
Incremental Optimization Transfer Algorithms:
Application to Transmission Tomography

Sangtae Ahn, Jeffrey A. Fessler, Doron Blatt, and Alfred O. Hero

Abstract— No convergent ordered subsets (OS) type image
reconstruction algorithms for transmission tomography have been
proposed to date. In contrast, in emission tomography, there
are two known families of convergent OS algorithms: methods
that use relaxation parameters (Ahn and Fessler, 2003), and
methods based on the incremental expectation maximization (EM)
approach (Hsiao et al., 2002). This paper generalizes the incre-
mental EM approach by introducing a general framework that
we call “incremental optimization transfer.” Like incremental EM
methods, the proposed algorithms accelerate convergence speeds
and ensure global convergence (to a stationary point) under mild
regularity conditions without requiring inconvenient relaxation
parameters. The general optimization transfer framework enables
the use of a very broad family of non-EM surrogate functions.
In particular, this paper provides the first convergent OS-type
algorithm for transmission tomography. The general approach is
applicable to both monoenergetic and polyenergetic transmission
scans as well as to other image reconstruction problems. We
propose a particular incremental optimization transfer method
for (nonconcave) penalized-likelihood (PL) transmission image
reconstruction by using separable paraboloidal surrogates (SPS).
Results show that the new “transmission incremental optimiza-
tion transfer (TRIOT)” algorithm is faster than nonincremental
ordinary SPS and even OS-SPS yet is convergent.

I. INTRODUCTION

Ordered subsets (OS) algorithms, also known as block it-
erative or incremental gradient methods, have been very pop-
ular in the medical imaging community for statistical image
reconstruction due to their fast initial convergence. However,
ordinary (unrelaxed) OS algorithms generally do not converge
to an optimal solution but rather approach a suboptimal limit
cycle.

There have been three known families of convergent incre-
mental (or OS type) algorithms: methods that use relaxation
parameters, methods based on the incremental EM approach,
and incremental aggregated gradient (IAG) methods.

Relaxation parameters are used widely to render OS algo-
rithms convergent (see [1] and the references therein). However,
it is inconvenient to determine optimal relaxation parameters to
achieve fast convergence rates and global convergence as well.
In contrast, incremental EM algorithms do not require user-
specified relaxation parameters [2]. They are convergent yet
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faster than ordinary EM algorithms although slower initially
than nonconvergent OS-EM type algorithms. Such incremental
EM algorithms have been applied to emission tomography [3]–
[6]. Recently, Blatt et al. proposed a convergent incremental
gradient method, called incremental aggregated gradient (IAG),
that does not require relaxation parameters [7].

This paper generalizes the incremental EM algorithms by
introducing an approach called “incremental optimization trans-
fer.” Incremental optimization transfer is a general framework
in which one can develop many different algorithms by using
a very broad family of application-dependent surrogate func-
tions. In this paper, we focus on PL image reconstruction for
transmission tomography, which is a challenging nonconcave
maximization problem. We propose a particular incremental
optimization transfer algorithm that uses separable paraboloidal
surrogates (SPS) [8]. The proposed “transmission incremental
optimization transfer (TRIOT)” algorithm is convergent yet
converges faster than ordinary SPS [8]; it can be further
accelerated by initializing through a few iterations of OS-SPS.
It is parallelizable and accommodates most types of system
model.

II. INCREMENTAL OPTIMIZATION TRANSFER

Most objective functions of interest in image reconstruction
can be expressed as a sum of several subobjective functions:

Φ(x) =

M
∑

m=1

Φm(x), (1)

where Φm : X ⊂ R
p → R is a continuously differentiable

function whose domain X is a nonempty, convex and closed
set. We consider the following optimization problem:

maximize Φ(x) subject to x ∈ X . (2)

Since usually there exists no closed-form solution to the above
problem, one must apply iterative algorithms. Assume that for
each subobjective function Φm, we find a surrogate function,
φm : X 2 ⊂ R

p × R
p → R, that is easier to maximize

than Φm and that satisfies the following usual minorization
conditions [9], [10]:

φm(x;x) = Φm(x), ∀x ∈ X
φm(x; x̄) ≤ Φm(x), ∀x, x̄ ∈ X ,

(3)

where X n denotes the n-ary Cartesian product over the set X .
It follows from the above conditions that

Φm(x) − Φm(x̄) ≥ φm(x; x̄) − φm(x̄; x̄), ∀x, x̄ ∈ X .



In other words, choosing x such that φm(x; x̄) ≥ φm(x̄; x̄)
ensures that Φm(x) ≥ Φm(x̄).

We define the following “augmented” objective function:

F (x; x̄1, . . . , x̄M ) =

M
∑

m=1

φm(x; x̄m). (4)

Since

max
x̄m∈X

φm(x; x̄m) = φm(x;x) = Φm(x), ∀x ∈ X ,∀m

that is,

max
(x̄1,...,x̄M )∈XM

F (x; x̄1, . . . , x̄M ) = Φ(x), ∀x ∈ X ,

one can rewrite the optimization problem (2) equivalently as
follows:

maximize F (x; x̄1, . . . , x̄M )
subject to (x; x̄1, . . . , x̄M ) ∈ XM+1,

(5)

in a sense that x∗ ∈ X is an optimal solution of (2) if and
only if (x∗; x̄∗

1, . . . , x̄
∗
M ) ∈ XM+1 is an optimal solution of

(5) for some (x̄∗
1, . . . , x̄

∗
M ) ∈ XM . Therefore we can find

a solution to problem (2) by maximizing F with respect to
(x; x̄1, . . . , x̄M ). By alternating between updating x and one
of the x̄m’s, we obtain an “incremental optimization transfer
algorithm” outlined in Table I.

The incremental optimization transfer algorithm monotoni-
cally increases the augmented objective function F , but not
necessarily the original objective function Φ [11]. If one has
only one subobjective function in (1), that is, M = 1, then
the incremental optimization transfer algorithm reduces to an
ordinary optimization transfer algorithm (e.g., EM and SPS)
[8], [12], [13]. The incremental approach (M > 1) usually
leads to faster convergence rates than nonincremental methods
(M = 1). The incremental EM algorithms [2], [3] including
COSEM [4], [5] are a special case where the surrogates φm are
constructed by EM principles. If one were to maximize just one
of the φm’s instead of the sum shown in (4), then one would
have ordinary OS type algorithms (e.g., OS-EM and OS-SPS)
[8], [14].

One can show [15] that every limit point of the sequence
generated by an incremental optimization transfer algorithm
is an element of the set of stationary points regardless of
initial points when the following general sufficient conditions
hold: (i) each Φm and φm(·; ·) is continuously differentiable,
(ii) the iterates are bounded (e.g., X is a bounded set), (iii)
the surrogates φm satisfy the minorization conditions in (3),
(iv) the gradients of Φm and φm(·; x̄) match at x̄, and (v)
the maximizer in (T-1) is defined uniquely (e.g., φm(·; x̄m) is
strictly concave).

III. APPLICATION TO TRANSMISSION TOMOGRAPHY

We develop a particular incremental optimization transfer
algorithm for transmission tomographic reconstruction. We use
quadratic surrogates [8], [10] rather than EM surrogates because
the standard complete-data proposed in [16] for transmission
tomography does not yield a closed-form M-step [17].

A. Problem

We assume the following Poisson statistical model for (mo-
noenergetic) transmission measurements:

yi ∼ Poisson
{

bie
−[Ax]i + ri

}

, i = 1, . . . , N (4)

where yi denotes the transmission measurement of the ith
detector, bi denotes the blank scan counts of the ith detector, ri
denotes the mean number of background counts, and [Ax]i =
∑p

j=1 aijxj represents the ith line integral of the attenuation
map in which xj is the unknown attenuation coefficient in
the jth pixel, A = {aij} is the system matrix, and N and
p are the number of detectors and pixels, respectively. We
assume that {bi}, {aij}, and {ri} are known nonnegative
constants. We focus on penalized-likelihood (PL), also known
as maximum a posteriori (MAP), estimation for the attenuation
map reconstruction. Our goal is to compute a PL estimate x̂PL

which is defined by

x̂
PL = arg max

x∈X
Φ(x), Φ(x) = L(x) − βR(x) (5)

where the objective function Φ, which can be nonconcave when
ri 6= 0 [10], includes the log-likelihood

L(x) =

N
∑

i=1

hi([Ax]i)

hi(l) = yi log(bie
−l + ri) − (bie

−l + ri)

and a roughness penalty

R(x) =
1

2

p
∑

j=1

∑

k∈Nj

wjkψ(xj − xk). (6)

The feasible set is given by

X = {x ∈ R
p : 0 ≤ xj ≤ U, ∀j}. (7)

In the box constraint set in (7), the upper bound U > 0 is
set by the user to be a value that is larger than the maximum
attenuation coefficient conceivable for the object being scanned.

In the penalty function (6), the function ψ is a symmetric
and convex potential function, Nj represents a neighborhood
of the jth pixel, β is a regularization parameter that controls the
smoothness in reconstructed images, and wjk are weights. We
assume the potential function ψ satisfies some conditions given
in [10], [18, p. 184]. We used the following edge-preserving
nonquadratic potential function in our PL reconstruction re-
sults [19]:

ψ(t) = δ2[|t/δ| − log(1 + |t/δ|)] (8)

for some δ > 0.

B. Transmission Incremental Optimization Transfer (TRIOT)

We decompose the objective function Φ into the following
subobjective functions:

Φm(x) =
∑

i∈Sm

hi([Ax]i) −
β

M
R(x), m = 1, · · · ,M,



TABLE I
OUTLINE FOR INCREMENTAL OPTIMIZATION TRANSFER ALGORITHMS.

Initialize x0, x̄0
1, . . . , x̄

0
M ∈ X

for n = 0, . . . , niter − 1
for m = 1, . . . ,M

x
new = arg max

x∈X
F

(

x; x̄n+1
1 , . . . , x̄n+1

m−1, x̄
n
m, x̄

n
m+1, . . . x̄

n
M

)

(T-1)

x̄
n+1
m = x

new = arg max
x̄m∈X

F
(

x
new; x̄n+1

1 , . . . , x̄n+1
m−1, x̄m, x̄

n
m+1, . . . x̄

n
M

)

(T-2)

end
x
n+1 = x̄

n+1
M (T-3)

end

where {Sm}Mm=1 is a partition of {1, . . . , N}. We use the usual
subsets corresponding to downsampled projection angles [14].
Consider the following separable quadratic surrogate φm for
the subobjective function Φm:

φm(x; x̄) = Φm(x̄) + ∇Φm(x̄)′(x − x̄)

−
1

2
(x − x̄)′C̆m(x̄)(x − x̄) (9)

with
C̆m(x) = diagj{c̆mj(x)} (10)

where c̆mj(·) > 0 and diag{·} denotes a diagonal matrix
appropriately formed.

To make φm satisfy the minorization conditions in (3), one
has at least two choices for c̆mj : “optimum curvature” (OC)
and “maximum curvature” (MC). Those curvatures c̆mj have
the following form:

c̆mj(x) = max

{

∑

i∈Sm

aijaici([Ax]i)+

2β

M

∑

k∈Nj

wjkωψ(xj − xk), ε







(11)

for some small value ε > 0 where ai
4
=

∑p

j=1 aij and ωψ(t)
4
=

ψ̇(t)/t. The functionals ci(·) are defined as follows. For OC,
we define

cOC
i (l)

4
=















[

−2
hi(0) − hi(l) + ḣi(l) · l

l2

]

+

, l > 0

[

−ḧi(0)
]

+
, l = 0,

(12)
and for MC,

cMC
i (l)

4
=

[

−ḧi(0)
]

+
, (13)

where [x]+ = max{x, 0}. Detailed derivations of (11)–(13) can
be found in [10]. The optimum curvature cOC

i in (12) leads to
faster convergence rates than the maximum curvature cMC

i in
(13), but it needs an “extra” backprojection per iteration.

The augmented objective function F defined in (4) with (9)
is readily maximized with respect to x over the box constraint
X as follows:

x
new =





[

M
∑

m=1

C̆m(x̄m)

]−1

·

M
∑

m=1

[

C̆m(x̄m)x̄m + ∇Φm(x̄m)
]

]+

(14)

where [x]+ denotes the orthogonal projection of x ∈ R
p onto

the box constraint X and is easily computed componentwise
as follows: [[x]+]j = median{0, xj , U} for all j. Using (14)
in the step (T-1) leads to a new “transmission incremental
optimization transfer (TRIOT)” algorithm. If M = 1, then
TRIOT reduces to ordinary SPS [8].

C. Acceleration

TRIOT-OC/MC1 is slower initially than OS-SPS [8]. Here
we discuss methods to accelerate TRIOT.

1) Switch from OS-SPS to TRIOT: It is a popular idea
to switch from a nonconvergent yet initially fast OS type
algorithm to a convergent non-OS algorithm at some point
to take advantage of both fast initial convergence rates of OS
methods and global convergence of non-OS methods.

We observed that it is very effective to switch to TRIOT from
OS-SPS at the point where OS-SPS nearly gets to a limit cycle;
even one single subiteration of TRIOT moves the iterate from
the limit cycle very close to the optimal solution. The reason

1The second part of the algorithm name denotes a curvature.



is as follows: a group of the points in the limit cycle would be
roughly centered around the optimal point and the update for
TRIOT includes a weighted average of the points [see (14)].

However, in the early iterations, when OS-SPS is still far
from the limit cycle and is making progress towards the
optimal point, TRIOT is usually slower than OS-SPS due to
the averaging of the past subiterates. So it is desirable to get
to a limit cycle quickly using OS-SPS with many subsets and
then switch to TRIOT.

2) Precomputed Curvatures: Forgoing monotonicity (in the
augmented objective) and accordingly provable convergence,
one can use for TRIOT the “precomputed curvatures (PC)” to
obtain accelerated convergence rates. The “precomputed curva-
ture (PC)” is obtained by approximating Newton’s curvatures
[8], [10] as follows:

cPC
i

4
=







(yi − ri)
2

yi
, yi > ri

0, otherwise.

It is an open question whether TRIOT-PC converges to an
optimal solution. However, in our experiments, TRIOT-PC
yielded the same limit as convergent algorithms like SPS-OC
within numerical precision!

IV. RESULTS

To assess the performance of the proposed algorithms, we
performed 2D attenuation map reconstructions from real PET
data. We acquired PET data using a Siemens/CTI ECAT EX-
ACT 921 PET scanner with rotating rod transmission sources
[20]. We used an anthropomorphic thorax phantom (Data Spec-
trum, Chapel Hill, NC). The sinogram had 160 radial bins and
192 angles, and the reconstructed images were 128× 128 with
4.2 mm pixels. The system geometry was approximated with
3.375 mm wide strip integrals and 3.375 mm ray spacing. The
total counts amounted to 9.2×105. We used the edge-preserving
nonquadratic penalty (8) with δ = 4 × 10−4 mm−1 and
β = 218.5, chosen by visual inspection. A uniform image was
used as a starting image. Images were reconstructed using SPS-
MC/PC, OS-SPS(-PC), and TRIOT-MC/PC. For OS-SPS and
TRIOT algorithms, we used 16 subsets (a moderate number)
and 64 subsets (a little larger number than usual). For SPS and
TRIOT, the performance (objective value or distance from the
optimal image) with the optimum curvature (OC) in (12), which
requires an extra backprojection per iteration, was between
those with MC and PC; and the results with OC are not shown
here. See [15] for reconstructed images not shown here.

Fig. 1 shows normalized Φ difference versus iteration number
for different algorithms using 16 subsets. The normalized Φ
difference is defined as (Φ(x̂PL)−Φ(x̂n))/(Φ(x̂PL)−Φ(x̂0))
where x̂PL is a maximizer of the PL objective. The optimal
image x̂PL was estimated by 30 iterations of OS-SPS with
16 subsets followed by 800 iterations of SPS-OC. TRIOT
algorithms were initialized by running one iteration of OS-SPS.
So were the SPS algorithms for a fair comparison. Although
OS-SPS showed a fast initial convergence rate, it became stuck
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Fig. 1. Comparison of non-OS algorithms (SPS-MC/PC), an OS algorithm
(OS-SPS), and incremental optimization transfer algorithms (TRIOT-MC/PC)
for 2D attenuation map reconstruction using real PET data. This figure shows
(Φ(x̂PL)−Φ(x̂n))/(Φ(x̂PL)−Φ(x̂0)) versus iteration number where x̂PL

is the PL optimal image. The OS-SPS and TRIOT algorithms used 16 subsets,
and TRIOT and SPS algorithms included one initial iteration of OS-SPS.
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Fig. 2. Same as Fig. 1, but six initial iterations of OS-SPS were included for
TRIOT and SPS algorithms.

at a suboptimal point whereas other methods continued to
improve in terms of objective values. The TRIOT algorithms
were outperformed by other algorithms in early iterations
since the built-in averaging in TRIOT slows down convergence
when a limit cycle has not reached yet. However, TRIOT-
MC and TRIOT-PC eventually outrun SPS-MC and SPS-PC,
respectively.

To investigate the performance of TRIOT algorithms after
OS-SPS reaches a limit cycle, we performed 6 iterations of OS-
SPS, which is sufficient to get close to a limit cycle, and then
applied TRIOT (and SPS as well). Fig. 2 shows that TRIOT
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Fig. 3. Same as Fig. 1, but 64 subsets are used for OS-SPS and TRIOT
algorithms, and two iterations of OS-SPS are included initially for TRIOT and
SPS algorithms.

yielded considerable improvement at iteration 6 where TRIOT
was first applied. TRIOT-MC and TRIOT-PC converge faster
than SPS-MC and SPS-PC, respectively, which are similarly
initialized by 6 iterations of OS-SPS. This shows that it is
effective to switch from OS-SPS to TRIOT when OS-SPS
almost reaches a limit cycle. However, it is inconvenient to
predict how many iterations are required for OS-SPS to arrive
at a limit cycle.

Fig. 3 shows normalized Φ difference versus iteration number
when 64 subsets are used. As the number of subsets increased
to 64, the initial convergence rate of OS-SPS became faster
(even a couple of iterations led to a limit cycle), but OS-SPS
stagnated at a worse image. Meanwhile, the TRIOT algorithms
were quite effective even though they used only a couple of
iterations of OS-SPS as initialization, and they outperformed
the SPS algorithms initialized similarly.

V. CONCLUSION

We presented a broad family of incremental optimization
transfer algorithms by generalizing the incremental EM family.
The incremental optimization transfer algorithms usually show
faster convergence rates than ordinary optimization transfer
methods like EM or SPS, but they are convergent.

We also developed a particular incremental optimization
transfer algorithm for transmission tomography by using sep-
arable quadratic surrogates: TRIOT algorithms. We found that
it is very effective to switch from OS-SPS to TRIOT when
OS-SPS nearly reaches a limit cycle. When reasonably many
subsets are used, as few as a couple of iteration of OS-SPS can
be sufficient to get close to a limit cycle (although it would
depend on the degree of regularization and the size of the
problem).
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