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ABSTRACT 

Many consumer choice situations are characterized by the simultaneous demand for 

multiple alternatives that are imperfect substitutes for one another. A simple and parsimonious 

Multiple Discrete-Continuous Extreme Value (MDCEV) econometric approach to handle such 

multiple discreteness was formulated by Bhat (2005) within the broader Kuhn-Tucker (KT) 

multiple discrete-continuous economic consumer demand model of Wales and Woodland (1983). 

This paper examines several issues associated with the MDCEV model and other extant KT 

multiple discrete-continuous models. Specifically, the paper proposes a new utility function form 

that enables clarity in the role of each parameter in the utility specification, presents 

identification considerations associated with both the utility functional form as well as the 

stochastic nature of the utility specification, extends the MDCEV model to the case of price 

variation across goods and to general error covariance structures, discusses the relationship 

between earlier KT-based multiple discrete-continuous models, and illustrates the many 

technical nuances and identification considerations of the multiple discrete-continuous model 

structure through empirical examples. The paper also highlights the technical problems 

associated with the stochastic specification used in the KT-based multiple discrete-continuous 

models formulated in recent Environmental Economics papers. 

 

Keywords: Discrete-continuous system, Multiple discreteness, Kuhn-Tucker demand systems, 

Mixed discrete choice, Random Utility Maximization. 
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1. INTRODUCTION 

Multiple discreteness (i.e., the choice of multiple, but not necessarily all, alternatives 

simultaneously) is a rather ubiquitous characteristic of consumer decision-making.1  Examples of 

multiple discreteness include situations where an individual may decide to participate in multiple 

kinds of maintenance and leisure activities within a given time period (Bhat, 2005), or a 

household may own a mix of different kinds of vehicles (such as a sedan and a pick-up truck or a 

sedan and a minivan; see Bhat and Sen, 2006). Such multiple discrete situations may be modeled 

using the traditional random utility-based (RUM) single discrete choice models by identifying all 

combinations or bundles of the “elemental” alternatives, and treating each bundle as a 

“composite” alternative (the term “single discrete choice” is used to refer to the case where a 

decision-maker chooses only one alternative from a set of alternatives). A problem with this 

approach, however, is that the number of composite alternatives explodes with the number of 

elemental alternatives. Another approach is to use the multivariate probit (logit) methods of 

Manchanda et al. (1999), Baltas (2004), Edwards and Allenby (2003), and Bhat and Srinivasan 

(2005). But this approach is not based on a rigorous underlying utility-maximizing framework of 

multiple discreteness; rather, it represents a statistical “stitching” of univariate utility maximizing 

models. In both the approaches discussed above to handle multiple discreteness, there is also no 

explicit way to accommodate the diminishing marginal returns (i.e., satiation) in the 

consumption of an alternative. Additionally, and related to the above point, it is very 

cumbersome, even if conceptually feasible, to include a continuous dimension of choice (for 

example, modeling the durations of participation in the chosen activity purposes, in addition to 

the choice of activity purpose).2  

                                                 
1 A brief history of the term “multiple discreteness” is in order here. Traditional discrete choice models focus on the 
selection of a single alternative from the set of available alternatives on a purchase occasion. That is, they consider 
the “extreme corner solution problem”. Hanemann, in his 1978 dissertation, used the term “generalized corner 
solution problem” to refer to the situation where multiple alternatives may be chosen simultaneously. Hendel (1999) 
appears to have been the first to coin the term “multiple discreteness” to refer to the choice of multiple alternatives. 
This term is also used by Dube (2004).   
2 Another approach for multiple discreteness is the one proposed by Hendel (1999) and Dube (2004). These 
researchers consider the case of “multiple discreteness” in the purchase of multiple varieties within a particular 
product category as the result of a stream of expected (but unobserved to the analyst) future consumption decisions 
between successive shopping purchase occasions (see also Walsh, 1995).  During each consumption occasion, the 
standard discrete choice framework of perfectly substitutable alternatives is invoked, so that only one product is 
consumed.  Due to varying tastes across individual consumption occasions between the current shopping purchase 
and the next, consumers are observed to purchase a variety of goods at the current shopping occasion.  A Poisson 
distribution is assumed for the number of consumption occasions and a normal distribution is assumed regarding 
varying tastes to complete the model specification.  Such a “vertical” variety-seeking model, of course, is different 
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Wales and Woodland (1983) proposed two alternative ways to handle situations of 

multiple discreteness within a behaviorally-consistent utility maximizing framework. Both 

approaches assume a direct utility function U(x) that is assumed to be quasi-concave, increasing, 

and continuously differentiable with respect to the consumption quantity vector x.3 Consumers 

maximize the utility function subject to a linear budget constraint, which is binding in that all the 

available budget is invested in the consumption of the goods; that is, the budget constraint has an 

equality sign rather than a ‘≤’ sign. This binding nature of the budget constraint is the result of 

assuming an increasing utility function, and also implies that at least one good will be consumed. 

The difference in the two alternative approaches proposed by Wales and Woodland (1983) is in 

how stochasticity, non-negativity of consumption, and corner solutions (i.e., zero consumption of 

some goods) are accommodated, as briefly discussed below (see Wales and Woodland, 1983 and 

Phaneuf et al., 2000 for additional details). 

The first approach, which Wales and Woodland label as the Amemiya-Tobin approach, is 

an extension of the classic microeconomic approach of adding normally distributed stochastic 

terms to the budget-constrained utility-maximizing share equations. In this approach, the direct 

utility function U(x) itself is assumed to be deterministic by the analyst, and stochasticity is 

introduced post-utility maximization. The justification for the addition of such normally 

distributed stochastic terms to the deterministic utility-maximizing allocations is based on the 

notion that consumers make errors in the utility-maximizing process, or that there are 

measurement errors in the collection of share data, or that there are unknown factors (from the 

analyst’s perspective) influencing actual consumed shares. However, the addition of normally 

distributed error terms to the share equations in no way restricts the shares to be positive and less 

than 1. The contribution of Wales and Woodland was to devise a stochastic formulation, based 

on the earlier work of Tobin (1958) and Amemiya (1974), that (a) respects the unit simplex 

range constraint for the shares, (b) accommodates the restriction that the shares sum to one, and 

(c) allows corner solutions in which one or more alternatives are not consumed. They achieve 

this by assuming that the observed shares for the (K-1) of the K alternatives follow a truncated 

multivariate normal distribution (note that since the shares across alternatives have to sum to 
                                                                                                                                                             
from the “horizontal” variety seeking model considered in this paper, where the choice is considered to be among 
inherently imperfect substitutes at the choice occasion (see Kim et al., 2002 and Bhat, 2005). 
3 The assumption of a quasi-concave utility function is simply a manifestation of requiring the indifference curves to 
be convex to the origin (see Deaton and Muellbauer, 1980, page 30 for a rigorous definition of quasi-concavity). The 
assumption of an increasing utility function implies that U(x1) > U(x0) if x1 > x0. 
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one, there is a singularity generated in the K-variate covariance matrix of the K shares, which can 

be accommodated by dropping one alternative).  However, an important limitation of the 

Amemiya-Tobin approach of Wales and Woodland is that it does not account for corner 

solutions in its underlying behavior structure.  Rather, the constraint that the shares have to lie 

within the unit simplex is imposed by ad hoc statistical procedures of mapping the density 

outside the unit simplex to the boundary points of the unit simplex. 

The second approach suggested by Wales and Woodland, which they label as the Kuhn-

Tucker approach, is based on the Kuhn Tucker or KT (1951) first-order conditions for 

constrained random utility maximization (see Hanemann, 1978, who uses such an approach even 

before Wales and Woodland). Unlike the Amemiya-Tobin approach, the KT approach employs a 

more direct stochastic specification by assuming the utility function U(x) to be random (from the 

analyst’s perspective) over the population, and then derives the consumption vector for the 

random utility specification subject to the linear budget constraint by using the KT conditions for 

constrained optimization. Thus, the stochastic nature of the consumption vector in the KT 

approach is based fundamentally on the stochastic nature of the utility function. Consequently, 

the KT approach immediately satisfies all the restrictions of utility theory, and the stochastic KT 

first-order conditions provide the basis for deriving the probabilities for each possible 

combination of corner solutions (zero consumption) for some goods and interior solutions 

(strictly positive consumption) for other goods. The singularity imposed by the “adding-up” 

constraint is accommodated in the KT approach by employing the usual differencing approach 

with respect to one of the goods, so that there are only (K-1) interdependent stochastic first-order 

conditions. 

Among the two approaches discussed above, the KT approach constitutes a more 

theoretically unified and behaviorally consistent framework for dealing with multiple 

discreteness consumption patterns. However, the KT approach did not receive much attention 

until relatively recently because the random utility distribution assumptions used by Wales and 

Woodland lead to a complicated likelihood function that entails multi-dimensional integration. 

Kim et al. (2002) addressed this issue by using the Geweke-Hajivassiliou-Keane (or GHK) 

simulator to evaluate the multivariate normal integral appearing in the likelihood function in the 

KT approach. Also, different from Wales and Woodland, Kim et al. used a generalized variant of 

the well-known translated constant elasticity of substitution (CES) direct utility function (see 
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Pollak and Wales, 1992; page 28) rather than the quadratic direct utility function used by Wales 

and Woodland. In any case, the Kim et al. approach, like the Wales and Woodland approach, is 

unnecessarily complicated because of the need to evaluate truncated multivariate normal 

integrals in the likelihood function. In contrast, Bhat (2005) introduced a simple and 

parsimonious econometric approach to handle multiple discreteness, also based on the 

generalized variant of the translated CES utility function but with a multiplicative log-extreme 

value error term. Bhat’s model, labeled the multiple discrete-continuous extreme value 

(MDCEV) model, is analytically tractable in the probability expressions and is practical even for 

situations with a large number of discrete consumption alternatives. In fact, the MDCEV model 

represents the multinomial logit (MNL) form-equivalent for multiple discrete-continuous choice 

analysis and collapses exactly to the MNL in the case that each (and every) decision-maker 

chooses only one alternative.  

Independent of the above works of Kim et al. and Bhat, there has been a stream of 

research in the environmental economics field (see Phaneuf et al., 2000; von Haefen et al., 2004; 

von Haefen, 2003a; von Haefen, 2004; von Haefen and Phaneuf, 2005; Phaneuf and Smith, 

2005) that has also used the KT approach to multiple discreteness. These studies use variants of 

the linear expenditure system (LES) as proposed by Hanemann (1978) and the translated CES for 

the utility functions, and use multiplicative log-extreme value errors. However, the error 

specification in the utility function is different from that in Bhat’s MDCEV model, resulting in a 

different form for the likelihood function (more on this in Section 6).  

Within the context of the KT approach to handling multiple discreteness, the purpose of 

this research is five-fold. The first objective is to reformulate the utility specification used in 

earlier studies in a way that explicitly clarifies the role of each parameter in the utility 

specification. The second objective is to present identification considerations related to both the 

functional form as well as the stochastic nature of the utility specification. The third objective is 

to derive the MDCEV model expression for the case when there is price variation across goods 

and to extend the MDCEV model to accommodate generalized extreme value (GEV)-based and 

other correlation structures. The fourth objective is to discuss the relationship between the 

models of Kim et al. (2002), the KT formulations used in Environmental Economics, and the 

MDCEV formulation. The fifth objective is to illustrate the technical issues related to the 

properties and identification of the MDCEV model through empirical illustrations.  
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The rest of the paper is structured as follows. The next section formulates a functional 

form for the utility specification that enables the isolation of the role of different parameters in 

the specification. This section also identifies empirical identification considerations in estimating 

the parameters in the utility specification. Section 3 discusses the stochastic form of the utility 

specification, the resulting general structure for the probability expressions, and associated 

identification considerations. Section 4 derives the MDCEV structure for the new utility 

functional form used in the current paper, and extends this structure to more general error 

structure specifications. For presentation ease, Sections 2 through 4 consider the case of the 

absence of an outside good. In Section 5, we extend the discussions of the earlier sections to the 

case when an outside good is present. Section 6 compares the earlier multiple discrete-

continuous models used in the literature with the one formulated in the current paper. Section 7 

provides empirical illustrations to reinforce the theoretical issues discussed in earlier sections. 

The final section concludes the paper. 

 

2. FUNCTIONAL FORM OF UTILITY SPECIFICATION 

We consider the following functional form for utility in this paper, based on a generalized 

variant of the translated CES utility function: 
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where U(x) is a quasi-concave, increasing, and continuously differentiable function with respect 

to the consumption quantity (Kx1)-vector x (xk ≥ 0 for all k),  and kψ , kγ  and kα  are parameters 

associated with good k. The function in Equation (1) is a valid utility function if kψ > 0 and kα  ≤ 

1 for all k.  Further, for presentation ease, we assume temporarily that there is no outside good, 

so that corner solutions (i.e., zero consumptions) are allowed for all the goods k (this assumption 

is being made only to streamline the presentation and should not be construed as limiting in any 

way; the assumption is relaxed in a straightforward manner as discussed in Section 5). The 

possibility of corner solutions implies that the term kγ , which is a translation parameter, should 
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be greater than zero for all k.4 The reader will note that there is an assumption of additive 

separability of preferences in the utility form of Equation (1), which immediately implies that 

none of the goods are a priori inferior and all the goods are strictly Hicksian substitutes (see 

Deaton and Muellbauer, 1980; page 139). Additionally, additive separability implies that the 

marginal utility with respect to any good is independent of the levels of all other goods.5 

 The form of the utility function in Equation (1) is different from that used in earlier 

studies. The reason for the specific functional form adopted here is to highlight the role of the 

various parameters kψ , kγ  and kα , and explicitly indicate the inter-relationships between these 

parameters that relate to theoretical and empirical identification issues.6  Finally, it should be 

noted that the utility form of Equation (1) collapses to the following linear expenditure system 

(LES) form when kk   0∀→α  (see Appendix A; the LES form of the type below appears to have 

been first used by Hanemann, 1978).  
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4 As illustrated in Kim et al. (2002) and Bhat (2005), the presence of the translation parameters makes the 
indifference curves strike the consumption axes at an angle (rather than being asymptotic to the consumption axes), 
thus allowing corner solutions. 
5 Some other studies assume the overall utility to be derived from the characteristics embodied in the goods, rather 
than using the goods as separate entities in the utility function. The reader is referred to Chan (2006) for an example 
of such a characteristics approach to utility. 
6 As we will show later, however, the utility form we adopt is behaviorally and observationally indistinguishable 
from those used in Bhat (2005) and Kim et al. (2002) if γk is normalized to 1 for all k and 0 < αk < = 1. It is also 
observationally indistinguishable from the utility form used in environmental economics under the condition that 
αk→0. Specifically, all these utility forms imply an identical set of Kuhn-Tucker first order conditions and demand. 
However, the various utility forms may not yield identical welfare measures. In our formulation of utility, we 
impose the untestable, but intuitive, condition of weak complementarity (see Mäler, 1974), which implies that the 
consumer receives no utility from a non-essential good’s attributes if s/he does not consume it (i.e., a good and its 
quality attributes are weak complements, or Uk = 0 if xk = 0, where Uk is the sub-utility function for the kth good). 
The reader is referred to Hanemann (1984), von Haefen (2004), and Herriges et al. (2004) for a detailed discussion 
of the advantages of using the weak complementarity assumption. The use of the weak complementarity condition 
essentially amounts to a cardinal normalization restriction on utilities. But, as Herriges et al. (2004) indicate, the 
analyst will have to place some kind of a cardinal restriction on preferences anyway for welfare measurement, and 
weak complementarity is a natural choice in many circumstances. We will maintain the weak complementary 
cardinal normalization in the rest of this paper to simplify the algebra, though the ordinality of utilities should 
always be kept in mind. 
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2.1 Role of Parameters in Utility Specification 

Role of kψ  

The role of kψ  can be inferred by computing the marginal utility of consumption with 

respect to good k, which is: 
1
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It is obvious from above that kψ  represents the baseline marginal utility, or the marginal utility 

at the point of zero consumption. Alternatively, the marginal rate of substitution between any 

two goods k and l at the point of zero consumption of both goods is 
l

k

ψ
ψ

. This is the case 

regardless of the values of kγ  and kα  (unlike in earlier studies where the baseline marginal 

utility and the marginal rate of substitution, in general, are functions of multiple parameters). For 

two goods i and j with same unit prices, a higher baseline marginal utility for good i relative to 

good j implies that an individual will increase overall utility more by consuming good i rather 

than j at the point of no consumption of any goods. That is, the consumer will be more likely to 

consume good i than good j. Thus, a higher baseline kψ  implies less likelihood of a corner 

solution for good k. 

 

Role of kγ  

An important role of the kγ  terms is to shift the position of the point at which the 

indifference curves are asymptotic to the axes from (0,0,0…,0) to ),...,,,( 321 Kγγγγ −−−− , so that 

the indifference curves strike the positive orthant with a finite slope. This, combined with the 

consumption point corresponding to the location where the budget line is tangential to the 

indifference curve, results in the possibility of zero consumption of good k.  To see this, consider 

two goods 1 and 2 with 1ψ  = 2ψ  = 1, 1α  = 2α  = 0.5, and 2γ  = 1. Figure 1 presents the profiles 

of the indifference curves in this two-dimensional space for various values of 1γ ( 1γ  > 0). To 

compare the profiles, the indifference curves are all drawn to go through the point (0,8). The 

reader will also note that all the indifference curve profiles strike the y-axis with the same slope. 

As can be observed from the figure, the positive values of 1γ  and 2γ  lead to indifference curves 
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that cross the axes of the positive orthant, allowing for corner solutions. The indifference curve 

profiles are asymptotic to the x-axis at y = –1 (corresponding to the constant value of 2γ  = 1), 

while they are asymptotic to the y-axis at 1γ−=x .  

Figure 1 also points to another role of the kγ  term as a satiation parameter. Specifically, 

the indifference curves get steeper in the positive orthant as the value of 1γ  increases, which 

implies a stronger preference (or lower satiation) for good 1 as 1γ  increases (with steeper 

indifference curve slopes, the consumer is willing to give up more of good 2 to obtain 1 unit of 

good 1). This point is particularly clear if we examine the profile of the sub-utility function for 

alternative k. Figure 2 plots the function for alternative k for 0→kα  and kψ  = 1, and for 

different values of kγ . All of the curves have the same slope kψ  = 1 at the origin point, because 

of the functional form used in this paper. However, the marginal utilities vary for the different 

curves at kx  > 0. Specifically, the higher the value of kγ , the less is the satiation effect in the 

consumption of kx . It is important to note that the entire range of satiation effects from 

immediate and full satiation (flat line) to linear satiation (constant marginal utility) can be 

accommodated by different values of kγ  for any given kα  value.  

 

Role of kα  

The express role of kα  is to reduce the marginal utility with increasing consumption of 

good k; that is, it represents a satiation parameter. When kα  = 1 for all k, this represents the case 

of absence of satiation effects or, equivalently, the case of constant marginal utility. The utility 

function in Equation (1) in such a situation collapses to ∑
k

kk xψ , which represents the perfect 

substitutes case as proposed by Deaton and Muellbauer (1980) and applied in Hanemann (1984), 

Chiang (1991), Chintagunta (1993), and Arora et al. (1998), among others. Intuitively, when 

there is no satiation and the unit good prices are all the same, the consumer will invest all 

expenditure on the single good with the highest baseline (and constant) marginal utility (i.e., the 
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highest kψ  value). This is the case of single discreteness.7 As kα  moves downward from the 

value of 1, the satiation effect for good k increases. When 0→kα , the utility function collapses 

to the form in Equation (2), as discussed earlier. kα  can also take negative values and, when 

−∞→kα , this implies immediate and full satiation. Figure 3 plots the utility function for 

alternative k for kγ  = 1 and kψ  = 1, and for different values of kα . Again, all of the curves have 

the same slope kψ  = 1 at the origin point, and accommodate different levels of satiation through 

different values of kα  for any given kγ  value.  

 

2.2 Empirical Identification Issues Associated with Utility Form 

The discussion in the previous section indicates that kψ  reflects the baseline marginal 

utility, which controls whether or not a good is selected for positive consumption (or the 

extensive margin of choice). The role of kγ  is to enable corner solutions, though it also governs 

the level of satiation. The purpose of kα  is solely to allow satiation. Thus, for a given extensive 

margin of choice of good k, kγ  and kα  influence the quantity of good k consumed (or the 

intensive margin of choice) through their impact on satiation effects. The precise functional 

mechanism through which kγ  and kα  impact satiation are, however, different; kγ  controls 

satiation by translating consumption quantity, while kα  controls satiation by exponentiating 

consumption quantity. Clearly, both these effects operate in different ways, and different 

combinations of their values lead to different satiation profiles. However, empirically speaking, 

it is very difficult to disentangle the two effects separately, which leads to serious empirical 

identification problems and estimation breakdowns when one attempts to estimate both kγ  and 

kα  parameters for each good. In fact, for a given kψ  value, it is possible to closely approximate 

a sub-utility function profile based on a combination of kγ  and kα  values with a sub-utility 

function based solely on kγ  or kα  values. This is illustrated in Figures 4a through 4d for 1=kψ  

                                                 
7 If there is price variation across goods, one needs to take the derivative of the utility function with respect to 
expenditures (ek) on the goods. In the case that αk= 1 for all k, U = 

k
Σ ψk(ek / pk), where ψk is the unit price of good k. 

Then ∂U / ∂ek = ψk / pk. In this situation, the consumer will invest all expenditures on the single good with the highest 
price-normalized marginal (and constant) utility ψk / pk. 
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and for different satiation levels. In these figures, the subutility functions based solely on kγ  

assume kα  = 0 (i.e., these functions take the form of Equation (2)), while those based solely on 

kα  for incorporating satiation assume kγ  = 1 (note that kγ , even if fixed, has to be positive to 

allow corner solutions). In all the figures, the profile based only on  kγ  (the kγ -profile) or 

kα (the kα -profile) tracks the profile based on the combination of values (the combination 

profile) reasonably well. For moderate satiations (Figures 4a and 4b), one of the two profiles 

does better than the other, based on how close the kγ  and kα  values in the combination profile 

are to the assumed value of *
kα  = 0 for the kγ -profile and **

kγ  = 1 for the kα -profile. For very 

low and very high satiations, both the kα -profile and the kγ -profile track the combination profile 

very closely. In actual application, it would behoove the analyst to estimate models based on 

both the kα -profile and the kγ -profile, and choose a specification that provides a better 

statistical fit.8  

In cases where kα  values are estimated, these values need to be bounded from above at 

the value of 1.  To enforce these conditions, kα  can be parameterized as )]exp(1[ kδ−− , with kδ  

being the parameter that is estimated.  Further, to allow the satiation parameters (i.e., the kα  

values) to vary across individuals, Bhat (2005) writes kkk yθδ ′= , where ky  is a vector of 

individual characteristics impacting satiation for the kth alternative, and kθ  is a corresponding 

vector of parameters. In cases where kγ  values are estimated, these values need to be greater 

than zero, which can be maintained by reparameterizing kγ  as )exp( kµ . Additionally, the 

translation parameters can be allowed to vary across individuals by writing kkk wϕµ ′= , where 

kw  is a vector of individual characteristics for the kth alternative, and kϕ  is a corresponding 

vector of parameters.   

 

                                                 
8 Alternatively, the analyst can stick with one functional form a priori, but experiment with various fixed values of 
αk for the γk-profile and γk for the αk-profile. 
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3. STOCHASTIC FORM OF UTILITY FUNCTION 

The KT approach employs a direct stochastic specification by assuming the utility 

function U(x) to be random over the population. In all recent applications of the KT approach for 

multiple discreteness, a multiplicative random element is introduced to the baseline marginal 

utility of each good as follows: 
kezz kkk
εψεψ ⋅= )(),( ,                (4) 

where kz  is a set of attributes characterizing alternative k and the decision maker, and kε  

captures idiosyncratic (unobserved) characteristics that impact the baseline utility for good j.  

The exponential form for the introduction of the random term guarantees the positivity of the 

baseline utility as long as 0)( >kzψ . To ensure this latter condition, )( kzψ  is further 

parameterized as )exp( kzβ ′ , which then leads to the following form for the baseline random 

utility associated with good k: 

)exp(),( kkkk zz εβεψ +′= .                (5) 

The kz  vector in the above equation includes a constant term. The overall random utility 

function of Equation (1) then takes the following form: 
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From the analyst’s perspective, the individual is maximizing random utility subject to the 

binding linear budget constraint that Ee
K

k
k =∑

=1
, where E is total expenditure or income (or some 

other appropriately defined total budget quantity), kkk xpe = , and kp  is the unit price of good k.  

 

3.1 Optimal Expenditure Allocations 

The analyst can solve for the optimal expenditure allocations by forming the Lagrangian 

and applying the Kuhn-Tucker (KT) conditions.9  The Lagrangian function for the problem is: 
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9 For reasons that will become clear later, we solve for the optimal expenditure allocations ek for each good, not the 
consumption amounts xk of each good. This is different from earlier studies that focus on the consumption of goods. 
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where λ  is the Lagrangian multiplier associated with the expenditure constraint (that is, it can be 

viewed as the marginal utility of total expenditure or income).  The KT first-order conditions for 

the optimal expenditure allocations (the *
ke  values) are given by: 
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 The optimal demand satisfies the conditions in Equation (8) plus the budget constraint 

Eek

K

k

=∑
=

*

1

.  The budget constraint implies that only K-1 of the *
ke  values need to be estimated, 

since the quantity consumed of any one good is automatically determined from the quantity 

consumed of all the other goods.  To accommodate this constraint, designate activity purpose 1 

as a purpose to which the individual allocates some non-zero amount of consumption (note that 

the individual should participate in at least one of the K purposes, given that E > 0).  For the first 

good, the KT condition may then be written as: 
1

11

*
1

1

11
1

1)exp(
−

⎟⎟
⎠

⎞
⎜⎜
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⎛
+

+′
=

α

γ
εβλ

p
e

p
z                           (9) 

Substituting for λ  from above into Equation (8) for the other activity purposes (k = 2,…, K), and 

taking logarithms, we can rewrite the KT conditions as: 

11 εε +=+ VV kk  if 0* >ke  (k = 2, 3,…, K) 

11 εε +<+ VV kk  if 0* =ke  (k = 2, 3,…, K), where           (10) 

k
kk

k
kkk p

p
ezV ln1ln)1(

*

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−+′=

γ
αβ  (k = 1, 2, 3,…, K). 

Also, note that, in Equation (10), a constant cannot be identified in the kzβ′  term for one of the K 

alternatives (because only the difference in the kV  from 1V  matters).  Similarly, individual-

specific variables are introduced in the kV ’s for (K-1) alternatives, with the remaining alternative 

serving as the base.10  

                                                 
10 These identification conditions are similar to those in the standard discrete choice model, though the origin of the 
conditions is different between standard discrete choice models and the multiple discrete-continuous models. In 
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3.2 General Econometric Model Structure and Identification 

To complete the model structure, the analyst needs to specify the error structure. In the general 

case, let the joint probability density function of the kε  terms be f( 1ε , 2ε , …, Kε ). Then, the 

probability that the individual allocates expenditure to the first M of the K goods is: 

, ...
) , ..., , , , ..., , , ,(

   || )0 ..., ,0 ,0 , ..., , , ,(

1121

121111311211

**
3

*
2

*
1

11111

1

121

2

111

11

εεεεε
εεεεεεεε

ε

ε

ε

ε

ε

ε

ε

εε

ddddd
VVVVVVf

JeeeeP

MMKK

KKMMM

VVVVVVVV

M

K

K

K

K

M

M

M

M

++−

−++

+−

−∞=

+−

−∞=

+−

−∞=

+−

−∞=

+∞

−∞=

+−+−+−

= ∫∫∫∫∫
−

−

+

+

+

+

L

                                (11) 

where J is the Jacobian whose elements are given by (see Bhat, 2005): 
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The probability expression in Equation (11) is a (K-M+1)-dimensional integral. The expression 

for the probability of all goods being consumed is one-dimensional, while the expression for the 

probability of only the first good being consumed is K-dimensional. The dimensionality of the 

integral can be reduced by one by noticing that the KT conditions can also be written in a 

differenced form. To do so, define 11
~ εεε −= kk , and let the implied multivariate distribution of 

the error differences be )~,...,~,~( 13121 Kg εεε . Then, Equation (11) may be written in the equivalent 

(K-M)-integral form shown below: 
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The equation above indicates that the probability expression for the observed optimal 

expenditure pattern of goods is completely characterized by the (K-1) error terms in difference 

form. Thus, all that is estimable is the (K-1)x(K-1) covariance matrix of the error differences. In 

other words, it is not possible to estimate a full covariance matrix for the original error terms 

),...,,( 21 Kεεε  because there are infinite possible densities for f(.) that can map into the same g(.) 

                                                                                                                                                             
standard discrete choice models, individuals choose the alternative with highest utility, so that all that matters is 
relative utility. In multiple discrete-continuous models, the origin of these conditions is the adding up (or budget) 
constraint associated with the quantity of consumption of each good that leads to the KT first order conditions of 
Equation (10). 
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density for the error differences (see Train, 2003, page 27, for a similar situation in the context of 

standard discrete choice models). There are many possible ways to normalize f(.) to account for 

this situation. For example, one can assume an identity covariance matrix for f(.), which 

automatically accommodates the normalization that is needed. Alternatively, one can estimate 

g(.) without reference to f(.).  

 In the general case when the unit prices kp  vary across goods, it is possible to estimate 

2/)1( −∗ KK  parameters of the full covariance matrix of the error differences, as just discussed 

(though the analyst might want to impose constraints on this full covariance matrix for ease in 

interpretation and stability in estimation). However, when the unit prices are not different among 

the goods, an additional scaling restriction needs to be imposed. To see this, consider the case of 

independent and identically distributed error terms for the kε  terms, which leads to a (K-1)x(K-

1) covariance matrix for 1
~

kε  (k = 2,3,…,K) with diagonal elements equal to twice the value of 

scale parameter of the kε  terms and off-diagonal elements equal to the scale parameter of the kε  

terms. Let the unit prices of all goods be the same (see Bhat, 2005; Bhat and Sen, 2006; Bhat et 

al., 2006 for examples where the weights or prices on the goods in the budget constraint are 

equal). Consider the utility function in Equation (6) and another utility function as given below: 
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The scale of the error terms in the utility function in the above expression is σ  times the scale of 

the error terms in Equation (6). Let ( ) 11* +−= kk ασα , where kα  is the satiation parameter in the 

original Equation (6).11 The KT conditions for optimal expenditure for this modified utility 

function can be shown to be: 

1
*

1
* σεσε +=+ VV kk  if 0* >ke  (k = 2, 3,…, K) 

1
*

1
* σεσε +<+ VV kk  if 0* =ke  (k = 2, 3,…, K), where     (15) 

                                                 
11 Note that *

kα  is less than or equal to 1 by definition, because kα  is less than or equal to 1 and the scale σ should 
be non-negative. 
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If the unit prices are not all the same (i.e., the unit prices of at least two of the K goods are 

different), the KT conditions above are different from the KT conditions in Equation (10). That 

is, the utility function in Equation (14) is unique and different from the utility function in 

Equation (6), which implies that the scale σ  is identified. However, if the unit prices are all the 

same ( kppk ∀= ), it is straightforward to note that the KT conditions above collapse exactly to 

the KT conditions in Equation (10). In this case, the utility function in Equation (14) cannot be 

uniquely identified from the utility function in Equation (6), which implies that the scale σ  is 

not identified theoretically. For convenience, the analyst can set the scale to 1. 

 In the case that the analyst uses a heteroscedastic specification with no variation in unit 

prices across alternatives, the scale of one of the alternatives has to be set to unity (similar to the 

case of the heteroscedastic extreme value or HEV model of Bhat, 1995). With a general error 

structure and no variation in unit prices, the identification considerations associated with a 

standard discrete choice model with correlated errors apply (see Train, 2003; Chapter 2).  

 

4. SPECIFIC MODEL STRUCTURES 

4.1 The MDCEV Model Structure  

Following Bhat (2005), we specify an extreme value distribution for kε  and assume that kε  is 

independent of kz  (k = 1, 2, …, K) .  The kε ’s are also assumed to be independently distributed 

across alternatives with a scale parameter of σ  (σ  can be normalized to one if there is no 

variation in unit prices across goods).  Let kV  be defined as follows: 

used. is profile-  when the), 3,..., 2, 1,( ln1ln
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        (16) 

As discussed earlier, it is generally not possible to estimate the kV  form in Equation (10), 

because the kα  terms and kγ  terms serve a similar satiation role.  
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From Equation (11), the probability that the individual allocates expenditure to the first M 

of the K goods (M ≥ 1) is:                               
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where λ  is the standard extreme value density function and Λ  is the standard extreme value 

cumulative distribution function. The expression in Equation (17) simplifies to a remarkably 

simple and elegant closed-form expression. Bhat derived the form of the Jacobian for the case of 

equal unit prices across goods, which however can be extended in a simple fashion to 

accommodate the more general case of different unit prices. The resulting form for the 

determinant of the Jacobian has a compact structure given by: 
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The integration in Equation (17) also collapses to a closed form expression (see Appendix B), 

providing the following overall expression:13 
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In the case when M = 1 (i.e., only one alternative is chosen), there are no satiation effects ( kα =1 

for all k) and the Jacobian term drops out (that is, the continuous component drops out, because 

all expenditure is allocated to good 1). Then, the model in Equation (19) collapses to the standard 

MNL model. Thus, the MDCEV model is a multiple discrete-continuous extension of the 

standard MNL model.14 

                                                 
12 It is important to note that this compact Jacobian form is independent of the assumptions regarding the density and 
correlation structure of the error terms. 
13 One can also derive the expression below from the difference form of Equation (13), using the properties of the 
multivariate logistic distribution (see Appendix C). 
14 Note that when αk = 1 for all k, Vk = β'zk – ln pk. Even if M = 1, when Equation (19) collapses to the MNL form, 
the scale σ is estimable as long as the utility takes the functional form Vk = β'zk – ln pk and there is price variation 
across goods. This is because the scale is the inverse of the coefficient on the ln pk term (see Hanemann, 1984). 
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 The expression for the probability of the consumption pattern of the goods (rather than 

the expenditure pattern) can be derived to be: 
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where kV  is as defined earlier (see Equation 16) and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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=
ii

i
i x

f
γ
α

*
1 .  The expression in Equation 

(20) is, however, not independent of the good that is used as the first one (see the 1/p1 term in 

front). In particular, different probabilities of the same consumption pattern arise depending on 

the good that is labeled as the first good (note that any good that is consumed may be designated 

as the first good). In terms of the likelihood function, the 1/p1 term can be ignored, since it is 

simply a constant in each individual’s likelihood function. Thus, the same parameter estimates 

will result independent of the good designated as the first good for each individual, but it is still 

awkward to have different probability values for the same consumption pattern. This is 

particularly the case because different log-likelihood values at convergence will be obtained for 

different designations of the first good.  Thus, the preferred approach is to use the probability 

expression for expenditure allocations, which will provide the same probability for a given 

expenditure pattern regardless of the good labeled as the first good. However, in the case that the 

first good is an outside numeraire good that is always consumed (see Section 5), then 11 =p  and 

one can use the consumption pattern probability expression or the expenditure allocation 

probability expression. 

 

4.2 The Multiple Discrete-Continuous Generalized Extreme-Value (MDCGEV) Model Structure 

Thus far, we have assumed that the kε  terms are independently and identically extreme 

value distributed across alternatives k. The analyst can extend the model to allow correlation 

across alternatives using a generalized extreme value (GEV) error structure.  The remarkable 

advantage of the GEV structure is that it continues to result in closed-form probability 

expressions for any and all expenditure patterns. However, the derivation is tedious, and the 

expressions get unwieldy. In this paper, we provide the expressions for a specific nested logit 
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structure with 4 alternatives, two alternatives (labeled 1 and 2) in nest A and the other two 

alternatives (labeled 3 and 4) in nest B (the derivation is available on request from the author).  

The cumulative distribution function for the error terms in the utility expressions take the 

following form: 
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The probabilities for all other expenditure patterns for the 4 goods can be obtained by 

interchanging the labels 1, 2, 3, and 4.15 

 

4.3 The Mixed MDCEV Model 

The MDCGEV structure is able to accommodate flexible correlation patterns. However, 

it is unable to accommodate random taste variation, and it imposes the restriction of equal scale 

                                                 
15 In all the expressions corresponding to the nested structure above, σ is identified only when there is price variation 
across alternatives (see Section 3.2). 
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of the error terms. Incorporating a more general error structure is straightforward through the use 

of a mixing distribution, which leads to the Mixed MDCEV (or MMDCEV) model. Specifically, 

the error term, kε , may be partitioned into two components, kζ  and kη . The first component, 

kζ , can be assumed to be independently and identically Gumbel distributed across alternatives 

with a scale parameter of σ . The second component, kη , can be allowed to be correlated across 

alternatives and to have a heteroscedastic scale. Let ),...,,( 21 ′= Kηηηη , and assume that η  is 

distributed multivariate normal, ~ (0, )Nη Ω .16 

For given values of the vector η , one can follow the discussion of the earlier section and 

obtain the usual MDCEV probability that the first M of the k goods are consumed. The 

unconditional probability can then be computed as: 
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where F is the multivariate cumulative normal distribution (see Bhat, 2005; Bhat and Sen, 2006; 

and Bhat et al., 2006).  

The model in Equation (22) can be extended in a conceptually straightforward manner to 

also include random coefficients on the independent variables kz , and random-effects (or even 

random coefficients) in the kα  satiation parameters (if the α  profile is used) or the kγ  

parameters (if the γ  profile is used). 

 

4.3.1 Heteroscedastic structure within the MMDCEV framework 

Consider the case where there is price variation across the alternatives, and the overall 

errors kε  are heteroscedastic, but not correlated.  Assuming a 4-alternative case for ease in 

presentation, the heteroscedastic structure may be specified in the form of the following 

covariance matrix for ),,,( 4321 kkkk εεεεε = : 

                                                 
16 Other distributions may also be used for η. Note that the distribution of η can arise from an error components 
structure or a random coefficients structure or a combination of the two, similar to the case of the usual mixed logit 
model (see Bhat, 2007). 
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where the first component on the right side corresponds to the IID covariance matrix of 

),,,( 4321 ζζζζζ =  and the second component is the heteroscedastic covariance matrix of η . The 

covariance of error differences with respect to the first alternative is: 
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An inspection of the matrix above shows only four independent equations (the rank condition), 

implying that at most four parameters are estimable17. There are two ways to proceed with a 

normalization, as discussed below. 

 The first approach is to normalize σ  and estimate the heteroscedastic covariance matrix 

of η  (i.e., 1ω , 2ω , 3ω , and 4ω ). Assume that σ  is normalized to σ~ , and let the corresponding 

values of kω  be kω
~  (k = 1, 2, 3, 4). Then, the following equalities should hold, based on 

Equation (24), for any normalization of σ  to σ~  (q = π2 / 6 below): 
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The above equalities can be rewritten as: 

)4 ,3 ,2 ,1(   ~~ 2222 =−+= kqqkk σσωω                         (26) 

The normalized variance terms 2~
kω  must be greater than or equal to zero, which implies that the 

following conditions should hold: 

)4 ,3 ,2 ,1(   ~222 =≥+ kqqk σσω                         (27) 

Intuitively, the above condition implies that the normalization on σ~  must be set low enough so 

that the overall “true” variance of each error term )( 22 σω qk +=  is larger than 2~σq . For example, 

setting σ  to 1 would be inappropriate if the “true” variance of one or more alternatives is less 

                                                 
17 Strictly speaking, one can estimate all the five parameters (σ, ω1, ω2, ω3, and ω4) because of the difference in the 
extreme value distributions used for ζk and the normal distributions used for ηk (see Walker, 2002). However, the 
model will be near singular, and it is important to place the order/rank constraint. 
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than 6/2π . Since the “true” variance is unknown, the best the analyst can do is to normalize σ  

to progressively smaller values and statistically examine the results. 

 The second approach is to normalize one of the kω  terms instead of the σ  term. In this 

case, from Equation (24), we can write: 

[ ] . 4 ,3 ,2  ; ~~2
2
1~~ 22

1
222

1
2

1
22

1
2 =−−++=−+= kqqq kk ωωσωωωσωσ                     (28) 

After some manipulations, the above equation may be rewritten as: 

. 4 ,3 ,2  ;~~ 2
1

2
1

22 =−+= kkk ωωωω                                    (29) 

Next, imposing the condition that the normalized terms 2~
kω  must be greater than or equal to zero 

implies the following: 

. )4 ,3 ,2(  ~ 22
1

2
1 =−≥ kkωωω                                     (30) 

The above condition is automatically satisfied as long as the first alternative is the minimum 

variance alternative. An associated convenient normalization is 0~2
1 =ω , since the resulting model 

nests the MDCEV model. The minimum variance alternative can be determined by estimating an 

unidentified model with all the k kω  terms, and identifying the alternative with the minimum 

variance (see Walker et al., 2004, for an equivalent procedure for a heteroscedastic specification 

within the mixed multinomial logit model). 

 The above discussion assumes there is price variation across goods. In the case of no 

price variation, the scale σ  is not identifiable. In this case, the easiest procedure is to normalize 

σ  to 1 and the 2
kω  value for the minimum variance alternative k to zero. 

 

4.3.2 The general error covariance structure within the MMDCEV framework 

Appropriate identification normalizations will have to placed on σ  and the covariance 

matrix of η  when the analyst is estimating an error-components structure to allow correlation in 

unobserved factors influencing the baseline utility of alternatives, since only a (K-1)x(K-1) 

covariance of error differences is identified. This can be accomplished by imposing a structure 

based on a priori beliefs or intuitive considerations. However, the analyst must ensure that the 

elements of the assumed restricted covariance structure can be recovered from the (K-1)x(K-1) 

covariance of error differences that is actually estimable. 
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In the most general error covariance structure, and when there is price variation, one way 

to achieve identification is the following: (1) Normalize the scale parameter σ  to be a small 

value such that the variance of the minimum variance alternative exceeds 6/22σπ  (since this 

variance is not known, the analyst will have to experiment with alternative fixed σ  values), (2) 

Normalize kω  for the minimum variance alternative k to zero, and (3) Normalize all correlations 

of this minimum variance alternative with other alternatives to zero. Together, these 

normalizations leave only 2/)1( −KK  parameters to be estimated, and are adequate for 

identification. In the case of no price variation, an additional restriction will have to be imposed. 

One approach would be to set 1
2

2 =∑
=

K

k
kω  to set the scale in the covariance matrix of η . 

 

5. THE MODEL WITH AN OUTSIDE GOOD 

Thus far, the discussion has assumed that there is no outside numeraire good (i.e., no 

essential Hicksian composite good). If an outside good is present, label it as the first good which 

now has a unit price of one. Also, for identification, let 1),( 11
εεψ ex = . Then, the utility 

functional form needs to be modified as follows: 
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Note that there is no translation parameter 1γ  for the first good, because the first good is always 

consumed. As in the “no-outside good” case, the analyst will generally not be able to estimate 

both kα  and kγ  for the inside goods 2, 3, …, K. The analyst can estimate one of the following 

three utility forms: 
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The last functional form above is estimable now because the constant α  parameter is obtaining a 

“pinning effect” from the satiation parameter for the outside good. The analyst can estimate all 

the three possible functional forms and select the one that fits the data best based on statistical 

and intuitive considerations. The identification considerations discussed for the “no-outside 

good” case carries over to the “with outside good” case. The probability expression for the 

expenditure allocation on the various goods (with the first good being the outside good) is 

identical to Equation (19), while the probability expression for consumption of the goods (with 

the first good being the outside good) is 
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where ⎟⎟
⎠

⎞
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The expressions for V in Equation (19) and Equation (33) are as follows for each of the three 

utility forms in Equation (32): 

First form -  kkkkk pxzV ln)1ln()1( * −+−+′= αβ  (k ≥ 2); ( ) )ln(1 *
111 xV −= α   

Second form - k
k

k
kk pxzV ln)1ln(

*

−+−′=
γ

β  (k ≥ 2); ( ) )ln(1 *
111 xV −= α                                   (34) 

Third form -  k
k

k
kk pxzV ln)1ln()1(

*

−+−+′=
γ

αβ  (k ≥ 2); ( ) )ln(1 *
11 xV −= α  

 

6. COMPARISON WITH EARLIER MULTIPLE DISCRETE-CONTINUOUS MODELS 

In this section, we discuss how the model developed in this paper differs from the model 

of Kim et al. (2002), those in Environmental Economics, and the earlier models by Bhat and 

colleagues. The discussion is in the context of the basic structure with identically and 

independently distributed error terms across alternatives. 

 

                                                 
18 The Gauss code, documentation, and test data sets for estimating the MDCEV model (with and without an outside 
good) are available at: http://www.caee.utexas.edu/prof/bhat/MDCEV.html 
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6.1 Kim et al.’s Model 

 Kim et al. (2002) use the following translated constant elasticity of substitution (CES) 

direct utility form: 

,)(
111

1

k
kkk

K

k

xU αγψ +=∑
=

                                          (35) 

where the superscript ‘1’ is to distinguish the parameters in this functional form from those in the 

form of Equation (1). In this section, for ease in comparison, we will consider the case when 

there is no outside good. In the utility form above, 01 >kψ , 01 >kγ , and .10 1 ≤≤ kα  To 

empirically identify the utility form, Kim et al. impose the restriction that 11 =kγ  for all k (i.e., 

they estimate the α -profile). The reader will note that Kim et al.’s form does not incorporate the 

weak complementarity assumption. However, this can be easily remedied by revising the utility 

form above to an empirically indistinguishable alternative form provided below: 
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,                              (36) 

The KT conditions and optimal consumptions for both Equations (35) and (36) are identical. But 

the latter form assigns zero utility to good k when it is not consumed, while still allowing corner 

solutions. However, in either of the two forms, the interpretation of 1
kψ  is not straightforward. 

Specifically, the baseline marginal utility of a good (or marginal utility when no quantity of the 

good is consumed) is 11
kkαψ , which depends on both 1

kψ  and 1
kα  (for 1

kγ  fixed to 1 for all k). Of 

course, the satiation rate for good k with respect to the baseline marginal utility is still 

determined by 1
kα , as in the α -profile based utility form adopted in this paper (i.e., Equation (1) 

with kγ  fixed to 1 for all k). In fact, the estimation results and optimal consumptions from using 

Equation (1) and Equation (35) (with all kγ ’s fixed to 1) will be identical, as long as 0≥kα  for 

all k in Equation (1). The only cosmetic difference will be a shift in the constant terms between 

the kψ  and 1
kψ  terms. Specifically, if )'exp( kkkk z εβτψ ++=  and )'exp( 1111

kkkk z εβτψ ++= , 

where the constant term is removed out from the kz'β  term, the following relationship will hold 

between the two models as long as the same error distributions are assumed (and assuming that 

the first alternative is considered as the base): 
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1ββ = . 

An important technical nuance is in order here. The form of Equation (35) is restrictive 

compared to the form of Equation (1) adopted in this paper. Specifically, Equation (1) covers the 

overall baseline marginal utility satiation space more completely than Equation (35) because 

1≤kα  in Equation (1), while 10 1 ≤≤ kα  in Equation (35). But the analyst, at times, may have to 

impose the constraint 0≥kα  in the functional form of Equation (1) to provide stability in 

estimation, especially when a scale parameter is being estimated with limited price variation. 

 Another important difference between Kim et al.’s model and the model here is the 

distribution of the error terms. Kim et al. assume that the error terms are independent and 

identically distributed normal. They then use the differencing form of Equation (13) to develop 

the probabilities, with the g(.) function being a multivariate normal density. This form requires 

an appropriate decomposition of the density function for the continuous and discrete 

components, and multivariate normal integration. The approach is not practical for most realistic 

applications. As Bhat (2005) noted, if one considers the error terms to be IID gumbel instead of 

IID normal, the model structure collapses to the closed-form MDCEV form used here.  

 

6.2 Models in Environmental Economics 

The studies in Environmental Economics, unlike Kim et al., use the utility function 

corresponding to the kγ -profile. These studies always consider the presence of an outside good, 

and so we will consider the case when there is an outside good in this section. This outside good 

may be arbitrarily designated as the first good in our notational framework with 11 =p  (as in 

Section 5). 

The utility function in the Environmental Economics studies takes the LES form (see von 

Haefen and Phaneuf (2005), von Haefen (2003b), Phaneuf et al. (2000), Phaneuf and Herriges 

(2000), and Herriges et al. (2004): 
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The superscript ‘2’ above is to distinguish the parameters from those in Equation (1), and should 

not be confused with the square power function. In the function above, the utility accrued from 

zero consumption of a good is positive since 02 >kψ  and 02 >kγ . However, this can be 

accommodated by re-writing the utility form in the empirically indistinguishable alternative form 

shown below19: 
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In particular, it can be readily seen that the KT first order conditions and the optimal 

consumptions are identical for the utility forms in Equations (38) and (39), as also observed by 

Herriges et al. (2004). However, in both forms, the interpretation of 2
kψ  is not straightforward, 

since the baseline marginal utility is 22 / kk γψ . But, for a given baseline marginal utility, 2
kγ  serves 

as a satiation parameter (in addition to allowing corner solutions). In fact, the estimation results 

and optimal consumptions from using Equation (2) and Equation (39) will be identical, except 

for a shift in the constant terms between the kψ  and 2
kψ  terms. Specifically, if 

)'exp( kkkk z εβτψ ++=  and )'exp( 2222
kkkk z εβτψ ++= , the following relationship will hold 

between the two models as long as the same error distributions are assumed (and assuming that 

the first alternative is considered as the base): 
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2ββ =  

  An important point to note about the Environmental Economics studies is that they 

consider the utility of the outside good as being deterministic (i.e., 1ε  = 0), and then consider the 

error terms of the utilities of the inside goods to be independent and (typically) identically 

extreme value distributed. To see this, consider Equation (17), which is the appropriate 

probability expression for the expenditure pattern if there are independent and identically 

                                                 
19 von Haefen et al. (2004) and von Haefen and Phaneuf (2003) also recognize this weak complementarity problem 
in the functional form of Equation (38), where the quality attributes of good k contribute to utility even if the good is 
not consumed. They address it by interacting the quality attributes with xk, rather than including the quality attributes 
in ψk. 
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distributed error terms in all utilities (with the first alternative being the outside good).  The 

equivalent probability expression for the consumption pattern is: 
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1 . The values of iα  and iγ  in if  will 

depend on the utility function form used in the presence of an outside good. For the first 

functional form in Equation (32), 01 =γ  and 1=iγ  for all 1≠i . For the second functional form 

in Equation (32), 01 =γ  and 0=iα  for all 1≠i . For the final functional form, 01 =γ  and all α  

values are equal across alternatives.   

The expression in Equation (41) collapses to the closed form expression provided in 

Equation (33), yielding the MDCEV model. But now assume 01 =ε  in Equation (41) as in the 

Environmental Economics studies. The integral in Equation (41) then drops out, and the equation 

becomes: 
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Substituting we eew
w −− ⋅=

−

)(λ  and 
weew

−−=Λ )( , the expression may be written as: 
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where kk VVg −= 1 . The form above is the same as the likelihood function in Equation (10) of 

Von Haefen and Phaneuf (2003).  Thus, the models in Environmental Economics are obtained by 

assuming away stochasticity in the utility of the outside good. Basically, the Environmental 

Economics studies recognize the singularity imposed by the budget constraint by directly 

assuming 01 =ε , so that there are only (K-1) error terms in the (K-1) KT conditions (see 

Equation 10). The MDCEV model, on the other hand, recognizes the singularity imposed by the 

budget constraint by considering all utilities as random, and then explicitly acknowledging the 
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singularity among the K error terms in the (K-1) KT conditions (see also Kim et al., 2002 and 

Wales and Woodland, 1983, who use the latter approach). The latter approach is conceptually 

consistent in considering the utilities of all alternatives as being random (strict random utility 

maximization), while the former approach assumes that the analyst knows all consumer-related 

and market-related factors going into the valuation of the outside good, but not for the inside 

goods (partial random utility maximization). Further, in the Environmental Economics approach, 

if instead of the outside good’s utility, the utility of some other inside good is considered 

deterministic to accommodate the singularity, we obtain different probability expressions and 

probability values for the same consumption pattern. Specifically, if the error term of alternative 

l is fixed to zero where l ≤ M, the probability expression for the consumption pattern 

corresponding to Equation (43) is: 
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where lp  is the price of the lth good. On the other hand, if the error term of alternative l is fixed 

to zero where l > M, the probability expression for the consumption pattern is: 
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As one can observe from Equation (43), (44), and (45), the probability expressions are quite 

different based on which alternative’s error term is fixed to zero. To see this even more clearly, 

consider the specific case of 3 goods with the first good being the outside good. Then, the 

                                                 
20 The derivations of Equations (44) and (45) are tedious, and are available from the author. 
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probability expression for only the outside good being consumed if the outside good’s utility is 

fixed is (from Equation 43 with M = 1):21  
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where kk VVg −= 1  as earlier. The corresponding expression if the second good’s utility is fixed 

is (from Equation 45 with M = 1): 
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The superscript ‘2’ above is to distinguish from the expression in Equation (46), and should not 

be confused with the square power function. Clearly, Equations (46) and (47) are different. This 

is diagrammatically shown in Figure 5, which plots )0,0,( *
1

1 xP  and )0,0,( *
1

2 xP  for different 

values of ggg == 32  and 1=σ . As can be seen, )0,0,( *
1

2 xP  > )0,0,( *
1

1 xP . Thus, one gets 

different probability profiles depending on which alternative’s utility is considered fixed, and 

there is no obvious reason to fix the outside good’s utility rather than an inside good’s utility. In 

fact, this issue of considering which alternative’s utility to fix becomes particularly apparent 

when there is more than one outside good defined in a certain empirical context, or when there is 

no outside good (i.e., the choice of only the inside goods is modeled).  On the other hand, the 

probability in our approach that includes error terms in all alternatives is: 
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which is, of course, the simple multinomial logit model (the corresponding Environmental 

Economics-based formula of Equation (46) does not collapse to the multinomial logit). The 

profile of Equation (48) is also drawn in Figure 1, and it lies between the two earlier profiles. 

Another point to note is that the Environmental Economics studies (and the Kim et al. 

study) do not use the compact and simple structure of the Jacobian we have derived. The 

Jacobian expression xJ ||  under Equation (41) is equivalent to the tedious expansion formulas 

for the Jacobian used in the Environmental Economics studies. As a result of these tedious 

Jacobian expressions, the Environmental Economics studies employ a numerical gradient 

                                                 
21 Note that the Jacobian term drops out in the expressions below because the probabilities are being computed for 
the case where only the outside good is consumed. 



 30

method in the likelihood estimation, which is less precise than the simple form of the analytic 

gradient that can be obtained by writing the Jacobian as in our approach. Further, while the 

numerical gradients may provide accurate estimates at acceptable speeds for the simple model 

form with IID error terms, the approach is extremely slow (by a large order of magnitude) 

compared to the analytic gradient approach for the case when random coefficients or richer error 

correlation patterns are introduced using a mixing approach. 

 

6.3 Bhat’s Earlier Models 

The models of Bhat (2005), Bhat and Sen (2006), and Bhat et al. (2006) use the 

translated CES direct utility function form as in Kim et al. (2002), rather than the more easy-to-

interpret and general utility form used in the current paper. The studies assume independent and 

identically distributed gumbel error kernel terms that leads to the MDCEV form and its mixed 

variants, as in the current paper.  The studies assume unit “prices” for all the alternatives, and so 

do not have to deal with the many issues arising from price variation as discussed in this paper. 

These earlier efforts also do not address identification considerations, nor do they shed light on 

the role played by the parameters in the utility function.  

 

7. EMPIRICAL ILLUSTRATIONS 

7.1 Absence of Outside Good Case 

In this section, we supplement and demonstrate the scaling and identification issues 

associated with the case of no price variation and price variation (as discussed in earlier sections) 

using empirical examples for the case of the absence of an outside good. The section also shows 

the equivalency in parameters when using the consumption pattern formulation and the 

expenditure pattern formulation for the case of price variation across goods.  

The data set used for these illustrations is the same as that used by Bhat and Sen (2006), 

and is drawn from the 2000 San Francisco Bay Area Travel Survey (BATS). The sample 

includes 3500 households with non-zero vehicle ownership. The vehicles owned by each 

household are categorized into one of five vehicle types based on their make, model and year. 

The five vehicle types are (1) Passenger car, (2) Sports Utility Vehicle (SUV), (3) Pickup truck, 

(4) Minivan, and (5) Van. In this paper, we estimate different MDCEV specifications with these 

five alternatives. Households may hold a combination of these vehicle types and use different 
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vehicle types in different ways, leading to the discrete-continuous choice of vehicle holding mix 

and vehicle miles of travel by vehicle type.  

In all the results to be discussed, we used the most basic specification with constants in 

the baseline marginal utility and satiation parameters. This is because the motivation here is to 

discuss scaling and identification issues, not variable specification considerations. We present 

the baseline marginal utility parameters in their parameterized form because this allows us to 

show the equivalence between models in a straightforward manner. That is, we present the kβ  

parameters, where )exp( kk βψ =  for all k. 

 

7.1.1 Case of no price variation 

 Consider the situation where the right side of the “budget” constraint is simply the total 

annual miles of travel across all vehicle types. This is the case of prices not appearing in the 

budget constraint (or equivalently, the cost of traveling a mile by each vehicle being unity).  

 Table 1 shows six estimations, the first four being based on the α -profile and the last 

two being based on the γ -profile (as expected, we were unable to estimate a model with both the 

α  parameters and the γ  parameters for each vehicle type).  The first two estimations fix the 

scale parameter and estimate all the α  satiation parameters. It can be observed from the log-

likelihood values at convergence (see last row of the table) that whether one fixes the scale to the 

value of ‘1’ or ‘2’ does not matter. As discussed in Section 3.2, the β  parameters in Model 2 are 

scaled by a factor of 2 and the α  parameters in model 2 are related to those in Model 1 by the 

relationship 1)1(2 1 model2 model +−∗= αα . That is, the error term scale is unidentified when one 

estimates all the α  parameters.  

 The third and fourth models apply a different normalization where one of the α  

parameters is fixed to the value of ‘0’. In these cases, one can estimate the error term scale. 

However, these models are no different from Models 1 and 2. Specifically, the β  parameters in 

Models 3 and 4 are equal to the estimated scale parameters in these models times the β  

parameters in Model 1. The α  parameters in Models 3 and 4 are related to that in Model 1 by 

1)1( 1 modeld model +−∗= ασα d  (d = 3,4).  
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 The fifth and sixth models correspond to the γ  profile with a fixed α . The fifth model 

constrains α  to 0 and the scale σ  to 1. The log-likelihood at convergence for this model 

indicates that the γ  profile provides a better fit in this empirical case than does the α  profile. 

The sixth model sets the scale value to 2 rather than 1. This sixth model provides the same 

results as the fifth model because the α  parameter has been set to 

11)1( 5 model6 model6 model −=+−∗= ασα . Thus, in estimating the γ -profile, the scale can be set to 

any value as long as the α  parameter is fixed appropriately. The normalization used in Model 5 

is most convenient in this case. 

 

7.1.2 Case of price variation 

 The data assembled by Bhat and Sen does not include a composite per mile usage price 

measure for each vehicle type because of the wide variation in the fixed costs of vehicle purchase 

and use costs per mile within each broad vehicle type category. For the analysis here, we used 

synthetic per mile price data by generating uniform random numbers with a mean of 1,2,2,3, and 

4 for sedans, sports utility vehicles (SUV), pick-up trucks, minivans, and vans, respectively. The 

intent here is simply to demonstrate the issues discussed earlier in the context of price variation, 

rather than to develop an actual model for vehicle type choice and use. 

 Table 2 shows the results of six model estimations. The first two estimations are α -

profiles based on the consumption probability expression of Equation (20). In both these 

estimations, we had to restrict the α  parameters to be between 0 and 1 for convergence 

considerations. The only difference between these first two estimations is that the good labeled 

as the first good is different (note that any good that is consumed may be designated as the first 

good). As can be observed from the results, there is effectively no difference in the parameter 

estimates at convergence (the minor differences are a result of the optimization convergence 

process). However, the log-likelihood values at convergence are different, because the 

probability assigned to the same consumption pattern varies based on the vehicle type designated 

as the first good.  

The third model is also an α -profile specification (with the α ’s constrained to between 

0 and 1), but based on the expenditure probability expression of Equation (19). The results of this 

third model are identical to those in the first two models in terms of parameter estimates. 
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However, this model, by structure, is independent of the alternative that is designated as the first 

good.  

The remaining models in Table 2 are all based on the expenditure probability expression. 

The fourth model, also an α -profile specification, restricts the scale parameter to one. A 

comparison of this model with the third model in terms of a nested likelihood ratio test yields a 

test statistic of 603.74, which rejects the null hypothesis of a unit scale parameter at any 

reasonable level of statistical significance. This is a clear indication that the scale parameter is 

estimable when there is price variation.  

The last two models in Table 2 correspond to the γ -profile, with the sixth model 

restricting the scale to one. A comparison of these last two models with one another using a 

nested likelihood ratio test again clearly rejects the null hypothesis that the scale value is 

immaterial. We also estimated another model that constrains the α  value to 

418.01)1()/1( model5model5 =+−∗ ασ . If the scale did not matter, this model should provide 

identical results to Model 5, as in the case of no price variation. The log-likelihood at 

convergence of this model was –9046.3, which is substantially worse than the convergence value 

for Model 5. Taken together, the results clearly indicate that the scale is identifiable when there 

is price variation.  

 

7.2 Presence of Outside Good 

 The data set used for the case with an outside good is the same as that used in Bhat et al. 

(2006), and is also drawn from the 2000 San Francisco Bay Area Travel Survey (BATS). The 

sample comprises the time use characteristics (participation and duration of participation) of 

2000 adult individuals in ten different activity purposes over a weekend day: (1) maintenance 

activities (in-home meals, in-home and out-of-home personal household chores and personal 

care, in-home and out-of-home personal business, out-of-home maintenance shopping, and out-

of-home medical appointments), (2) in-home relaxation, (3) in-home recreation (hobbies, TV, 

etc.), (4) non-work internet use, (5) social activities (in-home and out-of-home), (6) out-of-home 

meals, (7) out-of-home non-maintenance shopping, (8) out-of-home volunteer activities 

(including civic and religious activities), (9) out-of-home recreation (hobbies, exercise, etc.), and 

(10) pure recreation (travel episodes that began and ended at home without any stops in-between, 

such as walking or bicycling around the neighborhood). The reader is referred to Bhat et al. for 
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further details of the activity typology and definitions. The first activity purpose, maintenance 

activities, is an “outside” good in which every individual participates.   

 To demonstrate the issues discussed earlier in the paper in the context of price variation, 

we synthetically generated unit prices (i.e., cost per minute of participation in each type of 

activity) for each of the 10 activity types. The unit price for the maintenance activity category 

(the outside good) is set to unity, while those for the other activity types are generated using 

draws from a uniform distribution with preset mean values. We only discuss the results for the 

case of price variation here for brevity (and do not include the case of no price variation).  

 Table 3 shows the estimation results of four different specifications. The first 

specification is based on an α -profile corresponding to the expenditure formulation of Equation 

(19), while the second is based an α -profile corresponding to the consumption formulation of 

Equation (33). Both these specifications use the first kV  form in Equation (34) and provide the 

same parameter estimates, but with different log-likelihood values. The α  values had to be 

bounded between 0 and 1 for convergence. As can be observed, the satiation parameter for the 

first “good” is zero (however, note that we did not explicitly restrict this parameter to zero). The 

third specification is the same as Model 2, but constrains the scale parameter to 1. A nested 

likelihood ratio test between Models 2 and 3 clearly indicates the statistically superior fit of 

Model 2, showing that the scale is identifiable.  

The remaining two model specifications in Table 2 are also based on the consumption 

formulation. The fourth model corresponds to the γ -profile for the internal goods (that is, the 

second utility form of Equation (32)). Interestingly, the α  parameter that is estimable for the 

outside good was estimated to be zero (we had to bound this α  value to be between 0 and 1 for 

obtaining convergence). This is equivalent to a log-form for both the outside and inside goods in 

the second utility form in Equation (32). The log-likelihood value for this γ  profile is much 

superior to the α -profile specification of the second model. The fifth specification estimates a 

common α  parameter across the outside and inside alternatives (third utility form in Equation 

(32)). This specification can be compared to the fourth specification, because the α  parameter 

for the outside good in the fourth model turned out to be zero (in the fourth model, the α  

parameters for the inside goods are constrained to be zero). The common α  parameter in the 

fifth model is statistically significantly different from zero, indicating that this model is 
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statistically superior to the fourth model. Overall, this fifth specification turns out to be the 

preferred one in the current empirical context. 

 

8. CONCLUSIONS 

 Classical discrete and discrete-continuous models deal with situations where only one 

alternative is chosen from a set of mutually exclusive alternatives.  Such models assume that the 

alternatives are perfectly substitutable for each other.  On the other hand, many consumer choice 

situations are characterized by the simultaneous demand for multiple alternatives that are 

imperfect substitutes for one another.   

A simple and parsimonious econometric approach to handle multiple discreteness was 

formulated by Bhat (2005) based on a specific satiation-based formulation within the broader 

Kuhn-Tucker (KT) multiple discrete-continuous economic model of consumer demand. Bhat’s 

model, labeled the MDCEV model, is analytically tractable in the probability expressions and is 

practical even for situations with a large number of discrete consumption alternatives.  

This paper examines several issues associated with extant KT multiple discrete-

continuous models. Specifically, the paper proposes a new utility function form that enables 

clarity in the role of each parameter in the utility specification. The paper also presents 

identification considerations associated with the utility specification, extends the MDCEV model 

to the case of price variation across goods and to general error covariance structures, discusses 

the relationship between earlier KT-based multiple discrete-continuous models, and illustrates 

the many technical nuances and identification considerations of the multiple discrete-continuous 

model structure through empirical examples.  

Overall, the paper contributes toward the modeling of multiple discrete-continuous 

choice situations, a field of research that is at an exciting and challenging stage. There have been 

important contributions to the area from marketing, transportation, and environmental 

economics, especially within the past five years. At the same time, several challenges lie ahead, 

including (1) Accommodating more than one constraint in the utility maximization problem (for 

example, recognizing both time and money constraints in activity type choice and duration 

models; see Anas, 2006 for a recent theoretical effort to accommodate such multiple constraints), 

(2) Incorporating latent consideration sets in a theoretically appropriate way within the MDCEV 
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structure, and (3) Using more flexible utility structures that can handle both complementarity as 

well as substitution among goods, and that do not impose the constraints of additive separability. 
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Appendix A: Form of Utility Function as 0→kα  for all Goods k 

 
 
From Equation (1),  
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Consider the expression in parenthesis and write it in the 
0
0  form shown below when 0→kα : 
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Using L'Hospital’s rule, we can write the above expression as:  
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Thus, )(xU  collapses to Equation (2) when 0→kα  for all k. 
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Appendix B: Derivation of the Structure of the Multiple Discrete-Continuous Extreme 
Value Model with Error Scale Parameter 

 

From Equation (17) of the text: 
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Putting this back in (B.1), we get 
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Appendix C: Derivation of the Structure of the Multiple Discrete Continuous Extreme 
Value (MDCEV) Model from a Differenced Error Structure 

 
 
From Equation 14 of the text, 
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The reader will note that g(.) is a K-1 multivariate logistic distribution with a variance-

covariance matrix whose diagonal elements are 
2 2

3
π σ , and off-diagonal elements are 

2 2

1 1 1 1 1( , ) ( , ) var( )
6l j l jl j l j

cov cov π σε ε ε ε ε ε ε
≠ ≠

= − − = =% % . The probability density function 

corresponding to g(.) is given by (see page 293, Johnson and Kotz, 1976): 
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The probability expression in Equation C.1 can be simplified by evaluating the (K-M)-

dimensional integral, one integral at a time. Specifically, rewrite the probability expression in 

Equation C.1 as: 
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Next, to evaluate 
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Using the above expression for 
1,

~
K

Iε , the probability expression in Equation C.3 can be rewritten 

as: 
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In a similar fashion, the probability expression in Equation C.3 can be rewritten in a general form 

as: 
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where, for i = 0,1,…, 1−− MK , 
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Of course, the entire integration is completed when 1−−= MKi . At this juncture, the 

probability expression in Equation C.3 simplifies to the MDCEV probability expression: 
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Figure 1. Indifference Curves Corresponding to Different Values of 1γ  
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Figure 2. Effect of kγ Value on Good k’s Subutility Function Profile 

 

 
Figure 3. Effect of kα Value on Good k’s Subutility Function Profile 

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350 400

Consumption Quantity of Good k

U
til

ity
 A

cc
ru

ed
 D

ue
 to

 C
on

su
m

pt
io

n 
of

 G
oo

d
 k

1kγ =

5kγ =

10kγ =

20kγ =

100kγ =

1
0

k

k

ψ
α ⎯⎯→

=

0

10

20

30

40

0 50 100 150 200 250 300 350 400

Consumption Quantity of Good k

U
til

ity
 A

cc
ru

ed
 D

ue
 to

 C
on

su
m

pt
io

n 
of

 G
oo

d 
k

1
1

k

k

ψ
γ

=
=

2kα = −

0.25kα =

0.4kα =

0.5kα =

0kα ⎯⎯→

0.5kα ⎯⎯→ −



 49

 

 
Figure 4a. Alternative Profiles for Moderate Satiation Effects with Low kα  Value and High kγ Value 
 

 
 

Figure 4b. Alternative Profiles for Moderate Satiation Effects with High kα  Value and Low kγ Value 
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Figure 4c. Alternative Profiles for Low Satiation Effects with High kα  Value and High kγ Value 

 
 

 
Figure 4d. Alternative Profiles for High Satiation Effects with Low kα  Value and Low kγ Value 
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Table 1. Specifications for the “No Outside Good” Case with No Price Variables  
 

Parameters Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 
Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Baseline marginal 
utility (βk)  

            

Passenger car - - - - - - - - - - - - 
SUV -2.204 -38.81 -4.409 -38.81  -5.800 -29.74 -10.817 -12.05  -2.003 -37.96  -4.006 -37.96 
Pickup-Truck -1.956 -35.82 -3.912 -35.82  -5.146 -30.62  -9.597 -11.43  -1.766 -35.12  -3.533 -35.12 
Minivan -2.748 -42.08 -5.497 -42.08  -7.230 -27.57 -13.484 -12.20  -2.549 -41.17  -5.098 -41.17 
Van -4.587 -34.28 -9.175 -34.28 -12.069 -22.11 -22.508 -12.06  -4.391 -33.19  -8.782 -33.19 
Satiation Parameters               

Passenger Carα   0.619  38.28  0.239   7.40   0.000 (fixed)  -0.865  -4.91   0.000 (fixed)  -1.000 (fixed) 

SUVα   0.886  60.16  0.773  26.24   0.701  16.19  0.443   5.10   0.000 (fixed)  -1.000 (fixed) 

Pick upα −   0.796  51.36  0.592  19.10   0.463   9.16  0.000 (fixed)   0.000 (fixed)  -1.000 (fixed) 

Minivanα   0.881  47.18  0.762  20.40   0.687  12.93  0.416   4.00   0.000 (fixed)  -1.000 (fixed) 

Vanα   0.810  16.85  0.620   6.45   0.500   3.88  0.069   0.28   0.000 (fixed)  -1.000 (fixed) 

Passenger Carγ  1.000 (fixed) 1.000 (fixed)   1.000 (fixed)  1.000 (fixed)  11.470  14.79   11.469  14.79 

SUVγ  1.000 (fixed) 1.000 (fixed)   1.000 (fixed)  1.000 (fixed)  31.107    7.75  31.127   7.75 

Pick upγ −  1.000 (fixed) 1.000 (fixed)   1.000 (fixed)  1.000 (fixed)  17.880  10.56  17.877  10.56 

Minivanγ  1.000 (fixed) 1.000 (fixed)   1.000 (fixed)  1.000 (fixed)  29.155   6.60  29.159   6.60 

Vanγ  1.000 (fixed) 1.000 (fixed)   1.000 (fixed)  1.000 (fixed)  19.672   3.19  19.591   3.21 

Scale parameter 1.000 (fixed) 2.000 (fixed)   2.630 23.47  4.906 13.14  1.000 (fixed)    2.000 (fixed) 
Log-Likelihood  
value at convergence -9648.48 -9648.48 -9648.48 -9648.48 -9218.89 -9218.89 
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Table 2. Specifications for the “No Outside Good” Case with Price Variables 
 

Parameters 
Model 1 

(Consumption-based)
Model 2 

(Consumption-based)
Model 3 

(Expenditure-based)
Model 4 

(Expenditure-based)
Model 5 

(Expenditure-based)
Model 6 

(Expenditure-based) 
Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat 

Baseline marginal 
utility (βk)  

            

Passenger car - - - - - - - - - - - - 
SUV  -5.088 -15.44  -5.087 -15.35  -5.086 -15.40  -1.814 -32.02  -2.925 -19.95  -1.584 -29.89 
Pickup-Truck  -4.465 -15.08  -4.464 -14.99  -4.464 -15.05  -1.564 -28.66  -2.522 -19.05  -1.344 -26.57 
Minivan  -6.124 -14.89  -6.123 -14.81  -6.122 -14.86  -1.996 -30.52  -3.488 -18.90  1.764 -28.30 
Van -10.502 -14.50 -10.501 -14.43 -10.499 -14.47  -3.529 -26.33  -6.333 -17.99  -3.302 -24.91 
Satiation Parameters               

Passenger Carα     0.00022   0.00    0.00023   0.00   0.00024   0.00   0.543  35.20   0.000 (fixed)   0.000 (fixed) 

SUVα    0.746  20.48   0.746  20.48  0.746  20.49   0.906  71.55   0.000 (fixed)   0.000 (fixed) 

Pick upα −    0.560  12.56   0.560  12.55  0.560  12.56   0.837  59.74   0.000 (fixed)   0.000 (fixed) 

Minivanα    0.868  22.47   0.868  22.47  0.868  22.47   0.952  66.51   0.000 (fixed)   0.000 (fixed) 

Vanα    0.774   7.87   0.776   7.94  0.776   7.95   0.913  24.49   0.000 (fixed)   0.000 (fixed) 

Passenger Carγ    1.000 (fixed)   1.000 (fixed)  1.000 (fixed)    1.000 (fixed)   4.197  11.79     8.513  17.84 

SUVγ    1.000 (fixed)   1.000 (fixed)  1.000 (fixed)    1.000 (fixed)  20.971   6.69   40.921   7.09 

Pick upγ −    1.000 (fixed)   1.000 (fixed)  1.000 (fixed)    1.000 (fixed)  11.628   8.12   24.360   9.35 

Minivanγ    1.000 (fixed)   1.000 (fixed)  1.000 (fixed)    1.000 (fixed)  32.795   4.23   68.228   3.93 

Vanγ    1.000 (fixed)   1.000 (fixed)  1.000 (fixed)    1.000 (fixed)  28.589   1.68 361.995   1.56 

Scale parameter   2.565  17.93   2.565  17.85  2.564  17.90    1.000 (fixed)    1.718   26.76    1.000 (fixed) 
Log-Likelihood  
value at convergence -9947.07 -8986.11 -9047.08 -9348.95 -8803.51 -8939.42 

                                                 
22 The value of 0.000 was the estimated value at convergence (the standard error was 0.0595) 
23 T he value of 0.000 was the estimated value at convergence (the standard error was 0.0600) 
24 The value of 0.000 was the estimated value at convergence (the standard error was 0.0597) 
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Table 3. Specifications for Case with Outside Good and with Price Variables 
 

Parameters 
Model 1 

(Expenditure-based) 
Model 2 

(Consumption-based) 
Model 3 

(Consumption-based) 
Model 4 

(Consumption-based) 
Model 5 

(Consumption-based) 
Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Baseline marginal utility (βk)            
Maintenance activity - - - - - - - - - - 
In-home relaxation  -8.562 -31.53  -8.562 -32.21  -6.795 -52.54  -8.369 -36.75  -7.664 -29.44 
In-home recreation  -8.053 -29.11  -8.053 -29.73  -6.216 -47.95  -7.785 -33.75  -7.074 -26.92 
Non-work internet use -10.546 -26.06 -10.546 -26.47  -7.514 -43.93  -9.875 -29.38  -9.025 -25.66 
Social  -8.307 -29.16  -8.307 -29.77  -6.371 -48.65  -8.038 -33.74  -7.317 -27.23 
Out-of-home meals  -6.768 -26.68  -6.768 -27.27  -5.238 -41.12  -6.698 -31.32  -6.019 -24.15 
Out-of-home maintenance  -6.464 -25.12  -6.464 -25.67  -4.876 -38.31  -6.350 -29.33  -5.667 -22.60 
Out-of-home volunteer  -9.995 -31.41  -9.995 -32.03  -7.692 -55.68  -9.590 -36.17   -8.826 -30.31 
Out-of-home recreation  -7.446 -27.40  -7.446 -27.99  -5.674 -43.93  -7.214 -31.79  -6.511 -25.06 
Pure recreation -10.943 -30.66 -10.943 -31.21  -8.278 -55.02 -10.406 -35.08  -9.600 -30.21 
Satiation Parameters           

1α    0.00025   0.00    0.00026   0.00   0.186   9.05    0.00027   0.00   0.108    2.83 

2α   0.739  42.43  0.739  42.53   0.841  90.43  0.000 (fixed)   0.108    2.83 

3α   0.846  56.79  0.846  56.83   0.911 107.05  0.000 (fixed)   0.108    2.83 

4α     0.773  18.92  0.773  18.93   0.862  34.83  0.000 (fixed)   0.108    2.83 

5α   0.749  38.57  0.749  38.63   0.847  78.22  0.000 (fixed)   0.108    2.83 

6α   0.622  29.21  0.622  29.30   0.768  71.92  0.000 (fixed)   0.108    2.83 

7α   0.618  27.02  0.618  27.09   0.767  65.53  0.000 (fixed)   0.108    2.83 

8α   0.708  27.88  0.708  27.92   0.823  56.65  0.000 (fixed)   0.108    2.83 

9α   0.809  48.83  0.809  48.88   0.889  95.66  0.000 (fixed)   0.108    2.83 

10α   0.619  15.80  0.619  15.82  0.765  33.25  0.000 (fixed)   0.108    2.83 

                                                 
25 The value of 0.000 was the estimated value at convergence (the standard error was 0.0372) 
26 The value of 0.000 was the estimated value at convergence (the standard error was 0.0363) 
27 The value of 0.000 was the estimated value at convergence (the standard error was 0.0311) 
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Table 3. Specifications for Case with Outside Good and with Price Variables (Continued) 
 

Parameters 

Model 1 
(Expenditure-based) 

Model 2 
(Consumption-based) 

Model 3 
(Consumption-based) 

Model 4 
(Consumption-based) 

Model 5 
(Consumption-

based) 
Est. t-stat Est. t-stat Est. t-stat Est. t-stat Est. t-stat 

Satiation Parameters            
1γ    0.000 (fixed)   0.000 (fixed)   0.000 (fixed)   0.000 (fixed)     0.000 (fixed) 

2γ    1.000 (fixed)   1.000 (fixed)   1.000 (fixed) 118.015  10.77 125.194 10.77 

3γ    1.000 (fixed)   1.000 (fixed)   1.000 (fixed) 209.869    9.40 219.289   9.55 

4γ    1.000 (fixed)   1.000 (fixed)   1.000 (fixed)   92.063   3.99   97.161   4.05 

5γ    1.000 (fixed)   1.000 (fixed)   1.000 (fixed)   97.962    9.23 104.049   9.27 

6γ    1.000 (fixed)   1.000 (fixed)   1.000 (fixed)   39.642  12.01   42.158    11.95 

7γ    1.000 (fixed)   1.000 (fixed)   1.000 (fixed)   29.663  11.26   31.679    11.20 

8γ    1.000 (fixed)   1.000 (fixed)   1.000 (fixed)   86.222    8.15   91.102   8.21 

9γ    1.000 (fixed)   1.000 (fixed)   1.000 (fixed) 131.518    9.97 137.766 10.11 

10γ    1.000 (fixed)   1.000 (fixed)   1.000 (fixed)   35.945    6.17   38.278   6.22 

Scale parameter   1.608   30.18   1.608  30.50   1.000 (fixed)     1.402  35.02     1.329 37.22 
Log-Likelihood value at 
convergence -30054.40 -30013.80 -30229.00 -28220.00 -28216.40 

 
 
 

 


