that were mentioned above were suitable for Value4All to be-

come build upon it, instead of developing it from scratch. As mentioned above, the

best idea is to build Value4All from scratch because of the inflexibility of the changea-

bility property, unscalability and limited performance of these network system creators

when the amount of data increases.

11

2. There is much different literature about relational databases, but I couldn’t find

any good literature about NoSQL databases. My first information source for this part

was the internet because NoSQL databases are relatively new.

3. From the beginning, I thought that I could use a questionnaire to ask some com-

panies about which applications they are using. In that situation, I could see which

applications were popular and were most-used in the market, but I got almost no ans-

wer from the companies that were asked by a questionnaire. It was maybe, the com-

pany secrets that, they didn’t want to talk about. I solved the problem by doing some

researches on the internet and ask Crisp about it.

4. That was hard to write this chapter because I hoped to get some answers from

companies that were asked by a questionnaire. I made some research on the internet

and also asked some private persons by a questionnaire.

12

Chapter 3

Market Researches

3.1 Market’s Database Solutions

When developing a system, one of the most important cases we analyze is if the system

scale. Scalability means the ability of an application to handle increasing load by, for

instance, adding additional nodes (horizontal scaling) or upgrading existing machines

(vertical scaling). Horizontal scaling becomes more important with Web 2.0 (distributed

systems, cloud computing, social network systems, and, etc.). There are many compa-

nies that solved their scalability problems and many other companies tries to find a

good solution to their application infrastructures. Here is the result of some researches

about market’s database solutions for the scalability problem.

• Amazon, (www.amazon.com/). Amazon is the world’s first e-commerce site in

the internet, and they have solved the horizontal scalability with their own solu-

tion by a distributed key-value store (Dynamo).

• Twitter, (www.twitter.com/). Twitter is one of the biggest social network systems

today, and it has been considered that Twitter has a problem with slow response

time and downtime. Twitter has switched over to a distributed key-value store

(Cassandra, for storing all tweets) because it can be run on large server clusters

and is capable of handling huge amounts of data at a time.

• LinkedIn, (www.linkedin.com/). LinkedIn is a popular network system in Swe-

den that uses a distributed key-value store (Voldemort) to their high-scalability

storage problems.

• Google, (www.google.com). Google has solved the problem of horizontal scaling

in their infrastructure, with an own solution. They have solved the problem by a

distributed key-value store (Google BigTable).

13

• Facebook, (www.facebook.com/). Facebook is another popular social network

system in the market and is also another example of what happening if you don’t

plan your infrastructure orderly from the beginning. They have big problems

with their storing infrastructure, which don’t scale as it required. Facebook has

huge clusters of MySQL and Memcached servers to deal with storing user data

and serving user queries to overcome the scaling problem. As it is reported nearly

a year ago, they already had close to 2,000 MySQL servers and 1,000 Memcached

servers in addition to their 10,000 web servers to be able to handle their enormous

data. They have looked at other NoSQL solutions to solve their problems, and

they have implemented Cassandra from the scratch as a distributed key-value

store.

• Cisco’s WebEx, (http://www.mahalo.com/). Cisco’s WebEx providing online mee-

ting and services for business worldwide, including web and video conferencing.

They use Cassandra to store user feeds and activities in real time.

• Ooyala, (http://www.ooyala.com/). Ooyala is a leading provider of end-to-end

video platform applications. They have moved to Cassandra as its new Data-

base system. That will enhance Ooyala’s current analytic offering and create the

backbone for its new Business Intelligence platform for video.

• Rackspace, (www.rackspace.com/). Rackspace also uses Cassandra in their Cloud

Computing and Hosting.

• IBM, (www.ibm.com). IBM has done researches using Cassandra building a sca-

lable email system.

• Digg, (www.digg.com/). Digg, on March 8, 2010, uses Cassandra as their data-

base solution.

• Reddit, (www.reddit.com/). Reddit uses Cassandra as their database solution

from memcacheDB on March 12, 2010.

• Cloudkick,

(https://www.cloudkick.com/blog/2010/mar/02/4_months_with_cassandra/).

Cloudkick’s primary use of Cassandra is for storing monitoring data of different

metrics, checked by their system.

14

3.1.1 Results And Analysis

There are some important properties when designing an application, such as, perfor-

mance and scalability. SQL databases like, MySQL or Orcale database is widely-used

in the market because of performance, security, simplicity and flexibility but scalability

is another important property that SQL database can’t support in an easy way. Scaling

is available by special solutions in SQL databases. Scaling is very important in social

network system but scaling solutions in SQL databases are very expensive and com-

plex. As you can see almost all popular companies with huge amounts of data looking

for other solutions than NoSQL databases.

Cassandra is one of the best and popular NoSQL databases used in the market because,

the database brings together the scalability and reliability of both Amazon’s Dynamo

and Google’s Bigtable storage systems in a single database model. There is a new type

of NoSQL databases, Graph Databases, like Neo4J, which are worth looking at in this

paper. With other words, web application nowadays, have different needs than appli-

cations that, SQL databases are designed for, such as:

• Low Response Time. The response time to the visitors has to be very low. This

is one of the most important properties of a social network system. The visitors

want to see the information really fast otherwise you risk that they don’t come

15

back. The response time of SQL databases increases when the amount of data

and tables increase in the database because of many joins and unions that are

very costly.

• Scalability. It is very important that a social network system scale well because of

the huge amount of data that increase drastically. This solution must be easy, fast

and also at a low cost. The available scalability solutions of relational databases

are not good enough because of the complexity with special solutions.

• High availability. This is the trade-off between ACID property of relational da-

tabases and the high availability of NoSQL databases in case of not providing

high consistency (means that you can’t find any information in a database that

is against each other). Generally, web applications can function without high

consistency.

• Schema-less databases (NoSQL databases) provide the flexibility to take the real

world’s data as they are into the databases. In large scale application, it is diffi-

cult to achieve the schema flexibility in SQL databases because of a high number

of tables (causing many joins and unions with no good performance). Also chan-

geability of schema-based databases based on a big amount of tables is not easy.

• Geographical distributions are also another good property of NoSQL databases

in that way that, you can place your databases in different data centers.

Social network systems are not as a banking system, and we don’t actually need the

ACID property of relational databases in such applications, instead we need internal

scaling of data size, high read and write operation rates and frequent schema changes.

In these paper, there is a comparison analysis about why relational databases are not

good enough to be used as a database solution in development of social networks. For

more information see the chapter 8.1 (Relational Databases - Scalability Problem).

3.2 The Popularity Of The Market’s Social Platforms

According to researches that were done by a questionnaire, the most popular social

networks in the market in Sweden are listed below. You can also see, how popular it is

to use social platforms among people.

• Facebook. Facebook connects people with friends and live around them.

http://www.facebook.com/

16

• Twitter. With Twitter, you can share what’s happening right now.

http://twitter.com/

• LinkedIn. Here you can share your academical studies, CV and other skills.

http://www.linkedin.com/

A questionnaire was sent to more than 100 private persons, and I could use 46 ans-

wers, of which 26 was women and 20 was men. 10 of men and 10 of women who

answered were over 25 years old.

You can find the questionnaire in appendix D (The Popularity Of The Market’s Social

Platforms).

In the table above and the diagram below, there is a number in a percentage point for

all of them who answered within each group of questions (A-D). For instance, 100%

of women 0-25 know what a social network system (Facebook, Twitter, LinkedIn or

something like that) is.

17

In appendix D (The Popularity Of The Market’s Social Platforms):

• Questions 1 fits in "Do you know what a social network (Facebook, Twitter, lin-

kedIn) is?".

• Questions 2 and 3 fit in "Are you using Facebook, Twitter or LinkedIn?".

• Question 4 and 5 fit in "Is it interesting for you?".

• Question 6, 7 and 8 fit in "Are the services user friendly?".

• Question 9 was about the future of social network systems. I used the result of

this question in chapter 13 (The Future Of Social Network System).

As the result shows, almost all people know what a social network is. This result

shows the popularity of social network platforms like Facebook, Twitter and LinkedIn.

I think the popularity and the usage of such systems will increase dramatically in the

future and the possibility to get Value4All integrated with these systems will improve

the popularity of Value4All in the future. Almost all of them who answered, were very

interested on what will happen in the future and what improvements they are going

to see in the future on these social network systems.

I can mention that, some older people that knew what a social network system was but re-

fused to participate and answer the questions, were worried about their children who use such

systems and what will happen in the future.

18

3.3 Market’s Development Environment Solutions

A questionnaire was sent to some big and popular companies, both social networking

companies and other big companies with a three tier architecture solution. Unfortu-

nately, I am not going to show any results here since only one company answered to

the questionnaire. The questionnaire is available in the appendix E (Market’s Develop-

ment Environment Solutions).

19

Part II

Theory

20

Chapter 4

Web Development

Web development is a broad term in development of web sites for the Internet or the

intranet that includes, web design, web content development, client/server scripting,

web server, application server, network security, etc. Web development uses different

techniques like Java Enterprise Edition (JEE) and Microsoft .NET to create interactive

web pages and consists of many areas and some of them are listed below.

• Client Side Programming.

• Server Side Programming.

• Persistence Layer.

• (Security Considerations for all levels).

Such architecture is called a three-tier architecture.

4.1 Client Side Programming

Client side programming refers to techniques and programs that can be used in a web

application to be viewed by users’ web browsers. These techniques and programs are

an important part of an interactive HTML, for instance Javascript and Ajax. See the

chapter 6.9 (Other Techniques And Tools) for more information.

4.2 Server Side Programming

Server side programming refers to actions that are performed by a server who is called

from client side programs. Client requests are performed by the server because they

require access to information from databases that is not available by clients directly.

Some of the server side techniques are listed below.

21

• ASP. Active Server Pages, is Microsoft’s server side script programming for dy-

namic web pages. ASP is included as a component of Windows Server 2000 and

higher server versions and is usually called as ASP.NET.

• Java EE. Java Enterprise Edition, is used for server programming in the Java pro-

gramming language. J2EE includes libraries, that provide functionalities to de-

velop secure, reliable and multi-layer Java applications.

• PHP. Hypertext Preprocessor is a server side programming language that is de-

signed to develop dynamic web pages. PHP code is embedded into the HTML

documents and interpreted by a web server with a PHP interpreter.

• Perl. Perl is a Unix server side programming language that is designed to develop

dynamic web pages.

• Websphere. IBM WebSphere is a set of software that is designed to manage en-

terprise applications across multiple platforms, using Java web technologies.

• Microsoft .NET Framework is a framework for Microsoft Windows operating sys-

tems that contains a set of library solutions and a virtual machine that manages

the execution of applications.

4.3 Persistence Layer

Persistence software is an application designed to store, organize and manage infor-

mation, for instance, MySQL, Oracl DB, Neo4J and Microsoft SQL server.

4.4 Security Considerations

There are many security considerations when designing web applications because it is

critical to protect the organizational data by controlling the information into the com-

pany databases and out from the databases. For instance, data entry error checking

through forms applied by a user, filtering output to protect critical data, and encryp-

tion of data. It is important to test web applications before the applications are public

released in a production environment.

Web servers and databases have to be kept safe for threats outside when transmitting

data. Many technologies exist to keep the information on the internet safe when it is

22

transmitted from one location to another, for instance, Secure Socket Layer Encryption

(SSL) or Certificates that are issued by certificate authorities to help prevent internet

fraud. A weakness in any layer of a web application makes the application vulnerable

to attack.

4.5 Value4All Three Tier Design

The information flow of Value4All as a three tier architecture can be illustrated in the

picture below.

• 1 Request. A Value4All user, sends a request (for instance, find a project) by its

web browser to Value4All Web server (for instance, Jetty Web server).

23

• 2 Query. Value4All Web server sends a query to Value4All database to find the

requested project.

• 3 Looking for asked data. Neo4J looks for the project.

• 4 Finding asked data. Neo4J finds the project.

• 5 Answering. Neo4J sends the project to the Value4All Web server.

• 6 Work up the data. Value4All Web server, if needed, manipulates the answer.

• 7 Response. Value4All Web server sends the project to the Value4All user’s web

browser.

• 8 Rendering. User’s web browser renders the result and shows it.

24

Chapter 5

A Social Network System

There are many social network platforms in the market that are developed for dif-

ferent purposes, for instance, Facebook, Twitter or LinkedIn. In such platforms, people

can join, write to each other, create different groups of people. We can say that social

network systems in terms of network theory consist of nodes (for instance, an indi-

vidual or a group) and connections between them (for instance, an individual knows

another one or an individual is a member of a group, financial exchange, friendship,

knowledge or religion). In a typical scenario, you register on a web page and send in-

vitations to your friends to become part of your network or community. Your friends,

in turn, invite their friends and so on. Only after joining the network, someone can see

your information.

According to Nielsen O. (Online Measurement Services, http://en-us.nielsen.com/),

social networks are the forth most popular kinds of online activities with 67% of the

world online population. Different purpose of creating social networks can be, for ins-

tance:

• Personalization or friendship approaches like Facebook, Twitter and MySpace.

25

• Professional approach likes LinkedIn. Value4All will fit in under this category.

5.1 Design Considerations

Designing social network systems are complex and need many researches. One impor-

tant thing, when designing such systems are to consider that, all functionalities have to

be easy to use by users. There are many aspects to think about when designing social

networks and some of the most important aspects are listed below.

• Clear information for visitors. When people visit a social network site, they have

to know all about the purpose of the site within seconds because most people

don’t have time to find out what a site is about, if they can’t see that from the

beginning. The site’s title, graphics, logotype and other elements of the site have

to be obvious and self-speaker for visitors.

• Clear information for users. That is important to have clear and updated infor-

mation for users of the site to make the trust between the site and users stronger

and make them more interested in the site.

• Users and visitors should be able to do some options. A social network site

should give both visitors and the site’s users something professional to do. For

example, logging in for users and signing up for visitors. The site should give

visitors other options too, for instance, gives them the opportunity to know what

the site is about quickly or describes the requirements before they sign up, let

them search for people they already know on the site and give them the oppor-

tunity to see why they should sign up in the site before they sign up, because it

leads to trust between the site and visitors.

26

• Provide users with interesting information of their friends or groups. It is impor-

tant that users can see what their friends are doing or what is new within their

groups from the moment they log in to the system.

• Make it easy to find friends. The users of a social network site should be able to

find friends easily. The site should let users to search by different search options

like an email, school, company, name, age and other options.

• Configurable Profile pages by users. A social network system needs security

considerations but on the other hand, the site should let users at least do some

ability to make their site reflect their personality. For example, through color

schema, backgrounds, adding information about themselves, comment on their

activities.

• Regular information changing. The characteristic of a social network design is

that, the user’s information can change constantly. Updating individual contents

are important because this keeps users coming back, because there is always so-

mething more and new to do.

• Let users to create own groups. A successful social network lets users to create

different groups to organize their friends, such as business contacts, friends, and

family. The site should let users to add their contacts to more than one group

simultaneously.

• Search functionality. A social network site should let users to find information

they are looking for.

5.2 Social Network As A Living System

Ken Thompson (a leading expert in the area of virtual enterprise networks

http://en.wikipedia.org/wiki/Ken_Thompson), suggests that social network develo-

per should look at a social network system as a living system. He states that, “it is

possible to successfully apply living systems design to social systems but only if, li-

ving systems theory is applied to each one of the three nested systems making up a

living unit: the individual, the group, the system itself”.

27

“Living system theory is about the existence of all living systems, their structure, their

behavior and development”. This theory is created by James Grier Miller (an Ame-

rican biologist, who originated the modern use of the term "behavioral science", and

originated the living system theory,

http://en.wikipedia.org/wiki/James_Grier_Miller). Another theory are defined by

Maturana and Varela (Principles of Biological Autonomy,

http://en.wikipedia.org/wiki/Humberto_Maturana,

http://en.wikipedia.org/wiki/Francisco_Varela) that, have defined living systems in

a more philosophically way: “A living system is one whose only products are itself”.

They suggested also that there are four key-aspects of a living system that are viewed

in the picture below.

28

• The Boundary: represents the boundary of a living system. This boundary is

open to energy from outside, but it is closed to external materials.

• The Processes available are represented by the arrow on the boundary. We can

say that:

– The processes are the doing of a living system.

– The boundary is the being of a living system.

According to this Theory, a living system must have a complete set of different

processes to be able to function as a living system.

• The Nervous System. The Nervous system of a living system is like a connection

between external events and the processes within a living system.

• The Communication Channels which represents a two way communication bet-

ween a living system and its external environment.

Value4All application is a social network system and by this theory can represent a

living system (Value4All as the boundary with its own available functionalities). Va-

lue4All users can perform different actions by functionalities defined in Value4All (the

processes). A user can introduce new projects in Value4All, which means that Va-

lue4All is open to new energy but users can’t perform actions that aren’t defined in

Value4All, which means the system is closed to external materials. The communica-

tion channel between Value4All and the world outside is the site available online with

its users.

29

5.3 Social Network System Functionalities

There are many functionalities that can be implemented in a social network system.

The functionalities are many and the set of functionalities are increasing all the time.

Here are, some of the basic functionalities.

• Identity Management. For instance, in Facebook, users can fill in information

about themselves to access the site. Once you are granted access to the site you

can begin to socialize, which means that you can create different groups of friends

or family and search friends.

• Contact management. For instance, you can decide your family group or friends

group. You can also read the profile pages of other members and possibly even

contact them and put them in a specific group.

• Exchange. For instance, in Twitter you exchange information about what you are

doing right now or in Facebook you can exchange pictures. You can learn new

things about new cultures or new languages and learning is always a good thing.

• Expert Finding. For instance, in LinkedIn, companies can see people’s CV and

find new experts for their companies.

• Share common interests in business, hobbies, politics or religion.

5.3.1 Social Network System Dangers

Social networks are great opportunities for socializing, finding friends and communi-

cate to them but on the other hands, there are many dangers within social network

systems, that we have to be aware of. I had sent a questionnaire to more than 100

private persons, and I can mention that, some older people that knew what a social network

system was but refused to participate and answer the questions, were worried about their chil-

dren using such systems. I think it is important to remember that, there are many dangers

in the real life too, not only within the social networks. Some of the dangers and how

to protect oneself from them within social networks are:

• Data theft. Don’t share sensitive information.

• Viruses. Install anti-viruses program.

30

• The most prevalent danger is individuals that claim to be someone whom they

are not. The important things here are to be aware of these dangers precisely in

the same way when you are meeting strangers at clubs, bars, school, or work in

the real life.

• Decide to meet someone from social networks. It is important to be able to make

a clear decision before you can meet someone from the site.

31

Part III

Development Environment And

Database Solution Proposal

32

Chapter 6

Development Environment

6.1 Development Language

Value4All is a web based three tier application, and the development environment has

to be a flexible and well-defined environment with good market acceptance. For that

purpose, it’s important to choose a good programming language for development of

Value4All. The possible web programming languages are, for instance, ASP.NET, PHP,

Ruby, Java, Python, Ruby on Rails, Scala. The question is which of them can be suitable

for Value4All? A debate between these programming languages had gone on for years,

and you’d never find a good answer. That’s because there are so many pros and cons

of all these programming languages that make it impossible to get closer to the truth.

Developers are building web applications using .NET, Java, Ruby, PHP all the time

and almost none of them are failing because of the choice of the language. All of these

programming languages are large and complex and need some experiences because

otherwise you’ll maybe do things wrong. A popular programming language is Java,

and I think Java can be a good programming language for Value4All. You can find

many free, popular and open source applications used in many three tier platforms

with Java’s support. I used Java as the programming language for programming of

the prototype. Java is a programming language, developed by James Gosling at Sun

Microsystems and released in 1995. Java is one of the most influential programming

languages of the 20th century, and is widely used from application software to web

applications.

6.2 Integrated Development Environment

An Integrated Development Environment, IDE, or an integrated debugging environment

is a software application that provides complex integrated functionalities to develo-

33

pers, for instance, a source code editor, a compiler, a debugger, a version control sys-

tem, a class browser, a class hierarchy diagram and a refactoring system. The most

popular Java based IDE in the market are listed below.

• Eclipse. Eclipse is a multi-language development environment, free and open-

source IDE.

• Borland JBuilder. Borland JBuilder is a Java IDE for Windows, Linux, and Solaris.

JBuilder Foundation Edition is a free version of JBuilder, which offers most of the

JBuilder capabilities.

• Sun Java Studio Creator. Java IDE for Windows, Solaris, and MacOS. Java Studio

makes it easy for relative junior developers to create a complex server-side appli-

cations, but will be less popular for experts who prefer to work directly with the

code. Sun Java Studio is built on the free, open-source NetBeans IDE.

• IntelliJ IDEA. A powerful IDE that is popular among people who like a smart

editor and many integrated Java related tools.

• IBM WebShpere Studio. Java IDE for Windows and Linux. It is expensive but

very powerful IDE for servlets, JSP, and other J2EE development.

• Oracle Weblogic Workshop. Oracle-BEA WebLogic Workshop is a very powerful

IDE for developing applications, which runs on Windows, Linux and Solaris, and

requires a Weblogic Server.

That was difficult to choose an IDE. For me, Eclipse is the favorite IDE but Eclipse is

hard to set up and there are many extensible plug-in systems for Eclipse to configure.

Crisp recommended IntelliJ IDEA because it’s easy to set up, configure, and they had

good experiences within IntelliJ IDEA. IntelliJ IDEA has many integrated Java related

tools such as refactoring system, versioning systems and Maven, which make the de-

velopment easier. IntelliJ IDEA is a commercial Java IDE by JetBrains. Also an open

source Community Edition is available. I used IntelliJ IDEA for development of the

prototype.

6.3 Build Tools

A Java Build tool is a compiler for the Java applications. The output file of a Java

build tool are Java class files containing platform independent Java bytecode. The

Java Virtual Machine (JVM) loads, the class files and either interprets the bytecode or

compiles it to machine code. There are two popular java build tools, Ant and Maven.

34

• Ant. Historically, Ant is an older tool than Maven. Ant is something similar to

Make which most of C++ developers use. Like Make, Ant is an extremely power-

ful tool which can do whatever developer wants. Ant use XML-tree instead of

writing shell commands and the developers have to create own build process.

• Maven. Maven requires a clear definition of what the project consisted of. Maven

does everything Ant does and is an easy way to publish project information.

Ant and Maven are different. Ant is a building tool but Maven is more than just a

building tool. For instance, maven has a standard way of how to handle a project and

project dependencies are clearly defined that are downloaded automatically by Maven

(this property helped me to integrate Cassandra Hector application to Value4All ap-

plication. For more information see the chapter 11 (Proof-Of-Concept Application)).

Relations between different projects and sub projects are based on a single source of a

XML file (Maven POM.xml). Maven is also integrated in IntelliJ IDEA. I used Maven

for programming of the prototype.

6.4 Versioning Tools

Version Control System is the management of changes to documents, applications, and

other files. Version Control is used in different enterprise application development,

where a team of people may change the same files. Changes are usually identified by

a version number. Each version is associated with a timestamp and the person making

the change. Different versions of a file can, for example, be compared and restored.

The choice was between CVS and SVN.

• CVS. The Concurrent Versions System, is a free open source software version

control system and is released under the GNU General Public License. The server

side normally runs on Unix and CVS clients may run on a different operating

system.

• SVN. Subversion is a version control system which is more flexible and featured

than CVS. Most open source applications use Subversion as a repository such as

SourceForge, Apache, Python and Ruby. There are many different SVS clients, for

example, for a Windows user, Tortoise SVN is a great file browser for viewing,

editing and modifying.

SVN is also integrated in IntelliJ IDEA and supports a flexible, easy to use software

environment to keep a truck of the application files. SVN works faster than CVS and

as well version management is better in SVN than CVS. It transmits less information

35

through the network and supports more operations for offline mode. I used SVN as

versioning tool for programming of the prototype.

6.5 Applications Server, Web Server

An application server is a middleware server who is designed to run specific applica-

tions and might be used to run only one application, for example, a huge enterprise

application which needs the entire server resources as RAM , ROM and CPU. On the

other hand, a Web Server is a server application that delivers content, such as Web

pages by using the Hypertext Transfer Protocol (HTTP), over the World Wide.

The question here is, what is the difference between a Web Server and an Application

Server? Basically, a Web Server manages HTTP requests, while an Application Ser-

ver manages business logic to different enterprise applications through any number of

protocols. Based on the company need and functionality requirements of Value4All, a

web Server with application server functionalities will be suitable for Value4All in the

first version. Here is a list of web servers that were studied.

• Jigsaw. Jigsaw is W3C’s Web server, which provides a HTTP 1.1 implementation

and a variety of other functionalities implemented in Java.

• Tornado. Tornado Web server is multi threaded written in Java. Tornado is a se-

cure, efficient, portable Web server and also provides a complete implementation

of HTTP 1.1.

• Pygmy. Pygmy is a small Web server, with a core source around 40kB, for embed-

ding into applications. Features can be optionally added and removed to reduce

the pygmy’s already small binary size.

• Jakarta Tomcat. Tomcat is the servlet container that is used in Java Servlet and

Java Server Pages, JSP. The Java Servlet and Java Server Pages specifications are

developed by Sun under the Java Community Process.

• Jetty. Jetty is a powerful and flexible Java HTTP Server and Servlet Container,

which means that you do not need to set up, configure and run a Web server

and a Servlet container separately to use Java, Servlets and Java Server Pages to

generate dynamic content.

Jetty can be integrated on IntelliJ IDEA in an easy way and is a very flexible Web

server with integrated Servlet Container, which makes it easy to configure and run in

the developing side of the application. Tomcat is also suitable and can be used in the

production side of the application. I used Jetty for development of the prototype.

36

6.6 Persistence technique

The comparison was between relational databases, Neo4J as a graph database and Cas-

sandra as a Key-Value store. According to analysis available in the chapter 8 (Why Not

Relational Database For Value4All) and in the chapter 11 (Proof-Of-Concept Applica-

tion), Neo4J is the winner database which is a powerful, easy to use graph database

with an extremely good open source implementation in Java. I used Cassandra and

Neo4J for development of the prototype.

6.7 Java Frameworks

A framework makes it easier to work with complex applications because there are

many predefined codes, which are reusable and also extensible. There are many java

frameworks, which can be used in Valu4All based on needs. Here, you can find a list

of frameworks suitable for Value4All.

• Tapestry. Tapestry is a powerful, open source, Java framework for creating web

applications in Java. Tapestry is an alternative to Java Server Pages, JSP, or Ve-

locity, which provides to create extremely dynamic applications with minimal

amounts of coding.

• JUnit. JUnit is a powerful, free, open source Java framework that makes the ap-

plication unit testing easier and more effective. JUnit is developed for test driven

development, which is useful for larger enterprise applications.

• Java Server Pages (JSP). JSP is also used for development of web applications.

I used JSP for development of the prototype.

6.8 Test automation control

Test automation checks an application’s outcome with predicted outcomes by different

test cases and test logging functions. Selenium is a powerful open source program for

test automation of web applications, which runs the test cases directly in a browser,

just as real users do.

6.9 Other Techniques and Tools

Here you can find a list of other techniques that can be used in Value4All based on

needs:

37

• HTML. Hyper Text Markup Language is a programming language used for pages

that are viewed by web browsers.

• JavaScript. JavaScript is an object oriented scripting language that provides HTML

pages to interact with clients and respond to what they do dynamically.

• Cascading Style Sheets, CSS. CSS is used for styling the content of HTML pages.

• XML. EXtensible Markup Language, XML, is a way of how data can be transfor-

med between different layers of an application or across the internet to be used

by a web browser and viewed to visitors.

• Ajax. Asynchronous JavaScript and XML, is used to design and implement dy-

namic web applications that are actually a group of web development techniques

used on the client side creating interactive web applications.

• Photoshop. Adobe Photoshop is a graphics editing tool developed by Adobe

Systems.

I used JavaScript, HTML and Paint.Net instead of Photoshop for development of the

prototype.

6.10 Results

Here, you can find a complete list of the solution proposal for the Value4All’s develop-

ment environment.

• Web Development Language: Java.

• Integrated Development Environment: IntelliJ IDEA.

• Build tool: Maven.

• Versioning tool: Subversion, SVN.

• Web Server: Jetty

• Database Server: Neo4J.

• Java Frameworks: Tapestry, JSP and JUnit.

• Test automation tool: Selenium.

• Other techniques and tools: HTML, JavaScript, Servlets, Java Beans, XML, Ajax,

CSS and Fotoshop.

38

6.11 Download Pages

In the appendix F (Application Installations), you can find all download pages to the

applications mentioned in the chapter 6.10 (Results).

39

Chapter 7

Persistence Layer - Solution Proposal

7.1 Introduction

Using social networks are growing fast, and the data volumes are growing drastically.

On the other hand, the current tools, data storage models and management of data

for social network systems still are not good enough. Today there exist different data

models and some of them are suitable for a social network system. The best choices of

data model implementation for a social network, take into considerations what social

network needs, for instance, automated data management, the integrity management

and security management of social network’s information even against system crashes

or attempts at unauthorized access. Also, if data are to be shared in a social network

system among several users, the system must provide a concurrency mechanism (the

property of an application where many computations are executing simultaneously,

and interacting with each other) avoiding possible results in error states. Some data

models are discussed in this chapter, and the best data models suitable for Value4All

are selected. The discussion is as follows:

1. Understand the data structure of Value4All as a Social Network System.

2. Analyze all possible data models and based on the Value4All data structure choose

which of data models can be suitable for Value4All.

7.2 Value4All Data Structure

Basically, a simple example of how the data structure of Value4All can look like is

described in the chapter 2.2 (General Problem Description).

40

7.3 Data Models

Data models are used for representation of information in a machine language. A data-

base model is a developed application of a specific data model which is managed by a

database management system (DBMS is an application that controls the creation, mainte-

nance, and the use of a database). Database models are powerful tools for organiza-

tions and for representation of information. There are different developed data mana-

gement systems for different database models that are based on different data models,

for instance, in a relational database, there are different tables for an organization data

or a XML (extensible markup language) can be used as a document database. With a

database, we can retrieve information and manage the information. There are different

data models, which are based on different data structure needs in the market.

• Flat model

• Hierarchical model

• Network model

• Relational model

• Entity-relationship model

• Object model

• Graph model

• Key-value model

• Document model

7.3.1 Flat model

The flat model (flat-file model) consists of a single table (two-dimensional array of

data) saved, for instance, as a .txt file, an .ini file or a .xml file. In such table all data of a

column are assumed to be similar values (similar structure of data) and also all data of

a row are assumed to be related to each other. For instance, (name/password columns)

with similar data in each column and each row is associated with an individual user.

XML is a popular and well-used format for storing data in plain text files, but XML

allows also very complex data structures to be represented with definition of the data.

41

7.3.2 Hierarchical model

In this model, data is stored into a tree-like structure, with each node related to its

child nodes and its parent node indicating the hierarchical relationship between them,

for instance, a child can only have one parent but a parent can have multiple children.

A Parent has a list of all of its children. For instance, a XML document follows this

hierarchical data model.

7.3.3 Network model

The network model consists of records with different fields that define relationships

between records. The network model is a variation of the hierarchical model. The mo-

del differs from the hierarchical model in that, nodes from different sets can be related

to each other.

42

7.3.4 Relational model

The relational model is a mathematical model defined in terms of predicate logic and

set theory. Three key terms are used in relational database models:

• Relations

• Attributes

• Domains

A relation is a table with columns and rows. The named columns of the relation are

called attributes, and the domain is the set of values the attributes are allowed to take.

Relational databases consist of a collection of tables that store different sets of data

instead of placing all data in one large table. Typically, a relational database consists of

many related tables. Each table contains specific data, for example, name and address.

Relational databases are the most used database today.

43

7.3.5 Entity-relationship model

An entity-relationship model (ERM) is an abstract representation of data. Entity-relationship

modeling is a database modeling method, used to produce a schema of a system. Dia-

grams created by this process are called entity-relationship diagrams, ER diagrams, or

ERDs.

7.3.6 Object model

An object model (object-oriented model), the information is represented in the form

of objects from an object-oriented programming. Object model has object-oriented as-

pects like class, attributes, methods and integrity constraints. Object model also sup-

ports multiple inheritance and abstract data types.

7.3.7 Graph model

A graph model uses nodes, edges and properties to store information and represent

the information. This model is an alternative to relational databases, which use tables,

document-oriented databases, which use documents to store information or other types

of structured storage database systems. With other words the databases based on a

graph database model is characterized by three properties:

• Data structures are graphs or any other structure similar to a graph.

• Data manipulation and queries are based on a graph-oriented operations (graph

traversal properties).

• There are data constraints to guarantee the integrity of the data and its relation-

ships.

Compared to the relational databases, graph databases are often faster for associative

data sets. They can scale more flexible to large data sets without any join operations.

This model is one of the best choices for designing a social network based on the struc-

ture of data with offering high performance functionalities for querying the data of a

social network system.

7.3.8 Key-Value model

Key-Value model is based on a hash table of (key, value) pairs. In this model, any

participating node can efficiently retrieve the value associated with a given key. This

model is very powerful and efficient because adding or removing a record is extremely

44

flexible and it scales to extremely large numbers of nodes. This model is a part of a

NoSQL database model. A database based on a distributed key-value model can be

also a good choice for Value4All because it is suitable for a large amount of data, high

availability, no single point of failure (fault tolerance) and high performance.

7.3.9 Document model

The Document model is designed for document-oriented applications. Document da-

tabases store each record as a document with different properties (for instance, when

the document was created and by who) instead of storing data in tables.

7.4 Data Models Comparison Analysis

The flat-file model of database is ideal for small amounts of data that needs to be hu-

man readable or edited by hand. It consists of a set of strings in one or more files that

can be retrieved easily. This model is great for storing simple data values, but can get

complicated with more complex data structures because the file gets more and more

unreadable, and at the end we lose the meaning of such a solution. It is still possible

to store such complex data structures but doing so can be more costly in time and per-

formance, for instance, compared to a relational database. A flat model is unsecured

and is very sensitive to corruption because it is very difficult to detect when a file is

being used or modified. A flat-file model was unsuitable for Valu4All, but I have to

mention that a flat-file solution is very flexible and fast to redeploy at the fist stages

of development of an application. Value4All will use a XML file solution as its first

version database solution. An entity-relationship model (ERM) which is an abstract

representation of data is not either what we are looking for since it is more to present

diagrams crated from a database system.

A hierarchical model is unsuitable for value4All and it can be explained by an easy

example. For instance, an organization may have information about an employee in a

table (Employees) with columns like Name, Responsibility and Wage. The company

may have another table for all employee’s children (Children) with columns like Name,

Data of birth. We have a 1:N relationship between them (an employee may have no

children or one or more children). We have a hierarchical structure in our database,

which is not applicable to a social network system. In a social platform, we have so-

mething like a meshed structure. The network model was the first attempt to address

the problems and inefficiencies of the hierarchical model but network model is also

45

a type of a hierarchical model which is unsuitable for Value4All. The relational mo-

del has proven to be the most efficient and most flexible database model in use today.

There are many advantages of the relational model over the other models, which is

why the most popular databases in use today employ this methodology. A relatio-

nal database model like Mysql and Oracle are used by many companies. A relational

database contains multiple tables with methods for the tables to work together. The

relationships between table data can be retrieved by SQL query-methods, data can be

merged and displayed in database forms in application interfaces. Many of the today

social network systems like Twitter and Facebook are designed upon a relational da-

tabase system. Based on that One of the best choices for Value4All was a relational

database model to be compared to other choices.

Object model databases extend the functionality of object-oriented programming lan-

guages (e.g., C++, Smalltalk, Java) to provide database programming functionality.

The result is a high level of compatibility between the application data type and the

database data type, resulting in less code, and better reusability of code. For instance,

C++, Java, and Smalltalk programmers can write complete database applications with

using the same data type as in the programming languages they use. Object model da-

tabases offer the ability to reduce code. This is a good idea if the application data model

contains many different complex data types, which require creating different classes to

take care of the data and this ability of an object oriented data models to support many

classes of objects, each one with their own methods and properties, do not offer any

special advantage for data types of social networks, which are homogeneous, with a

small number of classes. Another aspect is that, an object model is suitable for fewer

records (rows in a database) and a big number of different objects, instead, Value4All

will have a few objects (like user object, project object, and, etc. based on needs) but

probably it will have a huge amount of data in the database. As mentioned in the chap-

ter 7.3.7 (Graph model) and 7.3.8 (Key-Value model), a graph model and a key-value

model can also be two good data model solutions for Value4All. A document model

is not a good choice for Value4All, because a document model can’t handle references

between nodes that are related to each other.

7.5 Data Models - Comparison Result

The chosen data models were:

• Relational model (Relational Database or SQL database).

46

• Graph model (NoSQL database).

• Key-Value model (NoSQL database).

The comparison analysis of these models is discussed in chapter 8 (Why Not Relational

Databases For Value4All).

47

Chapter 8

Why Not Relational Databases For

Value4All?

Social network platforms are not only about developing a website but also managing

a large amount of data that requires much knowledge about data management and

load balancing (technique to distribute the workload across several database servers,

in order to get optimal resource utilization, avoid overload, minimize response time

and maximize throughput). Relational databases (described as table-based databases

or SQL databases), like MySQL or Oracle Database, are widely-used databases in the

market. In these databases you can add many records at the same time but these da-

tabases are not a good solution when the amount of related tables increase, because

the data access and the data management require many joins and unions (this ope-

rations are high performance consumers). Of course, there are ways to come around

such limitations by scaling the relational database system. For instance, Adam Wig-

gins of Heroku in his article (SQL Databases Don’t Scale, http://adam.heroku.com/),

describes some techniques (vertical scaling and sharding) for management of scalabi-

lity and performance of relational databases for huge applications along with listing

their downsides. According to the points mentioned below, relational databases are

not enough as a database solution for Value4All.

• Value4All is a relationship platform, for instance "Kalle" knows "Hasse". The verb

"knows" indicates a relationship between two persons. Relationship in a rela-

tional data model is weak, for instance, you may define a new relationship as a

one or more tables, more constraints or more codings. This is a strong reason to

why relational databases are not a possible solution for Value4All. Basically, the

changeability property is not strong enough on relational databases.

48

• Relations can also be coded easier in a graph database than a relational database.

It is not easy to understand the data model when the number of tables increases

based on the increasing number of relations. Because of that, the easy-to-use pro-

perty is not strong enough on a relational database to be used as a possible solu-

tion for Value4All.

• Extremely Query loaded. A relational database is not a good choice compared

to a graph database or a key-value database because it is very hard to get effi-

ciency doing joins in such a high level. Because of that, the performance property

is not strong enough on a relational database to be used as a possible solution for

Value4All.

• Huge Data Volumes. For example, in a social network system (Facebook) there

are massive data volumes, which have to be stored. Such systems are usually dis-

tributed across a cluster of servers. Huge amounts of data are a problem for re-

lational databases because of the scalability problem. Relational databases don’t

follow the definition of a true scalable system (see the next section 8.1 for more

information), and this is another reason to why we canceled relational databases

off the list. In loosely comparison of scalability we can see in the picture below

that relational databases will not follow the scalability requirement of a social

network system.

Another type of databases is NoSQL databases (Non-Relational Databases), which

is described as the next generation of data storage technologies that are designed for

web applications that need to scale effectively. These databases don’t require fixed

table schemas, avoid joining operations, avoid primary keys and foreign keys.

8.1 Relational Databases - Scalability Analysis

There are many relational databases, for instance, MySql and Oracle. MySQL is a re-

lational database management system that provides multi-user access to a number of

databases.

49

MySQL was owned by the Swedish company MySQL AB, and now owned by Sun

Microsystems. MySQL is also used in many popular, large-scale web applications like

Wikipedia, Google and Facebook.

The improvement of hardware help relational databases like MySQL to become more

scalable with improved performance, for instance:

• Improvement of the capacity.

• Improvement of speed of CPU. For example, by multi-core CPUs, 64-bit micro-

processors, and, etc.

• Improvement of speed of networking devices. For instance, Network-attached

storage (NAS), Storage area networks (SANs) with fast local area networks and

Fibre Channel technology.

But still, there are different scalability problems that facing relational databases. Adam

Wiggins says that “SQL databases are fundamentally non-scalable, and there is no ma-

gical pixie dust that we, or anyone, can sprinkle on them to suddenly make them

scale”. According to Wiggins A., a technique must fit the following criteria to be a

true scaling system:

50

• Horizontal scaling. Horizontal scaling means adding more computer systems to

the environment which increase the capacity.

• No single point of failure. No single point of failure means, in case of using some

devices or communication lines to perform a function, ensuring continuous ope-

ration without no downtime. Any server in a distributed/cluster system creates

a single point of failure.

• Transparent to the application. In case of a three tier architecture, a well-designed

application has a strict partition between the presentation layer, business layer

and database layers. For instance, scaling database servers or other types of ser-

vers to the system have to be transparent to the application.

There are different techniques that address the scalability problem of Relational data-

bases:

• Partitioning. Partitioning is a logical division of a database into separate inde-

pendent databases for improving the manageability, performance, scalability and

availability. The partitioning can be done by either adding additional databases

with its own tables or by splitting tables between the additional databases. There

are two different partitioning of data (Horizontal partitioning and Vertical partitio-

ning). Horizontal partitioning means to put different rows into different tables,

for instance, if the rows increase more than 10000 rows, the table can be parti-

tioned in another table. A view with a union of these two tables can be created.

Horizontal partitioning requires deep modifications into the application itself be-

cause the object models of the database tables have to be modified. Vertical par-

titioning means dividing tables’ columns to different tables with a union view of

them. Horizontal partitioning and vertical partitioning cause more problems if

you have many relationships (many related tables) in your SQL server. (Accor-

ding to definition of a true scaling system that was mentioned above, you have no trans-

parency in this case, between the database layer and the business logic). This problem

also causes that the changeability of relational databases is very hard to achieve

because of the complexity of the data model. For instance, if you want to add a

new property "age" to your user tables, you need to change your data model by

SQL script, and also the code modifications have to be done. Such changes are

not flexible and are very hard to achieve when the number of relations increases.

Social networks are relational systems and because of that a relational database

is unsuitable.

51

• Vertical Scaling (referred as Moore’s law). In this case, you can have a bigger ser-

ver to scale your server but this solution is not recommended because usually

such servers are old and the old server is useless, and you have to buy a new

bigger one and maybe after some years you have to buy a new one. Also to un-

derstand when you need a new server require professional skills. The installation

of the new one needs professional skill too.

The question is what is the alternative to the SQL database scaling problems?

SQL databases are widely-used in the market by the popular and big companies, and

they maybe have solved their scaling problems with one of the solutions presented

above but these solutions are very expensive and very complex to manage. Another

solution is to use a NoSQL database instead of a SQL database which addresses these

problems. Several NoSQL databases have a distributed architecture by distributed hash

table solutions. In this way, the system can be scaled up easily by adding more ser-

vers with a guarantee for no single point of failure. There are some other differences

between NoSQL and SQL databases:

• SQL databases have good availability but NoSQL databases have very high avai-

lability.

• SQL databases provide SQL-queries (SELECT, INSERT and, etc.) while NoSQL

databases use other techniques like graph traversal for graph databases that, is a

very flexible solution suitable to the structure of social network’s data.

• ACID (atomicity, consistency, isolation, durability) are four fundamental properties

defined in a SQL database. (Atomicity means that transaction must go all the

way, or it has to be rollback. Isolation is the requirement that other operations

cannot access data that has been modified during a transaction that has not been

completed yet. Durability is the DBMS’s guarantee that once the user has been

informed by a transaction’s success, the transaction will not be lost.) A strong

property of SQL databases is strong consistency that means you can’t find any in-

formation in a database that is against each other. That means any transaction

from one consistent state will end to another consistent state. The thing is that

ACID doesn’t scale well, and the consistency is the tradeoff to get the scalabi-

lity to work in relational databases. Social network system is not like a banking

system and because of that they don’t need the strong consistency as the ban-

king systems do. Several NoSQL databases provide eventual consistency, which

52

is a weak consistency. The term means "when no updates occur for a long per-

iod of time, eventually all accesses will return the last updated value". Some

NoSQL databases provide full ACID guarantees by additional configurations.

Werner Vogels (The Chief Technology Officer and Vice President of Amazon.com,

http://en.wikipedia.org/wiki/Werner_Vogels) says “Building reliable distribu-

ted systems at a worldwide scale demands trade-offs between consistency and

availability”.

According to the CAP theorem (Brewer’s theorem), it is impossible for a distributed

computer system like a NoSQL database, to provide all three of the following guaran-

tees and achieve the scalability at the same time (these three requirements are needed

for a distributed system):

• Consistency (all nodes see the same data at the same time in the case of strong

consistency). The distributed database guarantees that, users see the latest infor-

mation but there is no guarantee that all nodes of the distributed system have

the latest information at the same time. Eventual consistency is tradeoff between

strong consistency and high availability.

• Availability means no downtime in case of a node failure.

• Partition Tolerance (the system continues to operate despite split into disconnected

subsets). For example, not only for reads, for writes as well.

According to the theorem, you can satisfy at most two of the three requirements with

eventual consistency against high availability. For instance, Cassandra guarantees the AP

(Availability and Partition Tolerance) and eventual consistency providing high scala-

bility.

8.2 Types Of NoSQL Databases

Non-Relational Databases (NoSQL), are databases without tables, joins, unions, primary

keys, foreign keys and schema. For instance, Google’s BigTable, Amazon’s Dynamo

and some other open source implementations as Neo4J, HBase and Cassandra which

fit into different types of NoSQL databases.

• Document based. A document database is designed for storing documents (for

example, research papers). These databases may be implemented as a layer

above a relational database or an object database, for example, CouchDB, Mon-

goDB, Terrastore and XML databases as eXist.

53

• Graph. A graph database (for example, Neo4J, HyperGraphDB and Allegro-

Graph) uses nodes and edges to represent and store the information. Graph da-

tabases are an alternative to relational databases, document databases or other

structured storage systems based on key-value store.

• key-value store. In such databases, you have only one key and its value with no

duplicates with high accessability and performance. For example, Dynamo, Vol-

demort, Cassandra and BigTable which store key-value (s) on disk, Redis and

Hazelcast, which store key-value (s) in RAM.

• Column Database. Column databases are a distributed multi-dimensional storing-

map and are referred as BigTable Clone, for example, BigTable, HBase and Cas-

sandra. Column databases store their content column-wise instead of row-wise.

In this way, the data similar to each other are stored together and accessing the

data are more efficient if we are looking for some specified columns (a subset of

columns) or specific data. Row-wise store is good if you want to access the whole

row information. For example, if we have a table of employees:

This information is serialized to the hard drive or to the RAM. If these series of

bytes are stored row-wise, the information is serialized, for example, something

like this:

1,Hasse,50000;2,Kalle,7000;

If these series of bytes are stored column-wise, the information is serialized, for

example, something like this:

1,2;Hasse,Kalle;50000,7000;

Based on the results available in the chapter 7.4 (Data Model Comparison analysis), a

document database was not a solution that, we were looking for. On the other hand, a

graph database, a key-value store and a column database were three NoSQL database

solutions that are suitable for Value4All. Some databases like Cassandra and BigTable

54

are both a column database and a key-value store. From this chapter, these databases

are referred as key-value stores. Based on analysis available in the chapter 11 (Proof-

Of-Concept), graph databases and key-value stores are compared to each other by a

prototype as two NoSQL databases and based on the analysis available in this chapter

8.1 (Relational Databases - Scalability Problem) and the chapter 3.1 (Market’s Database

Solution) relational databases are out of the game. In appendix C (NoSQL Databases -

Comparison), you can see a complete comparison between different NoSQL databases.

55

Chapter 9

Why Choose Cassandra?

9.1 Introduction

Key-Value stores have a very powerful data model with the fundamental mapping

keys to a list of values as its basic structure. With key-value stores we can store schema-

less data as a key-value pair with high performance as an alternative to relational da-

tabases. Key is usually a string and value can be a primitive data type, an array, a

HashMap or an object. A good choice, to store values as they are without needs to

create different tables in a relational database based on a distributed hash table. With

a key-value store, it is easy to achieve high performance, no single point of failure and

high availability because of its flexible schema-less data models and fine granularity

partitioning of the data (load balancing of the data).

9.2 Distributed hash table

Distributed hash table (DHT) is a type of decentralized distributed systems with no

master node. Any member node in the distributed system, can efficiently retrieve the

value associated with a specific key. All nodes in the distributed system have the res-

ponsibility for the mapping keys to values, in such a way, a change in the set of nodes

causes a minimal disruption (no single point of failure) to the entire system. This pro-

perty gives the DHT, the ability to scale up to millions of nodes in the node network.

A key technique that is used in DTS to achieve the properties like decentralized, sca-

lability and no single point of failure, is that any node involved in the DHT, needs to

communicate with only a few numbers of nodes (most commonly, results in, O(log n)

performance with n nodes). That means, only a little work needs to be done for each

change in the DHT topology because every node has a list of some other nodes (for

56

example, their neighborhoods by a routing table). Every node in such a topologies can

find out, for example, which node has what particular key-value pairs based on the id

of available nodes in its list.

Imagine that you have a circular, double-linked list of nodes (each node is a machine).

Each node has a reference to some other nodes in its available list (a hash table of other

machines). If we want to lookup the value of a key, we can do that by the id of its node

(machine). For example, look up of a key (K), the node either has a node id that has

the K stored in it or send the lookup to the closest node that can lookup the value of

K in case, the current node itself doesn’t have the key (K). At each step, the current

node forwards the lookup message to the node whose id is closest to the key K until it

reaches the node that has the value of K (Key-based Routing). There are many popular

projects that use DHT, for instance, Apache Cassandra, BitTorrent, Tapestry.

9.3 Consistency Levels

There are different levels of consistency. Cassandra provides eventual consistency.

• Strong Consistency. Strong consistency guarantees that you can’t find any infor-

mation in the database that is against each other, for instance, RDBMS, Local Disk

and RAM.

• Eventual Consistency. When no updates occur for a long period time, eventually

all accesses will return the last updated value.

• Weak Consistency. Weak Consistency offers no guaranties.

57

9.4 Example of Key-Value Stores

There are many popular key-value stores, like:

• BigTable. Google uses the own key-value store BigTable, to map URLs to multidi-

mensional data, such as keywords, links, Timestamps, Versions, and, etc.

• Dynamo. Dynamo is created by Amazon to address the need for an incrementally

scalable, highly-available key-value storage.

• Cassandra (an Apache Software Foundation top-level project). According to Cas-

sandra Project homepage: “Cassandra (implemented in Java) is a highly scalable,

eventually consistent, distributed, structured key-value store. Cassandra brings

together the distributed systems’ technologies from Dynamo and the data model

from Googles BigTable. Like Dynamo, Cassandra is eventually consistent. Like

BigTable, Cassandra provides a ColumnFamily-based data model richer than a

typical key-value systems (but Cassandra uses a Distributed hash table (DHT)

instead of a central server)”.

• Redis. Redis is an in-memory key-value store design to achieve high performance,

implemented in C. Redis uses RAM as the head storage area and only flush out

its data to disk asynchronously. This is not ideal for important data, which can

be lost in case of a server crash.

• Voldemort. Voldemort is a distributed key-value store that combines in-memory-

caching with the storage system. In that case, a separate caching system is not

required (instead the storage system itself is very fast). According to the Volde-

mort project homesite

(http://project-voldemort.com/): “It is used at LinkedIn for certain high-scalability

storage problems where simple functional partitioning is not sufficient. It is still

a new system which has rough edges, bad error messages, and probably plenty

of uncaught bugs. Let us know if you find one of these, so we can fix it”.

• Hazelcast. A fast, in-memory and highly scalable key-value store in Java.

• HBase. HBase is an open source, distributed database similar to Google’s BigTable

in Java.

Among these databases Cassandra has already many strongness that are needed to be

widely used as a key-value store in Value4All based on the researches that are descri-

bed in the chapter 3.1 (Market’s Database Solutions) many companies use Cassandra

as its storage solution.

58

9.5 Cassandra

Cassandra is a NoSQL database that was developed by Facebook from the beginning

to improve their Inbox Search feature. One of the most widely-used NoSQL database

is Cassandra, which is a column-oriented database and also a distributed key-value

store based on a distributed hash table. Keys are distributed to nodes according to a

hash function, and values are retrieved with O(logN) messages by performing routing

tables. Cassandra is also a P2P system because every node is aware of all other nodes

in the cluster.

According to Avinash Lakshman (one of the authors of Amazon’s Dynamo), Cassandra

is designed for:

• High Availability. Losing a node doesn’t take down the cluster and the functiona-

lity of the cluster.

• Eventual consistency (Trade-off between strong consistency in SQL databases and

high availability in Cassandra).

• Scalability. Huge amounts of data (the ability to scale to many millions of data)

distributed across many servers (the ability to scale across many nodes).

• No single point of failure (means the ability to adapt to cluster-network changes), which

means that Cassandra is decentralized, and you can read and write any data to

anywhere in the cluster at any time. No single point of failure is important to

achieve high availability and load balancing.

• Low total cost of ownership. It is cheaper to use Cassandra than other relational

databases.

• Minimal administration. It is also fewer administration needs for Cassandra than

other relational databases.

• Continuous Deployment. Cassandra is schema-less, you do not have to decide what

fields you need in your records when you start designing. You can add and

remove arbitrary fields at any time. This is an incredible opportunity to increase

the productivity, performance and availability.

59

Scale is the primary reason to why you would choose Cassandra. Traditional RDBMS

starts to struggle when you want to use more than one node, and creating big clusters

are currently only available with special solutions like, using for example expensive

shared-disk technology. The scalability is provided in Cassandra by default without

special solutions, for instance, Facebook is running a 150 node Cassandra cluster and

others have 30+ node clusters in production also. Cassandra’s powerful data model is

built up of:

• Key-Value pairs of data, for instance, (name: "Kalle").

• Columns. Columns are the next smallest piece of data in Cassandra, and it contains

of a name, a value and a timestamp, (also a key-value pair with a timestamp). For

example:

{name:"Salary", value:50000, timestamp:201009101230}

For simplicity I refer to the above example as:

Salary: {50000, 201009101230}

The next level of the Cassandra’s data model is a SuperColumn, which is also a

key-value pair (without a timestamp) but the value is a map containing an unboun-

ded number of Columns (column-name is the key for the value). For example:

{

name:"address",

value: {

street: {name:"street",value:"Sveav.", timestamp:1234567}

zip: {name:"zip",value:"12345", timestamp:1234567}

city: {name"city":,value:"Stockholm", timestamp:1234567}

}

}

For simplicity I refer to the above example as:

Address: {

street: "Sveav.",

60

zip: "12345",

city: "Stockholm",

}

• ColumnFamilies. ColumnFamily group both the Columns and SuperColumns

with an infinite number of Rows (each row is a key-value pair with value as a

map of Columns, and name as the name of the column). There are two types of

ColumnFamilies, standard and super. In a standard ColumnFamily, each key-

value map contains of only normal columns and in a super ColumnFmily, each

row contains of only SuperColumns. Each Column family has also a specific

unique Key as the name of the ColumnFamily. Each ColumnFmily is stored as a

separate file on disk. This design allows for a certain data model design which has to

be done before the start of the application in the "storage-conf.xml" file of Cassan-

dra. This means that when you select an existing ColumnFamily in Cassandra’s

Config file, you will receive a group of key-value pairs of data. The data is auto-

matically indexed and allows for fast data access.

• KeySpace. The Keyspace is the highest level of data in Cassandra data model. All

ColumnFamily is packed inside a Keyspace (can be the name of the application

defined in the "storage-conf.xml" file before startup), but it doesn’t mean that,

there is a relationship between ColumnFamilies (KeySpace can be compared to a

RDBMS schema and ColumnFamily to a RDBMS table). ColumnFamilies can’t

be joined like tables in a RDBMS system.

9.5.1 Read And Write Operations

Write Operation

A client sends a write request to a random node in the Cassandra cluster. The Cassandra

cluster of nodes is stored as a "ring of nodes" and the write requests are replicated to N

nodes for redundancy using a replication placement strategy, for instance, RackAwareStra-

tegy based on the distance. Cassandra determines the "distance" from the current node

in three levels (achieving reliability and availability): same rack as the current node,

same data center as the current node, or a different data center. Each node in the cluster

when receiving a write request (a RowMutation message) performing two actions: the

data first added to the commit-log for transactional purposes and then to an in-memory

table (Memtable). There are some additional asynchronous operations (high efficiency)

after that: the data is stored from commit-log on a dedicated disk locally (SSTable) so

61

we don’t get too much data in-memory. Appending to the disk is the slowest part and

because of that, unlike a relational database, Cassandra does not update data or in-

dexes in-place on disk, so there are no intensive synchronous disk operations to block

the write operation. According to Cassandra the write operation time in comparison

with MySQL for more than 50 GB data is approximately as fallow:

• Cassandra: 0.12 ms.

• MySQL: 300 ms.

Read Operation

Consider a write operation and a read operation that is very close to each other in time.

For example, we have a key "Year" with value "2009" in your Cassandra cluster, and

now you want to update the key "Year" to value "2010". The write request are sent to

all N nodes in the Cassandra cluster and in each node it takes some time to write the

data. In this moment, you send a read request for key "Year". In this case, some of

the nodes have the new value "2010" and some of them have the old value yet "2009".

They will all eventually return the new value "2010" but it’s not guaranteed for just a

few milliseconds. A client sends a request to a random node (called the Storage Proxy)

in the Cassandra cluster. The proxy determines the N nodes in the ring based on a

replication placement strategy, that can hold a copy of the data. The proxy forwards the

read request to all this nodes having the data. Because of the eventual consistency

limitations, Cassandra allows the client select the strength of the read consistency:

• Single read: the proxy returns the first response it gets.

• Quorum read: the proxy waits for a majority to respond with the same value

which is a little slower.

In the background, the proxy also performs read-repair on any inconsistent responses.

The proxy will send a write request to any nodes returning older values to ensure

that the nodes return the latest value in the future. Since Cassandra has two levels

of storage, Memtable and SSTable, first the data is read from Memtable (in-memory),

if the data is incomplete then the data is read from the SSTables (in disk). To scan

the SSTable, Cassandra uses a row-level column index and bloom filter to find the

necessary blocks on disk, deserializes them and determines the actual data to return.

Cassandra does provide some row caching, which minimizes the disk read operations.

Cassandra has also bloomed filters for efficient SSTable lookups. Read operation time

in comparison with MySQL for more than 50 GB data is approximately as fallow:

62

• Cassandra: 15 ms.

• MySQL: 350 ms.

As you can see the read operation is quite slower than the write operation in Cassan-

dra. It happens in case of uncashed data, which is slower than cashed data. As men-

tioned above, the reason is first the data reads from the memtable (in-memory) and in

incompatibility case of data, then the data have to be read and merged from SSTables

(in disk) to complete the request (SSTables are not updated in place in Cassandra. They

are updated by asynchronously operations).

9.5.2 Partitioning

Designing a Cassandra cluster is very important. There are two methods for partitio-

ning of Cassandra cluster:

• RandomPartitioner (RP).

• OrderPreservingPartitioner (OPP).

These two methods control how your data is distributed over nodes in the Cassandra

cluster.

9.5.3 Replication And Consistency Level

As mentioned above, when writing in Cassandra, a client sends a write request to a

random node in the Cassandra cluster. The Cassandra cluster of nodes is stored as a

ring of nodes and the write requests are replicated to N nodes for redundancy using a

replication placement strategy (RackAwareStrategy).

The question is how many copies of each data we want to store in the Cassandra cluster (Re-

dundancy)? Cassandra solves this problem according to strength of read and writes

consistency:

• Single read/write: one node is updated or the data is read from one node.

• Quorum read/write: read and write by (N/2)+1 nodes.

• All read/write: read and write by all nodes in the cluster.

63

9.5.4 Cluster Membership

Cassandra uses the gossip protocol for node’s membership management in the cluster.

Every node gossips to some subset of other nodes (1-3) about the state of the cluster.

Changes in such a cluster like adding nodes, removing nodes and failure of nodes’

propagates quickly with O(log n) performance, n is the number of nodes in the cluster.

Every T seconds, each node in the Cassandra cluster chooses a node in their node list,

to send their node list to and then that node merges the node list with its own list.

9.5.5 Sorting

Unlike relational databases Cassandra has no capability of querying so you are not able

to specify sorting when you retrieve data. Cassandra sorts the data when you store it

by default. However, you need to think before storing data. There is an attribute

(CompareWith) on the ColumnFamily, which can be used for sorting the data by data

types. The options are:

• BytesType.

• UTF 8Type.

• LexicalUUIDType.

• TimeUUIDType.

• AsciiType.

• LongType.

Each of these types’ threats the contents of your Columns’ name as a different data

type, for example, the LongType threats your Column name as a 64 Bit long value.

64

Here we can see an unsorted columnn family that are stored as two different data types

(LongType, UTF8Type) in Cassandra. Longype is the natural ordering of numbers in

comparison with UTF8Type with UTF8 String ordering.

<ColumnFamily CompareWith="LongType" Name="Persons"/>

<ColumnFamily CompareWith="UTF8Type" Name="Persons"/>

The sorting can be applied to SuperColumns too with the attribute CompareSubcolumns-

With.

65

Chapter 10

Why Choose Neo4J?

10.1 Introduction

Social Network Systems, route planning systems or the World Wide Web itself is examples

of graph data structures. In this chapter, there is information about some graph data-

bases, the idea behind them and why we choose Neo4J. There are different terminolo-

gies for nodes and edges in different graph data storing systems and contexts:

• Node and Edge in Neo4J graph database.

• MeshObjects and Relationships in InfoGrid database.

• Instances and Links in UML.

• Boxes and Arrows as we draw them on a white board.

In a relational database, we can have a table called "friends" with a field "personid"

and another field "friendid" where friendid shows the friends of a person (personid).

Both friendid and personid can be records in another table called "persons". The weak-

ness with such solutions appear for many-to-many relationships. A person can have

many friends, and you might want to track the date that, the friendship was created,

or whether the two people are married. These solutions result in an increasing number

of tables in databases, which are inefficient and complex for maintenance. Specially, in

case of recursive joins, which tend to lead to long, incomprehensible SQL statements

and unpredictable performance. A graph database is designed to prevent these types

of problems and also to introduce a data model that is very close to the structure of

relational data.

66

10.2 What Is A Graph?

Graph theory is the study of graphs in both mathematics and computer science. A

graph contains of a set of nodes that are connected by edges. If the edges have no

direction, we have an undirected graph. In contrast, a graph where the edges have a

direction from a node to another is called a directed graph. Just like a relational da-

tabase operations (for instance, CREATE, INSERT, SELECT and. etc.), there are many

operations you can do on a graph database, for instance, graph traversing. Another

grouping of graphs is:

• Complete Graph: When all nodes are connected to each other by edges the graph

is called a Complete Graph.

• Dense Graph: When The number of edges that connect nodes are close to the

maximum number of nodes the graph is called a Dense Graph.

• Sparse Graph: When the connected graph has only a few numbers of edges the

graph is called a Sparse Graph.

There is two main data structure for representing a graph (a list or a matrix). List struc-

tures are often preferred for sparse graphs as they have smaller memory requirements.

Matrix structures, on the other hand, provide faster access for some applications but

can consume huge amounts of memory. There are different List structures (Incidence

List, Adjacency List) and different matrix structures (Adjacency Matrix, Incidence Ma-

trix, Kirchhoff Matrix, Distance Matrix). The two main data structures we are looking

at, are:

• Adjacency List. An adjacency List is an array. Each node has one linked list that,

contains the destination node of each edge, which is connected to it. Adjacency

Lists are preferred for Sparse Graphs.

• Adjacency Matrix. An Adjacency Matrix is a boolean two-dimensional matrix

(for instance, the n*n matrix A, where n is the number of vertices in the graph), in

which the rows are the source vertices, and columns are the destination vertices.

67

Entries in the array indicate whether an edge exists between the vertices with

boolean values. If there is an edge from some vertex x to some vertex y, then the

element (x,y) is 1, otherwise it is 0. In computing, this matrix makes it easy to

find sub graphs, and to reverse a directed graph.

The examples’ below shows the Adjacency List for the Sparse Graph above and the

Adjacency Matrix for the Dense Graph above.

The most used structure, for data storing in databases is the adjacency list.

10.2.1 Traversing A Graph

Traversing a graph is one the most basic operation on a graph database. Traversing

refers to the problem of keeping track of which nodes we have visited and which node

we don’t have visited yet. There are different traversing techniques on a graph:

• Depth-first Search (DFS) is a technique for traversing a graph or a tree. DFS starts

from the root, and then it visits the child nodes as far as there is a child node to

visit before it goes back and visits the sibling nodes and do the same operation.

DFS means that it traversing the depth before the breadth.

In the example above if we want to do a DFS search from node A from left, assu-

ming that we remember the states of the visited nodes. The search will be in the

68

following order: A, B, D, F, E, C, G. If we don’t remember the visited nodes, we’ll

get a loop as: A, B, D, F, E, A, B, D, F, E, A, B, etc.

• Breadth-first Search (BFS) is also another technique for traversing a graph. BFS

visits the sibling nodes first before it visits the child nodes. That means BFS, for

instance, begins at the root node and visits all the neighboring nodes and after

that for each of those neighboring nodes, it visits their neighbors and so on.

In the example above if we want to do a BFS search from the root node (A) from

the left assuming that we remember the states of the visited nodes. The search

will be in the following order: A, B, C, D, E, F, G, H. If we don’t remember the

visited nodes, we’ll get a loop as: A, B, A, B, etc.

10.3 Graph Databases - Analysis

The graph databases are optimized for highly related data with high performance of

using graph traversal technique. The following is a list of some graph databases.

• InfoGrid, an open-source, commercial (AGPLv3) graph database, known as

the internet database with many additional functionalities that make it to an ideal

database for the development of fully functional web applications.

• Neo4J, an open-source, commercial (AGPLv3) graph database. Neo4J is an em-

bedded, disk-based, fully transactional Java persistence engine with data struc-

69

ture as graphs. Neo4J provides different API’s for Ruby, Python, and Java with

support for various web technologies.

• DEX, a high performance graph database for huge amounts of data that is develo-

ped by DAMA-UPC (a research group of the Technical University of Catalonia).

Dex is suitable to store huge amounts of data and when the high performance

queries are mandatory for applications.

• HyperGraphDB, a distributed, embedded, open-source graph database that is

designed specifically for artificial intelligence and semantic web projects.

Dex is not open-source but a restricted version is available only for personal use.

HyperGraphDB is designed first for artificial intelligence. InfoGrid and Neo4J are

very similar to each other with differences that InfoGrid is an internet-based graph-

database and Neo4J that support the most programming languages, including Java.

Some code differences between these two databases are illustrated below. The first one

is a transaction-code and the other is a property-code.

There are not many differences between InfoGrid and Neo4J. The central objects of

InfoGrid are a little bit unusual like MeshObject, RelateAndBless, while Neo4J has Node

70

and Relationship as its central objects. I think personally Neo4J is easier to code, read

and understand because of its data model. As you can also see everything in Neo4J

must happen inside a transaction, even if it is a graph traversal operation (this gives a

very strong Isolation level). The InfoGrid traversal code seems to happen outside the

transaction, so it sounds like it supports a more relaxed isolation level. In that situation,

you can do for instance, the traversal operation inside a transaction if you like, but you

are not required to. See the appendix A (Graph Databases - A Complete Comparison)

for a complete comparison of the graph databases mentioned above.

10.4 Neo4J

The example below shows how a graph can be represented in Neo4J.

The basic operations on Nodes and Relationships are as follows:

The characteristics of Neo4J are:

71

• Disk-based database. Neo4J is a graph database engine with high writing capa-

city to disk instead of main memory because of the huge amount of data. Cashing

techniques provide even in memory data storage.

• Transactional. Neo4J has full support for:

– JTA, Java Transaction API that allow distributed transactions across mul-

tiple resources in a Java environment.

– JTS, Java Transaction Service that together with the Java Transaction API,

enable to build distributed applications that are robust to all sorts of system

and network failures.

– 2PC distributed ACID transactions: two-phase commit protocol is a dis-

tributed algorithm that coordinates all the processes that participate in a

distributed transaction on whether to commit or abort (roll back) the tran-

saction.

– Configurable isolation levels: isolation is an ACID property that defines

how/when the changes made by one operation become visible to other

concurrent operations’ properties.

– Transaction recovery: the process to recover downtime and loss of good

data.

• High performance and Scalable. In each JVM, you can save several billions of

nodes and relations and properties because Neo4J has been written from scratch

with performance and scalability in mind.

• Robust system. Neo4J had been in production for more than 2-3 years in a high

demanding environment.

• Semi-structure. Neo4J supports the individualization of the data.

The best part when dealing with Neo4J is that as a developer, there’s no need to think

much about the representation of data. Nodes and edges (relationships) are represen-

ted in Neo4J, and you need only to think about to have all relations between nodes in

place, and then you can focus on manipulation and less on how to represent it.

For example, "find all nodes that node1 know directly" in the picture above. We can see

that node1 knows node3, node5, node6 and node7 directly.

72

node1 ——-> node3, node5, node6, node7

This example can be coded as follows (http://api.neo4j.org/current/).

There is three different direction we can look for:

• Direction.OUTGOING. For a directed graph (A KNOWS B), this direction will

find the end-point of a directed edge (B).

• Direction.INCOMING. For a directed graph (A KNOWS B), this direction will

find the start-point of a directed edge (A).

• Direction.BOTH. For an undirected graph (A — B), this direction will find both

nodes (A, B) which mean, for instance, for Relationship "KNOWS", (A KNOWS

B) and (B KNOWS A).

Another example is to "find all nodes that are reachable from a node". This example re-

quires an object called Traverser, who is described in the next section 10.4.1 (Traversal).

In this example, the traverser (Traverser) uses a breadth first algorithm that was des-

cribed in the chapter 10.2.1 (Traversing A Graph). In that situation, we can traverse

into the depth of the graph for each node. The traverser will not stop until the end of

the graph and will visit all nodes. It will follow the "knows" relation in the outgoing

direction. Finally, the loop fetches the result from the traverser.

73

10.4.1 Traversal

The two examples A and B, that were described in the previous section 10.4 (Neo4J),

show how we get information out of Neo4J. According to database theory, Neo4J is

categorized as a navigational database that means, you navigate from an arbitrary

node(start node) via relationships to the nodes that match the specified search crite-

ria. For that reason Neo4J provides a traversal API (a key to effective development by

Neo4J) with an easy way of coding. The traversal object is called "Traverser" that

is basically a Java Iterator. For example, for the Node "node", in the example B, the

traverser has the following components:

• Traversal Order (BREADTH_FIRST). In that situation, the program, first returns

friends and then friend’s friend.

• The relationship as our search criteria (KNOWS).

• A stop criterion to know when we have to stop traversing (END_OF_GRAPH).

In that case, searching in the whole data.

• A selection attribute to know which nodes to return as a consequence of the tra-

versal (ALL_BUT_START_NODE that returns all nodes visited expect the first

node).

• Traversal direction (OUTGOING).

74

Part IV

Proof-Of-Concept

75

Chapter 11

Proof-Of-Concept Application

11.1 Development Method

During this phase, a prototype was designed and implemented to compare the da-

tabase solutions Neo4J and Cassandra. There were many things to think about, for

instance, which applications were needed, application installation, configurations and

made the applications to work with each other. That was important to find out a deve-

lopment method that could help me to manage this phase in time.

Agile software development method refers to a group of development methodologies

that are based on iterative development. Each iterative development is seen as a mini-

project that runs through a period of time. I followed agile software development

method because of the method flexibility. The entire implementation process was di-

vided into the different mini-projects. Each mini-project was designed, developed and

tested before the next mini-project started.

11.2 Prototype’s Iterative Stages

The development stages (mini-projects) were:

• Choose software and tools.

• Installation, configuration, testing of software and tools and finally integration of

the software and tools to each other.

• Designing a data model for Value4All in both Neo4J and Cassandra.

• Studying and designing comparison test-cases.

• Implementation was divided into different implementation phases.

76

• Comparison Analysis was also divided into different comparison phases.

11.3 Choosing Softwares and Tools

You can read about the whole process of choosing software and tools in chapter 6

(Development Environment - Solution Proposal).

11.4 Softwares And Tools Installation and Configuration

You can read about all software and tool installations and configurations in the appen-

dix F (Application Installations).

11.5 Designing A Data Model For Value4All In Cassan-

dra and Neo4J

During this stage, a data model was designed to be used by the prototype. The first

version of Value4All will contain three groups of people. All these groups of people

have to be presented in Value4All and all of them will have different relations to each

other. These groups of people are:

• Entrepreneurs

• Investors

• Service Providers

All these groups of people have something in common based on their interest in dif-

ferent projects.

77

The relations between these groups of people are as follows.

• Owning: a entrepreneurs owns a project.

• Investing: an investor invests in a project.

• Developing: a service provider develops in a project.

• Knowing: a person from one of these groups knows another one from other

groups or in the same group.

A complete data model can be designed as follows.

A possible situation that can exist in Value4All is, for instance, "Kalle" is defined as

an entrepreneur, "Hasse" as an investor, "Project A" as a project and Crisp as a service

provider in Value4All. The relations can be defined as follows.

• "Kalle" owns Project A.

• "Hasse" invests in Project A.

78

• "Crisp" develops in Project A.

• "Kalle" knows Hasse.

With other words:

"Project A is owned by Kalle and Crisp develops it. Kalle knows Hasse, who invests in the

project A."

The possible situation that, is derived from the general data model that was described

above can be designed as follows in Neo4J:

11.5.1 The Data Model In Cassandra

It is totally different to design the data model in Cassandra from Neo4J. There are other

terms you talking about in Cassandra. In Value4All, there are three groups of people,

one project group and four relationships. It can be designed as eight different Column

Families. You can save an arbitrary number of columns in each column family.

• Column Family: Entrepreneur. Store information about all entrepreneurs existing

in Value4All.

• Column Family: Investor. Store information about all investors existing in Va-

lue4All.

• Column Family: Service Provider. Store information about all service providers

existing in Value4All.

79

• Column Family: Project. Store information about all projects existing in Value4All.

• Column Family: Owning. Store information about which entrepreneur owns which

project.

• Column Family: Investing. Store information about which investor invests in which

project.

• Column Family: Developing. Store information about which service provider de-

velops in which project.

• Column Family: Knowing. Store information about which peoples from these

groups knows each other.

The possible situation derived from the general data model that was described above

can be designed as follows in Cassandra.

11.6 Prototype Implementation

It is two totally different implementation methods between Cassandra and Neo4J in

terms of how to implement the data model and how to manage the establishment of

communication and transactions between the business layer and the database layer.

80

11.6.1 Transactions in Neo4J

There are two rows of code, you need to implement for a successful transaction com-

munication with Neo4J.

GraphDatabaseService graphDb =

new EmbeddedGraphDatabase(DB_PATH);

Transaction tx = graphDb.beginTx();

GraphDatabaseService is the main Neo4J object that acts as an access point to a running

Neo4J instance from DB_PATH. With a GraphDatabaseService instance, you can create

nodes, get nodes by an id and finally close the Neo4J instance.

graphDb.shutdown();

Transaction object is needed to transact the information between node objects and the

Neo4J database instance. First, you have to create an instance of Transaction object. Af-

ter that, you can perform all your operations based on your needs, for instance, search

nodes. The method, success(), performs the transaction job, and it can results in fai-

lure() or finish() states:

Transaction tx = graphDb.beginTx();

try {

... //any operation based on your needs

tx.success();

}

finally

{

tx.finish();

}

As you can see in the code below, you first create your transaction object, implement

your requirements, perform your transaction and finally close the transaction.

81

11.6.2 Transactions in Cassandra

This part is based on Cassandra-Hector API. Hector is a high level client (API) for

accessing and managing information in Cassandra database. It is easy to create a Cas-

sandra communication pool and transact the information to Cassandra database by

Hector. The main Objects here are CassandraClientPool and CassandraClient:

CassandraClientPool pool = CassandraClientPoolFactory.INSTANCE.get();

CassandraClient client = pool.borrowClient("localhost", 9160);

A Cassandra client instance is retrieved from a CassandraClientPool object which can

be instantiated by a Cassandra factory object (CassandraClientPoolFactory). First you

retrieve a pool for your Cassandra clients for management of your Cassandra clients

for reusing. You can then create Cassandra clients for the local machine on port 9160,

where your Cassandra server is already listening and waiting for requests. After all

operations done in Cassandra database based on your needs, you can finally release

the Cassandra client to the pool with pool.releaseClient(client):

82

try {

... //any operation based on your needs

}

finally

{

pool.releaseClient(client);

}

As you can see in the code below, you first create your transaction object, implement

your requirements and finally close the transaction.

11.6.3 Data Model Implementation In Neo4J

There are two head objects of the data model implementation in Neo4J, the Node object

and the Relationship object. Nodes are instantiated by:

Node kalle = graphDb.createNode();

Node hasse = graphDb.createNode();

Nodes above are created by invoking the method:

GraphDatabaseService.createNode()

83

The relationships can be defined between Nodes as follows:

Relationship relationship=kalle.createRelationshipTo(hasse, CLASS_NAME.KNOWS);

Relationship object defines a relationship between two nodes in the graph. The meaning

of the code above is that "kalle knows hasse". "KNOWS" is the name of the Relationship

instance. You can set properties to both objects (Nodes and Relationships) with me-

thods:

Node.setProperty(...)

Relationship.setProperty(...)

A complete example is illustrated below. Descriptions are available with a number

related to each part of the code.

1 Creating Nodes "user_name" and "project_name".

2 Creating Relationship "own_relationship".

3 Setting properties "name" and "group" with the values "userName" and "userGroup"

to the node "user_name". Setting properties "pname" and "pgroup" with values

"projectName" and "project" to the node "project_name".

4 Setting property "name" with value "own_relationship" to the relationship

own_relationship.

5 Printing out the value of the property "name" of the node "user_name". Printing out

the value of the property "pname" of the node "project_name".

84

11.6.4 Data Model Implementation In Cassandra

The important objects in Cassandra are Keyspace , Column Family, Column and finally

key-value pairs of data as the minimal data structure in Cassandra. The highest level

of Cassandra data model is the Keyspace object which holds Column Family objects

inside itself. Column Family Objects hold all Column objects and Column Objects hold

the key-value pair of data. KeySpace is retrieved as follows:

Keyspace keyspace = client.getKeyspace("Value4All");

Here, you get a Keyspace object from your CassandraClient Object with the name

"Value4All" which can be defined in Cassandra storage configuration file (Cassandra

config file). With a keyspace, you can read and write to your instance of Cassandra.

ColumnPath columnPath = new ColumnPath("investor");

columnPath.setColumn(bytes("column-name"));

keyspace.insert("key", columnPath, bytes("value"));

First of all, you create a Columnpath object which indicates where the column family

"investor" is located. The column family "investor" must be defined in your Cassandra

85

storage (config) file. When you successfully have your column family, you can then

create an arbitrary number of columns in the column family. You can also write an

arbitrary number of key-value pairs of data to each column. For instance, you can first

create a column with the name "HASSE" as follows.

columnPath.setColumn(bytes("HASSE"));

You can then insert an arbitrary number of key-value pairs of data in your column

that is created in the specified column family ("investor"). For instance, a key-value

pair ("name" : "hasse") can be created as follows.

keyspace.insert("name", columnPath, bytes("hasse"));

The example above can be illustrated as follows.

HASSE {

"name" = "hasse"

}

A complete example is illustrated below. Descriptions are available with a number

related to each part of the code.

1 Retrieving the keyspace "Value4All" from Cassandra Client defined in the Cassandra

config file.

2 Instantiating a reference to the column family "entrepreneur". Setting column name

"userName" and then insert the key-value pair (name/userName) on it.

3 Instantiating a reference to the column family "project". Setting column name "pro-

jectName" and inserting the key-value pair (name/projectName) on it.

4 Instantiating a reference to the column family "owning".Setting column name "user-

Name" and inserting the key-value pair (name/projectName).

5 Shows how to retrieve the columns with a key named "name" within different co-

lumn families "entrepreneur", "project" and "owning".

6 Printing out the values of the key "name" in each columns.

86

11.7 Comparison Test Cases

The test cases were based on some properties, which were compared the Cassandra as

a key-value store and Neo4J as a graph database:

• Changeability.

• Easy-to-use.

• Performance.

• Scalability.

Easy-to-use property covered all development stages and were compared based on

how easy it was to write code and understand the data model throughout all levels of

the development.

11.7.1 Changeability

For example, if we have an object with some attributes, and then we realize that we

need an additional attribute to add to our object. How difficult it is to change the data

model and how much you need to change in your implementation. As mentioned in

87

the chapter 4.5 (Value4All Three Tier Design), Value4All is a three tier architecture with

separated layers:

• Presentation Layer

• Business Logic

• Persistence Layer

This separation makes the changeability of the implementation easier since you need

to change your code, based on your needs in different layer.

Neo4J - Changeability

The prototype was developed for Neo4J based on a three tier architecture, that are

illustrated below.

"Changeability.jsp" is the main page for the presentation layer for Neo4J database. Here,

you can create a Value4All user and decide if he is an entrepreneur, an investor or a

service provider. The user can also decide what to do, for instance, if they want to

create a project, invest in a project or create a friendship relation with somebody wi-

thin different groups existing in Value4All. The data are sent to the business layer for

manipulation, for instance, in "ChangeabilityNeo4jServlet.java", you can create a project,

investment in a project and, etc. The last layer is the persistence layer, and here the

88

data is stored in Neo4J. Checking the changeability power of Neo4J, I added another

property to objects, for instance, a "group" property which indicates which user group

(Investor, Entrepreneur, Service provider) a user belongs to.

A database index is used to access the data stored in a database which also improves

the speed of data access. Neo4J core database has no built-in indexing system, but it

provides a plugable mechanism to support it. The indexing is done per Node’s pro-

perty. For instance, if you want to perform the query "find all users who have name =

hasse", then you have to create an index for the property "name" for each Node you

create. First you have to import all needed libraries and install them to make indexing

to work, see the appendix F (Application Installations). Using indexing features is very

easy in Neo4J. You have to declare an indexing service (IndexService) one time at the

beginning of your code:

IndexService indexService = new LuceneIndexService(graphDb);

Now you can create an index for each property of your Nodes. First we create a Node

"user_name" with a "name" property for our user "hasse" and then we create an index

for the Node "user_name" and property "name":

Node user_name = graphDb.createNode();

user_name.setProperty("name", "hasse");

indexService.index(user_name, "name", user_name.getProperty("name"));

The problem is, when you design a new property for your Nodes (for instance, the

user group that each user belongs to), then you have to create a script to modify all

existing nodes for the new property. The best choice is to think about all properties

from the beginning and create so many properties as possible to skip this kind of mo-

difications. Here were the changes that, I made to the prototype when I added an

additional property "user_group" (Investor, Entrepreneur, Service provider):

89

• Code modification. Try to have a single-point-of-changes in your application. In

my case, I had only the class "ChangeabilityNeo4JServlet.java" to mo-

dify.

Node user_name = graphDb.createNode();

user_name.setProperty("name", "hasse");

user_name.setProperty("group", "Investor");

index.index(user_name, "name", user_name.getProperty("name"));

index.index(user_name,"group",user_name.getProperty("group"));

Now you can do more advanced queries to your database, for example, "find

all users with name hasse which belongs to user group investor."

• Script. I had to create a script to made changes to my already existing Nodes.

All Nodes before the creation of the additional property have to be changed and

also a property index had to be defined for each node to make nodes accessible

through the new query functionality. But scripting was easy because you don’t

need to go to your database, modify tables or something like that. For lookup,

you need to loop through your Nodes based on some properties. See the chapter

10.4 (Neo4J) for more information about traversing in Neo4J.

There are other features available for Neo4J lookup, for instance, TimeLine object. You

can create a TimeLine object and add nodes to it, each with a timestamp, and you can

then ask Neo4J to return, for instance, all nodes within a specific period of time.

Cassandra - Changeability

Similar to Neo4J a three layer application was created to measure the changeability of

the Cassandra database. An additional property (age) was added to Cassandra objects.

As mentioned in the chapter 11.5.2 (The Data Model In Cassandra), the definition of

90

the data model is stored in the storage-config of the Cassandra database. This file is

created with the needed configurations and are loaded when the Cassandra database

starts before you start the application server. It is very important to think about the

application’s data model from the beginning to avoid changes to this file since this file

can become corrupt if you don’t know what you are doing. Here you can see the confi-

guration of Column Family for Value4All in the storage-config:

<Keyspace Name="value4all">

<ColumnFamily CompareWith="UTF8Type" Name="entrepreneur"/>

<ColumnFamily CompareWith="UTF8Type" Name="investor"/>

<ColumnFamily CompareWith="UTF8Type" Name="serviceProvider"/>

<ColumnFamily CompareWith="UTF8Type" Name="project"/>

<ColumnFamily CompareWith="UTF8Type" Name="owning"/>

<ColumnFamily CompareWith="UTF8Type" Name="investing"/>

<ColumnFamily CompareWith="UTF8Type" Name="knowing"/>

...

</Keyspace>

The keyspace ("value4all") is the highest level of the Cassandra data model. Within the

keyspace "value4all", there are three Column Families (entrepreneur, investor, service-

Provider) for the three group of users (Entrepreneur, Investor and Service Provider).

There is a Column Family (project) defined for all projects created within the applica-

tion keyspace "value4all". There are four another Column Families (owning, investing,

knowing, developing) for the respective relationships. Within each Column Family,

you can then create your (key-value) pairs of data in different columns. As mentioned

in the previous chapter 11.6.4 (Data Model Implementation In Cassandra), the creation

of a key-value pair of data is as follows:

ColumnPath entrepreneur = new ColumnPath("entrepreneur");

entrepreneur.setColumn(bytes(HASSE));

keyspace.insert("name", entrepreneur, bytes("hasse"));

Here, you first define a path to your Column Family "entrepreneur" and then you

create a property with (key-value) pair = (name, hasse) to add to the column "HASSE".

The example above, can be illustrated as follows.

HASSE {

91

"name" : "hasse"

}

Adding another property to a Column Family required the following changes:

• Code Modifications. Adding a new property to an existing column within a Co-

lumn Family is easy:

ColumnPath entrepreneur = new ColumnPath("entrepreneur");

entrepreneur.setColumn(bytes(HASSE));

keyspace.insert("name", entrepreneur, bytes("hasse"));

keyspace.insert("age", entrepreneur, bytes(30));

Here we define an age property to the column "HASSE" within the column fa-

mily "entrepreneur" with the name "age" and value "30". The example above, can

be illustrated as follows.

HASSE {

"name" : "hasse"

"age" : "30"

}

• Scripts. The age changes are only applied to the new users and therefor, we need

a script to look up all users, and then we can set the age for all of them. These

changes are done, if we want to be able to look for our objects based on the "age"

property. Lookup in Cassandra is as follows:

Keyspace keyspace = client.getKeyspace("value4all"); (1)

ColumnParent cp = new ColumnParent("entrepreneur"); (2)

SlicePredicate sp = new SlicePredicate(); (3)

SliceRange columnRange = new SliceRange(); (4)

columnRange.setStart(new byte[0]); (5)

columnRange.setFinish(new byte[0]); (6)

columnRange.setReversed(false); (7)

sp.setSlice_range(columnRange); (8)

KeyRange keyRange = new KeyRange(500); (9)

Map<String, List<Column» map = keyspace.getRangeSlices(cp, sp,

keyRange); (10)

for (String key : map.keySet()) { (11)

92

List<Column> columns = map.get(key); (12)

for (Column column : columns) { (13)

Now you can do something with your columns

}

}

Description is as follow:

(1) As I mentioned earlier the keyspace is the highest level of the data model

of the Cassandra database. With keyspace, you can handle all read/write

operations to Cassandra.

(2) For searching, you can use ColumnParent, which means that, you can select

groups of columns from the ColumnFamily ("entrepreneur"). With other

words, we get details from the column family "entrepreneur".

(3) A SlicePredicate is described as a property that the elements of a set have in

common. In this case, all users within "entrepreneur" column family has a

"name" property which is common between them.

(4) With a SliceRange object, you can stores basic range, ordering and limit infor-

mation for a query that will return multiple columns. It could be thought

of as Cassandra’s version of LIMIT (limit your search) and ORDER BY in

relational databases.

(5) The column to start the slice with. No parameter is defined here.

(6) The column to stop the slice at. No parameter is defined here.

(4-6) These settings will get all Keys in the Keyspace for the column family "en-

trepreneur".

(7) It describes the order of the retrieved data. No reversed ordering of data.

(8) Apply the SliceRange setting to the SlicePredicate Object. In this case, we tell

the SlicePredicate to get all nodes in the column family "entrepreneur".

(9) Set the max number of retrieving values that are 500 here.

(10) Retrieve the column result in a Map.

(11-13) Looping through all columns do something with them. For instance, ad-

ding the new property "age". For more information, see the previous point.

93

• Adding a new column to an existing column family "entrepreneur" is also easy.

You can add an arbitrary number of columns to your column family. For ins-

tance, adding the column "KALLE" to your objects.

ColumnPath entrepreneur = new ColumnPath("entrepreneur");

entrepreneur.setColumn(bytes(HASSE));

keyspace.insert("name", entrepreneur, bytes("hasse"));

keyspace.insert("age", entrepreneur, bytes("30"));

entrepreneur.setColumn(bytes(KALLE));

keyspace.insert("name", entrepreneur, bytes("kalle"));

keyspace.insert("age", entrepreneur, bytes("45"));

The example above can be illustrated as follows.

HASSE {

"name" : "hasse"

"age" : "30"

}

KALLE {

"name" : "kalle"

"age" : "45"

}

Another test was to add another Column Family (developing) to the keyspace. The

changes were done first in the storage-config file of the Cassandra database (this is

highly recommended that you back up the storage-config od the Cassandra database first). For

that purpose, I stopped the Cassandra database, added the following row to the storage-

config file of the Cassandra database:

<Keyspace Name="value4all">

<ColumnFamily CompareWith="UTF8Type" Name="entrepreneur"/>

<ColumnFamily CompareWith="UTF8Type" Name="investor"/>

<ColumnFamily CompareWith="UTF8Type" Name="serviceProvider"/>

<ColumnFamily CompareWith="UTF8Type" Name="project"/>

<ColumnFamily CompareWith="UTF8Type" Name="owning"/>

<ColumnFamily CompareWith="UTF8Type" Name="investing"/>

<ColumnFamily CompareWith="UTF8Type" Name="knowing"/>

<ColumnFamily CompareWith="UTF8Type" Name="developing"/>

94

...

</Keyspace>

After that you can start the Cassandra database and perform your code modification

as you want for new and old nodes.

Cassandra VS Neo4J- Changeability

I think the changeability of Neo4J is more flexible and faster than Cassandra for both

writing and reading parts. Indexing is separated from Neo4J core and because of that,

if you want to add a new property to your nodes, you have to define a new index for

the new property, so you can search for nodes based on the new property. I think this is

not a big problem to have been indexing separated from Neo4J core. The head problem

here is to integrate indexing to the application which is difficult.

The structure of a social network’s data is more easier to be designed in Neo4J. You

have people or groups as your data with different properties, which are connected to

each other by different relations. This is not obvious in Cassandra. Changing Cassan-

dra’s storage-config file, when you add a new Column Family was another reason, to

skip by using Neo4J. Changing in Cassandra config file reminds a little about relational

databases schema and tables. Reading from Cassandra is harder to understand than

Neo4J because of the Cassandra’s data model complexity.

11.7.2 Easy-To-Use

This property is an important factor of choosing a database. For example, how much

work we have to do if we want to change something, how much code we need to

write for a functionality in database layer, and, etc. The categories of comparing the

easy-to-use property of Neo4J and Cassandra were as follows.

• Data model.

• Reading/Writing, from/to databases.

• Start/Shutdown of databases.

• Installation.

Choosing one of these databases for each category were done as follows. Within each

category, the best database got an a plus (+) sign. The database with the highest num-

ber of plus sign was the winner database.

95

Data Model

The data model implementation of Neo4J is based on Nodes and Relationship with an

arbitrary number of properties (key-value pairs) for both. The Data model implemen-

tation of Cassandra is separated in different levels (Keyspace, Column Family, Column,

Key-Value pair). The data model of Cassandra is very powerful, and it helps to write

very powerful queries. During the implementation phase, I had to concentrate on what

these different objects were. On the other hand, the way of thinking in the Neo4J data

model was new to me but very easy to understand, which helped me to concentrate

on coding features instead of to think about what I am doing.

Reading And Writing

Reading and Writing from/to Neo4J and Cassandra were discussed in previous chap-

ter (Changeability). I think the writing to both is easy but reading from Cassandra is

harder. Documentation of Neo4J was better, which helped me to understand what I

am doing during the implementation phase.

Result: A plus sign for both reading and writing from/to Neo4J. A plus sign for writing

to Cassandra. A plus sign for Neo4J documentation.

Database Start/Shutdown

Neo4J is an embedded persistence engine, which means that it’s a small Java library

that is easy to include in your development environment. Because Neo4J is embedded

there is no need to start and shutdown Neo4J separately from our application. Cassan-

dra had to be installed separately first and be integrated to the application (Value4All)

by a client (Hector in my case), and then it had to be started (and shutdown) separately.

96

The positive thing with a stand alone database like Cassandra is, if your application

goes down, your database is not affected. On the other hand, Neo4J database is em-

bedded, and it is up and running when your application is up and running. It doesn’t

matter, in this case, to have the Neo4J down since it starts up when the application

starts up.

Installation

The installation process of Neo4J and Cassandra are described in the appendix F (Ap-

plication Installations). Installation of both Neo4J and Cassandra were easy. If you

have worked with your development environment before, then it is easy to integrate

Cassandra and Neo4J in your environment. Java API code functionalities follow with

Neo4J core, and you can code directly when you had successfully integrated Neo4J in

your environment, but it is harder to integrate hector (Cassandra client) in your envi-

ronment. Hector is a fully developed jar-module and you need to know about module

integration in your environment, for instance, by maven in my case, which is a hard

task. Indexing is not supported in Neo4J core and because of that you have to integrate

the API dependencies in your environment. I think Neo4J had very good documenta-

tion and Wiki pages related to it. You can find the documentation here:

http://neo4j.org/

Cassandra database had good documentation too.

http://cassandra.apache.org/

But I think Cassandra client "Hector" had not enough documentation but hector is one

of the best choices of a high level Cassandra client. You can read about it here:

http://prettyprint.me/2010/02/23/hector-a-java-cassandra-client/

97

Result

The comparison Result in this chapter is based on the result of the winner of each

part of the above comparisons. For the start/shutdown, I think, there is no problem if

Neo4J goes down when the application goes down (in my case). On the other hand,

Cassandra is up and running even though the application is down.

11.7.3 Performance

Both Cassandra and Neo4J offer good performance. Comparisons in this chapter were

done both by studies from the internet and also analysis done by a simple test by the

prototype. I didn’t have the best environment (hardware) to compare the power of

reading and writing of these two powerful databases and because of that I had done

some researches, and the results are also applied here. My two phase tests were about

to add 1000 nodes to Cassandra and Neo4J (measure the writing time) and then reading

from them (measure the reading time). During the phase two test, adding 10.000 nodes

and perform the same actions as for 1000 nodes (measuring the read and write times).

The results of these two phases were compared to each other for both Cassandra and

Neo4J.

98

Neo4J

Neo4J is a high-performance graph engine with all the features of a robust database.

While Neo4J is a relatively new open source project, it has been used in production

applications with over 100 million nodes, relationships and properties, satisfying en-

terprise robustness and performance requirements. The properties that increase the

performance of Neo4J are among other things:

• Smart cashing. The first thing a client thinks about while visiting a site is,

how much time it takes to see a page irrespective of what, they are looking for. In

a three tier architecture, while the presentation layer shows information imported

from persistence layer, you can cash the information (for example, such cashing

can be based on the popularity of the information and all newly information) for

fast accessing. This technique gives high availability and high performance to

the application.

• Powerful traversals capability. Traverse queries are done across se-

veral hundreds of thousands of relationships in depth higher than 100 000 in a

matter of seconds, on fairly modest hardware.

In my case, the test of reading and writing time of Neo4J in phase one, by adding 1000

nodes to Neo4J and checking the time were as follows.

• Writing time in ms: 248 (ms).

• Reading time in ms: 932 (ms).

Phase two, I added 10.000 nodes to Neo4J and checked the time for reading and wri-

ting.

• Writing time in ms: 650 (ms).

• Reading time in ms: 1989 (ms).

99

Neo4J has high performance in case of deep reading. Write speed is much dependent

on the seek time of the file system and hardware. The Ext3 file system and SSD

disks are a good combination and result in transactional write speeds of approximately

100,000 operations per second. Here you can read a performance guide for Neo4J:

http://wiki.neo4j.org/content/Neo4j_Performance_Guide

Cassandra

Cassandra offers very high performance. Its performance has been growing nicely in

each point release. Cassandra is much faster than relational databases but slower than

memory-only systems or systems that don’t sync each update to disk. It’s designed

to use disk for durability and to accommodate using large sets of data, letting the

operative system use memory as a huge cache for all data is impossible yet. On the

other hand, Cassandra provides smart caching and because of that, for instance, the

newest data or the most popular data can be cached in the memory. Other properties

which increase the power of Cassandra are:

• Range queries: unlike most key-value stores, you can query for ordered ranges

of keys.

100

• Powerful data model

• Distributed writes: you can read and write any data to anywhere in the

cluster at any time. There is never any single point of failure.

In my case, That was hard to find out the true performance of Cassandra since, Cas-

sandra is designed for multi-nodes, but I only used my laptop as a Cassandra instance

(node). In my tests, I didn’t change anything in Cassandra config file, for instance

shutdown the logger or something else. Here is the result of my tests. In phase one, I

added 1000 objects to Cassandra and checked the time for reading and writing.

• Writing time in ms: 398 (ms).

• Reading time in ms: 67 (ms).

Phase two, I added 10.000 rows to Cassandra and checked the time for reading and

writing.

• Writing time in ms: 1944 (ms).

• Reading time in ms: 125 (ms).

Another analysis shows that Cassandra 0.5.0 has been benchmarked to insert about

10000 rows per second on a four core server with 2GB of RAM. Here you can read

about it:

101

http://spyced.blogspot.com/2010/01/cassandra-05.html

Here you can read another performance study for version 0.5 made by yahoo.

http://www.brianfrankcooper.net/pubs/ycsb-v4.pdf

Result And Analysis

The comparison Result in this chapter is based on the results of the two phase perfor-

mance tests that, were done for both Cassandra and Neo4J.

From the comparison table above you can see that writing is faster in Neo4J than Cas-

sandra but reading is much slower in Neo4J than Cassandra.

The question was why?

The problem maybe lies in my coding. For instance:

for(int i=0; i<1000;i++){

for (Node hit1 : index1.getNodes("objectName1",

new Integer(i).toString())) {

String res = hit1.getProperty("objectName1").toString();

System.out.println("Node name: " + res);

}

}

102

From the code above, you can see that: for each node, get the node(s) by name. The pro-

blem was in the first loop because I had to look through all nodes existing in Neo4J

with property "objectName1", one time for each node value. On the other hand, an

in-depth lookup is very fast, for instance "get all nodes that are friends with hasse". It was

hard to say which of these databases wins the performance tests. I think, Neo4J is good

enough and can be compared with Cassandra as a high performance database based

on the results from the performance tests and also researches that show the high per-

formance of Neo4J. For the performance tests, the both of these databases are winners.

11.7.4 Scalability

One of the most important properties of a social network system is the scalability of the

application. Having huge investments in time and other resources into the application,

nothing is better to see the application is growing but on the other hand, the bad thing

is to see the application collapse because of the load. The ability to grow based on the

needs for Value4All is critical. Value4All, in the future, has to provide the exponential

growth of the volume of data generated by users and the application itself. Value4All

may also increase in the number of servers in the features because of, for example,

increasing of interdependency and complexity of data, increasing use of the internet,

Web2.0, other competitors in the market and, etc.

Neo4J

From the beginning, Neo4J is designed for large network of data, 100+ millions of

nodes, relationships and properties (Key-Value pairs) for both nodes and relations on a

single JVM (Vertical Scaling). If you hit this limit you have to start partitioning your

data. Increasing of the number of data creates a need for multiple machines (Horizon-

tal Scaling or Sharding). Neo4J can be sharded to scale out across multiple machines by

additional configurations. Here you can see a suggestion for sharding:

http://lists.neo4j.org/pipermail/user/2009-January/000997.html

Sharding is very important when the Value4All gets bigger and the need for to-be-

up and running are critical. Since Neo4J provides only running on one JVM, there is a

risk for single-point-of-failure who has to be avoided. Maybe, in the future, a sharding

possibility will be provided by Neo4J and until that, Neo4J can be used as a good first

step database solution for Value4All.

103

Cassandra

Most of the database systems in the market are based on transactions to guarantee

the integrity of data, which also ensures the consistency of data. Recall from chapter

8.1 (Market’s Database Solutions), these transactional properties are known as ACID.

However, scaling and ACID are tradeoffs, which means that, it is hard to scaling out

and having ACID properties at the same time. Recall from chapter 8.1 (Relational

Databases - Scalability Problem), according to CAP theorem about the scalability, only

two of the three different aspects of the theorem can be achieved fully at the same

time (Consistency, Availability, Partition Tolerance). Cassandra is a scalable, eventually

consistent (guarantee AP of CAP theorem), running on Java with no single point-of-

failure. Cassandra provides both vertical scalability and horizontal scalability. Cassandra

can store hundred millions of data and can scale out vertically very fast. Huge amount

of data can be queried because of the power of the data model and increasing the data

can be solved by scaling out horizontally with powerful load balancing across servers

and avoiding bottlenecks. With other words, Cassandra offers:

• True scalability: it scales horizontally. To add more capacities to a cluster

or turn on another machine, you don’t have to restart any processes, change your

application queries, or manually relocate any data.

• Multi-datacenter awareness: you can adapt your node layout to ensure

that if one data center burns in a fire, an alternative data center will have at least

one full copy of every record.

Result And Analysis

The comparison Result in this chapter is based on the results of the studies for verti-

cal/horizontal scalability of Cassandra and Neo4J.

Neo4J has no support for horizontal scaling, but on the other hand, you can run bil-

lions of nodes and relations with arbitrary number properties on them in a single JVM.

104

If you come up to this level of data, you can then partition your data to other storages

(in Value4All case, this will not happen soon). There is still a risk for single-point-

of-failure. By additional solutions, you can have a success with horizontal scaling of

Neo4J. I think there are no differences between Neo4J horizontal scaling problem and

relational databases scaling problem, On the other hand, Cassandra, provides horizon-

tal scaling by its huge-cluster solution. Cassandra is very powerful and offer solutions

with high performance and scalability opportunities.

11.7.5 Conclusion

It was hard to say which database was the best choice for Value4All. I choose Neo4J as

the database solution:

• Neo4J offered more flexible results for the changeability property. This property

is very resource consuming. This property was the most important part of the

comparison test cases.

• Neo4J had the most natural choice of the data model implementation of Va-

lue4All’s data as a social network system. Furthermore, for the Easy-To-Use pro-

perty, the best choice was also Neo4J database.

• Scalability was an important part of test cases. Neo4J didn’t offer horizontal sca-

ling by default as Cassandra, but it is possible to success with some configura-

tions. On the other hand, you can run hundred billions of nodes, relationships

with the arbitrary number of key-value pairs of property on both of nodes and

relations on only one single JVM. I think, even this part was satisfied by Neo4J, at

least, as the first version database solution for Valu4All since the amount of data

in Value4All will not pass this level of data quantity soon. In the future, there

will be a "need" for migration from Neo4J if there is no solution for horizontal

scalability by Neo4J. Cassandra is designed for a cluster of servers which is not

the first configuration case for Value4All in the first stages. These configurations

are also expensive, complex and require professional skills.

• Neo4J had the best writing time in performance test cases for both 1000 nodes

and 10.000 nodes. Neo4J provides high-performance for reading in depth levels.

In my test cases, I get very bad results for reading part (not in-depth reading,

which is very fast) for Neo4J compared with Cassandra. I think, it can depend

on my bad coding knowledge. Neo4J is still good enough and can be compared

with Cassandra as a high performance database based on the performance test

results and results from the researches.

105

Cassandra database is a very powerful database because of its data model, providing

horizontal and vertical scalability by default and high performance. Cassandra is also

a good choice for Value4All, but it is designed for a cluster of machines, and you cannot

get the best power of Cassandra by running it on a single machine (probably what we

need in the first version of Value4All). On the other hand, Neo4J is easy to use, provides

good changeability property with high performance and good vertical scalability and

because of that Neo4J is enough as a winner database for the first version of Value4All.

In the future, it is possible to have a migration of data from Neo4J, in the case that there

is no solution available as default for sharding in Neo4J.

106

Part V

Future Of Value4All & Final Words

107

Chapter 12

Which Social Networks Can be

Integrated In Value4All?

There are many active social network systems on the internet. The most popular social

network systems in Sweden are Facebook, LinkedIn and Twitter. The purpose of this

chapter was to make some research to see if there were any possibilities to Integrate

Value4All with these platforms. For that purpose, I looked for the possibilities of login

functionality of Value4All to be integrated with these popular social network systems.

I found out that there are good possibilities for this technique. Login to Value4All

through Twitter, Facebook or LinkedIn gives you:

• High security sign-in (trusted user authentication).

• A Value4All user can access all its personal details from LinkedIn, Facebook or

Twitter and the information details can be imported to Value4All directly.

• Speed up the login process (Value4All doesn’t need to create own login process).

• It makes Value4All more attractive and valuable.

12.1 Facebook

A good possibility with Facebook is that, a site (like Value4All) doesn’t need own login

process. By Facebook’s account, you can log in directly to your system, for example

Value4All. With an account in Facebook, you can import all your information to Va-

lue4All and stay logged in as long you are logged in to Facebook. Facebook calls it for

"Single Sing-on or Facebook Connect". Facebook authorization technique is "OAuth 2.0

protocol".

108

Here you can read about this technique:

http://wiki.oauth.net/OAuth-WRAP

Facebook has a great information page about how you can connect your site to Fa-

ceebook.

http://developers.facebook.com/docs/guides/web

12.2 Twitter

Twitter uses the same technique (OAuth) as Facebook called Twitter Sign-On, for au-

thentication through their sign-in process. Here you can read about it:

http://dev.twitter.com/pages/sign_in_with_twitter

12.3 LinkedIn

LinkedIn provides the functionality to login to Value4All through their Sign-on infra-

structure. The process behind the LinkedIn authentication is quite similar to Facebook

Connect and Twitter Sign-In.

Here you can read about how you can login to your site through LinkedIn:

http://developer.linkedin.com/index.jspa

109

12.4 Result

LinkedIn, Facebook and Twitter support login to other sites likes Value4All through

them. There are no big differences between the technique, they are using to solve this

functionality. The only differences are how much personal information details Va-

lue4All needS to import from these social networks. To answer this question, we have

to know what is the purpose of Value4All? I think LinkedIn will be a good choice because:

• Almost all personal information details can be imported to Value4All.

• CV and personal presentations can also be imported to Value4All.

• You can also see the users academic studies and other important information that

can be valuable for Value4All to import.

Imagine that an investor in Value4All became interested in a project, and he wants to

know who owns the project. The information makes it easier for the investor to decide

a possible investment in the project. In that situation, the investor maybe wants to see

all personal information of the entrepreneur, CV, other academic studies and, etc. This

information exists in LinkedIn that can be imported to Value4All by LinkedIn Sign-In

Solution.

12.5 OAuth Protocol

OAuth is a new technique (2006) that allows you to share the private information from

one site to another site with shared username and password. With OAuth, you can

share other resources like contact list, videos, photos, CV and, etc. The following

example shows how OAuth can be applied between Value4All and LinkedIn.

Picture that, Kalle is an investor in Value4All. At the same time, Kalle is a mem-

ber of LinkedIn with own username/password, photos, CV, Personal letter and, etc.

Since Value4All is integrated with LinkedIn, all personal details can be imported from

Kalle’s LinkedIn personal page to Kalle’s Value4All personal page, added with other

Value4All specific information. Assume that, the information that Value4All imports

from LinkedIn are:

• Name

• Birthday

• CV

110

• Personal Letter

• Photo A

In the picture below, when Kalle wants to login to Value4All by clicking on "Log in

with LinkedIn".

A Request Token is sent to LinkedIn server. A Request Token is not user-specific at this

point and can be used to approve Kalle’s login request. When Value4All server re-

ceives the Request Token, it sends Kalle to the LinkedIn OAuth User Authentication

page and requests LinkedIn to redirect Kalle to Value4All when Kalle’s login request

was approved by LinkedIn. Now Kalle can access the Login page of LinkedIn. OAuth

requires that LinkedIn first authenticates Kalle and then asks LinkedIn to grant access

to Value4All.

111

Once Kalle can approve his identity to login, LinkedIn marks the Request Token as

"User Authorized". Kalle is then redirected back to the Value4All start page with the

Request Token as the user authorized. Value4All asks for an Access Token by Kalle’s

user authorized request token, to be able to retrieve Kalle’s personal information.

The Request Token is used for user approval and Access Token is used to access protected re-

sources like Kalle’s Name, Birthday, CV, Personal Letter and Photo A.

Value4All receives all requested information for Kalle from LinkedIn. Kalle can now

access his Value4All page by his browser.

112

Chapter 13

The Future Of Social Network Systems

Facebook, LinkedIn, Twitter and many other social networks growing very fast. Al-

most everybody knows what Facebook is. In the future, social networks can exist

anywhere, and everywhere we need and want them to be. "What’s happening to our

social life?" is one question that is worth thinking about. I think that, the dependencies

to social networks increase more and more. We spend more time on the internet, and

we look for friends or maybe our life’s big love on the internet. There are a more po-

sitive picture to such things now than before. As mentioned in the chapter 5 (A Social

Network System), social networks are the forth most popular kinds of online activities

with 67% of the world online population.

"SOCIAL NETWORKS WILL BE LIKE AIR!"

Internet access will be much better in the future, web 2.0 and other new techniques are

coming all the time. I think all these techniques cause that our dependences on Internet

increase more and more because, there are more important answers about our real life

that we find out on the internet, for instance:

• Relationship: you search for your life’s big love or you want to stay connected

with your new internet friends.

• Activities: you maybe want to play games with other people on the internet.

• Doing business: you have to be updated to know about the price of your share

portfolio or other businesses.

What’s happening in the future is maybe, that all big social network companies and

other big companies want to be corporate to each other to create something called

(Universal Identity Or Universal Sign-In). It is very unpractical and difficult to have a

113

different profile on different sites, for instance, Facebook, LinkedIn, Twitter or having

different accounts on MSN, Yahoo, Google. It will be a good idea to have a universal

identity for every site you want to use. There will be, for instance, a few large centers

for this purpose, saving our universal identities, in the future.

We are going from a translation of people’s real life to a digitalized life. Personally, I

don’t like the idea, but the techniques are going to that direction. During the master

thesis, I send a questionnaire to more than 100 private persons and a question was

about "What do you think that will happen in the future?". The people who answered this

question were few but almost all of them who answered the question said, that they

will be able to use their social network sites everywhere (Mobile, Tv, and, etc.) and

they like the technique very much.

How Can Value4All be developed in the future?

Picture this: during a conference, a managing director look for a new finance direc-

tor. Within minutes, by Value4All connected to LinkedIn in his mobile, he identifies

ten people with the right CV and two of them are looking for changing their jobs. His

mobile tells him by GPS that, one of them is standing 10 meters from him in the confe-

rence. At the same time, a record of all people’s profile that he found by his mobile

during the conference, is automatically sent to his PC. It sounds more like a science

fiction movie by James Bond, but this one can comes true in the future.

114

Chapter 14

Final Words

The master thesis had been very interesting and within a new and popular field of

technique in the market. I started with little knowledge about techniques involved in

social network platforms and challenged myself to learn some of them from scratch.

An interesting observes was, how hard it can be to ask companies about their tech-

niques and development environment. Probably, the information is secret company

information.

A new experience was to work with bigger projects, learn to plan the work in good

time and limit the scope of the project. That was also hard to filter the important in-

formation from the beginning but during the master thesis I became more effective to

filter the relevant information.

Designing a good three tier application is very important because you have to think

about, how to separate the presentation layer from the business logic and the database

layer. Another new experience was, how the Java-library is structured and how the

standardization of products looks like. It is very important to use standard solutions

because it is easier for applications to integrate future techniques in the more flexible

and easier way. Standard solutions are also proposed for Value4All’s development en-

vironment.

Integrating Value4All to Facebook, Twitter or LinkedIn makes Value4All more va-

luable because the trustworthiness of the application will increase and there will be

easier for people to become a member of Value4All. Developing a new login process is

hard and requires good programming knowledge about the security issues and profes-

sional skills about design of the database for user information management in a secure

way.

115

Value4All is a great idea because there are no competitors in the market. On the other

hand, there are many young people with good and innovative ideas that don’t know

what to do, and at the end the idea is gone. Value4All can help them to introduce their

ideas by writing a good business plan and find investors like social banks and private

persons to make their ideas true.

116

Part VI

References & Appendices

117

Bibliography

[1] E. F. Codd, Proceedings of the 1980 workshop on Data abstraction, databases and

conceptual modeling .

ISBN:0-89791-031-1

[2] Jason Hunter, William CrawfordJava Servlet Programming,

ISBN: 0-596-00040-5,

http://books.google.se/

[3] M. E. J. Newman, Juyong Park (PDF), Why social networks are different from other

types of networks, 2010-04-05,

http://arxiv.org/abs/cond-mat/0305612

[4] Graph Database Comparison, 2010-07-03,

http://infogrid.org/blog/category/related-technologies/

[5] Ken Thompson, 2010-07-08,

http://changethis.com/manifesto/show/19.BioteamingManifesto

[6] Maturana and Francisco Varela, 2010-05-03,

http://www.users.globalnet.co.uk/ rxv/people/maturanavarela.htm

[7] Social Network, 2010-04-03,

http://en.wikipedia.org/wiki/Social_network

[8] Tomas Björkholm & Hans Brattberg, Prioritera, Fokusera, Leverera,

ISBN-978: 9197863056.

[9] NoSQL Databases, 2010-06-15,

http://cstjanster.idg.se/sprakwebben/ord.aspordn̄osql

[10] Proof-Of-Concept, 2010-07-12,

http://en.wikipedia.org/wiki/Proof_of_concept

[11] Refactoring, 2010-05-12,

http://en.wikipedia.org/wiki/Code_refactoring

118

[12] Introduction to Distributed System Design, 2010-08-03,

http://code.google.com/edu/parallel/dsd-tutorial.html

[13] Sql Databases, 2010-04-17,

http://en.wikipedia.org/wiki/SQL

[14] Alexander Kolesnikov, Tapestry, Building Web Application,

ISBN-978: 184719307053999.

[15] Web Development, 2010-04-08,

http://www.grassrootsdesign.com/intro/web/web_design.php

[16] Three Tier Architecture, 2010-05-25,

http://dotnetslackers.com/articles/net/introductionto3tierarchitecture.aspx

[17] Starr Hall and Chadd Rosenberg, Social Network Design, 2010-04-23,

http://www.netsocializing.com/

[18] A List Of Key-Value Stores, 2010-06-28,

http://www.metabrew.com/article/anti-rdbms-a-list-of-distributed-key-value-

stores/

[19] Get Connected: The Social Networking Toolkit For Business,

ISBN-13: 9781599183589.

[20] Persistence Layer (PDF), 2010-05-06,

http://www.ambysoft.com/downloads/persistenceLayer.pdf

[21] Database Design, 2010-06-25,

http://en.wikipedia.org/wiki/Database_design

[22] Database models, 2010-06-25,

http://www.djangobook.com/en/1.0/chapter05/

[23] Avinash Lakshman Of Facebook, 2010-07-13,

http://static.last.fm/johan/nosql-20090611/cassandra_nosql.pdf

[24] Key-Value Stores, A Practical Overview, 2010-08-03,

http://blog.marc-seeger.de/assets/papers/Ultra_Large_Sites_SS09-

Seeger_Key_Value_Stores.pdf

[25] CouchDB, 2010-08-14,

http://jchrisa.net/drl/ApacheCon-Talk-Slides/CouchDB-Intro-EU.pdf

119

[26] A Database Perspective Of Social Network Analysis Data Processing, 2010-06-05,

http://swp.dcc.uchile.cl/TR/2006/TR_DCC-2006-007.pdf

[27] George Reese, Java Database Best Practicies,

http://oreilly.com/catalog/9780596005221,

ISBN:978-0-596-00522-1, ISBN 10:0-596-00522-9

[28] Higher Performance For A Real Time Workd, 2010-08-21,

http://www.odbms.org/download/029.01

[29] A Bibliographic Exploration Tool Based On The DEX Graph Query Engine, 2010-

07-23,

http://portal.acm.org/citation.cfm?id=1353439dl=GUIDEcoll=GUIDE-

CFID=100412322CFTOKEN=24143391

[30] Marty Hall, Larry BrownCore Web programming,

ISBN: 0-13-089793-0,

http://books.google.se/

[31] NOSQL: Scaling To Size And Scaling To Complexity, 2010-08-01,

http://blogs.neotechnology.com/emil/2009/11/nosql-scaling-to-size-and-

scaling-to-complexity.html

[32] Object Database vs. Object-Relational Databases, 2010-05-07,

http://ce.sharif.ir/courses/84-85/1/ce384/resources/root/Object

[33] Column-Oriented Database Systems, 2010-07-25,

http://phdopen.mimuw.edu.pl/lato10/boncz_mimuw.pdf

[34] Hans BergstenJava Server Pages,

ISBN-0-596-00231-9,

http://books.google.se/

[35] Frank Dabek, A Distributed Hash Table, 2010-07-28,

http://pdos.csail.mit.edu/papers/fdabek-phd-thesis.pdf

[36] Frank Dabek, Social Network - Living System, 2010-05-28,

http://www.masternewmedia.org/social_network_design_the_network_is_a/

[37] Frank Dabek, Social Network - Design Considerations, 2010-05-28,

http://thenextweb.com/socialmedia/2010/09/27/6-design-considerations-

for-your-enterprise-social-network/

120

[38] Frank Dabek, CAP Theorem, 2010-06-28,

http://en.wikipedia.org/wiki/CAP_theorem

[39] NoSQL Graph Databases Comparison, 2010-08-01,

http://java.dzone.com/news/nosql-graph-database-feature

[40] Thomas M. Connolly, Carolyn E. BeggDatabase systems: A Practical Approach To

Design, Implementation,

ISBN-10: 0321210255, ISBN-13: 978-0321210258,

http://books.google.se/

[41] Ant And Maven Integration, 2010-07-19,

http://www.jetbrains.com/idea/features/ant_maven.html

[42] Introduction to the Dependency Mechanism, 2010-07-17,

http://maven.apache.org/guides/introduction/introduction-to-dependency-

mechanism.html

[43] Servlets And JSP Tutorial, 2010-07-18,

http://www.apl.jhu.edu/ hall/java/Servlet-Tutorial/

[44] Filip Zavoral, Jakub Yaghob, Pit PichappanNetworked Digital Technologies, Part

II: Second International,

ISBN-10 3-642-14305-9,

http://books.google.se/

[45] NoSQL Databases Comparison, 2010-07-28,

http://nosql.mypopescu.com/post/978742866/document-databases-compared-

couchdb-mongodb-ravendb

[46] NoSQL Databases Comparison, 2010-07-29,

http://www.scribd.com/doc/26452377/Name-Cassandra-CouchDB-Dynomite-

GlusterFS-HBase-Hypertable

[47] XOOPS VS DROPAL, 2010-05-11,

http://www.lastcombat.com/Xoops_vs_Drupal.html

121

Appendix A

Graph Databases - A Complete

Comparison

Neo4J InfoGrid DEX

Software

Vendor Neo Technoloies NetMesh DAMA-UPC

Version 1.0 29.3 3.0

Licence AGPL V3 AGPL V3 Commercial

-Restricted

Commercial Y Y Y

Open Source Y Y N

Schema

Node Typing N Y Y

Edge Typing Y Y Y

Attributes (Nodes) Y Y Y

Attributes (Edge) Y N Y

Directed Edge Y Y Y

Undirected Edge N Y Y

Restricted Edge N N Y

Loop Edge N Y Y

Attribute Indexing Partialy (Only Nodes) Partialy (Only UUIDS) Y

Starting Node Y Y N

Schema N On Demand N

Querying

Language Gremlin N N

Traversals Y Y Y

122

Database

Transactional Y Y N

ACID Y Partialy

Full-indexed On Demand Store Dependant Y

Distributed Partialy (RM API) Y N

Cache Y Y Y

Embedded Y Y Y

Store-engine On Demand Flexible Customized

Migration framework Y Y N

Object Mapping N Y N

Utilities

Shell Y HTTP Y

Algorithm Y N Y

Benchmark

Protocols Y Y N

RDF Store Y N N

OLW Store Partial N N

SPARQL Integration Y N N

IDE Integration Y (Eclipse) Y (Netbeans) N

Admin Tool N Y (Viewlets) Y

Importer Y Y N

Exporter Y Y Y

Loader Y Y Y

Scripting Language N N Y

Language Support

Java Y Y Y

C# N N N

Ruby Y N N

Python Y N N

C N N N

C++ N N Y

PHP Y N N

123

Operating System

Windows Y Y Y

Linux Y Y Y

Mac OS X Y Y N

Unix Y Y N

Other Patial (JVM Enabled) Partial (JVM Enabled) N

124

Appendix B

Social Network Creators - Comparison

ELGG

Category ELGG

Cost Free

Source Code Freely available via stable releases and

development SVN

Codebase LAMP (Linux, Apache, MySql and Php)

Access Control Yes, users and groups (extensible via plugins)

Wiki Yes

Forum Yes

Blog Yes

Media Sharing Image, Video, Audio, Documents any filetype,

Automatic podcast support via Kaltura Elgg Plugin

Messaging Yes

Event Calendar Yes

Social Grouping Yes

Connectivity Yes (Facebook, YouTube, Twitter)

Contact Management Yes

Customizable Extensible via plugins with a flexible API,

Skinnable, Available in many languages

125

XOOPS with Yogurt extension

Category XOOPS with Yogurt extension

Cost Free

Source Code Some codes are available.

Codebase LAMP (Linux, Apache, MySql and Php)

Access Control Yes, Permissions by group

Wiki Yes

Forum Yes

Blog Yes

Media Sharing Personal album of pictures, Videos from YouTube,

Mp3 files, Documents

Messaging Yes

Event Calendar Yes

Social Grouping Yes

Connectivity Yes (Facebook, LinkedIn, Youtube)

Contact Management Yes

Customizable Theme-based skinnable interface, Extensible via plugins,

Available in many languages

126

Appendix C

NoSQL Databases - Comparison

Language And Fault-Tolerance

Name Language Fault-tolerance

Project Voldemort Java Partitioned, Replicated, Read-repair

Ringo Erlang Partitioned, Replicated, Immutable

Scalaris Erlang Partitioned, Replicated, Paxos

Kai Erlang Partitioned, Replicated

Dynomite Erlang Partitioned, Replicated

MemcacheDB C Replication

ThruDB C++ Replication

CouchDB Erlang Replication, Partitioning

Cassandra Java Replication, Partitioning

Hbase Java Replication, Partitioning

Hypertable C++ Replication, Partitioning

127

Persistence

Name Persistence

Project Voldemort Pluggable: BerkleyDB, Mysql

Ringo Custom on-disk (append only log)

Scalaris In-memory only

Kai On-disk Dets file

Dynomite Pluggable: couch, dets

MemcacheDB BerkleyDB

ThruDB Pluggable: BerkleyDB, Custom, Mysql, S3

CouchDB Custom on-disk

Cassandra Custom on-disk

Hbase Custom on-disk

Hypertable Custom on-disk

Client Protocol And Data Model

Name Client Protocol Data model

Project Voldemort Java API Structured / Blob / Text

Ringo HTTP blob

Scalaris Erlang, Java, HTTP Blob

Kai Memcached Blob

Dynomite Custom ascii, Thrift Blob

MemcacheDB Memcached Blob

ThruDB Thrift Document oriented

CouchDB HTTP, Json Document oriented (Json)

Cassandra Thrift Bigtable meets Dynamo

Hbase Custom API, Thrift, Rest Bigtable

Hypertable Thrift, Other Bigtable

128

Docs And Community

Name Docs Community

Project Voldemort A Linkedin, No

Ringo B Nokia, No

Scalaris B OnScale, No

Kai C No

Dynomite D+ Powerset, No

MemcacheDB B Some

ThruDB C+ Third rail, Unsure

CouchDB A Apache, Yes

Cassandra F Facebook, No

Hbase A Apache, Yes

Hypertable A Zvents, Baidu, Yes

129

Appendix D

The Popularity Of The Market’s Social

Platforms

A questionnaire was sent to more than 100 private persons.

1. Do you know what a social network (Facebook, Twitter, LinkedIn or something

like that) is?

2. Are you using these sites? Which of them do you use?

3. Do you know anybody else who use these services?

4. Are you interested in using these sites?

5. Which group do you think is more interested in using these sites (gender and

age)?

6. Are these service user friendly?

7. Can they improve their sites? How?

8. Do you want to use these services everywhere you want to?

9. What do you think will happen in the future?

130

Appendix E

Market’s Development Environment

Solutions

For each category that is mentioned below, I ask some companies by a questionnaire,

if they could provide me some information about their development environment so-

lution.

• Development language(s).

• Database solution(s).

• Version control system.

• Application server/Web server.

• Frameworks.

• Do you recommend your environment?

• What do you think will happen with social networks in the future?

131

Appendix F

Application Installations

This chapter is about installation, integration and configuration of all applications and

tools needed for the prototype and Value4All. The development environment solution

is a stable and flexible environment that can be used for development of any type of

social network systems or similar three tier applications.

F.1 What we’ll need?

Applications and the download pages are listed below.

• Intellij IDEA, download page: http://www.jetbrains.com/idea/.

• GIT, download page: http://git-scm.com/.

• Apache Maven, download page: http://maven.apache.org/.

• Subversion, download page: http://subversion.tigris.org/.

• Jetty Web Server, download page: http://jetty.codehaus.org/jetty/.

• Junit, download page: http://www.junit.org/.

• Selenium Test Server, download page: http://seleniumhq.org/.

• Java, download page: http://java.sun.com/javase/downloads/widget/jdk6.jsp.

• Neo4J Database, download page: http://neo4j.org/.

• Cassandra database, download page: http://cassandra.apache.org/.

132

F.2 Applications And Their Versions

• Intellij IDEA: ideaIC-9.0.2.exe.

• GIT: Git-1.7.0.2-preview20100309.exe.

• Apache Maven: apache-maven-2.2.1-bin.zip.

• Subversion: Setup-Subversion-1.6.6.exe.

• Jetty Web Server: Jetty-6.

• Junit: junit-4.8.1.jar.

• Selenium Test Server: selenium-core-1.0.1.zip.

• Java: jdk1.6.012.Neo4J Database : neo4j-apoc-1.0.tar.

•• Cassandra: apache-cassandra-0.6.2-bin.tar.gz.

Start off by downloading each application in a given folder, for instance, on your

desktop.

F.3 IntelliJ IDEA Installation

First of all, unzip Java JDK, in your system and set the system path to your Java JDK fol-

der. Now you can install IntelliJ IDEA by double-clicking on the file "ideaIC-9.0.2.exe".

Choose an installation folder and follow the installation instructions.

133

The next step is to create a new application, if you don’t have an existing application.

For creation of a new application writes the name of your application (for instance, "va-

lue4all"). If you have an existing application, you only need to locate the application

from IntelliJ IDEA for loading.

F.4 Git Installation

Double-click on the file "Git-1.7.0.2-preview20100309.exe", choose the installation fol-

der and click next. Make sure that you have checked "Git Bash Here" and "Git GUI

Here" options from "Windows Explorer Integration". Click next and next.

134

In the next step, check "Run Git from Windows Command Prompt", which is needed

by "IntelliJ IDEA plugin" and then click next.

Now, check "Checkout Windows-style, commit Unix-style", which is the recommen-

ded setting on windows environment. Click next and finish the installation.

135

F.4.1 Git Installation in Intellij IDEA

Check if Intellij IDEA has the right path to "git.exe". Go to File and click on Settings.

Do the changes according to the picture below. Click on "Apply" and then Ok.

F.5 Maven and Junit Installation

Maven is installed by default in IntelliJ IDEA as a Plugin. Open IntelliJ IDEA. Go to

File and choose Settings. Follow the instructions as follows.

136

Otherwise, unzip "apache-maven-2.2.1-bin.zip" and connect IntelliJ IDEA by giving the

right path to the unzipped maven folder. In the picture above you can also see that,

Jnuit is installed in IntelliJ IDEA by default. Otherwise import the file "junit-4.8.1.jar" to

IntelliJ IDEA. Click on Run, choose Edit Configurations and do the following changes.

137

F.6 Subversion Installation

Subversion is integrated in IntelliJ IDEA by default. You can check if you have it as

follows.

138

Otherwise install the file "Setup-Subversion-1.6.6.exe" and follow the installation ins-

tructions. Open IntelliJ IDEA. Click on File –> Settings.

139

Search for subversion.

140

F.7 Selenium Installation

For installation of Selenium test server with maven in IntelliJ IDEA, open your maven

configuration file "POM.xml" and add the following changes to it.

141

Start the Selenium server as follows.

mvn selenium:start-server

F.8 Jetty Installation

For installation of Jetty web server with maven in IntelliJ IDEA, open your maven

configuration file "POM.xml" and add the following changes to it.

142

Start the Jetty web server as follows.

mvn jetty:run

F.9 Neo4J Installation

Neo4J can be downloaded automatically by Apache Maven, but you have to configure

your Maven repository file (POM.xml) first. Do the following changes to it.

143

And the following changes.

Restart your application, you have now Neo4J kernel jar file installed in your system

in IntelliJ IDEA. Check it under External Libraries.

144

F.9.1 Testing Neo4J Installation By An Example

You can copy the following example into your application to test the Neo4J database

installation.

import org.neo4j.graphdb.*;

import org.neo4j.kernel.EmbeddedGraphDatabase;

public class Test {

public enum MyRelationshipTypes implements RelationshipType

{

KNOWS

}

public void firstTry(){

145

GraphDatabaseService graphDb = new EmbeddedGraphDatabase("var/graphdb");

Transaction tx = graphDb.beginTx();

try{

Node firstNode = graphDb.createNode();

Node secondNode = graphDb.createNode();

Relationship relationship = firstNode.createRelationshipTo(secondNode, MyRelation-

shipTypes.KNOWS);

firstNode.setProperty("message", "Hello, ");

relationship.setProperty("message", "Neo4J ");

System.out.print(firstNode.getProperty("message"));

System.out.print(relationship.getProperty("message"));

tx.success();

}

finally

{

tx.finish();

}

graphDb.shutdown();

}

}

F.9.2 Indexing In Neo4J

Indexing is not supported as a part of Neo4J core. The following is a list of dependen-

cies you need to install.

• neo4j-graph-algo.

• neo4j-index.

• neo4j-kernel.

• neo4j-remote-graphdb.

• neo4j-shell.

• protobuf-java.

• jline.

146

• geronimo-jta_1.1_spec.

• lucene-core.

• neo4j-online-backup.

You can download these libraries from:

http://components.neo4j.org/neo4j-apoc/dependencies.html.

Now you have to install all of these libraries. Perform the "mvn instal" to all of these

libraries.

Go to your maven catalogue:

D:/value4all/p2pfinance/code>mvn install:install-file -Dfile=C:4j-graph-algo-0.6-20100709.201559-

78.jar -DgroupId=org.

Now open your application maven configuration file (pom.xml) and do the following

changes for all of these libraries.

<dependency>

<groupId>org.neo4j</groupId>

<artifactId>neo4j-graph-algo</artifactId>

<version>0.6-SNAPSHOT</version>

</dependency>

F.10 Cassandra And Cassandra Client Installations

It is easy to install Cassandra database, but it is difficult to find a good Cassandra client.

I found two clients.

• Thrift API. Very low level and it is very hard to work with it.

• Hector API. Higher lever than Thrift API and it is easier to work with it.

A complete installation process of Cassandra database and Hector are described be-

low. I tried with Thrift API first, but it was quite difficult for coding. Therefor I used

Hector client instead of Thrift.

147

F.10.1 Cassandra Installation

Extract the file "apache-cassandra-0.6.2-bin.tar.gz", for instance, in "D:/cassandra". Now

open the file:

"D:/cassandra/conf/storage-conf.xml"

Do the following changes to make Cassandra to start on a single node. Cassandra is

designed to run on a cluster.

Open your windows command prompt and do the following steps.

148

F.10.2 Cassandra-Thrift Installation

Open Intellij IDEA, select Version Control -> Checkout from Version Control and select

Git.

A. Now do the following settings and click Clone.

149

Wait until the checkout process is finished.

In case you get an error message as the picture below, check your firewall settings because Git

uses a non standard port that is usually blocked.

Otherwise, answer "yes" if Intellij IDEA asks you "Would you like to create an Intellij

IDEA project for the sources you have checked out?" and then do the following changes

and press next.

150

Do the following settings and press next.

Add the following Java package to your application and press next and next and finish.

Intellij IDEA asks you the following question.

151

If you answer "This window" to the question, that means, your working area will

change to the new application in the same window, and if you answer "New window",

the new application will open in a new window. The import process is in progress

now, wait until the process indexing is finished.

B. Now you have something like this:

Press the Ant Build and do the following steps.

152

Do the following steps and click ok and wait until the Ant builds process is completed.

C. Change the view to Packages. Right click on your application (in my case, "cassan-

dra") and select "Module settings". Select dependencies. Press "Add" and select "Single

Entry Module Library..." and find the conf catalogue.

153

Right click on the application and select "Module settings". Press "Add Content Root"

and find "gen-java" under "interface/avro/".

Now do the same configurations to locate "gen-java" under "interface/thrift/".

154

Finally, the last step is to choose "src" under "cassandra" as content root. Right click

on the application and select "Module settings". Do the changes as follows.

F.10.3 Cassandra-Hector Installation

Almost all steps of Hector API installation and configurations are similar to Thrift ins-

tallation and configuration. The differences are:

• Step A. GIT repository for hector is

http://github.com/rantav/hector.git

• Step B. Remember to change the name of the application to "hector" and also the

source folder to another than the folder for thrift.

155

• Step C. Add a "Single Entry Module Library..." for Hector here. Follow all steps as

mentioned for the Thrift installation and choose your hector "storage-config.xml".

The folder for that file is

"D:/value4all/p2pfinance/code/cassandra/hector/src/test/resources".

156

F.11 Master Thesis Hardware Environment

I used a flash memory (4GB) and a laptop, Acer Aspire 5530 with the following capa-

city.

• Processor, CPU: AMD Turion X2 Dual-Core Mobile RM-70 2.00 GHz.

• Memory (RAM): 4 GB.

• System type: 32-bit Operating System.

• Hard disk: 300 GB.

Softwares

• Windows Vista as operative system.

• Latex for writing the final paper.

• Firefox, Google chrome and Internet Explorer as a web browser.

• Windows Command Shell (CMD) and Cygwin as a command prompt.

157

• Skype as a way to communicate with my instructor from CRISP.

158

TRITA-CSC-E 2010:168
ISRN-KTH/CSC/E--10/168-SE

ISSN-1653-5715

www.kth.se

