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Multi-scale capability: A better approach to
performance measurement for algorithmic
trading
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Abstract. This paper develops a new performance measurement methodology for algorithmic trading. By adapting capability
from the quality control literature, we present new criteria for assessing control, expected tail loss and risk-adjusted performance
in a single framework. The multi-scale capability measure we present is more descriptive and more appropriate for algorithmic
trading than the traditional measure used in finance. It is robust to non-normality and the multiple time horizon decision processes
inherent in algorithmic trading. We also argue that an algorithmic trading strategy, indeed any investment strategy, which satisfies
the criteria to be multi-scale capable also satisfies any definition of prudence. It will be unlikely to harm the investor or external
market participants in the event of its failure, while providing a high likelihood of satisfactory risk-adjusted performance.
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1. Introduction

Trading strategies must be able to generate suffi-
cient returns to cover their associated cost with some
amount of certainty if they are to warrant an allocation.
This cost is often an opportunity cost in the form of
the risk-free rate or a benchmark return (e.g. for tradi-
tional buy-and-hold strategies) or a hurdle rate (e.g. for
hedge funds). For algorithmic and/or high frequency
trading strategies, this cost is the expense incurred to
research, build and operate these data and technology-
intensive systems. Kumiega, et al. (2013) (henceforth
KNV) describe algorithmic strategies that do reliably
cover their costs as being capable1, and they intro-
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1For high frequency trading firms and/or algorithmic trading,
infrastructure costs demand a much higher rate of return than the
risk free rate to break even. Thus, minimizing fixed operating costs
is key component of performance.

duce a new measure of capability which captures this
concept.

KNV opens up new opportunities for additional
contributions. In this paper, we add to the notion of
capability that, if it is going to be a robust perfor-
mance measurement methodology, it should take into
account that returns may be non-normal, and that allo-
cation decisions are often made considering multiple
time scales.2 This is especially true for algorithmic
trading strategies, where the algorithm itself oper-
ates on one time scale (say, milliseconds), the capital
allocation decision to the strategy is made on a sec-
ond time scale (say, daily), and the funding decisions
of investors in the trading firm may be made on a
third time scale (say, monthly). Unifying measurement
of capability across these disparate time scales in a
distributionally-generalized framework requires addi-
tional criteria. Thus, the performance methodology

2Indeed, this scenario occurs in all investment strategies where
the expected return of the position over some holding period does
not align with the investors expected holding period. Short term
performance may impact longer term allocation decisions.
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we propose in this paper is a significant extension of
KNV.

Specifically, this paper makes four new con-
tributions to the concept of capability. First, our
methodology presents five criteria for answering the
question of which trading strategy is “good enough” to
justify an allocation. While we also borrow concepts
from the quality management literature3, our extension
of KNV capability defines decision criteria which rank
on longer term goals under the premise that shorter
term behavior is also acceptable. Our framework pro-
vides for both a determination of an algorithmic trading
strategy’s ability to deliver returns at an acceptable
level of risk over the relevant time scale, and a ranking
of strategies according to a term structure of capability.
In doing so, we combine into a single measure oper-
ational control, expected tail loss or drawdown, and
risk-adjusted performance.

Second, we avoid any assumption of normality.
Where KNV assumes normality by way of sampling
and the central limit theorem, our measure explores
capability using non-normal return distributions. Sim-
ilarly, where KNV uses sampling and normality for
stability assessment and control monitoring (which is
is inherently slow4), we examine each outcome and
assess its conformance to non-normal expected behav-
ior, building on the methodology of Cooper and Van
Vliet (2012) (henceforth CV). In our example imple-
mentations of capability, we consider a non-normal
case and provide5 the necessary tests and statistics,
including a new algorithm for deriving the distribution
of the mean.

Third, we investigate serially correlated behavior.
Serial correlation in the time series of returns will cause
incorrect control violations. Serial correlation in the
time series of mean returns will cause misstatement
of capability. We describe methods for resolving both
these issues.

3As we show, although intended to capture the nuances of indus-
trial processes, the spirit of capability measurement in the literature
of quality management is surprisingly close to (and in ways more
robust than) popular measures in finance.

4All other things being equal, slowness is preferably avoided,
especially in high frequency trading where out of control perfor-
mance could lead to large losses while samples are being collected.

5While any distribution—normal or otherwise—will work
within our framework without any loss of generality, our reference
implementation uses the generalized lambda distribution (GLD),
largely because it allows for very general specifications of skewness
and kurtosis.

Fourth and finally, we describe how the capability
methodology presented is manipulation-proof in the
sense of Goetzmann et al. (2007), and how it can serve
as a proxy for prudence in the operation of automated
and/or algorithmic agents. This is especially relevant
given the recent scrutiny of some forms of algorithmic
trading by regulators and the media.

The remainder of this paper is organized as fol-
lows. In Section II, we review the relevant literatures
in finance and quality management. In Section III,
we elaborate on the methods of control and down-
side risk assessment presented in CV. Section IV
presents our new, generalized capability measure and
the term structure of capability. Section V presents
three example implementations of algorithmic trad-
ing strategy assessment according to our methodology.
Section VI discusses the impact of serial correlation on
our capability measure. Section VII briefly describes
how non-constant costs affect capability. Section VIII
argues the methodology developed is manipulation-
proof and makes the link with prudence. Section IX
concludes.

2. Background

Within the finance literature, Markowitz (1952) ush-
ered in Modern Portfolio Theory (MPT) with his
analysis of risk-averse investors facing a multivariate
normal universe of asset returns. This idea eventually
flowed into the widely used measures of risk-adjusted
return used in the financial industry. The Sharpe
Ratio (Sharpe, 1966, 1994) measures expected return
minus the risk-free rate per unit of standard devi-
ation. The Information Ratio, developed in Grinold
(1989), replaces the risk free rate with an appropriate
benchmark return, and standard deviation of returns
with the standard deviation of active returns. Jensen
(1968), then later Fama and French (1992), as well as
Carhart (1997), replace a specific portfolio benchmark
with systematic risk premiums and use the portion of
portfolio returns that are correlated with these pre-
miums to measure risk. KNV point out that these
measures often do not apply to algorithmic strategies,
because they do not take into account the significant
research and development and technological infras-
tructure costs associated with the activity. We note that
some attention in the finance literature has been given
to manipulation of these traditional performance mea-
sures, as in Goetzmann et al. (2007). We briefly address
this topic with respect to capability.
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Concurrent with the development of these ideas in
finance, the quality management literature in industrial
engineering developed its own criteria for prudent
operations in manufacturing by way of statistical pro-
cess control (SPC) and measures of process capability.
SPC and its constituent charts (e.g. X-bar and R charts)
have been the primary tools for the design and con-
trol of industrial processes since Shewhart (1931).
Shewhart defines a state of statistical control as “a phe-
nomenon will be said to be controlled when, through
the use of past experience, we can predict, at least
within limits, how the phenomenon may be expected
to vary in the future.” A state of statistical control exists
when a process generates independent and identically
distributed deviations from its mean. Such a process
is free from variation due to external, or otherwise
assignable, causes. (In engineering, the term stable is
used rather than stationary to mean that the expected
value and variance of the distribution do not change.
We use stable to mean in control, as in KNV). The goal
of SPC is to ensure a stable process, so that descriptive
statistics have meaning. Additionally, as any process
will inevitably change, process monitoring with SPC
can detect violations of randomness (often by way of
single, extreme observation or improbable sequences
of observations (Alwen and Roberts, 1988). The pro-
cess can then be terminated before additional costs or
losses are incurred.

Relating SPC to algorithmic finance, however, is a
recent development. Hassan et al. (2010), Bilson et al.
(2010) and KNV apply traditional sample-based SPC
techniques to control algorithmic trading systems. CV
provides a new methodology for real time control of
high frequency trading systems, using continuously
updated statistics with no reliance on normality.6 As
non-normal returns should be explicitly modeled (for
example, see Harvey et al. (2010) and Jondeau and
Rockinger (2006)), these contributions connect SPC
to finance theory. In this paper, we consolidate these
ideas by placing a continuously updated, non-normal
statistical control methodology and performance mea-
surement in the literature on algorithmic trading.

6HFT is a type of automated trading system that uses pre-defined
algorithms to execute trades with positive expected returns on time
frames that range anywhere from several micro-seconds to several
hours. The need for a rapidly responding control system in this type
of environment is apparent. However, even in less rapid response
environments, a system that responds quickly to a shift in return dis-
tribution could be a money saver over one that is based on traditional
SPC techniques.

We note that other authors have done related work
with SPC in portfolio construction using time series
data. Of particular interest are Schmid and Golosnoy
(2007, 2009), Schmid and Severin (1998) and Schmid
and Tzotchev (2004), who point out that normality
assumptions are materially incorrect. For example,
Golosnoy and Schmid (2009) use SPC to test optimal
portfolios containing assets with serially correlated
returns. However, such portfolios are fully invested
at all times and continuously evaluated relative to a
benchmark, and serial correlation is often embedded
in the benchmark. As we explain in a later section,
this kind of non-normality in algorithmic strategies,
and other types of serial correlation problems, may be
handled in this framework by the way of the exponen-
tially weighted moving average (EWMA) framework
of Montgomery and Mastrangelo (1991).

Having a stable return distribution, however, does
not necessarily mean that a process is generating out-
puts that are “good enough.” As an example from
industrial engineering, a manufacturing process could
consistently turn out parts that no customer wants to
buy. Of concern in industry is whether or not a supplier
is able to consistently produce parts within tolerance
limits around a customer’s specification (Schneider et
al., 1995). What is known as process capability mea-
sures the ability of a process to satisfy specifications.
A wide body of literature exists on process capability
and its measurement in various industries. Spiring et al.
(2003) and Yum and Kim (2011) provide extensive
bibliographies of the literature. Bothe (2001) provides
an application text, describing how (virtually every)
process capability index can be used in industry. The
most common measures of process capability establish
a width of some middle (for two-sided), or left or right
(for one-sided) percent of a stable distribution. For
normal processes through sampling, which are often
used in industry, this width is usually µ ± 3σ. The
well-known, one-sided Cpl index makes use of this:

Cpl = µn − LSL

3σn

(1)

where µn is the mean of all the samples; σn is the
standard deviation of the sample means; and, LSL is
the lower specification limit, the explicit tolerance
level that must be satisfied. For example, a random
process that has some unacceptable percentage of µ’s
less than the LSL is not capable. Although the normal
has infinite support, the −3σ probability is a proxy for
the left tail endpoint. Essentially, events beyond this
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should never happen (see Kane (1986) and Wheeler
and Chambers (1992).

When applied to algorithmic trading strategies as in
KNV, capability in Equation (1) is similar to the well-
known financial performance ratios with two notable
exceptions. First, in capability assessment, process sta-
bility is a pre-requisite, while in the traditional financial
ratios, it is not. Second, capability assessment seeks to
answer how much and how consistently returns must
exceed a risk adjustment threshold to be considered
“good enough.” On top of KNV, we develop a new
methodology, which we call multi-scale capability,
consisting of five principles, which follow a logical
progression. Principles 1 and 2 describe the require-
ments for stability of the return distribution, and for
high frequency trading strategies, real-time operational
control, as pre-conditions for capability assessment7.
Principles 3 and 4 require a complete exploration of
left tail events, as required by any definition of pru-
dence. Principle 5 presents our multi-scale capability
measure with a sufficiency condition.

3. Multiple time scale statistical process
control

In order for any performance measure to have mean-
ing, it must be measuring a system that operates with
a stable, or in control, return distribution. If a strategy
is not in control, then either its reference distribution
must be changed until it is in control, or it must be
considered incapable. This is the first principle.

1. The trading strategy must generate a stable distri-
bution of returns, measured at the basic reconciliation
level. By basic reconciliation level, we mean the finest
granularity used to assess the trading strategy for cap-
ital allocation and trade accounting purposes. Often,
this level is daily.

A related but separate principle is that daily return
statistics are irrelevant if the (algorithmic) strategy is
vulnerable to (intra-reconciliation period or intra-day)
catastrophic failure. Such a failure could come from
operational breaches, undetected coding errors, sudden
information releases to the market, unforeseen interac-
tions with the external trading environment, or a host

7Certainly, a high frequency trading strategy running at a speed
that precludes significant human intervention should have a stable, in
control process, or the subject of this research paper is already moot.
Indeed, more broadly, any fiduciary is undermined by undetected
instability in their investment’s return process.

of other reasons. Given the nature of trading systems,
especially those that operate with low latencies, it is
essential to continuously monitor the distribution of
the real time returns (as well as other critical character-
istics). This leads to the second principle of multi-scale
capability, which is specific to high frequency trading
systems.

2. High frequency trading systems must operate only
when the real-time distribution of returns is in control.
This monitoring function over either trade-by-trade
returns or portfolio-wide returns for small time slices8

is the original intent of the SPC methodology of CV,
which we outline next.9

Once again, we may consider whether a reasonable
basis exists to expect that firms will have these stable
distributions. The fact is that higher frequency trad-
ing firms spend in the six to eight figures to build low
latency infrastructures, and lower frequency, quanti-
tative firms spend similar amounts of money on data
and research to build their forecasting systems. It is
reasonable to assume that they at least think they have
a consistent return generating process (see KNV). If
this notion is mistaken, then all participants in the
market can improve their strategies with this knowl-
edge. The differentiating feature of CV’s statistical
control methodology is that it considers every single
observation of the process under consideration to con-
tinuously assess if the strategy is conforming to the
reference distribution10, as opposed to the traditional
SPC methodology of relying on sampling to approxi-
mate normality as in KNV11.

Of course, the reference distribution may be skewed,
with long tails—left or right—and be leptokurtotic. CV
statistical tests for real time monitoring of such distri-

8As discussed in CV, the daily return for a high frequency trade
is generally either dollar profit or loss divided by maximum dollars
invested during the day, or maximum profit or loss divided by allo-
cated capital. The trade-by-trade return is the dollars flowing from
any trade that reduces the exposure to an asset divided by the aver-
age cost per share or contract of the acquisition of all the shares or
contracts in that asset.

9Other trading system performance metrics also could be mon-
itored using the techniques described in CV, including number of
order requests, trades per unit of time, ratio of winning trades, tech-
nological latency, and others.

10The reference distribution may be taken from a sample of pre-
vious known trading days, paper or probationary trading, from a
backtest, or possibly from other strategies that have a desired distri-
bution.

11The steps in CV are: define the control variable; define its refer-
ence distribution; define the statistical tests to be used; and establish
control limits.
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butions use the generalized lambda distribution12,13,14

While the literature of quality control is replete with
tests of violations of a reference distribution, the most
common tests look at how many points fall within or
out of specific regions of the reference distribution.
Although the regions are customizable, we recommend
the following control tests:

• Percentage of returns measured beyond 1% and
99% reference tails;

• Percentage of returns measured beyond 5% and
95% reference tails;

• Percentage of returns in inner and outer 20% of
the reference distribution;

• The median (simultaneous upper and lower 50%
tails);

• Single event outer 0.01% and 99.99% tail
klaxons15.

Statistical significance can be measured by looking
at these tests as repeated Bernoulli trials. For example,
the probability of having three 1% tail violations in
the last 50 observations is B(3, 0.01, 50), where B(.) is
the binomial distribution. These variables may be mea-
sured on a rolling n-observation basis, or in some cases
on a cumulative, running basis. Thus, a strategy could
encounter one, or two consecutive, 1% left tail recon-
ciliation days, without triggering a control violation
and shutdown16.

To summarize these first two principles, it is impor-
tant to monitor the reconciliation distribution on which
risk adjusted performance statistics will be built. In a
high speed environment, where operational control is
essential, real time monitoring can prevent catastrophic
losses, unintended market impact, and externalities due

12Karian and Dudewicz (2011) have shown that the GLD can fit
nearly any combination of skewness and kurtosis. The GLD spec-
ification also can take on both infinite and finite support. If one
wished even more flexibility, a GLD/Generalized Beta Distribu-
tion combination estimation method, or Johnson family estimation
method could be used with little change to our procedure. All of
these estimation methodologies are described thoroughly in Karian
and Dudewicz.

13Any distribution could be used if one had a prior belief that is
would fit better than a GLD distribution.

14Pal (2004) contains a good discussion of using the generalized
lambda distribution in capability assessment.

15A klaxon is a warning signal or alarm bell.
16Using the parlance of risk management, the preceding can be

thought of as referring to the fact that a longer run average behavior
may be fine, but if the Value at Risk (VaR) for a single period,
or alternatively, the Expected Tail Loss (ETL), is unacceptable the
entire strategy may be unacceptable.

to trading systems run amok. Next, Principles 3 and 4
require a complete exploration of left tail events, which
are part of the in control return process and, therefore,
could occur without an SPC violation (which would
trigger a shutdown of the strategy).

3. The expected loss of a one-time tail event must
be explicitly modeled17 and deemed acceptable at the
relevant time frames.

For instance, based on common practice in industrial
quality control, one might consider a left tail event at
say Q(�), the � = 0.135% percentile18. Although one
could certainly take the loss at some other percentile
(say, the left-tail klaxon level), this value of � is com-
monly used in quality control. In traditional SPC, � is
very small, but in principle, we could consider any sin-
gle event in the left tail as indicative of a potential loss.
A financial firm may select a higher level of � depend-
ing their level of capital and their ability to absorb short
term losses. This notion is meant to capture the same
type of information as does expected tail loss or condi-
tional value-at-risk (Artzner et al., 1999). Indeed, one
could use expected tail loss as the criterion rather than a
quality control-based measure. The important point is
that consideration of longer run average risk to return
is irrelevant if the potential short run performance is
unacceptable.

Another important scenario to consider is the
occurrence of unforeseen serial correlation in the rec-
onciliation returns (we deal with persistent correlation
later). Every trading strategy can have a bad run, even
if it remains in operational control. This could be due
to a macroeconomic shift, or a change in the behav-
ior of other market participants. The concern is that a
change in the market environment could causes cor-
related underperformance that is not large enough to
trigger a (single) SPC tail event. Nevertheless, such
correlated events could be large enough to drain per-
formance over time. This correlation could take time
to be recognized and the extent of losses that could be
realized prior to an SPC signal must be investigated.

SPC of the reconciliation period returns (as in
Principle 1 above) should be able to distinguish
between acceptable and unacceptable serial behavior.

17Estimation of the reference distribution could come through
Delphi methods (essentially, polling of traders), backtesting, paper
trading, simulated trading, probationary trading (i.e. small lots sizes),
or past trading of the strategy.

18Q(0.135%) is three standard deviations below the mean for a
normal distribution. This is the probability used to assess control in
Nelson (1984).
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For example, we may consider that three successive
10% left tail events in a row could occur before an SPC
event signals non-random serial correlation. Any com-
bination of consecutive events such that the probability
p of a single event occurring multiple times n, exceeds
� (say, � = 0.135%, the typical control limit) may be
used for this test. Generally speaking, a trading firm is
free to choose the parameters p and n as long as pn is a
probability low enough to trigger a control event. The
goal is not to prescribe the best description of possible
downside deviations due to unforeseen serially corre-
lated disturbances as much as it is to assert that some
consistent standard needs to exist, lest an important
component of downside risk is left unexplored. This is
the fourth principle.

4. Possibly correlated losses that could occur prior
to the triggering of an SPC control event must be mod-
eled and the accumulated loss deemed acceptable.
As before, this criterion could be stated in terms of
expected tail loss if preferred.

Principles 1 through 4 consider partially the trade-
off between the variability and the returns of an
algorithimic strategy. However, the conflict goes much
deeper. When dealing with money, many people are
suspicious of historical return distributions. While all
things are estimated with error, if performance in the
short run is unacceptably bad, it creates doubt in the
estimated distribution of longer run performance. Put
another way, by cataloging the extent to which the short
run returns could be negative, we build confidence in
the longer run projections for a strategy’s performance.

4. Term structure of capability

To develop the relationship between short run per-
formance and a longer term distribution more fully,
we begin with an example of a proprietary trading firm
which seeks to remain on average cash flow positive.
That is, while trading profits from algorithmic strate-
gies will not be positive every reconciliation period (i.e.
every day), over the course of an accounting cycle (e.g.
bi-weekly payroll, or quarterly performance disclo-
sure) average reconciliation period profits must exceed
expenses (see also KNV). Given a stable distribution of
returns, the ability of an algorithmic strategy (or any
investment strategy) to achieve some specified level
of profitability can be examined. This is its capability.
Using sample size n and taking several samples, the
firm can calculate the mean µn and standard devia-
tion σn of the sample means σn = σ/

√
n. As in KNV,

for the process to be capable using the one-sided Cpl
index defined in (1), the value must be greater than (for
example) one19:

Cpl(n) = µn − LSL

3σn

> 1 (2)

Thus, capability says that there is less than a µn −
3σn , or 0.135%, chance that the average daily return of
a given sample will be below the LSL. (As a reminder,
we use 0.135% to follow common practice in indus-
trial quality control, although one could be more or less
conservative, or risk averse.) KNV generalizes the LSL
as c, the cost (in percent) allocated to the strategy. The
actual nature of this cost depends upon the trading strat-
egy. In high frequency trading, c is the allocated fixed
and variable costs to research, build and operate the
system20. Whatever the case, we can now define any
strategy as capable over an n-period window if equa-
tion (2) holds. This is tantamount to saying the strategy
is likely to cover its costs (or beat its benchmark) over
n consecutive reconciliations with 99.865% certainty.

There are two significant extensions we make to the
KNV’s Cpl (n) measure for finance. First, we note that,
in industrial applications, the number of periods n is
generally fixed, but with algorithmic trading strategies
n can be flexible. One week, one month, or one quar-
ter may all be acceptable time horizons over which to
consider capability. Furthermore, as σn decreases with
n, the pertinent question is not whether the strategy
is capable for a specific n, but rather does the term
structure of capability exceed one within an accept-
able time frame. Many investors would be comfortable
with a strategy having Cpl (n) > 1 on an n > 22 day (i.e.
one month) basis, but certainly not if Cpl (n)>1 on an
n > 500 basis (i.e. two years).

Second, since the reconciliation distribution is
not necessarily normal, we generalize the Cpl (n) as
GCpl (n) where:

19Boyles (1991) recommends minimum capability values for one
and two-sided specifications in industry. These values are dependent
upon whether the process is existing or new, and/or safety critical.
In manufacturing, it is common to use 1.33 instead of 1 to allow for
a safety margin.

20For other lower frequency systems, c could be the risk free
rate or the benchmark return. For a pension plan, c could be some
hurdle rate. To keep things clear, we assume c is constant. However,
if c is not constant, SPC must be performed on the entire numerator
as µ(t) – c(t). The rest of the section proceeds in a straightforward
manner. An obvious example would be if c(t) were a benchmark
return. In this case, SPC would be on the active return, and all the
criteria described would apply to the active return not just the return.
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GCpl(n) = µn − c

µn − Qn(α)
> 1 (3)

In Equation (3), the distance from the mean to the
proxy for the left tail endpoint, which was represented
by 3σ in Equation (2), is replaced by the non-normal
equivalent µn − Qn (�), at some specified level of �.

The difficulty in Equation (3) is that the distribution
of the n sample size mean µn (and hence the α level)
is not known. And, it turns out that n must be quite
large before skewness and kurtosis disappear by way
of the central limit theorem, something algorithmic
traders may not have the patience to wait for. Ideally,
we should model µn with a distribution that allows for
non-normal values of the third and fourth moments. We
solve for the distribution of µn as shown in Appendix
2. In our implementation, we adapt the methodology
of Acar et al. (2011) for finding the moments of a
generalized lambda distribution21. These are the basic
steps:

1. Find the non-central moments of the distribution.
2. Apply the Acar et al. methodology to the mean

of n independent, identically distributed variables
using customized formulas explicitly derived in
Appendix 2.

3. Use the four moments obtained in step 2, along
with method of moments estimation to obtain a
distribution of the sample mean.

Given the distribution of the mean, we can proceed
to the fifth principle of multi-scale capability.

5. The number of reconciliation periods n for which
GCpl(n) is greater than one must be acceptably small.

The acceptable value of n represents a desired time
frame over which the strategy is expected to be prof-
itable. The value of n may differ between firms. If a
strategy needs to be capable every month, then n must
be less than or equal to 22 days in order to assess
GCpl (n) > 1. However, a high frequency trading firm
may need to capable over every two week time hori-
zon. A hedge fund may need to be capable over every
three or six month reporting cycle. The appropriate
value of n is up to the firm to decide. The level of �
represents the risk tolerance of the trading firm, or how
important it is that a given level of profitability must be

21We use the generalized lambda distribution because it is easy to
work with and the algorithm to find the moments of a sample mean is
fairly straightforward mathematically. However, one could certainly
use another distribution if desired—Pearson, Beta, Johnson, Burr,
Edgeworth, Weibull, or any member of the extreme value distribution
family. The methodology in Appendix 2 would still apply.

achieved consistently. A low � means that it is totally
unacceptable that c not be exceeded. A high � means
that it is more acceptable to miss the expected prof-
itability. Again, different firms may choose different
levels of � and shifting � changes the slope of the term
structure.

The value of n where the term structure crosses one
(i.e. GCpl (n) = 1) we call n∗, and while this point is
important, the other points on the curve also contain
information. Each point away from n∗ indicates a pos-
itive or negative safety margin at that point relative to
the both the horizontal and vertical axes. The excess
or shortfall of capability (i.e. y-axis safety margin) at
any given point is GCpl (n) – 1. The excess or shortfall
of n (i.e. x-axis safety margin) at any given point is
n–n∗. A flatter term structure around a given n gener-
ally means a smaller safety margin on the y-axis, and
larger along the x-axis. A steeper term structure means
a higher safety margin on the y-axis, and smaller along
the x-axis. The slope of the term structure indicates
how much the marginal contribution of n is to capa-
bility and the stability of the estimate of capability at
the given value of n. A steeper term structure indicates
greater sensitivity to mis-estimation in the λ parame-
ters. If the slope is high, then small perturbations in the
parameters will change the estimate of capability more
significantly.

A practical implication is that the value of n∗ high-
lights the financing decision facing the firm. Financing
arrangements vary across values of n, affecting the
firm’s structure and its chosen financing method. If c is
constant for the firm, then n∗ determines the financing
horizon necessary to ensure capability. If the value of
c is flexible for firms with various financing options,
then the firm will need to consider a curve that is cre-
ated by points from a family of term structures each
with a different cost.

5. Numerical examples

In the previous section, we smoothed over a consid-
erable amount of detail. In this section, we expand on
the term structure of capability through three example
scenarios. The first is a comparison of our capability
measure to the Sharpe ratio for strategies with normally
distributed returns. The second is an implementa-
tion of our methodology given a highly non-normal
return process for a hypothetical high frequency trad-
ing strategy. The third considers the case of two trading
strategies with crossing term structures of capability.
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5.1. Normally distributed returns and capability

If we consider an individual trading strategy that is
in control (according to Principles 1 and 2), and has
normally distributed returns, then GCpl (n) is the same
as the Sharpe ratio multiplied by the constant

√
n /3,

where c would be the risk free rate22, and n is the
number of periods over which the average is taken as
in Equation (4).

GCpl(n) = µn − c

µn − Qn(α)
=

√
n

3
· µ − c

σ
> 1 (4)

The parameter value of three in Equation (4) is
in keeping with traditional SPC and process capabil-
ity assessment in industry. In finance, the value of
this parameter is a business decision, based on the
importance of not missing the required return target
on average over n periods. With three, the chance of
not covering costs on average over any n periods is
only about one or two in 1000. If three is replaced by
two in the denominator, for example, then the chance
of not covering costs on average is about five in 100.
Additionally, if there are two different trading strate-
gies that both have normally distributed returns, then
their two term structures of capability will never cross.
The strategy with the higher capability at any n will
have the highest capability at every n.

While KNV compares (at length) capability to the
traditional measures in used finance, we note three
characteristics of the term structure of capability for
normally distributed returns relative to the Sharpe ratio:

1. The term structure of capability tells the man-
ager whether a strategy is or is not acceptable.
It is an absolute standard, without the need for
comparison between strategies.

2. The time n to capability (i.e. when the term struc-
ture crosses one) is a unique ranking system.

3. Because the risk measure (standard deviation) for
a normal distribution is convex, trading strategies
that are acceptable in their time to capability indi-
vidually must also be acceptable as a portfolio23.

22Of course, the appropriate cost is not the risk free rate with
technology infrastructure-intensive algorithmic trading strategies.

23This may not be true for non-normal distributions, since we
cannot guarantee the denominator in equation (4) forms a coher-
ent risk measure. However, it would take very unusual shapes of
distributions and correlations between them to make this untrue.

Fig. 1. The density function of the reference distribution.

5.2. Non-normal returns and capability

In this section, we consider a more realistic imple-
mentation of multi-scale capability. Consider a high
frequency trading strategy with a return process that
is non-normal, with a small positive expectancy and a
long left tail. Many traders would likely recognize this
as a strategy that exploits a small statistical regularity
(or inefficiency) repeatedly, but on occasion suffers a
large loss. Such a strategy would have a probability
density of daily returns that looks something like that
depicted in Fig. 1, with higher moments that were mate-
rial in magnitude. The data that generates the density
in Fig. 1 has the moments given in Table 1.

As Table 1 shows, the strategy has an expected return
of 1%, a 2% standard deviation, and significant left
skewness of−1.25, and kurtosis of 5. To model this dis-
tribution, we use the generalized lambda distribution
(GLD) for its ease of use and flexibility for modeling
skewness and kurtosis. (It can have infinite or finite
support, though most fits to actual data will result in a
finite support distribution24. If one chooses a different
distribution, the methodology we present remains the
same.) The generalized lambda distribution which fits
these moments is given by GLD(0.027527, 4.335961,
0.094632, 0.010567)25.

Assuming that the strategy is in control with
respect to Principles 1 and 2, Principle 3 requires
that the one reconciliation period loss be accept-
able. This test is easy enough to compute by (A1.1),
Q(0.135%) = −0.0797 or −7.97%. Because the distri-
bution is non-normal, this tail event is more extreme

24We do not see this as a problem since an accurate estimate
of the tails at two, three, or four standard deviations seems more
important than having a non-zero probability of say, a 25 standard
deviation event.

25When using empirical data in practice, there are a variety
of estimation techniques available to fit the GLD, as outlined in
Appendix 1. As we discuss there, it is important to use a good-
ness of fit test, especially if the fit is done with method of moments
estimation.
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Table 1

Moments of the reference distribution of daily returns

Central Non-Central

Mean 0.01 0.01
Variance 0.0004 0.0005
Skewness −1.25 0.000003
Kurtosis 5 0.00000065

than a corresponding 3σ event under a n assumption
of normality (as in KNV) which is −5%. Princi-
ple 4 requires examination of (for example) three
successive 10% tail events, each with the outcome
Q(10%) = −1.7372%. The accumulated outcome for
these three tail events is thus 3 × Q(10%) equals
−5.2% with probability 0.1%. Alternatively, one could
consider, 2 × Q(1%), or even 5 × Q(2%), so long as the
reconciliation SPC for non-conformance is close to the
single event probability.

Finally, Principle 5 requires that we find the term
structure of capability. To accomplish this, we first
find the distribution of the mean using the meth-
ods of Appendix 2. Table 2 shows the moments
of the distribution of the mean for n = 5, and we
can see that the distribution of five day average
returns retains significant skewness and some kurtosis.
This is why measuring capability using non-normal
statistics enables greater precision. The moments
of the distribution of the sample mean in Table 2
coincide with GLD(0.014559, 16.827171, 0.145843,
0.053255). Using this GLD, we can easily find any
needed percentile.

To see the entire term structure of capability, we
simply vary n and reuse the techniques just discussed.
Table 3 presents statistics for values of n from 2 to
79 using an assumed cost per day of c = 0.001 (i.e. 10
basis points) and � = 0.135%. The first three columns
in Table 3 show the central moments of the n-day dis-
tribution of the mean, which gets closer to normal as n
increases, as expected. But, even at n = 79 trading days
(about four months) material non-normality remains.
The columns in Table 3 labeled λ1 through λ4 show the

Table 2

Moments of the daily average distribution for a weekly sample

Central Non-Central

Mean 0.01 0.01
Variance 0.00008 0.000184
Skew −0.559017 0.000003
Kurtosis 3.4 0.000000064

Fig. 2. Term structure of capability via GCpl (n).

GLD parameters that fit the moments in the columns
to the left. The right-most column shows the GCpl (n)
values that result, and Fig. 2 plots this column, which
is the term structure of capability.

As can be seen in Fig. 2 and Table 3, the GCpl (n) is
an increasing function on n. This should be expected,
since the variance of the mean decreases linearly with
n, regardless of the distribution function (assuming a
finite variance exists). In this case, the GCpl (n) crosses
one at n = 50 days, or ten weeks. So, using the five
principles, we can say that this trading strategy is multi-
scale capable as long as:

1. The returns remain in control with respect to
the reference distribution of reconciliation period
returns.

2. The trading strategy runs only when its real time
performance metrics are in control.

3. The trading firm is prepared to take a −7.97%
loss over a single reconciliation period with a
probability of 0.135%.

4. The trading firm is prepared to take a −5.2%
aggregated loss over three reconciliation periods
with a probability of 0.001.

5. The trading firm is prepared to accept that the
volatility of returns only turns to their favor on
average if considered over a 50 day time horizon.

Clearly, our multi-scale capability method accu-
rately maps the real time and reconciliation period
returns, and monitors the stability of both these pro-
cesses. Further, it answers the question as to whether
or not this strategy is “good enough” to overcome its
allocated cost within an acceptable time frame.
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Table 3

Term structure of capability given non-normality

n Variance Skew Kurtosis λ1 λ2 λ3 λ4 GCpl (n)

2 0.000200 −0.883883 4.000000 0.019810 8.263772 0.121069 0.027673 0.158391
5 0.000080 −0.559017 3.400000 0.014559 16.827171 0.145843 0.053255 0.279561
9 0.000044 −0.416667 3.222222 0.012740 24.959030 0.153777 0.069407 0.394418
14 0.000029 −0.334077 3.142857 0.011845 32.812585 0.156230 0.080578 0.506403
20 0.000020 −0.279508 3.100000 0.011331 40.474357 0.156558 0.088723 0.616782
26 0.000015 −0.245145 3.076923 0.011042 46.992624 0.156116 0.094147 0.711491
33 0.000012 −0.217597 3.060606 0.010833 53.656968 0.155353 0.098643 0.808985
41 0.000010 −0.195217 3.048780 0.010677 60.413408 0.154446 0.102377 0.908409
49 0.000008 −0.178571 3.040815 0.010571 66.506280 0.153597 0.105194 0.998492
58 0.000007 −0.164133 3.034483 0.010485 72.766128 0.152737 0.107658 1.091401
68 0.000006 −0.151585 3.029407 0.010416 79.153005 0.151895 0.109812 1.186504
79 0.000005 −0.140636 3.025320 0.010359 85.636013 0.151084 0.111695 1.283326

5.3. Two strategies with crossing term structures
of capability

As previous stated, given two trading strategies with
normally distributed returns, the one with the higher
GCpl (n) at any n will have the highest capability at
every n. This is not necessarily true, however, in the
presence of non-normal returns. Two term structures of
capability could cross, and in this section, we consider
this scenario. Consider that the first trading strategy
is the non-normal trading strategy from the previous
example. The second trading strategy has normally dis-
tributed returns with the same mean 0.01 and almost
identical variance 0.000484 as the non-normal strat-
egy. Figure 3 adds the term structure of capability for
this second, normal strategy (shown as the dashed line)
and we can see that at about 18 days, the two term
structures cross. For lower values of n, the normal strat-
egy is more capable, but for greater values of n, the

Fig. 3. Crossing term structures of capability.

non-normal strategy is more capable. Where the non-
normal strategy becomes capable at n = 50, the normal
strategy becomes capable at n = 54.

The reason this crossing occurs is because, in the
presence of non-normality, the relationship between
the rate of decline in the sample means and increasing
values of n is not clear (as it is with two normals).
Excess kurtosis in the non-normal strategy implies
a greater one time extreme loss, as investigated by
Principle 3, and this lowers its capability for low val-
ues of n. However, the variance of the distribution of
mean returns (for the non-normal strategy) consoli-
dates more quickly as n increases than it does for a
normal strategy. Thus, while the longer term capabil-
ity of the non-normal strategy looks better, the short
term performance is (potentially) worse. This is what
makes investigation of the term structure of capabil-
ity especially important. Longer term capability of a
trading strategy must be understood in light of the pos-
sibility of greater short term losses in the presence of
non-normality. Our multi-scale capability methodol-
ogy makes clear the nature of short term performance
and capability for differing values of n. Investors ben-
efit by looking at both these aspects of performance
rather than simply ignoring or assuming away this
relationship.

6. Serial correlation

The assumption of our application of SPC and capa-
bility is that returns are independent and identically
distributed. This assumption is sometimes violated
in algorithmic trading due to the dynamic nature of
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the economic environment. The location of a refer-
ence distribution may be conditional upon exogenous
market state variables—the time of day, volume, or
volatility—which may also introduce serial correla-
tion in the time series of returns. This raises issues
that warrant further investigation. First is that serial
correlation may induce spurious SPC violations. Sec-
ond is that serial correlation in mean returns may cause
mis-estimation of capability.

Montgomery and Mastrangelo (1991) (henceforth
MM) show that for serial correlation that is deemed
to be an inherent part of an in control process, it is
possible to adjust SPC mechanisms accordingly. (It
is important to be sure that serial correlation is not
simply due to an uncontrolled state variable, but is (in
fact) an inherent part of the strategy’s outperformance.)
MM demonstrate that using differences in an exponen-
tially weighted moving average (EWMA) of returns
will generally result in a stationary time series for SPC.
This methodology works well for MA(1), AR(1), and
ARMA(1,1) processes. For example, the location of
the reference distribution could be calculated using
the moving range method if, for example, the pro-
cess was fit with the AR(1) model X̂t = a + bXt−1.
The residuals from this model should be uncorrelated
and the control limits in Principal 2 can be com-
puted using the moving range (MR) method, where the
MRi = |xi − xi−1|, and the average MR value. One
could, however, use full ARIMA modeling to accom-
plish the same goal. We agree with MM, though, that
most processes that are in control should have fairly
low level serial dependencies.

With respect to risk-adjusted performace, serially
correlated returns may cause misstatement of perfor-
mance measure, including, for example, the Sharpe
ratio (Lo (2002)). For normally distributed returns, if
positive serial correlation exists in the return series,
then the Sharpe ratio will be underestimated because
volatility will be overestimated. If negative serial
correlation exists, then the Sharpe ratio will be over-
estimated because volatility will be underestimated.
Given the relationship between the Sharpe ratio and
our capability measure for normally distributed returns
as in equation (4), the term structure of capability will
incur a similar bias. GCpl (n) for a given n will be over-
stated or understated, depending on the sign of the
auto-correlation. However, the outcome is the same
as in Lo. In the case of normally distributed returns
the same correction may be applied directly to our
capability measure.

For non-normal returns, however, the required
adjustment to GCpl (n) involves a return to Acar
et al. (2010). That paper derives a methodology
for determing the distribution of the moments of
any arbitrary function of a set of random vari-
ables. In Appendix 2, we apply their methodology
to the simple sample mean 1

T

∑
t Xt . With some

additional effort (and possibly more numerical approx-
imations), this methodology can be applied to any
time series formulation. For example, an AR(1) pro-
cess would require using this methodology on the
function, 1

(T−1)
√

1−ρ2

∑
t (Xt − ρXt−1), where ρ is

auto-correlation coefficient. Again, the results are qual-
itatively similar to Lo, with skewness and causing
adjustments as they did in the previous example involv-
ing the crossing term structures of capability.

7. Non-constant costs

We also note that, relative to the information ratio
(IR) of Grinold (1989), if the trading strategy under
consideration is being assessed relative to a benchmark
(so that the cost function is actually a stochastic vari-
able), then one can simply perform the reference SPC
on the active return (AR) distribution and the GCpl (n)
ratio can be calculated as in Equation (5):

GCpl(n) = µAR(n)

µAR(n) − QAR(n)(α)
(5)

In general, working with everything in terms of rel-
ative statistics causes no difficulty. The multi-scale
capability standards are simply in terms of a relative
reference distribution.

It is also possible to see how Jensen’s alpha (1968),
and its extension to the Fama and French (1992)
or Carhart (1997) alpha measures fit. In the case
of capability, risk adjustments to returns become the
time varying cost function of capability. The ques-
tion then becomes: Is the excess return over the risk
premium a capable process? The Jensen’s alpha and
its later derivatives also are enhanced by the capabil-
ity framework. The cost function can be replaced by
the necessary risk adjusted premiums, and capability
then becomes an extension of the t-statistic of alpha,
except that it brings in the ability to accommodate non-
normal disturbances and the multi-scale SPC of our
methodology.
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8. Manipulation and prudence

Where other performance measures in finance are
subject to manipulation in the sense of Goetzmann
et al. (2007), multi-scale capability is manipulation-
proof. Goetzmann, et al. focuses on ranking strategies
using a single measure that cannot be gamed by lev-
ering up risk, or manipulating the aggregation period.
Although our multi-scale capability methodology can-
not be manipulated, this characteristic comes through
SPC monitoring, measuring on multiple time scales,
and more accurately mapping return distributions.
Trading strategies with unstable return distributions
will cause SPC violations. Those strategies that use
instruments with non-linear payoffs (i.e. only payoff
in certain situations) will cause the time to capability
to increase. Among strategies that are capable, the time
n (that is necessary to become capable) forms a ranking
measure, given the acceptability of short-term perfor-
mance as previously discussed. These characteristics
render multi-scale capability resistant to manipulation.

Also, we believe our methodology defines
prudence26 in algorithmic trading, a concept has
evolved since it was first established as court prece-
dent in 183027. Longstreth (1986) points out that the
recurring theme in the history of thinking about pru-
dence is that it demands adherence to sound processes
that produce strategies with desirable characteristics,
including a responsibility to monitor the strategy in
light of its purpose, manage risk, and minimize the
possibility of large losses. This is traditionally the
duty of care to which fiduciaries are obligated. All
of these are encompassed within our five principle
methodology.

In a more general sense, investors in proprietary trad-
ing firms also seek to be prudent with their trading
capital. In this sense, prudence means placing money
where the expected return is favorable and the chance
and magnitude of loss is fully considered. At a complex
financial firm, multi-scale capability may be imple-
mented in a different manner at different levels of
aggregation. For example, an individual strategy may

26The original statement of the prudent man rule mandated that
fiduciaries “observe how men of prudence . . . manage their own
affairs . . . considering the probable income, as well as the probable
safety of the capital to be invested” (Massachusetts (1830)).

27Over the course of this paper, we have borrowed significantly
from the literature of quality control and we note that there is
certainly an extensive literature relating quality management with
ethical behavior (for an excellent overview of this literature, see Tari
(2011)).

only need to be capable at a longer n and at a higher
level of risk tolerance �, where the entire firm may need
to be capable at a shorter n and/or a lower level of �.
Multi-scale capability at the firm level may be accept-
able, but capability assessment of individual strategies
will uncover where problems may lie.

As we have discussed, SPC is the mechanism for
monitoring performance. It should signal when to stop
trading and reassess the strategy if the distribution of
returns shifts. Equally important, especially in light of
recent marketplace debacles caused by high frequency
trading, is that the real time control component of
multi-scale capability protects the market from opera-
tional mishaps or haywire trading systems. This should
shield the prudent investor, trader or portfolio manager,
as well as external market participants, from possibly
devastating consequences.

9. Conclusion

Both algorithmic trading and investment strategies
bring potential instability to investors. One way to con-
trol this risk is through ever more prescriptive rules of
responsibility, whether self-imposed or through regu-
lation. However, we believe that both higher frequency
trading and lower frequency investment strategies are
best controlled by an informative quantitative evalu-
ation process. Therefore, to accomplish this task we
have developed a process that merges ideas from both
finance and quality management.

The essence of multi-scale capability is that it takes
snap-shot measures over various time horizons and
unifies them into a coherent inter-temporal decision
framework. Given that investors do not want to be
hampered by tail events along the path to longer term
performance, our methodology brings to the fore the
time period over which the investor must wait to know
with a high degree of certainty that the strategy will
cover its costs. The strategy for which this number is
the lowest is the best strategy.

The multi-scale capability methodology protects
both the investor and the marketplace with real time
monitoring and operational SPC, and verifies the valid-
ity of performance with SPC of the input reconciliation
data. We conclude then that multi-scale capability is
sufficient to assure the prudence of a trading strategy
in the legal sense, and that its quantitative nature lends
itself to easy outside verification. This is a significant
step forward in ensuring market safety and improving
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the evaluation of all forms of trading and investment
strategy.
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Appendix 1

The Generalized Lambda Distribution (GLD)

The four parameter GLD is defined by its inverse
cumulative distribution, or percentile function:

Q(p) = λ1 + pλ3 − (1 − p)λ4

λ2
(A1.1)

This leads to the parametric form of its density func-
tion:

f (x) = λ2

λ3 · pλ3−1 + λ4(1 − p)λ4−1 (A1.2)

at x = Q(p) as p varies from 0 to 1.
The GLD is capable of taking on either infinite or

finite support depending on the signs of λ3 and λ4.
Positive values have finite support and negative have
infinite. λ3 controls the left tail and λ4 the right tail.
Most real data will be fit with finite support that extends
well beyond the last observation. The normal also is
fit best with finite support, though it matches the first
four moments exactly and has support plus or minus
approximately six standard deviations. A more thor-
ough discussion of these considerations, along with
other possible distributions to fit, namely the general-
ized beta, and the Johnson family, are all discussed in
Karian and Dudewicz’s exhaustive work.

The moments of the GLD are given by:

(mean)µ = E(x) = λ1 + A

λ2
(A1.3)

(variance)σ2 = E(x − µ)2 = B − A

λ2
2

(A1.4)

(skewness)γ1 = E(x − µ)3/σ3

= C − 3AB + 2A3(
B − A2

)3/2 (A1.5)

(kurtosis)γ2 = E(x − µ)4/σ4

= D − 4AC + 6A2B−3A4(
B − A2

)2 (A1.6)

Where,

A = 1

1 + λ3
− 1

1 + λ4
,

B = 1

1 + 2λ3
+ 1

1 + 2λ4
− 2β(1 + λ3, 1 + λ4),

C = 1

1 + 3λ3
− 1

1 + 3λ4
− 3β(1 + 2λ3, 1 + λ4)

+3β(1 + 2λ4, 1 + λ3),

D = 1

1 + 4λ3
+ 1

1 + 4λ4
− 4β(1 + 3λ3, 1 + λ4)

+6β(1 + 2λ3, 1 + 2λ4) − 4β(1+λ3, 1+3λ4),

and,

β(x, y)=�(x)�(y)/
�(x+y)=exp

[
ln �(x)+ln �(y)

− ln �(x) ln �(y)
]
, forx, y > 0. (A1.7)

Several methods exist for estimating these four
parameters. For our purposes we generally use two.
For the term structure work we use method of moments
since the output of our algorithm are the four moments
of the sample mean distribution. For SPC on real data
we tend to prefer the straight-forward least squares
method of Ozturk and Dale (1985). This method finds
the parameters that fit the GLD to the empirical per-
centile distribution using a least squares methodology.
Many other variations and innovations exist and almost
all are discussed thoroughly in Karian and Dudewicz.

Finally, empirical fits of GLD distributions should
be checked with a goodness of fit test, or at the very
least a visual inspection of the density function should
be performed. Some moment combinations track back
to multiple GLD specifications. If the wrong fit is found
another set of starting values is used for the estimation
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procedure (this iterative procedure has been system-
atized in a process known as starship estimation (King
and MacGillivray 1999)). We do not generally find this
to be a problem with the method of Ozturk and Dale and
do not find it problematic with the method of moments
as used in this paper. However, as a precaution we
always check.

The test we use for SPC is the modified
Kolmorgorov-Smirnov test with Kuiper statistic as out-
lined in Press et al. (2007). The reader is cautioned to
use the third edition of this test as the second contains
a minor typographical error that renders the relevant
formulas incorrect. For the term structure of capability
we check visually that parameters vary smoothly with
n, and that the resultant distribution looks like the ref-
erence distribution, becoming more normal looking as
n increases.

Appendix 2

Finding the Distribution of the Sample Mean for
an Arbitrary Distribution

To the best of our knowledge, a method for finding
the distribution of an n-sample mean of independent,
identically (but arbitrarily) distributed random vari-
ables has not been published previously. So, we present
this methodology as a fairly easy solution to the prob-
lem.

Finding the distribution of the sample mean is a four
step process:

1. Find moments of the original distribution
(through GLD estimation)

2. Find the zero moments of the mean of sample
size N.28

3. Convert the zero moments to regular moments,
and use method of moments to fit a GLD to the
distribution of the sample means.

4. Any confidence level desired can be obtained
with Q(p) of this GLD.

To begin, we define the lth non-central moment of
the distribution of the sample mean as:

28We adapt the methodology of Acar et al. (2010), who based
their work on the additive decomposition result of Rahman and Xu
(2004) for estimating the non-central moments of a general function
of random variables.

ml = E[Yl( �X)] = E

⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

N∑
i=1

Q(pi)

N

⎞
⎟⎟⎟⎠

l
⎤
⎥⎥⎥⎥⎦ (A2.1)

where, Q(pi) is the percentile (i.e. X-value) associated
with random probability draw p. Instead of needing an
Nth order integration to evaluate each of the first four
moments of the distribution, the following algorithm
is available.

ml =
l∑

i=0

(
l

i

)
Si,N (− (N − 1) Nµ)l−1 (A2.2)

where,

µ = E[Q(p)] (A2.3)

S0,j = 1∀j ∈ 1, 2, . . . N (A2.4)

The other terms can be found iteratively using:

Si,1 = E

[
Q(P) + (N − 1)µ

N

]i

(A2.5)

for i = 1, 2, 3, 4 and for j = 2, . . . , N

Si,j =
n∑

k=1

(
i

k

)
Si,j−1E

[
Q(P)+(N−1)µ

N

]i−k

(A2.6)

The progression is to calculate each of i = 1, 2, 3,
4 for each j, and then to increment j. The final Si,N ’s
are then used in the formula. The evaluation of the
Si ,j ’s uses Equations (A2.7) through (A2.10). By sim-
ple expansions:

E

[
Q(P) + (N − 1)µ

N

]1

= µ (A2.7)

E

[
Q(P) + (N − 1)µ

N

]2

= 1

N2

(
E
[
Q(p)2

]
+ µ2(N − 1)(N + 1)

)
(A2.8)

E

[
Q(P) + (N − 1)µ

N

]3

= 1

N3

(
E
[
Q(p)3

]

+3E
[
Q(P)2

]
(N − 1)µ + µ3(N − 1)2(N + 2)

)
(A2.9)
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E

[
Q(P) + (N − 1)µ

N

]4

= 1

N4

(
E
[
Q(p)4

]
+ 4E

[
Q(P)3

]
(N − 1)µ

+6E
[
Q(P)2

]
µ2(N − 1)2 + µ4(N−1)3(N+3)

)
(A2.10)

Furthermore, given the central moments of a
GLD29—µ, σ2, �3 , �4—the non-central moments
may be defined as:

E[Q(p)] = µ

E
[
Q(p)2

]
= σ2 + E[Q(p)]2

E
[
Q(p)3

]
=α3σ

3+3E[Q(p)]E[Q(p)2]−2E[Q(p)]3

E
[
Q(p)4

]
= α4σ

4 + 4E[Q(p)]E[Q(p)3]

−6E[Q(p)]2E[Q(p)2] + 3E[Q(p)]4

(A2.11)

29The formulas for the central moments in terms of the four
parameters are given in the Appendix 1.

Table A1

S Matrix for n = 5

1 1 1 1 1
0.01 0.02 0.03 0.04 0.05
1.16 × 10−4 4.32 × 10−4 9.48 × 10−4 1.66 × 10−3 2.58 × 10−3

1.40 × 10−6 9.76 × 10−6 3.11 × 10−5 7.14 × 10−5 1.37 × 10−4

1.77 × 10−8 2.28 × 10−7 1.05 × 10−6 3.14 × 10−6 7.39 × 10−6

Once the four non-central moments of the n-sample
mean are known, they can be converted back to central
moments. Finally, using method of moments esti-
mation a GLD may be fit and the n-sample mean
distribution known.

In the text, the reconciliation distribution is given
as GLD(0.027527, 4.335961, 0.094632, 0.010567).
Using equations (A1.3)–(A1.6) the four central
moments are determined to be 0.01, 0.0004, −1.25,
and 5. Using equation (A2.11) the corresponding
non-central moments are 0.01, 0.0005, 0.000003,
0.00000065. With this information we can determine
the S matrix for an n = 5 sample mean to be that shown
in Table A1. The final column of this S matrix is used
in (A2.2) to arrive at the sample mean distribution
non-central moments in Table 3.


