
Graceful Navigation for Mobile Robots
in Dynamic and Uncertain Environments

by

Jong Jin Park

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
2016

Doctoral Committee:

Professor Benjamin Kuipers, Co-Chair
Professor Arthur D. Kuo, Co-Chair
Professor Ryan M. Eustice
Professor Jessy W. Grizzle

c© Jong Jin Park 2016

All Rights Reserved

To my family, and my dear friends.

ii

TABLE OF CONTENTS

DEDICATION . ii

LIST OF FIGURES . vi

ABSTRACT . ix

CHAPTER

I. Introduction . 1

1.1 Background and Motivation . 1
1.1.1 Traditional Approaches to Motion Planning and Control 1
1.1.2 Robot Navigation via Probabilistic On-line Decision Mak-

ing . 2
1.2 Overview of Our Approach . 4
1.3 Contributions . 5

II. Related Work . 8

2.1 Overview on Classical Methods 8
2.1.1 Geometric Path Planning 8
2.1.2 Reactive Methods . 9

2.2 Recent Advances . 10
2.2.1 Dynamic Replanning 10
2.2.2 RRT∗ . 11
2.2.3 Comfortable and User Customizable Motion 11
2.2.4 Planning in Dynamic and Uncertain Environment 11

III. A Smooth Control Law for Graceful Motion 13

3.1 Planar Motion Control . 13
3.2 Egocentric Polar Coordinates . 15
3.3 Pose-stabilizing Control Law . 17

3.3.1 Slow Subsystem and the Reference Heading 17
3.3.2 Fast Subsystem and Closed-Loop Steering 20

iii

3.3.3 Closed Loop Stability Analysis 23
3.4 Path Following via Static Motion Targets 23

3.4.1 Simple Linear Velocity Selector 24
3.4.2 Heterogeneous Control and Human-like Driving Strategy 24

3.5 Evaluation on Physical Robot and Discussion 27
3.5.1 Results . 27
3.5.2 Discussion . 28

IV. Non-holonomic Distance and Feedback Motion Planning via RRT∗ . . 31

4.1 Proper Measure of Distance and Optimal Path Planning 31
4.2 Non-holonomic Distance Functions, Vector Fields, and Funnels . . 33
4.3 Non-holonomic RRT∗ for Unicycles 38
4.4 Feedback Motion Planning via RRT∗ 40

4.4.1 Results . 40
4.4.2 Discussion . 44

V. Motion Planning and Control in Dynamic and Uncertain Environments 45

5.1 Introduction . 45
5.2 Optimal Motion Planning in Dynamic and Uncertain Environment 47

5.2.1 Standard Discrete-time MPC 47
5.2.2 Stochastic MPC in Dynamic and Uncertain Environments 48

5.3 Robot Navigation via Stochastic MPC 50
5.3.1 System Overview . 50
5.3.2 Policy Parameterization 51
5.3.3 The Probability of Collision 52
5.3.4 Expected Cost of a Trajectory 54
5.3.5 Implementation . 56
5.3.6 Remarks . 56

VI. Evaluations . 57

6.1 Robot Navigation in Simulated Environments 58
6.2 Person Pacing and Following in Simulated Environments 61

6.2.1 Introduction . 61
6.2.2 Cost definition for Person Pacing and Evaluations 63

6.3 Robot Navigation in Real Environments 69

VII. Conclusion and Future Work . 77

APPENDICES . 79

iv

A. System Identification, State Estimation, and Low-Level Control of a
Physical Wheelchair . 80

A.1 Modelling Vehicle Dynamics with Friction 81
A.1.1 Input Mapping . 82
A.1.2 Load-motor-wheel Subsystem 82
A.1.3 Differential-drive Motion Model 83
A.1.4 Evaluation . 84

A.2 Simulation and State Estimation 84
A.3 Model-based Velocity Control . 86

A.3.1 Steady-state Analysis 87
A.3.2 Feedforward Control 88
A.3.3 Feedforward-feedback Control 88

BIBLIOGRAPHY . 90

v

LIST OF FIGURES

Figure

1.1 Motion planning and control architectures: Traditional vs. Ours. 3

3.1 Egocentric polar coordinates . 16

3.2 Design of slow manifold for the smooth control law 19

3.3 Numerical stability analysis for the smooth control law 21

3.4 Example trajectories to targets under the smooth control law 22

3.5 Simple linear velocity selector . 25

3.6 Heterogeneous control . 26

3.7 Differentially driven wheelchair robot. 27

3.8 Example robot trajectory via static motion targets. 28

3.9 Velocities along the example robot trajectory 29

3.10 Accelerations along the example robot trajectory 29

3.11 Jerks along the example robot trajectory 29

4.1 Incompatibility of Euclidean distance for non-holonomic systems. 32

4.2 Visualization of a non-holonomic distance function, and example paths
tracing user-specified vector fields. 35

4.3 Estimating the domain of attraction in structured environments. 36

4.4 Incremental sampling process by the non-holonomic RRT∗ 41

vi

4.5 An example path found by the non-holonomic RRT∗ 41

4.6 Example minimum-distance path found by the non-holonomic RRT∗ . . . 42

4.7 Multiple (suboptimal) solutions obtained over several runs of RRT∗. . . . 43

4.8 Composition of funnels. 43

5.1 The wheelchair robot and an example planner result. 51

5.2 Trajectories sampled from the parameterized policy 52

5.3 Visualization of the probability of successful transition along each trajec-
tory. 54

5.4 Navigation Function example. 55

6.1 Robot navigation example in L-corridor. 59

6.2 Robot navigation example in L-corridor, with a pedestrian. 60

6.3 Robot velocity and acceleration profiles for L-corridor example. 61

6.4 Robot navigation example in open hall (passive) 62

6.5 Robot navigation example in open hall (aggressive) 62

6.6 Moving cost-to-go definition for person pacing. 64

6.7 Person pacing example in an open hall. 66

6.8 Robot and companion velocities in the example shown in Fig. 6.7. 66

6.9 Person pacing example in an open hall (more difficult). 67

6.10 Robot and companion velocities in the example shown in Fig. 6.9. 67

6.11 Person following example in a narrow corridor. 68

6.12 Trajectories evaluated by the planner in the example shown in Fig. 6.11. . 68

6.13 Accumulated robot trace from a physical robot in dynamic environment. . 70

6.14 Snapshot of the policy and trajectory optimization. The robot avoids an
oncoming pedestrian. 71

vii

6.15 Snapshot of the policy and trajectory optimization. The robot moves
around a standing pedestrian. 72

6.16 Snapshot of the policy and trajectory optimization. The robot moves be-
hind a slow-moving pedestrian. 73

6.17 Snapshot of the policy and trajectory optimization. The robot overtakes a
slow-moving pedestrian. 74

6.18 Snapshot of the policy and trajectory optimization that results in an ap-
parent following behavior. 75

6.19 Snapshot of the policy and trajectory optimization that allows the robot
to wait for a person to pass. 75

6.20 Trace of the robot (' 40m) navigating autonomously among modestly
dense crowd in a large (' 60x6m) hallway. 76

6.21 The robot finding way through multiple pedestrians. 76

6.22 The optimal solution is to stay still when it is not safe to move. 76

A.1 Vulcan system diagram. 80

A.2 System diagram for our vehicle model. 81

A.3 The model prediction vs. measurements at low velocities with step inputs. 85

A.4 The model prediction vs. measurements at higher velocities with step
inputs. 85

A.5 The model prediction vs. measurements with random step and sinusoidal
inputs. 85

A.6 State estimator diagram. 86

A.7 Steady-state wheel speeds and steady-state motor inputs. 87

viii

ABSTRACT

The ability to navigate in everyday environments is a fundamental and necessary skill
for any autonomous mobile agent that is intended to work with human users. The presence
of pedestrians and other dynamic objects, however, makes the environment inherently dy-
namic and uncertain. To navigate in such environments, an agent must reason about the
near future and make an optimal decision at each time step so that it can move safely to-
ward the goal. Furthermore, for any application intended to carry passengers, it also must
be able to move smoothly and comfortably, and the robot behavior needs to be customiz-
able to match the preference of the individual users. Despite decades of progress in the field
of motion planning and control, this remains a difficult challenge with existing methods.

Specifically, we require robot navigation in dynamic and uncertain environments to be
safe, comfortable, and customizable. For safety in dynamic and uncertain environments,
our algorithm guarantees probabilistic safety, rather than trying to provide absolute colli-
sion avoidance which quickly becomes impossible in cluttered and crowded environments.
That is, with our algorithm the robot will (i) continually try to minimize (to near zero) the
potential cost of collision due to robot motion, (ii) avoid moving when it is already in a col-
lision state, and (iii) try to maximize the progress toward the goal if and only if there exists
trajectories that are likely to be feasible. Also, for comfort and customizability, we explic-
itly consider the quality of motion, but without affecting our probabilistic safety guarantee,
so that the robot motion matches the preference of the individual users.

In this dissertation, we show that safe, comfortable, and customizable mobile robot
navigation in dynamic and uncertain environments can be achieved via stochastic model
predictive control. We view the problem of navigation in dynamic and uncertain environ-
ments as a continuous decision making process, where an agent with short-term predictive
capability reasons about its situation and makes an informed decision at each time step.
The problem of robot navigation in dynamic and uncertain environments is formulated
as an on-line, finite-horizon policy and trajectory optimization problem under uncertainty.
With our formulation, planning and control becomes fully integrated, which allows direct

ix

optimization of the performance measure. Furthermore, with our approach the problem
becomes easy to solve, which allows our algorithm to run in real time on a single core of a
typical laptop with off-the-shelf optimization packages.

This depends on four specific technical contributions. We define our expected cost so
that we can directly incorporate the time-varying uncertain constraints and the probabil-
ity of violating those constraints into the cost function, which tends to create a smooth
cost surface that is easy to optimize over. The dimensionality reduction of this problem
critically depends on the policy and closed-loop trajectory parameterization based on a
Lyapunov-based feedback control law, which we developed for graceful motion of dif-
ferential wheeled mobile robots. The stability of this stochastic model predictive control
critically depends on a non-holonomic distance function, which we define as a Control-
Lyapunov function for unicycle-type vehicles. We also develop a motor and friction dy-
namics model of the robot for more accurate forward prediction.

We demonstrate that our method generates graceful (safe, smooth, comfortable, fast,
and intuitive) and customizable robot behavior in physical environments with pedestrians
in real time. The work presented in this thesis extends the state-of-the-art in analytic control
of mobile robots, sampling-based optimal path planning, and stochastic model predictive
control. We believe that this work is a significant step toward safe and reliable autonomous
navigation that is acceptable to human users.

x

CHAPTER I

Introduction

This dissertation shows that safe, comfortable, and customizable mobile robot naviga-
tion in dynamic and uncertain environments can be achieved via stochastic model predic-
tive control. We formulate local navigation in dynamic environments as an on-line, finite-
horizon policy and trajectory optimization problem under uncertainty, which becomes easy
to solve with our approach.

1.1 Background and Motivation

Moving robots are fascinating. It is fun to watch robots move, especially when the
robot’s motion is agile and visibly intelligent. Moreover, mobile robots capable of au-
tonomous navigation have the potential to greatly benefit human users, by assisting mo-
bility and making everyday life safer and more comfortable. This has increased public
attention recently, because of the series of successful DARPA Challenges and wide news
coverage of autonomous car projects from Google and virtually all major car manufactur-
ers.

Indeed, planning and control for mobile robots has been a very active area of research
for the past few decades with a large body of existing research. As a result, we already have
mobile robots in our homes (robot vacuums), on factory floors (Kiva Systems), and some
simple autonomy in our cars under controlled situations like adaptive cruise control and
parallel parking. Yet still, safe, comfortable, and customizable mobile robot navigation in
fully dynamic and uncertain environments is generally regarded as a very difficult problem.

1.1.1 Traditional Approaches to Motion Planning and Control

Why is it so hard?

1

The key difference between factory floors and everyday environments is the presence
of other autonomous agents (e.g. pedestrians). The presence of other agent make the
environment inherently dynamic and uncertain, which requires the motion planner to have
much higher flexibility and a direct way to handle uncertainties without losing the stability
guarantee and precision in control. Also, for passenger-carrying vehicles, comfort and
customizability are also essential.

Traditionally, a typical motion planning and control architecture consists of four dis-
tinct and independent processes (Fig. 1.1, Left): (1) geometric path finding, which finds
a collision-free path given a task and a (known) map; (2) path smoothing, which modifies
the found path to satisfy differential constraints; (3) trajectory planning, which computes
a velocity profile that tracks the path; and (4) a feedback controller that receives the de-
sired velocity as a control target and generates low-level commands that allows the robot
to track the trajectory, which is the place where robot dynamics and feedback first enters
the picture. See LaValle (2011a,b) for a brief overview; for more comprehensive reviews
Choset et al. (2005) and LaValle (2006) provide excellent texts. We also give an overview
of existing algorithms in Chapter II.

This classical structure is simple and straightforward. In situations where flexibility
and uncertainty handling do not matter as much, the classical approach can work very well.
After all, the basic problem of computing a collision-free path for a robot among known
obstacles is well understood and reasonably well solved (LaValle, 2011b).

This classical structure (Fig. 1.1, Left), however, fundamentally limits the flexibility
of the system, as each process is completely confined within a very small search space
defined by the output of the previous one. It is also not clear how predicted future motion
and associated uncertainties of other dynamic objects can be handled in this framework.
In addition, as Gulati (2011) pointed out, it is difficult to optimize a performance measure
in the final trajectory with this framework: Since the individual processes are decoupled
to each other in this structure, optimization in each step does not lead to optimality in the
overall performance. Safe, comfortable, and customizable mobile robot navigation in fully
dynamic and uncertain environments requires a method that is more flexible, can handle
uncertainties in future predictions, and can optimize robot behavior to the preference of its
user.

1.1.2 Robot Navigation via Probabilistic On-line Decision Making

How do we solve this problem? Let us first consider how people drive — or at least how
people are taught to drive — on roads. Driving is a continuous decision making process.
At each time step, a driver needs to (i) identify the current situation, (ii) predict how things

2

Figure 1.1: Motion planning and control architectures: Traditional vs. Ours.

Left: A typical motion planning and control architecture, which consists of path finding, path
smoothing, trajectory design, and feedback control. Planning and control are decoupled, and each
process is confined within a very small search space defined by the output of the previous process.
Complete knowledge of the robot and other obstacles are often assumed, and sensor feedback is
utilized only at the final stage.
Right: Our approach, where planning and control are tightly integrated. We first compute the
distance-to-go to the destination in all navigable space, where the distance is defined by the control
Lyapunov function of the underlying controller. Then we have our stochastic model predictive
control which directly optimizes the local control policy for the feedback control, using the
computed distance-to-go, the estimated future states of dynamic objects, and the associated
uncertainties. The overall system is much more flexible and can handle the variability and the
uncertainties of real environments.

3

will change in the near future, (iii) decide what to do based on the prediction, then (iv)
execute the decided action. This process of Identify, Predict, Decide, and Execute (IPDE)
forms the basis of safe driving which every driver should practice.

We want our motion planning algorithm to do the same, so that the robot can prop-
erly handle the uncertainty and variability of real environments and navigate safely. In
other words, we view the problem of navigation as a probabilistic on-line decision mak-

ing process where an agent with short-term predictive capability reasons about its situation
and makes an informed decision at each time step. An overview of our approach which
implements this view is described in Section 1.2.

1.2 Overview of Our Approach

We formulate local navigation in dynamic and uncertain environments as an on-line,
finite-horizon policy and trajectory optimization problem under uncertainty, so that the
trade-offs between progress toward the goal, quality of motion, and possible collisions
are fully considered. The overall architecture is described and compared to the traditional
approach in Fig. 1.1.

First, we compute the distance-to-go to the destination at all points in the naviga-
ble space. This distance measure is defined by the control Lyapunov function (CLF)
(Khalil, 2002) of the underlying controller, so that this measure naturally reflects the non-
holonomic, differential constraints of the system. We also show that the popular Euclidean
metric is not a proper choice for systems with differential constraints (Park and Kuipers,
2015). This computation of the distance-to-go over all navigable space can be done effi-
ciently using navigation function based approaches, for example (Konolige, 2000), or our
non-holonomic RRT∗ (Park and Kuipers, 2015).

Second, we have a stochastic model predictive controller that optimizes the local con-
trol policy using the computed distance-to-go. Note that our method is much more flexible
compared to a typical approach where only a controller follows a pre-determined path.
Our stochastic model predictive controller was first introduced as model predictive equi-
librium point control (MPEPC) (Park et al., 2012a,b; Park and Kuipers, 2013), where we
have shown that the policy optimization problem can be solved efficiently using (i) a com-
pact parametrization of the trajectory by a pose-stabilizing feedback control law (Park and

Kuipers, 2011), and (ii) an adaptive cost formulation that incorporates the probability of
constraint violation (e.g., collision) directly into the (expected) cost definition. The algo-
rithm provides real-time control of a physical robot, while achieving comfortable motion,
static goal reaching, and dynamic obstacle avoidance in a unified framework.

4

Finally, a pose-stabilizing feedback controller (Park and Kuipers, 2011) is responsible
for steering the robot to a local target with fast feedback and noise rejection.

Our system is designed to handle the uncertainty and variability of real environments.
The stochastic MPC and the pose-stabilizing feedback control grant much higher flexibil-
ity to the system compared to traditional path following and associated velocity tracking.
Also, planning and control are tightly integrated in our approach, which allows direct opti-
mization of any performance measure in the final trajectory.

The overall architecture is constructed hierarchically in a time scale. The first step is
finding the distance-to-go, which replaces path planning and smoothing. It is responsible
for finding an approximate solution over a large time horizon (a few minutes or more) using
the kinematics model. Then, using this distance-to-go as a guide, stochastic model predic-
tive control is responsible for finding a time-optimal solution within a finite time horizon (a
few seconds) using a higher-order dynamics model. Here, the control policy of the under-
lying feedback control is directly optimized to ensure that the resulting trajectory is safe,
smooth, and comfortable, and that the robot makes progress toward the goal. Finally, the
pose-stabilizing feedback is responsible for noise rejection at a very small time scale (tens
of milliseconds).

1.3 Contributions

For applications that are intended to carry human passengers, the problem of navigation
requires not only a trajectory from start to goal, but one of high quality: It must be safe,
smooth, fast, and intuitive in the presence of dynamic and uncertain hazards to be avoided.

In this dissertation, we show that safe, comfortable, and customizable mobile robot
navigation in dynamic and uncertain environments can be achieved via stochastic model
predictive control. We view the problem of navigation in dynamic and uncertain environ-
ments as a continuous decision making process where an agent with short-term predictive
capability reasons about its situation and makes an informed decision at each time step.
The problem of robot navigation in dynamic and uncertain environments is formulated an
on-line, finite-horizon policy and trajectory optimization problem under uncertainty. With
our formulation, planning and control become fully integrated, which allows direct opti-
mization of performance measures. Furthermore, we show that, with our approach, the
problem becomes easy to solve, which allows our algorithm to run in real time on a single
core of a typical laptop with off-the-shelf optimization packages.

Specific contributions of this work include, for each Chapter,

5

• Development of a smooth control law for unicycle-type vehicles in 2D (Chapter III)

We have formulated the kinematic control law (3.13) and the pose-following algo-
rithm for smooth and comfortable motion of unicycle-type robots. The control law
steers the vehicle to an arbitrary pose in space in a smooth and intuitive curve. The
characteristic of robot motion can be easily manipulated via choice of two parame-
ters kφ (orientation weight) and kδ (gain on heading correction). We also provide a
path following strategy that allows the vehicle to traverse the environment satisfying
user-imposed bounds in higher derivatives of velocities, given sparsely placed target
poses as path instructions. The proposed control law and the pose following strat-
egy is important since it provides safety and comfort to the user without sacrificing
maneuverability, and also avoids actuator overload and makes the path physically
realizable.

• Non-holonomic distance function and optimal path planning for unicycle-type vehi-

cles (Chapter IV)

We present a non-holonomic distance function for unicycle-type vehicles, and use
this distance function to extend the optimal path planner RRT∗ to handle non-holonomic
constraints for unicycle-type vehicles. The critical feature of our proposed distance
function is that it is also a control-Lyapunov function, so it better represents the true
cost-to-go between configurations and properly reflects the constraints of the system.
It allows us to readily generate smooth, intuitive, and feasible paths. By using prov-
ably stable control laws and the closed-form distance function that properly reflects
the constraints, our algorithm finds smooth and precise paths that exactly reach their
goals for unicycle-type vehicles, and provides the stabilizing vector field and the
cost-to-go to the final destination around the planned path by composition of local
control-Lyapunov functions.

• Policy and trajectory optimization via stochastic model predictive control for mobile

robot navigation in dynamic and uncertain environments (Chapter V-VI)

We define our expected cost so that we can directly incorporate the time-varying
uncertain constraints, and the probability of violating those constraints, into the cost
function. The probability is used to generate a time-varying weight that automatically
balances the progress toward the goal, the cost of action, and the cost of constraint
violation (collision) to compute the overall expected cost. This allows the robot to
exhibit reasonable and seemingly intelligent behavior across a wide range of real and
challenging situations. We then provide a compact parameterization of the infinite-

6

dimensional trajectory space that makes the optimization on-line tractable, which
critically depends on the policy and closed-loop trajectory parameterization based
on our Lyapunov-based feedback control law from Chapter III. Also, we note that
the stability of this stochastic model predictive control critically depends on the use
of our non-holonomic distance function from Chapter IV (which is also a control-
Lyapunov function for unicycle-type vehicles) as the terminal cost of the MPC.

• High-fidelity Model of Robot Dynamics with Friction (Appendix)

Having an accurate model for robot dynamics is an essential prerequisite for success-
ful implementation of an MPC. We present a straightforward dynamics model of our
driving platform (a commercially available powered wheelchair retro-fitted with lidar
sensors, an inertial measurement unit (IMU), and odometers), incorporating simple
non-linear friction and motor saturation. We show that our physics-based model can
accurately represent the dynamics of the real system.

The work presented in this thesis extends the state-of-the-art in analytic control of mo-
bile robots, sampling-based optimal path planning, and stochastic model predictive control.
We believe that our work is a significant step forward toward safe and reliable autonomous
navigation that is acceptable to human users.

7

CHAPTER II

Related Work

There exists a large body of work in motion planning. In this chapter, we give a brief
overview on classical methods, and then review more recent advances in the field.

The space of all possible positions and orientations of a robot is called the configuration

space. A series (an ordered set) of points in the configuration space of the robot is called a
path, and a time-parameterized series of points in the space is called a trajectory.

2.1 Overview on Classical Methods

2.1.1 Geometric Path Planning

Geometric path planning is the process of finding a collision-free path in the environ-
ment, where usually the complete (geometric) knowledge of the environment is assumed.
In classical approaches, the dynamics of the robot and the environment are often ignored,
and the path found by these methods requires a separate controller that realizes this path in
the physical system. See Section 3.1 for further review on this topic.

Dijkstra’s Algorithm (Dijkstra, 1959) and the A∗ (Hart et al., 1968) are well-established
algorithms that can find a shortest path on a graph and on grid-based maps. These algo-
rithms are straightforward best-first search, which can quickly recover optimal solutions
in wide range of configurations.1 Incorporating robot dynamics, high-dimensional space,
non-circular robot shape, and dynamically changing environments, however, are serious
challenges along these lines of work, and there are a vast number of publications which
address those issues. It is interesting to note that the majority of participants used the A∗

and its variants (Ferguson and Stentz, 2007; Dolgov et al., 2010) to find an optimal path, or
at least an initial guess of the path, due to its ability to quickly find a solution under those
simplifying assumptions.

1See any planning textbooks, e.g. LaValle (2006); Choset et al. (2005); Thrun et al. (2005) for details.

8

Another very powerful and well-established family of planning algorithms rely on sam-
pling. These sampling-based methods, such as rapidly-exploring random tree (RRT), prob-
abilistic roadmap (PRM), and their variants (LaValle, 1998; LaValle and Kuffner, 2000),
can work in a high-dimensional continuous space and can incorporate differential con-
straints and robot shape naturally from problem formulation with a guarantee to find a
feasible path if it exists, given sufficient time. These algorithms try to construct a topolog-
ical graph that connects the start and the goal, where an edge represent a traversable path
segment and a node is a point in free space.2 The major problem with the original formu-
lation was optimality. In fact, in Karaman and Frazzoli (2011), where the asymptotically
optimal sampling-based motion planner (RRT∗) is introduced, it is shown that the classical
sampling-based planners can never find the optimal solution. This is discussed further in
Section 2.2.

2.1.2 Reactive Methods

The paths found by geometric path planning algorithms typically require non-trivial and
often expensive post-processing to make the path smooth and admissible to the controller.
In dynamic environments, the plan often needs to be recomputed entirely when dynamic
obstacles block the path or when the target moves.

In highly dynamic environments, local and immediate motions become more impor-
tant to avoid collisions, so reactive, control-oriented methods are often more desirable.
Some early work includes potential field methods (Khatib, 1986; Koren and Borenstein,
1991; Rimon and Koditschek, 1992) and vector field histogram (VFH, Borenstein and Ko-

ren (1991)), where a robot is reactively pushed away from obstacles and pulled toward the
goal. These methods were originally introduced as reactive obstacle avoidance (Khatib,
1986) and later extended to path planning and navigation (Rimon and Koditschek, 1992).

A potential function can suffer from local minima, causing the robot navigating using
the potential field to get stuck. There are navigation function based methods (see LaValle

(2006)) and gradient methods (Konolige, 2000; Konolige et al., 2008) which can eliminate
local minima associated with naive potential fields, where the navigation function is con-
structed so that it has only a single minimum at the goal and has a monotonic gradient. It is
difficult, however, to consider complex robot and obstacle shapes, and it quickly becomes
expensive to compute the field in high-dimensional space.

Dynamic window approach (DWA) (Fox et al., 1997), and velocity obstacle (VO) and
their variants (Fiorini and Shiller, 1998; van den Berg et al., 2008) are methods that search

2See any planning textbooks, e.g. LaValle (2006); Choset et al. (2005); Thrun et al. (2005) for details.

9

the velocity space directly and chooses a velocity that is guaranteed to avoid collision. Ve-
locity obstacle is defined as the set of all velocities of a robot that will eventually lead to
collision. These methods are interesting because of their dynamic replanning framework,
and because their formulation naturally allows incorporation of interaction between agents
in the environment (e.g. van den Berg et al. (2008); Snape et al. (2011)). These meth-
ods, however, are formulated at a kinematic level, and assumes accurate knowledge of the
environment and other agents. Thus, in general, it is difficult to incorporate higher-order
dynamics and uncertainties into these framework.

2.2 Recent Advances

2.2.1 Dynamic Replanning

Many of the finalists in the 2007 DARPA Urban Challenge used dynamic replanning
framework, where the robot actively choose an action that is expected to maximize the
benefit in the near future. The action is often chosen from a pre-defined set of feasible
paths or control sequences, which are often called motion primitives (LaValle, 2006). This
includes constant-curvature arcs and pre-defined path sets (Ferguson et al., 2008; Von Hun-

delshausen et al., 2008; Rauskolb et al., 2008; Bohren et al., 2008; Bacha et al., 2008). Al-
though full direct treatment of uncertainties and the customizability of motion are lacking,
the success of these algorithms demonstrate the utility of the dynamic replanning frame-
work.3

The concept of dynamic replanning with model-based prediction is well-established
in the control community as model predictive control (MPC). Mayne et al. (2000), Rawl-

ings (2000), Lee (2011) are excellent theoretical reviews. There are many applications
in robot systems, e.g. Singh and Fuller (2001), Frew (2005), Bertrand et al. (2006) for
UAVs and Schouwenaars et al. (2004), Ogren and Leonard (2005), Howard et al. (2009),
Droge and Egerstedt (2011) for ground vehicles. MPC is useful in dynamic and uncertain
environments as it provides a form of information feedback with constant re-planning by
continuously incorporating new information with the receding time horizon and optimizing
the prediction of robot behavior within the time horizon. In the optimization framework,
trade-offs between multiple objectives can be expressed explicitly in the objective function;
however, with existing methods it is not clear how to handle uncertainties. See Section 5.1
for further discussion on this topic.

3Also see Knepper and Mason (2009, 2012).

10

2.2.2 RRT∗

RRT∗ (Karaman and Frazzoli, 2011) is the current state-of-the-art in sampling-based
motion planning. It is an extension of the classic RRT algorithm with added functionality
to rewire and streamline existing graph structure. In Karaman and Frazzoli (2011), it was
proven that the cost of the best path returned by RRT converges almost surely to a non-
optimal value as the number of samples increases, and the RRT∗, a sampling-based planner
with asymptotic optimality guarantee, was proposed. Karaman et al. (2011) provides a
nice implementation example, and Karaman and Frazzoli (2013) discusses the extension
of the algorithm to systems with non-holonomic constraints. See Section 4.1 for further
discussion on this topic.

2.2.3 Comfortable and User Customizable Motion

Only limited attention has been given to planning and control for comfortable and user-
customizable motion, partly due to the difficulty of quantifying comfort/discomfort in the
first place. Gulati (2011) provides the most comprehensive results to date, solving a full
optimization problem over the entire trajectory space to minimize a carefully designed
discomfort metric. Uncertainties regarding dynamic objects and non-circular robot geom-
etry are not considered in this example. Other works (Indiveri et al., 2007; Gulati et al.,
2009) are typically modifications of existing control laws to render the trajectory more
comfortable. Another notable work is Nagarajan et al. (2013), where an integrated mo-
tion planning and control algorithm for graceful motion of balancing robot is proposed.
This method achieves good results in a relatively open area, but this method depends on
pre-allocation of a finite number of motion policies to free-space, which does not work in
tightly constrained environments.

2.2.4 Planning in Dynamic and Uncertain Environment

Planning in dynamic and uncertain environments is an active area of research, and
important results have been published recently (Du Toit and Burdick, 2012; Aoude et al.,
2013; Trautman et al., 2015; Blackmore et al., 2006; Lambert et al., 2008; Luders et al.,
2010; Du Toit and Burdick, 2011; Trautman et al., 2013).

Du Toit and Burdick (2012) presents a formal treatment on planning under uncertainties,
where the predicted motion uncertainties of the robot and other agents are evaluated as a
stochastic dynamic program. Intractability is avoided with the receding horizon technique,
and the authors show that the navigation performance is improved by assuming the most
likely measurements which makes the robot less conservative in uncertain situations. The

11

method is evaluated for disk robots with disk objects in simulations. For safe navigation,
they impose a hard threshold on acceptable probability of collision. (This is the so-called
chance constraint (Charnes and Cooper, 1959; Luders et al., 2010; Aoude et al., 2013)).

In Aoude et al. (2013), sophisticated models of motion patterns of dynamic objects in
the environment are learned via the Gaussian Process (GP) mixture model, based on ob-
served past trajectories of dynamic obstacles. Future trajectories of dynamic objects are
estimated via the learned GP and RRT-based simulations to check for collision. The pre-
sented robot navigation algorithm, called chance-constrained RRT, is also based on the RRT
algorithm with the constraint on minimum acceptable probability of collision (the chance
constraint). The method is evaluated in simple simulated environments, and optimality
(and hence the quality of motion) is not considered.

Trautman et al. (2015) focuses on modeling interactions between the robot and other
agents. They convincingly argue that if the robot cannot anticipate human cooperation (i.e.
pedestrians will also try to avoid the robot), then navigation in crowded environments is
impossible. A GP-based pedestrian model is developed (interacting GP) where the interac-
tion and intention of other agents are modeled. The method is tested in a relatively small
cafeteria environment (6m travel) with a slow-moving (0.3m/s) round robot based on the
rate successful traversal. Quality of individual trajectories were not evaluated.

12

CHAPTER III

A Smooth Control Law for Graceful Motion

1 Although recent progress in 2D mobile robot navigation has been significant, the
great majority of existing work focuses only on ensuring that the robot reaches its goal.
But to make autonomous navigation truly successful, the ‘quality’ of planned motion is
important as well. Here, we develop and analyze a pose-following kinematic control law
applicable to unicycle-type robots, such that the robot can generate intuitive, fast, smooth,
and comfortable trajectories.

The Lyapunov-based feedback control law is derived via singular perturbation. It is
made up of three components: (i) egocentric polar coordinates with respect to an observer
on the vehicle, (ii) a slow subsystem which describes the position of the vehicle, where the
reference heading is obtained via state feedback, and (iii) a fast subsystem which describes
the steering of the vehicle, where the vehicle heading is exponentially stabilized to the
obtained reference heading. The resulting path is a smooth and intuitive curve, globally
converging to an arbitrary target pose without singularities, from any given initial pose.

Furthermore, we present a simple path following strategy based on the proposed control
law to satisfy arbitrary velocity, acceleration and jerk bounds imposed by the user. Such
requirements are important to any autonomous vehicle so as to avoid actuator overload and
to make the path physically realizable, and they are critical for applications like autonomous
wheelchairs where passengers can be physically fragile.

3.1 Planar Motion Control

Planar motion control is a fundamental problem for any autonomous mobile platform,
and it has been a very active area of research for the past few decades with a large body
of existing literature. Many existing approaches for planar motion control involves tar-

1This chapter is a revised (and expanded) presentation of Park and Kuipers (2011).

13

get tracking, with targets being positional waypoints or attached to a predefined pathway
(Breivik and Fossen, 2008).

Waypoint-following control is common in the fields of aerospace and naval sciences,
where orientation of a vehicle arriving at a desired target carry less importance as in the
case of missile guidance or control of surface vessels (Bakaric et al., 2004; Aguiar and Pas-

coal, 2007). The method is simple and intuitive, and it can be robust to disturbances since
there is no associated deviation-from-path error. But with this method, smooth transitions
between waypoints is an inherent problem; the orientation and velocity at a given location
significantly influence subsequent motion and control effort, but positional waypoints do
not provide constraints on those quantities.

Path-following control addresses this issue by first designing the entire pathway and
then making the system converge to the path (Micaelli and Samson, 1993; Lapierre et al.,
2006; Piazzi and Bianco, 2004; Magid et al., 2006). With control over the design of the
pathway, tasks which can be difficult to solve with waypoint-following such as static ob-
stacle avoidance can readily be solved. However, this approach does require accurate and
explicit path planning, and in general it does not work well with dynamic obstacles like
pedestrians. Also, with current methods it is not clear how to make motion along the path
smooth and comfortable, i.e. with bounded velocity, acceleration, and jerk. The situation
can be more problematic when the path is designed independently of vehicle dynamics,
which is typical of path design by parametric curves such as B-splines.

In terms of comfortable motion, other popular classical methods such as vector field
histogram (VFH) (Borenstein and Koren, 1991) or dynamic window approach DWA (Fox

et al., 1997) are also not suitable (Gulati and Kuipers, 2008). Since these methods do
not impose constraint or penalty on acceleration and jerk, the optimal control selected by
these methods can be arbitrarily large. Likewise, the great majority of existing control
methods assumes ideal actuators, i.e. arbitrarily large velocity or torque can be generated
instantly (Indiveri et al., 2007). Such an assumption fails to sufficiently account for the
robot dynamics, which in turn can lead to failure in navigation (Konolige et al., 2008).

The issue becomes even more critical in the case of an autonomous wheelchair, which is
the primary target application of the control methods proposed in this paper. An intelligent
wheelchair which is capable of autonomous and safe navigation between distinct points in
an environment can provide a necessary level of motor assistance to individuals suffering
from physical or mental disabilities. But control methods which do not limit the velocity,
acceleration and jerk are clearly not suitable for wheelchairs since high acceleration can
harm passengers even without a collision, in addition to being uncomfortable. Furthermore,
we also stress that the path should be intuitive (appear natural) enough to be acceptable to

14

human passengers. Note that these are general requirements to all autonomous vehicles
intended to carry human passengers, but the issues are more pronounced for wheelchairs.

Thus we require the motion of the robot to be graceful. We use the qualitative term
graceful as introduced by Gulati and Kuipers (2008) to refer to a motion visibly safe,
comfortable, fast, and intuitive. To be safe and comfortable, a motion needs to be smooth
with bounded velocity, acceleration and jerk.

Only limited attention has been paid to this subject. In Indiveri et al. (2007), a path
following control law is modified to limit actuator velocity. The approach in Gulati and

Kuipers (2008) also builds upon an existing path following control law (Lapierre et al.,
2006) and achieves bounds in angular velocity and angular acceleration by adjusting linear
velocity according to path curvature. In Gulati et al. (2009), the trajectory and associated
control signal is fully generated via numerical optimization with a cost function which
provides graceful motion, but without a closed-form control law.

In this paper, we take a different approach to achieve graceful motion. We first show that
with a natural choice of a coordinate system, a simple and robust kinematic control law can
be found via singular perturbation (Khalil, 2002), which guides a wheelchair from a given
pose (position and orientation), guaranteeing convergence to an arbitrary motion target (a
prescribed position, orientation, and linear velocity), following a smooth, intuitive curve.
Then we show that this closed-form control law makes it possible to design a set of motion
targets to guide the robot toward a specified goal with bounded velocity, acceleration and
jerk.

3.2 Egocentric Polar Coordinates

It is well known that differential drive cart and simple cars can be modeled as a simple
unicycle LaValle (2006). Consider a vehicle described by the unicycle model implemented
with two independently driven parallel wheels such that linear velocity and angular velocity
can be controlled independently. The vehicle is underactuated in the sense that the linear
velocity of the vehicle is always aligned with the orientation of the vehicle (i.e. the vehicle
cannot move sideways).

We adopt a polar coordinate system to describe the vehicle kinematics. With this co-
ordinate system, we try to identify and follow how human drivers observe and describe a
target, such that the derived control law using the coordinate system can produce motion
which appears natural to human passengers.

Suppose an observer, or a sensor, is situated on a vehicle and fixating at a target p0 at a
distance r away from the vehicle. Let φ ∈ (−π, π] be the orientation of p0 with respect to

15

Figure 3.1: Egocentric polar coordinates

From an observer situated on a vehicle at pose p fixating at target pose p0, r is the radial distance to
the target, φ is the orientation of p0 with respect to the line of sight from the observer to the target,
and δ is the orientation of the vehicle heading with respect to the line of sight. Here, both φ and δ
have negative values. At r = 0, we take the line of sight to be aligned with the target orientation
and set φ = 0, and δ is the the vehicle orientation measured from the target orientation.

the line of sight from the observer to the target. And let δ ∈ (−π, π] be the orientation of
the vehicle heading with respect to the line of sight (LOS), as shown in Fig. 3.1.

Then, it is easy to show that the vehicle kinematics can be written asṙφ̇
δ̇

 =

 −v cos δ
v
r

sin δ
v
r

sin δ + ω

 (3.1)

where v and ω are linear and angular velocity of the vehicle, respectively. Observe that
ṙ = −v cos δ and φ̇ = v

r
sin δ are the usual equations of motion of a point particle in polar

coordinates where ω plays no role. The change in vehicle heading δ̇ is influenced by the
change in the direction of the LOS due to vehicle movement as well as ω, such that δ̇ =
v
r

sin δ + ω. Observe that if ω = 0, then δ̇ = φ̇. A nearly identical set of state equations
can be found in Aicardi et al. (1995), but wherein the coordinates are defined with respect
to the target rather than the observer.

16

3.3 Pose-stabilizing Control Law

From the previous section, we have (r, φ, δ)T as our coordinates of error space where
the control problem is developed and solved. The control problem of moving a vehicle
from any given initial pose to a target pose T becomes the problem of bringing (r, φ, δ)T to
the origin. We treat velocity commands v and ω as the control variables, i.e. the controller
is developed at kinematic control level.

To begin, let us assume v is some nonzero positive (not necessarily constant) and ω
is the only control signal. Then from (3.1), it can be seen that the control signal ω only
affects the state δ, and (r, φ)T are determined via δ. Also observe that r and φ completely
describes the position of the vehicle, and δ corresponds to steering the vehicle. Thus we
can decompose the system (3.1) into two parts as follows.(

ṙ

φ̇

)
=

(
−v cos δ
v
r

sin δ

)
(3.2)

δ̇ =
v

r
sin δ + ω (3.3)

This decomposed structure of the system motivates a control strategy via singular per-
turbation, or two-time scale decomposition. The idea is to find (a) virtual control δ (vehicle
heading) which steers the subsystem (3.2) (vehicle position) to the origin, and (b) real
control ω which render the dynamics of the subsystem (3.3) sufficiently faster than the sub-
system (3.2) and stabilizes δ quickly to a desired virtual control, such that (3.2) becomes a
slow subsystem and (3.3) becomes a fast subsystem in a singularly perturbed form. Note
that this process is analogous to a human driver controlling the steering wheel (fast subsys-
tem) to drive the vehicle (slow subsystem) to a desired pose in space.

3.3.1 Slow Subsystem and the Reference Heading

For the slow subsystem (3.2), consider a simple Lyapunov function candidate

V =
1

2
(r2 + φ2) (3.4)

Let the virtual control δ for the slow subsystem be

δ = arctan (−kφφ) (3.5)

17

where kφ is a positive constant. Then trajectory of (3.2) along (3.5) can be written as(
ṙ

φ̇

)
=

(
−v cos (arctan (−kφφ))
v
r

sin (arctan (−kφφ))

)
(3.6)

Then the derivative of V along (3.6) becomes

V̇ = rṙ + φφ̇

= −rv cos (arctan (−kφφ)) +
v

r
φ sin (arctan (−kφφ))

which is strictly less than zero everywhere other than r = 0, since

cos (arctan (−kφφ)) > 0, ∀φ ∈ (−π, π]

sgn(arctan (−kφφ)) = −sgn(φ)

and r ≥ 0 and v > 0 by definition. Also, φ̇ < 0 at boundary points {(r, φ)|r > 0, φ = π}.
Thus the virtual control (3.5) steers the system (3.2) from arbitrary initial position in the
set [0,∞)× (−π, π] toward the origin. Note that since arctan (·) is a smooth function
and arctan 0 = 0, we have δ → 0 as φ → 0 from (3.5), which implies the overall states
(r, φ, δ)T also approaches the origin. Specifically, by choosing v to remove the singularity
in r (e.g., by setting v = f(r) such that v = k3r in some neighborhood around r = 0,
where k3 is a positive constant), we can guarantee that the state always approaches origin.
That is, for all ε > 0, the closed ball B̄ε(0) is attractive in finite time.

The virtual control (3.5) can be understood as the reference heading of the vehicle
obtained from current state φ. It characterizes a slow manifold (Fig. 3.2) that the fast
dynamics of the vehicle heading will converge to.2 The simple equation (3.5) enables us
to design a set of reasonable and intuitive global manifolds leading to a given target, in the
sense that the error coordinates r and φ always decrease smoothly.3

Note that it is the manifold, not a path, that is being planned here. In path-following,
the controller will try to steer the vehicle back to a specified path when it deviates. But
here, a new vehicle heading is recalculated with feedback, from manifold given by (3.5).
This can be more robust and flexible than simple path following. The concept is closely
related to the idea of feedback motion planning, which is a process of composing locally
valid feedback policies that takes the system to the final destination (e.g. Burridge et al.

2When applied to a physical vehicle, care should be taken at the boundary of the manifold
{(r, φ)|r > 0, φ = π}, where the reference heading in R2 can change suddenly under perturbation.

3The virtual control (3.5) is a smooth function on (0,∞)× (−π, π).

18

(1999); Zhang et al. (2009); Tedrake et al. (2010)). This topic will be revisited in more
detail in Chapter IV.

Figure 3.2: Design of slow manifold for the smooth control law

Design of slow manifold with kφ, which is the ratio of the rate of change in φ to the rate of change
in r. Target (red) is shown as a larger arrow at the center. Note kφ = 0 reduces the controller to
pure waypoint-following, while kφ � 0 offers extreme scenario of pose-following where φ is
reduced much faster than r.

Geometrically, the path given by the virtual control is the well-known Archimedean
spiral (see Weisstein.) From (3.6), we have

φ̇

ṙ
= kφ

φ

r

∴
φ̇

φ
= kφ

ṙ

r
(3.7)

which implies that kφ is the ratio of the rate of change in φ to the rate of change in r. The

19

solution to (3.7) is
r = a φ

1
kφ (3.8)

with scaling factor a = r0/φ0

1
kφ , where r0 and φ0 are initial conditions.

3.3.2 Fast Subsystem and Closed-Loop Steering

Now we develop a feedback control law for the steering. Let z denote the difference
between the actual state δ and the desired property arctan (−kφφ), such that

z ≡ δ − arctan (−kφφ) (3.9)

Calculation of ż is straightforward. From (3.3) and (3.6),

ż = δ̇ − d

dt
arctan (−kφφ)

= φ̇+ ω − −kφ
1 + (kφφ)2

φ̇

= (1 +
kφ

1 + (kφφ)2
)
v

r
sin (z + arctan (−kφφ)) + ω

Now, let ω be

ω = −v
r

[kδ z + (1 +
kφ

1 + (kφφ)2
) sin (z + arctan (−kφφ))] (3.10)

with nonzero positive gain kδ, so that

ż = −kδ
v

r
z (3.11)

Furthermore, let τ ≡ r
v
, which is the minimum time needed for the vehicle to reach a

goal, which is a relevant time scale for slow dynamics of (3.2). Then, with kδ � 1, we can
treat ε ≡ τ

kδ
as a small time scale which ensures the fast dynamics to indeed be faster than

the slow dynamics. That is, we have

ε ż = −z (3.12)

which is globally exponentially stable, and ensures that the fast subsystem quickly decays
to the slow manifold. Numerical evaluation of the decay is shown in Fig. 3.3.

20

Figure 3.3: Numerical stability analysis for the smooth control law

Exponential decay of the heading error z under the control law (3.13) with kφ = 1 and kδ = 3. The
vehicle starts with initial conditions of some nonzero r0 > 0, φ ∈ (π,−π], and δ ∈ (−π, π], where
max (z0) ' 250 (deg). Plot shows the value of z at rf = 0.3 r0 against various values of initial
conditions of φ and δ. The maximum value of zf < 1.9 (deg).

In the original coordinates, the control law (3.10) can be written as

ω = −v
r

[kδ(δ − arctan (−kφφ)) + (1 +
kφ

1 + (kφφ)2
) sin δ] (3.13)

Thus, (3.13) is our control law for ω. Recall that we placed no restriction on v, other
than to be nonzero positive.4 That is, we essentially have v as a free variable.

Also, ω is a linear function of v. Specifically, we have ω = κ(r, φ, δ) v, where κ is the
curvature of the path resulting from the proposed control law. Curvature of a path of a
vehicle moving on a plane with linear velocity v and angular velocity ω is simply ω/v. We
can write

κ = −1

r
[kδ(δ − arctan (−kφφ)) + (1 +

kφ
1 + (kφφ)2

) sin δ] (3.14)

which implies that the shape of the path is not influenced by the choice of v.
Recall from the previous subsection that asymptotic convergence to the target depends

on the choice of v. Namely, a small neighborhood of the origin in attractive in finite time if
and only if v → 0 as r → 0. With such a choice, the control law is a solution to a so-called
parking problem, stabilizing the vehicle at a specific target pose.

4To admit negative linear velocity, we can simply flip the orientation of the vehicle and the target simul-
taneously when the sign of v changes.

21

Figure 3.4: Example trajectories to targets under the smooth control law

Trajectories to various target poses under the control law. Initial pose is marked black at the center,
and target poses are colored red. The coordinates of the poses are given as (x, y, θ), where θ is the
orientation of the vehicle with respect to reference frame.
Top: Trajectories with constants kφ = 1 and kδ = 3.
Bottom: Trajectories with constants kφ = 1 and kδ = 10. Note that the vehicle converge to the
slow manifold more quickly with higher value of kδ.

22

The control law is also a solution to what can be called the passing problem: as the con-
trol law also guarantees that (r, φ, δ) approaches the origin with arbitrary nonzero positive
v, the vehicle can arrive and pass through specific pose in space. It implies a straightforward
implementation for a scenario following a path (given by a series of waypoint-poses).

Fig. 3.4, Top, shows some example trajectories of a unicycle under the proposed control
law with constants kφ = 1 and kδ = 3. The vehicle can approach arbitrary motion targets
with a smooth and intuitive curve. Fig. 3.4, Bottom, shows trajectories to the same motion
targets, but with constants kφ = 1 and kδ = 10, which makes the vehicle converge much
quicker to the reference heading.

3.3.3 Closed Loop Stability Analysis

For completeness, we close the section by sketching the overall proof. Let us introduce
a coordinate transformation (3.9) to the system (3.1) augmented by the control law (3.13),
such that (

ṙ

φ̇

)
=

(
−v cos (z + arctan (−kφφ))
v
r

sin (z + arctan (−kφφ))

)
(3.15)

ε ż = −z (3.16)

with a small time parameter ε. The system is now in a standard singularly perturbed form,
where (3.15) is the slow subsystem and (3.16) is the fast subsystem. The reduced system
(ε = 0) (

ṙ

φ̇

)
=

(
−v cos (arctan (−kφφ))
v
r

sin (arctan (−kφφ))

)
globally approaches the origin, as can be seen in Fig. 3.2. The fast subsystem (3.16) is
globally exponentially stable, such that it quickly decays to the reduced system, the slow
manifold. Thus the system is guaranteed to converge to a small neighborhood of origin. 5

3.4 Path Following via Static Motion Targets

In the previous section, we have established the convergence properties of the smooth
control law (3.13). Now we build upon the result and show how graceful motion can
be achieved, using a series of sparsely placed target poses as a path instruction. That

5The controller (3.5) is smooth on (0,∞) × (−π, π) but is discontinuous on R2 at the boundary of the
manifold. The controller (3.10) is smooth on (0,∞)× (−π, π)× (−π, π) but is discontinuous on R3 at the
boundary of the manifold. Recall that the well-known Brockett’s result (Brockett, 1983) states that it is not
possible to find a smooth feedback control law for exact pose-stabilization for a unicycle. With our control
law, we isolate the discontinuity to the boundary points of the manifold, and guarantee convergence to any
small neighborhood of (but not exactly at) the origin.

23

is, a user instructs a sparse series of target poses, and the robot will generate full motor
commands which guarantees graceful navigation via the targets6. When unacceptable target
instructions (involving collisions, etc.) are given, they can easily be detected and rejected
via model predictive simulation.

The solution described in this section is a useful form of navigation instruction with
intermediate level of abstraction; the lowest level would be a series of motor commands,
where the highest level would be specifying only the final goal in the map. In Chapter V,
we extend the methods here with stochastic model predictive control to achieve graceful
navigation for mobile robots in dynamic and uncertain environments.

3.4.1 Simple Linear Velocity Selector

In a path following scenario, perhaps the simplest approach for smooth navigation
would be to adjust linear velocity of the vehicle as a function of path curvature. Note
that the task becomes particularly easy with the proposed control law, since path curvature
can be obtained directly from feedback (3.14) and linear velocity v is a free variable.

Specifically, we require v → 0 as κ→∞, and v → vmax as κ→ 0, where vmax is im-
posed maximum linear velocity. A practical solution (not optimized) which satisfies the
requirements is

v(κ) = v(r, φ, δ) =
vmax

1 + β|κ(r, φ, δ)|λ
(3.17)

where constants β > 0 and λ ≥ 1 are design parameters.7 Effect of design parameters are
illustrated in Fig. 3.5

For the experiment in section 3.5, parameter values β = 0.4 and λ = 2 were used, with
which v(κ) ' 0.4 vmax at κ = 2, i.e., when the radius of osculating circle is 0.5m. The
angular velocity simply follows (3.13), that is, ω = κv with v given by (3.17). With given
parameters, analytic maximum for angular velocity becomes ωmax = π

4
vmax.

3.4.2 Heterogeneous Control and Human-like Driving Strategy

When presented with a single target, the control law (3.13) augmented with (3.17) al-
lows the vehicle to navigate gracefully. But to navigate in more structured environment,
multiple intermediate targets become necessary to reach a goal without collision. Then
transitioning between targets becomes an inherent problem, since target switching intro-

6We avoid the term ‘waypoints’ since it implies the instructions are given as positions. Here the instruc-
tions are given as target poses.

7It may be practical to set some small vmin when far away from origin to promote faster turning motion
when the curvature is very high.

24

Figure 3.5: Simple linear velocity selector

Effect of design parameters β > 0 and λ ≥ 1 on the curvature-based velocity rule (3.17) which has
bell-shaped profile. Higher value of λ results in more sharply peaked curve, and higher value of β
let the velocity drop more quickly as κ increases. These are design parameters that can be chosen
freely to match the preference of the user.

duces discontinuity in vehicle state (r, φ, δ)T , which may render derivatives of command
signals arbitrarily large if the transition is instantaneous. Resulting high acceleration and
jerk can lead to actuator overload (thus failure to execute a path) and discomfort to passen-
gers.

Before we proceed further, let us briefly examine how human drivers navigate in an
environment. When a human driver approaches a corner, the driver first examines how
sharp the turn is and then reduces linear speed accordingly. At the corner, the driver would
fix the linear velocity and change angular velocity smoothly to acquire desired heading,
and then regain speed after passing the corner and the heading is stabilized. Considering
how well a human driver can perform the task, it makes sense to adopt a similar procedure.

Given two consecutive targets pi = (ri, φi, δi)
T and pi+1 = (ri+1, φi+1, δi+1)

T , we first
slow down to a desired speed vpi before reaching pi. The transition (analogous to turning a
corner) is initiated at some threshold distance rt away from pi and lasts for a nonzero time
interval τω, so that the size of the derivatives become manageable. During the transition
linear velocity is held constant and angular velocity transitions from initial angular veloc-
ity ωr to ω = κ(pi+1) · vTi . Finally, the vehicle will speed up again from vpi to v(pi+1),
following (3.17).

For this transition, we have developed a heterogeneous control scheme which is a vari-
ant of a method proposed in Kuipers and Astrom (1994). The idea is to gradually mix two
heterogeneous control signals over transition interval τ , using a modified sigmoid function

25

Figure 3.6: Heterogeneous control

Change in the signal content under (3.19), between two heterogeneous signals ui and ui+1 during
the transition period τ .

στ (t) which is truncated and rescaled to domain [0, τ] and range [0, 1]:

στ (t) =
1

0.98
(

1

1 + e−9.2(t/τ−0.5)
− 0.01) (3.18)

Then the mixed signal during the transition from ui to ui+1 is simply given by

u(t) = (1− στ (t))ui + στ (t) · ui+1 (3.19)

where t ∈ [0, τ] is a variable indicating the progress of transition. Fig. 3.6 shows the
change in the signal content using the heterogeneous control.

It can be shown higher derivatives of (3.19) linearly depends on the magnitude of
∆u ≡ ui − ui+1. In the proposed scenario, the magnitude of change in angular veloc-
ity command ∆ω during the transition linearly depends on vpi since ω = κ v. Thus vpi
is an effective handle for the magnitude of the control signal ω and its higher derivatives.
Desired linear velocity vpi given user-specified bounds can easily be obtained numerically
via model predictive simulation.

The process can be formally described as forming a motion target Pi ≡ (pTi , vpi)
T ,

which is a concatenated vector of target pose in space and the desired linear velocity. The
desired linear velocity vpi is assigned to the target pose pi based on the relationship be-
tween Pi and pi+1 under (3.13). Note that the process can be automated and does not
require additional input from the user.

26

Figure 3.7: Differentially driven wheelchair robot.

(Best viewed in color) Snapshot of our differentially driven wheelchair robot, equipped with a laser
range finder and an IMU, about 0.68m in length and 1.1m in width.

3.5 Evaluation on Physical Robot and Discussion

The proposed control law and the path following algorithm was tested on a physical
robot (Fig. 3.7). The testbed is a differentially driven wheelchair robot equipped with a
laser range finder and an IMU, 1.1m in length and 0.68m in width. Path instructions were
given manually by specifying multiple target poses on a map generated via simultaneous
localization and mapping (SLAM).

3.5.1 Results

A trajectory of the robot from a typical test run is shown in Fig. 3.8. The trajectory
shown consists of a slow turn (lane change), a 90 degree turn and a final stop, typical actions
required to navigate in office environment. Fig. 3.9 - 3.11 show the state of the robot along
the trajectory.

In the run shown the robot traversed distance of 16.7m in 22.3 seconds. The robot was
set to begin slowing down when it reaches the lookahead distance rl = 1.5m from a motion
target and commence target transition when it reaches the threshold distance rt = 1.0m
(about the size of the robot). The transition lasts over the interval τω = 1.3s where the
blending of angular velocity commands takes place. Numerical values of imposed bounds
are vmax = 1 m/s, ωmax = π

4
rad/s, ω̇max = 2.8 rad/s2, and ω̈max = 7.7 rad/s3, all of which are

satisfied over the entire trajectory.

27

Figure 3.8: Example robot trajectory via static motion targets.

Trajectory of the robot traversing distance of 16.7m in 22.3 seconds. Motion targets are marked as
concentric circles with protruding line segment indicating target orientation. Final position of the
robot is shown as a purple rectangle.

For the implementation, care should be taken to choose appropriate values of threshold
distance rt, since 1/r term in the control law (3.13) can amplify the noise from the local-
ization if v is constant. The issue can be resolved by either setting rt sufficiently large (for
intermediate motion targets) or by letting v ∼ r, such that v → 0 as r → 0 which cancels
each other out (for the final motion target).

Data was gathered at 20Hz via SLAM, which give us fairly accurate pose data over
the trajectory. Velocity, acceleration and jerk were obtained from the pose data through
standard numerical differentiation. To get reliable values for higher derivatives, however,
some smoothing operations were necessary, and here local linear regression over a sliding
time window of 0.5 second was applied. Since smoothing operations can significantly
effect the calculation of the higher derivatives, we also show linear accelerations directly
measured at 50Hz from an independent IMU, MicroStrain’s 3DM-GX2 MicroStrain, for
qualitative validation. The shape and the level of the data corresponds well to the calculated
value.

3.5.2 Discussion

The result demonstrates that the presented method can guide the robot quickly and
comfortably through multiple motion targets, satisfying the requirement for graceful mo-
tion. The good performance of the kinematic control law and the path-following algorithm

28

Figure 3.9: Velocities along the example robot trajectory

(Best viewed in color) Linear velocity v and angular velocity ω along the trajectory shown in Fig.
3.8. Angular velocity measurements from an IMU are also shown. The robot slows down as
needed at t = 4.7, 12.2, 17.1s, where the target transition occurs. The velocities changes smoothly
within imposed bounds.

Figure 3.10: Accelerations along the example robot trajectory

(Best viewed in color) Linear acceleration a = v̇, angular acceleration α = ω̇, and linear
acceleration measurements from the IMU along the trajectory shown in Fig. 3.8. Note that the
differentiated and smoothed values of a closely tracks the independently measured IMU values.

Figure 3.11: Jerks along the example robot trajectory

(Best viewed in color) Linear jerk j = v̈ and angular jerk γ = ω̈ along the trajectory shown in Fig.
3.8. Both j and γ stays well within the imposed bounds, as can be expected from the smoothness
of the trajectory.

29

does depends on its smooth nature. In general, kinematic controller works well only if
underlying dynamic controller/actuator is sufficiently fast in achieving reference velocities
calculated by the kinematic controller.8 That is, the derivative of the velocity commands es-
sentially amounts to required torque to satisfy the command. Thus smoothness is necessary
for success of pure kinematic controllers.

In this Chapter, we have formulated the kinematic control law (3.13) and the pose-
following algorithm for smooth and comfortable motion of unicycle-type robots. This work
provides a concise and computationally very efficient solution to the local control problem
of traveling between arbitrary poses quickly and comfortably in free space, which is a
foundation for more general problem of navigating in dynamic and uncertain environment
with static and dynamic obstacle avoidance. We also directly build on this and develop
our stochastic model predictive control for graceful navigation in dynamic and uncertain
environment, which is presented in Chapter V.

8See Kim and Tsiotras (2002) for experimental evaluation of some classical kinematic control laws on a
physical robot.

30

CHAPTER IV

Non-holonomic Distance and Feedback Motion Planning
via RRT∗

1 Here we present a non-holonomic distance function for unicycle-type vehicles, and
use this distance function to extend the optimal path planner RRT∗ to handle nonholonomic
constraints. The critical feature of our proposed distance function is that it is also a control-
Lyapunov function. We show that this allows us to construct feedback policies that stabilize
the system to a target pose, and to generate the optimal path that respects the non-holonomic
constraints of the system via the non-holonomic RRT∗. The composition of the Lyapunov
function that is obtained as a result of this planning process provides stabilizing feedback
and the cost-to-go to the final destination in the neighborhood of the planned path, adding
much flexibility and robustness to the plan.

4.1 Proper Measure of Distance and Optimal Path Planning

For efficient and intelligent navigation, a mobile robot planning a path must have a
good measure of how far a given pose (position and orientation) in navigable space is to
another pose. For mobile robots with non-holonomic constraints (e.g., robots that cannot
move sideways), the widely-used Euclidean distance in Cartesian coordinates is clearly not
a sufficient metric for this, since it fails to capture the constraints and does not reflect the
true cost-to-go of the system. (Fig. 4.1.)

This incompatibility of the Euclidean distance for non-holonomic systems is a well-
known problem. In fact, it has been shown that for sampling-based planners such as RRT
(LaValle, 1998) the space is efficiently explored only when this distance function reflects
the true cost-to-go (Cheng and LaValle, 2001). But this has been getting more attention
recently (e.g., see Karaman and Frazzoli (2013); Webb and Berg (2012); Goretkin et al.

1This chapter is a revised (and expanded) presentation of Park and Kuipers (2015).

31

Figure 4.1: Incompatibility of Euclidean distance for non-holonomic systems.

Consider two poses p0 and p1. Although p1 is nearer the robot in Euclidean distance, it is harder to
get to due to differential constraints. In this paper, we propose a directed distance function
applicable to unicycle-type vehicles, that properly reflects the true cost-to-go of the system under
the non-holonomic constraint.

(2013); Palmieri and Arras (2014)) since the introduction of RRT∗ (Karaman and Frazzoli,
2011), the sampling-based motion planner that guarantees asymptotic optimality, which
critically requires a proper distance function. In the original formulation (Karaman and

Frazzoli, 2011) Euclidean metric was used to measure distance, which is a proper metric
only for holohomic systems.

Several attempts have been made to extend RRT∗ to non-holonomic systems, where
many recent works focus on some specific form of steering function that connects two
states and the cost-to-go under the control. In Webb and Berg (2012), the distance between
a pair of states is measured based on a fixed-final-state/free-final-time controller and a cost
function on time and control effort. In Goretkin et al. (2013) and Perez et al. (2012),
LQR-based cost functions are used to measure distance. Both Webb and Berg (2012) and
LQR-based methods Goretkin et al. (2013) Perez et al. (2012) rely on local linearization
of dynamics for non-linear systems. In Palmieri and Arras (2014), an approximation of
the path-integrated cost is used as the distance metric, where the approximation is learned
from simulated trajectories of a differential-drive vehicle under a stabilizing control law. A
different approach was recently proposed in Karaman and Frazzoli (2013) by the authors
of the original RRT∗, which does not concern the steering or the cost-to-go. The key idea
of Karaman and Frazzoli (2013) is to use a weighted Euclidean box which is narrower
in the direction the motion is constrained, rather than an Euclidean ball, when identifying
nearby neighbors, thus resulting in less number of bad candidate connections and improved
efficiency of the RRT∗.

In this paper, we present a parameterized closed-form distance function from a pose
(position and orientation) to a target pose for unicycle-type vehicles (e.g. differentially
driven mobile robots), and an optimal sampling-based planner using the distance function

32

(the non-holonomic RRT∗), where the free parameters in the distance function controls
the shape of the resulting path. The critical feature of our proposed distance function is
that it is also a control-Lyapunov function (CLF) for the system, which makes it a natural
measure of cost-to-go. We show that it is straightforward to develop feedback policies
given the distance function, and develop a non-holonomic RRT∗ based on this distance
and the derived policy. With our approach, the non-holonomic RRT∗ not only generates
an optimal path but also a composition of Lyapunov functions (so-called funnels (LaValle,
2006; Mason and Salisbury Jr, 1985; Burridge et al., 1999; Tedrake et al., 2010)) that
provides stabilizing feedback and the cost-to-go to the final destination in the neighborhood
of the planned path, adding much flexibility and robustness to the plan.

4.2 Non-holonomic Distance Functions, Vector Fields, and Funnels

We define our distance function on a smooth manifold defined by the egocentric polar
coordinates (Park and Kuipers, 2011). This egocentric polar coordinate system (Fig. 3.1)
describes the relative location of the target pose observed from a vehicle with radial distance
r, orientation of the target φ, and orientation of the vehicle δ, where angles are measured
from the line of sight vector from the vehicle to the target. Formally, we write

Tp0 : (x, y, θ)T 7→ (r, φ, δ)T (4.1)

to denote the mapping from the usual Cartesian coordinates to the egocentric polar coordi-
nates, where p0 is the pose of the target and p = (x, y, θ)T is the pose of the vehicle.

Recall from Chapter III that the kinematics of the vehicle in the egocentric polar coor-
dinates can be written as (

ṙ

φ̇

)
=

(
−v cos δ
v
r

sin δ

)
(4.2)

δ̇ =
v

r
sin δ + ω (4.3)

where (4.2) describes the dynamics of the slow subsystem in position subspace, and (4.3)
describes the dynamics of the fast subsystem in heading (steering) subspace. Note that in
the slow subsystem (4.2), the heading δ is a (virtual) control.

In the position subspace, we use the following weighted norm to measure how far a
point (r, φ)T is to the origin (target pose):

l−(r, φ) =
√
r2 + k2φ φ

2 (4.4)

33

where kφ is a positive constant that represent the weight of φ with respect to r. Note that
this is a metric in polar coordinates, and the orientation of the target pose is incorporated
in φ.

It is trivial to show that (4.4) is a CLF for the virtual control δ, as there always exists
some heading that reduces this positive definite function. For example, simply setting the
desired heading at δ∗ = 0 (which points directly to target pose) results in the classic turn-
travel-turn approach. Here we show the origin is Lyapunov-stable under the following
feedback examples, assuming non-zero positive velocity v:

δ∗s(φ) = atan(−kφφ) (4.5)

δ∗g(r, φ) = atan(−k2φφ/r2) (4.6)

where (4.5) is the heading that reduces r and φ very smoothly at ratio φ̇/φ = kφṙ/r (see
Chapter III), and (4.6) is the gradient of (4.4) along (4.2). As will be shown in the results,
these are very distinct and useful steering strategies, with (4.5) generating very smooth
curves and (4.6) generating curves that quickly approaches the target pose and then aligns
to the target orientation. Each of these feedback control laws for the heading (4.5)-(4.6),
which specifies a heading vector at every point in the position space by construction, de-
scribes a stabilizing vector field. This vector field encodes a collection of paths converging
to the target over the entire space, with tangents of the paths aligned with the vector field
(Fig. 4.2). We use this to connect two nodes in the RRT tree, in Extend() and Steer()
processes as described in Section 4.3.

To show the origin is Lyapunov stable, we need to check the sign of the derivative of
the positive definite function (4.4) along the position dynamics (4.2) under the control (4.5)
- (4.6). We have

d

dt
(l−(·)2) = 2rṙ + 2φφ̇

= −2rv cos (δ∗·) +
2v

r
φ sin (δ∗·)

strictly less than zero everywhere other than r = 0, since

cos (δ∗·) > 0, ∵ δ∗· ∈ (−π/2, π/2)

sgn(δ∗·) = −sgn(φ), ∀φ ∈ (−∞,∞)
(4.7)

due to property of atan(·) and r ≥ 0 and v > 0 by definition. Thus d
dt
l−(·)2 is also negative

definite, and the origin (target pose) is Lyapunov stable under δ∗·.

34

Figure 4.2: Visualization of a non-holonomic distance function, and example paths
tracing user-specified vector fields.

This figure visualize a (reduced) non-holonomic distance function, and example paths tracing the
user-specified vector fields. These stabilizing vector fields and the shape of the resulting paths can
be tuned to user’s preference with a positive weight kφ, where higher kφ results in quicker
reduction in angular coordinate φ. Note that with (4.5) (bottom row) the paths always curves in
smoothly to the target pose regardless of initial position, but with (4.6) (top right) large portion of
the paths shown are almost straight lines until it is near the target and then elbows in to the target
orientation.
Top Left: Illustration of distance from various positions to a target pose at (0, 0, 0)T (facing to the
positive x-axis), assuming the heading is aligned with the specified vector field, so the distance
function (4.9) reduces to (4.4). Note the singularity at origin and the high cost at positions along
positive x-axis, where the the vehicle have to make a large arc to move to the target pose
(kφ = 1.0).
Top Right: Smooth curves following (4.5), with φ̇/φ = kφṙ/r (kφ = 1.5). Target pose is depicted
with a red arrow at (2, 1.7, 0)T .
Bottom Left: Sample paths following (4.6), the gradient of (4.9) along the dynamics (4.2)
(kφ = 0.8).
Bottom Right: Sample paths following (4.6) (kφ = 1.5). Note that the angular coordinate φ is
reduced much quicker compared to figure on top right.

35

Figure 4.3: Estimating the domain of attraction in structured environments.

The domain of attraction (the mouth of the funnel) around a target pose for a unicycle can be
estimated by tracing the vector field in environment with obstacles. Here a target pose (red arrow
facing upward) is at (5, 5, π/2)T , and the paths follow (4.6) with kφ = 1.2.

These vector fields are examples of so-called funnels in feedback motion planning
(LaValle, 2006). A funnel (Mason and Salisbury Jr, 1985; Burridge et al., 1999) can be
described as a (locally) valid feedback policy or a Lyapunov function, which takes a broad
set of initial conditions to a local subgoal. Feedback motion planning is a process of find-
ing a sequential composition of funnels that takes the system to the final destination, which
can be more robust and flexible than simple path planning. See Lindemann and LaValle

(2009) Zhang et al. (2009) for the use of vector fields as funnels; Tedrake et al. (2010) is
an excellent example of feedback motion planning based on local linearizations and LQR
policies. Existing approaches tend to focus on finding local controllers due to usual dif-
ficulty in finding a general Lyapunov function. One of the contribution of this thesis is
the presentation of (4.9), which is a control-Lyapunov function for unicycle-type vehicles,
which is our funnel.

The domain of attraction for this Lyapunov function (i.e. the mouth of the funnel)
is the entire configuration space for a unicycle in completely free space, but in cluttered
environments (or for curvature-constrained vehicles) it needs to be estimated numerically.
We can make a conservative estimate by tracing the vector field, as shown in Fig. 4.3.

36

Given the stabilizing vector field in position space characterized by the desired heading
δ∗·, we can define the heading error with respect to the vector field as

δe(r, φ, δ) = |δ − δ∗·| (4.8)

which is the distance between the robot orientation and the desired heading δ∗·. With this
we can define a CLF in the full configuration space, where linear and angular velocities are
treated as control inputs,

l(r, φ, δ) = l−(r, φ) + kδ δe(r, φ, δ)

=
√
r2 + k2φ φ

2 + kδ|δ − δ∗·| (4.9)

where kφ and kδ are positive constants. Note that the choice of kφ controls the shape of the
local path segments via δ∗·, and kφ and kδ influences the distance definition, i.e. how far
the origin is from a pose.

This is a CLF for kinematic inputs since there always exists some linear and angular
velocity (v, ω) that reduces this positive definite function.2 3 Note that this is a weighted
L1 norm of the distances in position (4.4) and heading (4.8). The choice of L1 norm
is motivated by the fact that minimizing L1 norm tends to reduce one of the terms first,
while minimizing L2 norm tends to reduce all terms simultaneously. As will be seen in
the Section 4.3, this choice of L1 norm tends to create very smooth path, as it strongly
motivates the planner to compose funnels so that they have minimal heading error at joints.

Formally, we define a directed distance from a pose p = (x, y, θ)T to a target pose p0,
applicable to unicycle-type vehicles with non-holonomic constraints via (4.1) and (4.9):

Dist(p, p0) = l(Tp0((x, y, θ)
T)) (4.10)

Recall that this measures the distance assuming vehicle is moving forward. Flipping
both p and p0 by 180 degrees yields the distance for backward motion. This function is
positive definite but is not symmetric, i.e. Dist(p, p0) 6= Dist(p0, p). Also, this distance
function is similar to the radial distance r when r � 1, while promoting alignment to
target orientation as r → 0.

2A unicycle can always rotate in place to align to the vector field, and move forward if the heading is well
aligned.

3This is the CLF used to derive the smooth control law in Chapter III. The vector fields represent the
virtual control for the position subsystem. The key idea is to guarantee that the heading error (4.8) is reduced
sufficiently faster than the position error (4.4) (via two-time scale decomposition Khalil (2002)) so that the
vehicle always converges to the virtual control, and ultimately to a small neighborhood of target pose. See
Chapter III for the detailed derivation.

37

In the next section, we use the heading control δ∗· as our steering function, and (4.9)
as our distance and cost function for non-holonomic RRT∗ for unicycle-type vehicles.

4.3 Non-holonomic RRT∗ for Unicycles

RRT∗ (Karaman and Frazzoli, 2011) is an incremental, sampling based planner with
guaranteed asymptotic optimality, originally developed for holonomic systems. The algo-
rithm (Alg. 1-3) is an extension of the RRT∗ for unicycle-type vehicles, using the steering
and the distance function developed in the previous section. It solves the optimal path plan-
ning problem by growing a tree T = (V,E) with vertex set V of poses connected by edges
E of feasible path segments to find a path that connects exactly to the destination pose with
minimum cost, using the set of basic procedures described below. X is the configuration
space of the vehicle, and x : [0, 1]→ X is a path in the configuration space. The notations
generally follows the RRT∗ algorithm presented in Karaman et al. (2011).

Sampling: The Sample() process samples a pose zrand ∈ Xfree from obstacle-free re-
gion of the configuration space. The sampling is random with a goal bias, with which the
destination pose is sampled to ensure the path exactly connects to the destination pose.

Distance: Dist(z, z0) as defined in (4.10) returns the directed distance from a pose z to
a target pose z0.

Cost: The cost function c(z, z0) measures the cost of the path from a pose z to a pose z0.
In this paper, we are finding the minimum-distance path, so c(z, z0) = Dist(z, z0). Cost(v)

returns the accumulated cost of a node v ∈ V in the tree from the root.
Nearest Neighbor: Given a pose z ∈ X and the tree T = (V,E), v = Nearest(T , z)

returns the node in the tree where the distance from the node to the pose Dist(v, z) is
minimum.

Near-by nodes: Given a pose z, tree T = (V,E), and a number n, we have

NearTo(T , z, n) ≡ {v ∈ V |Dist(v, z) ≤ L(n)} (4.11)

where L(n) = γ(log(n)
n

)(1/d) with constant γ and dimension of the space d (Karaman and

Frazzoli, 2011), where we have d = 3 for our configuration space. This returns set of nodes
from which the distance to the pose z is small. Similarly,

NearFrom(T , z, n) ≡ {v ∈ V |Dist(z, v) ≤ L(n)} (4.12)

returns the set of nodes that is near from the pose z. This distinction between NearTo() and
NearFrom() is necessary due to the use of directed distance.

38

Algorithm 1: T = (V,E)← Nonholonomic RRT∗(zinit)

1 T ← InitializeTree();
2 T ← InsertNode(∅, zinit, T);
3 for i = 1 to N do
4 zrand ← Sample(i);
5 znearest ← Nearest(T , zrand);
6 (znew, xnew)← Extend(znearest, zrand, ε);
7 if ObstacleFree(xnew) then
8 ZnearTo ← NearTo(T , znew, |V |);
9 zmin ← ChooseParent(ZnearTo, znearest, znew);

10 T ← InsertNode(zmin, znew, T);
11 ZnearFrom ← NearFrom(T , znew, |V |);
12 T ← ReWire(T , ZnearFrom, zmin, znew);

13 return T

Algorithm 2: zmin ← ChooseParent(ZnearTo, znearest, znew)

1 zmin ← znearest;
2 cmin ← Cost(znearest) + c(znearest, znew);
3 for znear ∈ ZnearTo do
4 x′ ← Steer(znear, znew);
5 if ObstacleFree(x′) then
6 c′ = Cost(znear) + c(znear, znew);
7 if c′ < Cost(znew) and c′ < cmin then
8 zmin ← znear;
9 cmin ← c′;

10 return zmin

Algorithm 3: T ← ReWire(T , ZnearFrom, zmin, znew)

1 for znear ∈ ZnearFrom\{zmin} do
2 x′ ← Steer(znew, znear);
3 if ObstacleFree(x′) and

Cost(znew) + c(znew, znear) < Cost(znear) then
4 T ← ReConnect(znew, znear, T);

5 return T

39

Steering: We assume the vehicle follows the vector field, e.g. the feedback control on
the heading δ∗· described in (4.5) and (4.6).4 We have x = Steer(z, z0) which generate a
path segment x that starts from z and end exactly at z0, and (znew, xnew) = Extend(z, z0, ε)

starts from z and extend the path toward z0 until z0 is reached or the distance covered is
ε, and returns the new sample znew at the end of the extension. Extend() is a standard
RRT procedure for exploration. In our experiments, we obtained best results when we used
Extend() for exploration (not forcing exact connection to a target sample) and Steer() for
choosing the best parent node and to rewire graph, as described in Alg. 1-3.

Collision Checking: The ObstacelFree(x) function checks whether a path x lies within
the obstacle-free region of the configuration space, considering the size and the shape of the
robot. Note that any mission-critical constraints (e.g. path curvature, minimum clearance,
etc.) that needs to be checked can be added here.

Node Insertion: Given the current tree T = (V,E) and a node v ∈ V , the function
InsertNode(v, z, T) adds z to V and create an edge to v from z.

With theses basic processes, the non-holonomic RRT∗ explores the configuration space
by sampling and extending as the classic RRT (LaValle, 1998) (Alg.1), and considers all
nearby nodes of a sample to choose the best parent node and rewires the graph to stream-
line the tree as the RRT∗ (Alg.2-3) where ChooseParent() and ReWire() processes guaran-
tee asymptotic optimality. We provide proper measure of distance and exact steering for
unicycle-type vehicles, which are necessary components for these processes.

4.4 Feedback Motion Planning via RRT∗

In this section we demonstrate the non-holonomic RRT∗ with varying steering functions
(Fig. 4.4-4.8). Recall that the distance function also depends on the steering function, so
that the planning is integrated with the control. Overall, the algorithm is able to accommo-
date the two example controls (4.5)-(4.6) very well, with (4.5) leading to very smooth and
elegant paths, while the use of (4.6) generates more aggressive composition of L-shaped
curves.

4.4.1 Results

Fig. 4.4 illustrates the incremental sampling process, using (4.5) with weights kφ = 1.2

and kδ = 3.0. Notice that the quality of the path, especially the smoothness of the curve,

4Assuming initial condition δe = 0, the heading control δ∗· can be exactly followed with ω = δ̇∗ −
v
r sin δ∗ via (4.3), where the positive linear velocity v can be chosen so that the accelerations and velocities
are bounded. See footnote 2 in the previous section for discussion on more general controllers.

40

Figure 4.4: Incremental sampling process by the non-holonomic RRT∗

Illustration of an incremental sampling process performed by the proposed algorithm, using the
distance function (4.10) via (4.5), with weights kφ = 1.2, kδ = 3.0. From top left, reading order:
The tree constructed by the non-holonomic RRT ∗ with 112, 163, 355, and 731 vertices. The
algorithm first finds a path across the larger open space in top area, but eventually finds shorter
distance path through bottom, meanwhile improving the overall smoothness of the path.

Figure 4.5: An example path found by the non-holonomic RRT∗

The minimum-distance path in the tree of 907 vertices, with the proposed algorithm using the
distance function (4.10) via (4.6), with weights kφ = 1.2 and kδ = 3.0. Note that with (4.6), the
path is composed of L-shaped segments, which quickly moves toward a target pose (the next node)
to reduce the radial distance and then elbows in to the target orientation.

41

Figure 4.6: Example minimum-distance path found by the non-holonomic RRT∗

(Best viewed in color) An example minimum-distance path (bold line) found by our
non-holonomic RRT∗ after 1000 vertices, using the proposed distance function (4.10) and the exact
steering (4.5), with constants kφ = 1.2 and kδ = 3.0. The path exactly connects the starting pose at
top left facing right (red triangle) and destination pose at bottom right facing downward (blue
triangle) in a cluttered 14m×8m office environment. The vertices explored (grey) are also shown.
Our algorithm is able to generate highly smooth and intuitive paths without requiring any extra
processing. Note that it rejects candidate paths with shorter Euclidean distance but is harder to get
to considering the constraints of the system, such as paths that cross below the rightmost obstacle
and reach the destination facing in the wrong direction.

gradually improves as the number of vertices increase. The high value of kδ heavily pe-
nalizes heading error between the sampled pose and the subsequent path segment, which
enforces the overall smoothness. kφ determines the shape of local path segments via steer-
ing. For comparison, Fig. 4.5 shows an example path obtained using (4.6) with the same
parameters kφ = 1.2, kδ = 3.0. Fig. 4.4 and Fig. 4.5 shows both (4.5) and (4.6) produce
satisfactory, yet qualitatively distinct, paths.

Fig. 4.6 - 4.8 shows an example result that demonstrates the performance of the pro-
posed method. Fig. 4.6 shows the minimum-distance path found (after 1000 vertices) in
cluttered office environment, using (4.5) for the steering and for the distance definition.
Fig. 4.7 shows that shorter, smoother paths are selected over longer, less smooth ones, as
desired.

42

Figure 4.7: Multiple (suboptimal) solutions obtained over several runs of RRT∗.

(Best viewed in color) Green to black color gradient indicates low to high cost of the path. Shorter,
smoother paths have lower cost than longer, less smooth ones as desired.

Figure 4.8: Composition of funnels.

Visualization of implicit paths over the domain of attraction of each Lyapunov function (so-called
funnels) attached to each node in the graph. These represents the nominal paths the vehicle will
take when deviated from the original path.

43

Fig. 4.8 shows implicit paths over the domain of attraction of each Lyapunov function
along the nodes in the path, constructed by tracing the stabilizing vector field attached to
each node. Note that at some pose z within the domain of attraction of a node v, the cost-
to-go to the final destination is simply Cost(g)−Cost(v) +Dist(z, v) where g is the goal
node at the destination pose.

Compared to the original RRT∗ equipped with Euclidean distance, the proposed algo-
rithm is much more efficient due to proper identification of the nearest and nearby neigh-
bors. We observed up to three times speedup, in agreement with the results reported in
Karaman and Frazzoli (2013).5

4.4.2 Discussion

Having a good measure for the distance between two configurations is very important
for planning an optimal path. However, to the best of our knowledge, there is no gen-
eral consensus of what a ‘good’ measure is. We propose that to be a good measure, this
(distance) function must reflect the true cost-to-go between configurations, and respect the
constraints of the system. It needs to be positive definite; it should always be possible to
be decreased with some control input, so that it does not create local minima and can be
used to generate exact steering. That is, it needs to be qualified as a control-Lyapunov
function. We note that it should be possible to extend this RRT∗ to any system where a
control-Lyapunov distance function is available.

In this Chapter, we have presented a non-holonomic distance function for unicycle-
type vehicles, and used this distance function to extend the optimal path planner RRT∗

to handle non-holonomic constraints for unicycle-type vehicles. The critical feature of
our proposed distance function is that it is also a control-Lyapunov function, so it better
represents the true cost-to-go between configurations and properly reflects the constraints
of the system. By using the provably stable control laws and the closed-form distance
functions that properly reflect the constraints, our algorithm finds smooth and precise paths
that exactly reaches the goal for unicycle-type vehicles, and provides stabilizing vector
field and the cost-to-go to the final destination around the planned path by composition of
local control-Lyapunov functions. We also directly build on this and develop our stochastic
model predictive control for graceful navigation in dynamic and uncertain environment,
which is presented in Chapter V.

5Also, we note that it should be straightforward to implement a branch-and-bound (Karaman et al., 2011)
technique, and the popular k-d tree structure (Bentley, 1975) for further improvements in efficiency. For k-d
tree implementation, we recommend using (x, y) locations for partitioning, so that it can be used to pre-select
a set of candidates for nearby neighbor search. This removes complications that can arise from the use of
directed distance.

44

CHAPTER V

Motion Planning and Control in Dynamic and Uncertain
Environments

1

In this chapter, we define our stochastic model predictive control for safe, comfortable,
and customizable mobile robot navigation in dynamic and uncertain environment. The
problem of robot navigation in dynamic and uncertain environment is formulated as on-
line, finite-horizon policy and trajectory optimization problem under uncertainty. With
our formulation, the planning and the control are closely integrated, which allows direct
optimization of a performance measure.

This depends on several important technical contributions. We define our expected cost
(Chapter V) so that we can directly incorporate the time-varying uncertain constraints and
the probability of violating those constraints into the cost function and create a smooth
cost surface that is easy to optimize over. The dimensionality of this problem is critically
reduced with our policy parameterization based on our Lyapunov-stable feedback control
law (Chapter III.) The stability of this stochastic model predictive control depends on our
choice of the non-holonomic distance function (Chapter IV) as the cost-to-go. Having an
accurate model of the robot (Chapter A), and the ability to predict future motion of other
dynamic objects in the environment, are also important.

5.1 Introduction

A mobile robot navigating in a dynamic and uncertain environment must be able to han-
dle complex, time-varying constraints presented by the environment and quickly generate

1The material in this chapter is not yet published; The basic concept was first introduced in Park et al.
(2012a) as model predictive equilibrium point control (MPEPC). Here we present a significantly improved
formulation of the original idea with better cost definitions.

45

high-quality trajectory that reaches the goal. It must be sufficiently fast, move smoothly
and safely (Gulati and Kuipers, 2008) around static and dynamic objects, while respecting
the preferences of the user.

Model Predictive Control (MPC) is a receding-horizon control algorithm which opti-
mizes the performance of the constrained systems on-line. (See Rawlings (2000), Mayne

et al. (2000), and Lee (2011) for excellent reviews.) MPC can be a very useful tool for mo-
bile robot navigation in dynamic environments due to its dynamic replanning framework,
its ability to handle complex time-varying constraints, and its flexible formulation which
allows the user to tune the behavior of the system to desired performance; it can also incor-
porate sophisticated dynamics and interaction models of the robot and other agents in the
environment. Thus the MPC and MPC-like dynamic replanning frameworks are becoming
more popular in robotics community, (e.g., Green and Kelly (2007); Howard et al. (2009);
Dolgov et al. (2010); Knepper and Mason (2012), and many others.) However, there are
several challenges that need to be addressed to make this framework readily applicable to
real systems in dynamic and uncertain environments.

MPC is a mature field with decades of excellent progress, but in general it is still not
clear how uncertainties can be handled elegantly in MPC framework (Lee, 2011). In robot
motion planning, a popular approach in robot motion planning is to set a hard threshold on
acceptable probability of collision e.g. (Du Toit and Burdick, 2012; Aoude et al., 2013).
(This is so-called chance constraint (Charnes and Cooper, 1959; Luders et al., 2010).)
In optimization problems with such hard constraints, however, solutions typically form at
the constraint boundary which can make the solution brittle under noise. Also, to make the
robot react adaptively to varying uncertainties in the environment the uncertainties needs to
be handled directly in the cost function. To this end, another popular approach is to directly
minimize the probability of collision while trying to reach the goal (e.g. (Trautman et al.,
2013)), but with those methods it is not clear how to customize robot behavior or to promote
higher quality in robot motion such as speed or smoothness.

For high-quality motion generation, motion planning is often formulated as a trajectory
optimization problem with a cost function that embodies the desired quality of motion.
The cost function is typically constructed as a constant-weighted sum of (often conflicting)
sub-objectives (e.g. speed vs. comfort) (Howard et al. (2009); Ogren and Leonard (2005);
Droge and Egerstedt (2011); Gulati (2011), and many other.) With this approach, however,
finding the right weight quickly becomes the real problem, as ill-chosen weights can lead
to local minima, non-smooth cost surface, and ultimately to undesirable robot behavior. In
general, it is difficult to find a set of constant weights that works well across a wide range
of situations.

46

Here, we present a stochastic MPC which solves optimal motion planning and control
problem in dynamic and uncertain environments. We compute the probability of constraint
violation as a function of robot and object motion uncertainties in the environment, and
directly incorporate this probability into our cost definition. The probability is used to
generate time-varying weights that automatically balances the progress toward the goal,
the cost of action, and the cost of collision, to compute the overall expected cost.

Our formulation presented in this chapter allows us to optimize the robot behavior by
maximizing the expected progress toward the goal, considering the probability of colli-
sion and the quality of motion. In the next chapter (Chapter VI), we demonstrate that our
algorithm readily generates safe, fast, and smooth motion across wide range of real and
challenging situations by a physical robot.

5.2 Optimal Motion Planning in Dynamic and Uncertain Environ-
ment

In this section, we review the standard MPC formulation and formally define our motion
planning problem.

5.2.1 Standard Discrete-time MPC

Consider the following time-invariant dynamical system in discrete-time,

qi+1 = f(qi, ui), qk = q̂(tk)

where qi ≡ q(ti) ∈ Q denote the state (pose, velocity and acceleration), and ui ≡ u(ti) ∈ U
denote the control at time ti 2 , and qk is the initial state set equal to the measured value
q̂(tk). For our robot, let xi ≡ x(ti) denote the pose (position and orientation), which defines
its configuration space.

MPC solves the following finite horizon constrained optimization problem at each time

2To be precise, tk is the so-called sampling time which marks the beginning of the k-th discrete-time
interval. It is assumed that the state is measured right before the sampling time, at t−k , and the control is
applied right after, at t+k , and held constant until the end of the interval, to t−k+1.

47

step k:

minimize
u[k : k+N−1]

J(k, q[k : k+N], u[k : k+N−1], N) (5.1)

subject to qi+1 = f(qi, ui), qk = q̂(tk) (5.2)

ui ∈ U ⊆ U (5.3)

qi ∈ Q ⊆ Q (5.4)

where k+N is the (receding) time horizon, U is the constraint on input, Q is the constraint
on state, and J(k, q[k : k+N], u[k : k+N−1], N) is the cost function. This cost function is a scalar
function that maps a trajectory of states q[k : k+N] and inputs u[k : k+N−1] that obey (5.2) to a
cost. In standard formulation, it is usually written as

J(·) =
k+N−1∑
i=k

L(qi, ui) +M(qk+N) (5.5)

where L(qi, ui) ≥ 0 is the stage cost computed along the trajectory, and M(qk+N) is the
terminal cost at the terminal state qk+N . This terminal cost is often formulated as a cost-to-
go from the terminal state to the eventual goal state, and a proper terminal cost is essential
for the stability of MPC.

MPC is very powerful due to its ability to handle complex constraints, and MPCs with
this standard formulation (5.1)-(5.5) have been extremely successful in practice, and its
properties are well understood (Rawlings, 2000; Mayne et al., 2000). However, with this
formulation it is not clear how uncertainties can be handled (Lee, 2011), which is important
in dynamic and uncertain environments.

5.2.2 Stochastic MPC in Dynamic and Uncertain Environments

Now we formulate the stochastic optimization problem by incorporating estimated fu-
ture uncertainties. Note that the solution u∗[k : kN−1] to the optimization problem (5.1) does
not change when we subtract a constant value M(qk) from the cost, so we can replace J(·)
with J̃(·), where

J̃(·) =
k+N−1∑
i=k

L(qi, ui) +M(qk+N)−M(qk). (5.6)

This observation lets us incorporate uncertainties, or more precisely, the probability of
constraint violation, directly into the cost.

48

Suppose the constraint on state is time-varying, and write Qi ≡ Q(ti). Let

pc(i) ≡ pc(qi, Qi) (5.7)

be the probability of constraint violation at time ti, which is a function of the estimated
the robot state qi and the time-varying constraint Qi. Naturally, specific definition of this
function will depend on the system. For our navigation problem, Q(ti) is the collision
constraint and pc(i) becomes the probability of collision (5.12)-(5.13) at time ti.

Based on the probability of constraint violation, we can write

ps(i) ≡ ps(q[k : i], Q[k : i]) =
i∏
l=k

(1− pc(l)) (5.8)

as the probability of safe transition,3 which is the probability of successful (safe) transition
from the initial state qk to the state qi along q[k : i] without violating the constraints Q[k:i].
With (5.8), we extend (5.5) and define our expected cost as

E[J̃(·)] ≡
k+N−1∑
i=k

(L(i) + ps(i) ·∆M(i) + (1− ps(i)) ·R(i)) (5.9)

where L(i) ≡ L(qi, ui) is the stage cost, ∆M(i) ≡ M(qi+1) −M(qi) is the chance in the
terminal cost-to-go over the trajectory (which we use as measure of progress), andR(i) > 0

is the strictly positive cost of constraint violation. The specific definitions of these terms
will depend on the system. Note that (5.9) reduces to (5.6) if ps(i) = 1 for all i, that is, if
the probability of constraint violation is zero everywhere.

Using (5.9), we write our optimal motion planning problem in dynamic and uncertain

environments as a stochastic constrained optimization problem

minimize
u[k : k+N−1]

E[J̃(k, q[k : k+N], u[k : k+N−1], N)] (5.10)

subject to qi+1 = f(qi, ui), qk = q̂(tk)

ui ∈ U

where the state constraint (5.4) and motion uncertainties are incorporated into the expected
cost E[J̃(·)]. Formulation of (5.8) and (5.9) are important contributions of our work.

Furthermore, we utilize control parameterization developed in Park et al. (2012a) via
feedback control law (Park and Kuipers, 2011), for dimensionality reduction and improved

3Or the survivability, as used in (Park et al., 2012a)

49

prediction accuracy. Namely, rather than optimizing the control trajectory u[k : k+N−1] di-
rectly, we find optimal parameters of the underlying feedback controller that will lead to
the minimum cost trajectory. That is, given a state feedback ui = g(qi, ζ), where ζ denotes
the parameters, we have

minimize
ζ

E[J̃(k, q[k : k+N], u[k : k+N−1], N)] (5.11)

subject to qi+1 = f(qi, ui), qk = q̂(tk)

ui = g(qi, ζ)

as our optimization problem, which now is in unconstrained form.
Note that in (5.9), ps(i) acts as time-varying weight that determines the trade-off be-

tween possible constraint violation and the progress toward the goal. This weight is com-
puted on-line as a function of estimated states of the robot and other object. The progress
term ∆M(i) is completely turned off when the probability of safe transition ps(i) is small,
or the probability of constraint violation (collision) is high, so that the solver can focus
on avoiding collision. Similarly, the cost of constraint violation R(i) is completely turned
off when the probability of collision is zero, which allows the solver to focus on making
progress toward the goal and lowering the action cost L(i). That is, with (5.10) the robot
is automatically tuned to maximize progress when it is safe, always tries to avoid collision,
and never voluntarily move if no trajectory is feasible or is already in collision.

5.3 Robot Navigation via Stochastic MPC

Here, we give an overview of our system and concrete definitions of our cost function.
Our MPC has the prediction horizon of T = 5 s and replanning rate of 5 Hz. Here we give
a brief description of the overall system.

5.3.1 System Overview

For high-quality motion generation via MPC, we need a good model of the robot and
other objects in the environment. Our robot is a powered wheelchair which primarily op-
erates in indoor environment. The robot is differentially driven, and is equipped with two
on-board lidars (front and back for 360 field of view), odometers, and an IMU. The static
environment is mapped in standard occupancy grid via SLAM. See Appendix for more
detailed description of the robot model, forward simulation, and low-level control imple-
mentation.

50

Figure 5.1: The wheelchair robot and an example planner result.

(Best viewed in color) Left: The wheelchair robot (0.68m × 1.1m). Right: Example of predicted
pedestrian motion (purple) and a planned trajectory (blue) of the robot (green) according to the
prediction. Overlaid markers (triangle for pedestrian pose and empty rectangle for robot pose)
represent future poses of the robot and the pedestrian, and are placed at 1 sec interval. Our model
predicts that the pedestrian will make small corrections in its heading when possible, to avoid
collision with the current robot pose (green rectangle) and the walls.

To track dynamic objects, we first identify portion of the laser scans that are not ex-
plained by the current static map (Modayil and Kuipers, 2008), and those dynamic rays are
clustered to form dynamic objects. When two leg candidates are identified, they form a
pedestrian object. The validated clusters are tracked via Kalman filters for position and lin-
ear velocity. Future trajectories of the tracked dynamic objects (including pedestrians) are
predicted via individual MPCs, assuming (i) each dynamic object will maintain speed, but
(ii) tries to avoid collision with walls or the current robot pose (at tk) by slightly modifying
the heading at each time step (Fig. 5.1). This simple agent-robot and agent-environment
interaction model results in significantly better prediction than the usual constant-velocity
models.

Given the SLAM-generated map of the environment and the estimated trajectory of
other dynamic objects in the environment, robot trajectory candidates are evaluated for the
probability of collision and the expected cost as described in the following subsections.

5.3.2 Policy Parameterization

We use pose-stabilizing kinematic control law (3.13)-(3.17) described in Chapter III
as our control policy. The policy, and the resulting trajectories, are parameterized by the
motion target ζ = (r, φ, δ, vmax)

T , which is a temporary target pose in the neighborhood of

51

Figure 5.2: Trajectories sampled from the parameterized policy

Randomly selected 300 samples from the continuous space of smooth and realizable trajectories,
parameterized by the four dimensional vector z∗ = (r, φ, δ, vmax)T over a time horizon [0, T]. The
4-D vector represents a local target (so-called carrot) and the controller gain. The trajectories are
generated from dynamically simulated vehicle (with non-holonomic constraints and actuator
saturation) under the stabilizing kinematic controller.

the robot (so-called carrot) and a gain value. This parameterization via the smooth control
law allows the planning algorithms to focus on the space of trajectories that are smooth and
realizable (Fig. 5.2.)

5.3.3 The Probability of Collision

The most important constraint for robot navigation is to avoid collision. Given pre-
dicted trajectories of the robot and other object over [tk, tk+N], we model the probability
of collision of the robot with j-th object in the environment across a small time interval
[ti−1, ti] as a bell-shaped function:

pjc(d
j(ti), σ

j(ti)) ≡ exp(−dj(ti)2/σj(ti)
2
) (5.12)

52

where dj(ti) is the (numerically determined) minimum distance from any part of the robot
body to any part of the j-th object at time ti, and σj(ti) represent the combined motion
uncertainty of the robot and the object. Static structures in the environment is considered
as a single object in the environment.

For the overall probability of collision to any object in the environment pc(i) in time
interval [ti, ti+1], we look at the object with the highest probability of collision, so that

pc(i) ≡ max
j
{pjc(dj(ti+1), σ

j(ti+1))} (5.13)

then the probability of successful transition (without collision) ps(i) from the initial state
qk to the state qi+1 at the end of i-th segment is

ps(i) =
i∏
l=k

(1− pc(l)), i ≥ k (5.14)

which is computed recursively through the estimated trajectory. At the initial time inter-
val, ps(k) ≡ (1 − pc(k)). Note that with (5.14), ps ∈ [0, 1] and never increases as time
progresses, i.e. ps(i) ≥ ps(j),

∀ i ≤ j.
Having a good approximation of the motion uncertainties is important for safe and

effective navigation. To be safe, the measure of uncertainty σj(·) needs to be larger than
true motion uncertainty of the robot. We also note that for passenger vehicles this needs to
be larger than perceived motion uncertainty of the robot by the user so that the robot keeps
comfortable clearance to objects, since the robot may appear reckless otherwise. It must
not be too conservative, however, to allow the robot to navigate in crowded and cluttered
environments. We use the following approximation which works well in practice:

σj(ti) = cj0 + ct(ti)
√
cσvv(ti)2 + cσωω(ti)2 (5.15)

where cj0 is an object-dependent constant, v(ti), ω(ti) are estimated linear and angular ve-
locities of the robot at ti, and ct(·) > 0 is a coefficient that models the (bounded) expansion
of the uncertainty along the estimated trajectory. The nominal values used in our experi-
ments in the next chapter are cj0 = 0.02 for static objects, cj0 = 0.08 for dynamic objects,
cσv = 0.02, cσv = 0.01, and ct(ti) = min((ti − tk)/Ts, 1) with Ts = 2.4

4These parameters were selected so that the uncertainty estimate captures the prediction accuracy of our
robot and pedestrian models.

53

Figure 5.3: Visualization of the probability of successful transition along each trajectory.

(Best viewed in color) Left: Cartoon illustration of the cost. With the transition probability ps,
R(i) always pushes the solution away from obstacles, ∆M(i) pulls it toward the goal. L(i) can be
used to modify robot behavior.
Right: Example valuation of the transition probability on a physical robot. Red to green indicates
low to high probability of successful transition from the initial state. The probability of collision is
computed considering the static structure and the estimated trajectory of the pedestrian (purple)
moving in front of the robot (green rectangle).

5.3.4 Expected Cost of a Trajectory

For stage cost L(i) over the trajectory, we have quadratic cost on velocities and accel-
erations:

L(i) = (cv(v(ti)
2 + cωω(ti)

2) + ca(a(ti)
2 + γ(ti)

2)) · hi (5.16)

where cv is the weight for the overall velocity, cω is the weight angular velocity and curva-
ture, ca is a (small) weight on linear acceleration a(ti) and angular acceleration γ(ti), and
hi ≡ ti+1 − ti is the time interval between samples. This choice of the stage cost (5.16)
allows us to easily change the qualitative behavior of the robot by changing the weights.
Namely, the choice of cv and cω determines the preferred speed of the robot, controlling
apparent aggressiveness of robot motion. In our experiment, nominal value of the weights
are cv = 0.4, cω = 0.2 and ca = 0.05. We have constant hi = 0.2 for all i.

For the collision cost R(i) over the trajectory, we have

R(i) = r0 + rv(|v(ti)|+ |ω(ti)|) · hi (5.17)

54

Figure 5.4: Navigation Function example.

A typical navigation function computed in navigable space, over which we measure the progress
toward the goal. The goal pose depicted as an empty rectangle with a protruding line segment on
the left. Note that we add occupancy cost around the estimated object position at the end of the
prediction horizon, as well as around static obstacles in the environment. See text for details.

which helps the optimizer to quickly move away from trajectories that involves collision.
For constants we have r0 = 0.5, rv = 0.5, and hi = 0.2 for all i.

For the progress to the goal ∆M(i), we use the non-holonomic distance developed in
Chapter IV when the robot is in the neighborhood of the goal pose, or the grid-based nav-
igation function NF (·) and its gradient (Konolige, 2000) computed over navigable space.
The navigation function essentially encode the collision-free distance-to-go to the destina-
tion and its gradient represent the optimal heading from any point in the navigable space in
static environment.

As suggested in Konolige (2000), we also add small occupancy cost around static ob-
jects (within 0.4m, slightly larger than half width of the robot.) More importantly, we also
add small occupancy cost around the estimated position of dynamic object at the end of
prediction horizon to better guide the robot (See Fig. 5.4).

The expected progress over the trajectory is written as

k+N−1∑
i=k

ps(i)(NF (ti+1)−NF (ti)) + ps(k +N)(δe(tk+N)− δe(tk)) (5.18)

where NF (ti+1)−NF (ti) measures piecewise progress over the navigation function, and
δe(ti) ≡ cθ|θ(ti) − θ∗(ti)| is the weighted (cθ = 0.5) angular error in robot heading with
respect to the vector field. The vector field θ∗(ti) is defined by the gradient of the navigation

55

function or by the non-holonomic distance function (as described in Chapter IV).5 Both
NF (·) and δe(·) are required for convergence. Finally, our expected cost of the trajectory
to be minimized is the sum of (5.16), (5.17), and (5.18).

5.3.5 Implementation

With our problem formulation the computational cost for the numerical optimization
is small, achieving real-time performance. A typical optimization cycle takes ' 60 ms
with ' 400 trajectory evaluations with our C++ implementation on a 2.66-GHz laptop,
using off-the-shelf optimization packages (NLOPT, Johnson.) We implement two-stage
optimization, with randomized coarse initial search to find an approximate solution, and
local gradient based search for final refinement of the solution.

As the planning, mapping, and tracking all take non-zero amount of time, accounting
for the computational delay becomes important for accurate motion planning. We explicitly
take into account the timing of the sensor information used to estimate the state of the robot
and dynamic objects, and use respective models to pre-synchronize their state to the end of
the current planning cycle and then compute the optimal control from the beginning of the
next planning cycle to the planning horizon. The computed control is executed exactly at
the beginning of the next planning cycle to enforce strictly constant update rate.

5.3.6 Remarks

Our formulation presented in this chapter allows us to optimize the robot behavior by
maximizing the expected progress toward the goal, considering the probability of colli-
sion and the quality of motion. In the next chapter (Chapter VI), we demonstrate that our
algorithm readily generates safe, fast, and smooth motion across wide range of real and
challenging situations by a physical robot.

5We only promote alignment at the end pose rather than along the entire trajectory to give the robot more
flexibility. The angular term is essential for stability of the goal, as it properly motivates the robot to turn in
place in tight corridors and at the origin (goal). This also makes the cost-to-go qualify as CLF for vehicle
kinematics. See Mayne et al. (2000) and Jadbabaie et al. (2001) for stability analysis of the origin under
MPC.

56

CHAPTER VI

Evaluations

In this chapter, we evaluate our MPEPC algorithm applied to a physical robot. The
evaluation is done both in dynamically simulated environments generated from real data
traces and in physical environments with a real robot. In Section 6.1, we focus on showing
that the algorithm can react well to dynamic objects in the environment, and show that the
robot behavior (apparent aggressiveness) is easily customizable by applying the algorithm
with varying level of action costs to a replayed dataset recorded from the physical robot. In
Section 6.2, we apply the algorithm to the task of moving alongside (pacing) and behind
(following) a person, and show that the algorithm adapts well to different preferences of the
user as well as to dynamic objects in the environment. In Section 6.3, we present the results
from experiment on a physical robot. The main experiment in Section 6.3 contains a 7
minutes of uninterrupted robot navigation in a typical corridor environment in the presence
of pedestrians (Fig. 6.13 - 6.19). The robot navigates successfully without any collision
(Fig. 6.13). The unmodified algorithm exhibits a wide range of reasonable and apparently
intelligent behaviors such as passing, moving around, following behind, and waiting for a
person to pass in a narrow corridor. Snapshots of individual behaviors with visualizations
of the optimization process are shown in Fig. 6.14 - 6.19. We also show an example run
(without collision) in a crowded situation (Fig. 6.20 - 6.22.)

As can be seen in the examples, the algorithm can generate safe and smooth trajectories
across a range of situations exhibiting very reasonable behavior, and the robot motion is
easily customizable. The overall algorithm is very efficient and achieves real-time perfor-
mance thanks to the low-dimensional parameterization of the trajectory space, and does not
require any post-processing to compute the control inputs as the feedback control policy is
directly being optimized.

We note that in realistic settings, for an agent with limited actuation capability (non-
holonomic and dynamic constraints) and without perfect knowledge of the environment, it
is not possible to guarantee absolute collision avoidance. What can be guaranteed with this

57

algorithm, however, is that the robot will never voluntarily move if collision is inevitable;
the expected cost definition motivates the robot to slow down as the probability of collision
increases, and forces the robot to stop when the probability is high.

6.1 Robot Navigation in Simulated Environments

1 Initially, we have tested the algorithm in two typical indoor environments: a tight
L-shaped corridor, and an open hall with multiple dynamic objects (pedestrians). In the
L-shaped corridor, the proposed algorithm allows the robot to exhibit wide range of rea-
sonable motions in different situations, e.g. to move quickly and smoothly in an empty
corridor (Fig. 6.1), and to stop, start and trail a pedestrian in order to progress toward a
goal without collision (Fig. 6.2). In the hall environment, we show that the algorithm can
deal with multiple dynamic objects, and that changing a weight in the cost definition can
result in qualitatively different robot behavior in the same environment (Fig. 6.4 - 6.5).

All sensor data are from actual data traces obtained by the wheelchair robot (Fig. 3.7).
The position and velocity of dynamic objects are tracked from traces of laser point clus-
ters, and the planner estimates the motion of the dynamic objects using a constant velocity
model over the estimation horizon [0, T]. Robot motion is dynamically simulated within
the environments generated from the sensor data.

Fig. 6.1 shows a sequence of time-stamped snapshots of the robot motion as it makes a
right turn into a narrow corridor (Top), the trajectories sampled by the planner (Bottom, gray),
the time-optimal plans selected at each planning cycle (blue), and the actual path taken
(red). The robot moves swiftly through an empty corridor along the gradient of the navi-
gation function near the allowed maximum speed (1.2 m/s) (Fig. 6.3, Top) toward the goal
pose. Once the robot moves within 2 m of the goal pose the robot switches to a docking
mode and fixes the motion target at the goal. In this example, the robot safely converges to
the goal pose in about 18 s.

In Fig. 6.2, the robot runs with the same weights in the cost function but with a slow
moving (∼ 0.5 m/s) pedestrian in the map. The tracked location (red circle) and the esti-
mated trajectory (red line) of the dynamic object is shown. In order to progress toward the
goal without collision, the robot effectively trails the pedestrian, stopping and restarting as
needed. A comparison of the robot speed and the pedestrian speed is shown in Fig. 6.3,
Bottom.

In Fig. 6.4 - 6.5, robot motion in an open hall with multiple dynamic objects is shown.
For these examples, the bound on linear velocity (and the overall gain) is increased to

1The material in this section is a revised presentation of the results in Park et al. (2012a,b).

58

Figure 6.1: Robot navigation example in L-corridor.

(Best viewed in color) Top: Time-stamped snapshots of the motion of the robot (0.68× 1.1 m), in
a L-shaped corridor with a small opening (2 m wide, smallest constriction at the beginning 1.62 m).
The robot moves quickly and smoothly in the free corridor. See Fig. 6.3 for velocities and
accelerations along the trajectory.
Bottom: Trajectories sampled by the planner (gray), time-optimal plans at each planning cycle
(blue), and the actual path taken (red).

vmax ≤ 1.9 m/s. In Fig. 6.4, the weights for the linear and angular velocity cost is set
higher (cv = 0.4 and cω = 0.2) so the robot prefers to move slower, moving behind the
pedestrian C as it passes and then speeding up. In Fig. 6.5, with a small weight on the
linear velocity cost (cv = 0.04 and cω = 0.02) the robot is more aggressive and does not
slow down, cutting in front of the slow-moving pedestrian C. The trajectories sampled by
the planner (gray), time-optimal plans at each planning cycle (blue), and the actual path
taken (red) are shown on the right.

59

Figure 6.2: Robot navigation example in L-corridor, with a pedestrian.

(Best viewed in color) Top: The robot motion in 0 - 6 s. As a pedestrian (red circle) begins to
move, the robot stops briefly to avoid collision (at t ∼ 6 s). Velocities and accelerations shown in
Fig. 6.3. Estimated trajectory of the dynamic object is shown as red lines.
Middle: As the pedestrian moves into the corridor, the robot starts trailing the pedestrian at about
the same average speed, progressing toward the goal while avoiding collision.
Bottom: Trajectories sampled by the planner (gray), time-optimal plans at each planning cycle
(blue), and the actual path taken (red).

60

Figure 6.3: Robot velocity and acceleration profiles for L-corridor example.

(Best viewed in color) Top: Velocity and acceleration profiles for the robot in the free corridor.
The vehicle is given a very small weight on linear velocity cost and moves close to the maximum
allowed speed.
Middle: In a corridor with a pedestrian, the robot is able to stop, start again and trail the pedestrian
with the proposed algorithm, without changing any parameters.
Bottom: Linear velocity profile of the robot and the pedestrian (dynamic object). The robot stops
briefly at t ∼ 6 s as the pedestrian blocks the way, and trails the pedestrian nearly at the same speed
as it moves.

6.2 Person Pacing and Following in Simulated Environments

2 In this Section, we introduce a navigation algorithm for person pacing, which refers
to the capability to walk next to another person at desired distance and orientation (Miller,
1996). Person pacing is a very important skill for a service robot, especially for autonomous
wheelchair applications where a passenger commonly wants to accompany a person side
by side. Note that for such passenger vehicles, there are very important additional require-
ments such as safety, comfort, and preference of the passenger that cannot be overlooked.

6.2.1 Introduction

For motion control, existing literatures on the topic tend to focus only on person fol-

lowing, where the objective is simplified to maintain relative distance without considering
orientation. There are published methods based on P- or PID-control and its variants, (Topp

2The material in this section is a revised presentation of the results in Park and Kuipers (2013).

61

Figure 6.4: Robot navigation example in open hall (passive)

(Best viewed in color) In an open hall (13.5× 18 m) with multiple pedestrians (A-D, red circles),
the robot (blue) estimates the trajectories of dynamic objects over the planning horizon (red lines)
and navigates toward the goal (green circle) without collision. Compared to Fig. 6.5 the robot
moves slower due to larger weights on the action cost (cv = 0.4 and cω = 0.2). Left and Center:
Time-stamped snapshots of the robot and pedestrian. Right: Trajectories sampled by the planner
(gray), time-optimal plans selected at each planning cycle (blue) and the actual path taken (red).

Figure 6.5: Robot navigation example in open hall (aggressive)

(Best viewed in color) Robot motion in the same environment as Fig. 6.4, but with low weights on
the action cost (cv = 0.04 and cω = 0.02). The robot moves more aggressively and cuts in front of
the dynamic object marked C, which it passed behind in Fig. 6.4. Left and Center: Time-stamped
snapshots of the robot and pedestrian. Right: Trajectories sampled by the planner (gray),
time-optimal plans selected at each planning cycle (blue) and the actual path taken (red).

62

and Christensen, 2005; Gockley et al., 2007; Ma et al., 2008; Germa et al., 2009; Hu et al.,
2009), simple distance and distance-and-velocity based control laws, (Satake and Miura,
2009; Takemura et al., 2009), a finite state machine (Lam et al., 2011), and on-line prob-
abilistic roadmap (Frintrop et al., 2010; Hoeller et al., 2007), but the resulting motion
from those methods tends to be slow, jerky, or both. Notably, there is a classical method
based on velocity obstacle for person pacing (Prassler et al., 2002), and more recent work
(Hemachandra et al., 2011) that uses a variant of pure pursuit for person following with
good performance, but smoothness and comfort of robot motion are largely neglected in ex-
isting literature. Also, as several studies (Walters et al., 2005; Gockley and Mataric, 2006)
have found, the appropriate distance may vary according to individuals (Gockley et al.,
2007), but with existing methods typically use a fixed value for desired clearance and it is
not clear how to adapt to user-specified preferences in distance and orientation.

Here we develop a versatile motion planning algorithm that is able to generate behav-
iors that are appropriate across a wide range of situations, while respecting user-specified
distance and orientation preferences. The algorithm considers the robot’s and the person’s
current configuration, observed locations and velocities of pedestrians, and static structures
in the environment, while moving as smoothly and comfortably as possible.

6.2.2 Cost definition for Person Pacing and Evaluations

Formally, let ρ(t) be the estimated radial distance between the robot and the target
person at time t, and η(t) ∈ (−π, π] denote the estimated relative orientation of the robot as
measured from the heading of the target person at time t. We implement a straightforward
cost metric F (·) for person pacing (which is in unit of distance),

F (t) = |ρ(t)− ρd|+ cη · ρd · |g(η(t)− ηd)| (6.1)

where ρd and ηd denote the user-specified desired distance and orientation in the person-
frame,3 cη is the weight for orientation error, and g(·) is a function that wraps any angle to
interval (−π, π].

If there is no specific preference for the orientation, the problem reduces to person
following and F (t) = |ρ(t)− ρd|. Also, if there are more than two desired orientations,
e.g. walking on either side of the person is equally desirable, we replace the orientation
error |g(η(t)− ηd)| with min(|g(η(t)− ηd1|, |g(η(t)− ηd2)|, ...). Example cost surfaces are
shown in Fig. 6.6.

3The desired orientation is defined with respect to the heading of the target person, and is not a function
of robot orientation in reference frame.

63

Figure 6.6: Moving cost-to-go definition for person pacing.

(Best Viewed in Color) Example cost surfaces for person pacing which encode the user specified
desired distance and orientation. The person to follow is depicted as a circle in the middle, with
arrow indicating the person’s heading. Red-to-blue color represents high-to-low cost. The cost
surface is attached to the estimated pose of the person. See text for details.
Left: With the user specified desired orientation of π/2 rad (on the left side of the person) and the
desired distance of 1 m.
Right: The desired distance is the same at 1 m, but with the preferred orientation of ±π/2 rad (on
either side of the person).

In Fig. 6.7, the robot starts at some distance away from the target pedestrian and quickly
sets itself up on the left side of the person, with desired distance and orientation of ρd =

1.5 m and ηd = π/2. The mission is relatively easy, and the robot is able to follow the
person smoothly near desired distance and orientation (Fig. 6.8, Right). The full set of
trajectories explored over the navigation run is shown on Fig. 6.7, Right. Overall, the robot
moves smoothly, except a brief slowdown near 14 s (Fig. 6.8) to avoid collision with a
pedestrian coming across.

Fig. 6.9 shows the trajectory of the robot in the same environment, but it is now in-
structed to pace the person on the right, with desired distance and orientation of ρd = 1.5 m
and ηd = −π/2. The mission is more difficult, as the robot has less space to maneuver. The
successfully speed up, slow down, change its heading to avoid the pedestrian and return to
its desired position. The full set of trajectories that were explored over the navigation run
is shown on Fig. 6.7, Right. As can be seen in this example, the robot with the proposed
navigation algorithm is able to temporarily move away from the user-specified distance and
orientation preferences to avoid collision with other obstacles (Fig. 6.10).

Fig. 6.11 - 6.12 show the most challenging example, where the robot (0.76 × 1.2 m)
has to move in a tight corridor (2 m wide) with multiple pedestrians. In this example no

64

specific preference in orientation is given, and the problem is reduced to person following
with the desired distance of ρd = 1.8 m. The example shown is very difficult as the robot
needs to move in confined space and there is a pedestrian quickly moving in from behind.
The robot is able to successfully follow the person, speeding up, switching sides, slowing
down and veering as needed.

Over the three example runs shown, 10240 trajectory candidates were evaluated in 166
planning cycles, averaging 61.7 trajectory evaluations per optimization, achieving real-time
performance.

65

Figure 6.7: Person pacing example in an open hall.

(Best viewed in color) In an open hall (13.5× 18 m) with multiple pedestrians (circles), the robot
(blue) estimates the trajectories of dynamic objects over the planning horizon (protruding lines)
and paces the target person (green) on the left without collision. This is a relatively easy mission.
Left and Center: The trajectories overlaid with snapshots of the robot (rectangle) and the
pedestrians (circles) at 1 s interval. The axis are in grid coordinates (5cm per grid). The robot starts
from the bottom, trying to pace the person in the middle on the left.

Right: Trajectories sampled by the planner (gray), time-optimal plans selected at each planning
cycle (blue) and the actual path taken (red).

Figure 6.8: Robot and companion velocities in the example shown in Fig. 6.7.

Estimated velocity of the leading pedestrian and the measured speed of the robot. The robot moves
smoothly, and shows a brief slowdown near 14 s to avoid collision with a pedestrian coming across
its path.

66

Figure 6.9: Person pacing example in an open hall (more difficult).

(Best viewed in color) In an open hall (13.5× 18 m) with multiple pedestrians (circles), the robot
(blue) estimates the trajectories of dynamic objects over the planning horizon (protruding lines)
and paces the target person (green) on the right without collision. The robot has to maneuver in a
tighter space and avoid an oncoming pedestrian. The successfully speed up, slow down, change its
heading to avoid the pedestrian and return to its desired position.
Left and Center: The trajectories overlaid with snapshots of the robot (rectangle) and the
pedestrians (circles) at 1 s interval. The axis are in grid coordinates (5cm per grid). The robot starts
from the bottom, trying to pace the person in the middle on the right. The robot is able to move
away from the user-specified distance and orientation targets to avoid collision with other
obstacles.

Right: Trajectories sampled by the planner (gray), time-optimal plans selected at each planning
cycle (blue) and the actual path taken (red).

Figure 6.10: Robot and companion velocities in the example shown in Fig. 6.9.
Estimated velocity of the leading pedestrian and the measured speed of the robot.

67

Figure 6.11: Person following example in a narrow corridor.

(Best viewed in color) In a tight corridor environment (32.5× 12.5 m, 2 m in width) with multiple
pedestrians (circles), the robot (blue) estimates the trajectories of dynamic objects over the
planning horizon (protruding lines) and follows the target person (green), without orientation
preference. The axis are in grid coordinates (5cm per grid).
Top: The robot follows the person slightly on the left to keep distance from walls, and can move
away from estimated trajectory (red lines) of an oncoming pedestrian.
Bottom: After the robot moves into a hallway, the person moves along the left wall and the robot

switches to the right side of the person to keep distance from walls. When it detects a quickly
approaching pedestrian from behind, it slows down and veers slightly left to avoid collision with

the pedestrian and the person the robot is following.

Figure 6.12: Trajectories evaluated by the planner in the example shown in Fig. 6.11.

(Best viewed in color) Densely sampled candidate trajectories in the neighborhood of the robot
over the navigation run in Fig. 6.11 (gray), time-optimal plans selected at each planning cycle
(blue) and the actual path taken (red).

68

6.3 Robot Navigation in Real Environments

Here we show results from the experiments carried out in real indoor environments
with a physical wheelchair robot (Fig. 3.7). Mapping, tracking, planning, and control was
performed on-line and in real time from an on-board laptop. We show that the robot exhibits
a series of useful and seemingly intelligent behaviors as a result of direct optimization of
the expected cost.

The main experiment in this section contains a 7 minute robot navigation in a typical
corridor environment in the presence of pedestrians (Fig. 6.13 - Fig. 6.19.) We show
that with our stochastic MPC, the robot navigates successfully without any collision (Fig.
6.13), and exhibits a wide range of reasonable and seemingly intelligent behaviors such as
passing, moving around, following behind, and waiting for a person to pass in a narrow
corridor. Snapshots of individual behaviors with visualization of the optimization process
are shown in Fig. 6.14 - Fig. 6.19. The robot is able to smoothly avoid an oncoming
pedestrian (Fig. 6.14), circumvent a standing person in the middle of the way (Fig. 6.15),
exhibit apparent following behavior in narrow passage behind a person (Fig. 6.16), safely
overtake a person when possible (Fig. 6.17), or decides to walk alongside if the weight on
the action cost is high (Fig. 6.18), and can even wait for a pedestrian to clear the way. See
captions for details.

Next, we tested the algorithm in more crowded environment (Fig. 6.20-Fig. 6.22). The
robot is able to move through crowd without any collision, and always will slow down/stop
if the probability of collision is high.

We demonstrate that our method generates graceful (safe, smooth, comfortable, fast,
and intuitive) and customizable robot behavior in physical environments with pedestrians
in real time, which is difficult to achieve with existing algorithms. Unlike other ‘safe’ algo-
rithms which rely on a slow moving robot and very conservative estimates, our stochastic
MPC can fully utilize the robot’s physical capability and can move the vehicle at its top
speed when it is safe (and if the user prefers to move fast), but is guaranteed to slow down
gracefully and move carefully if the perceived probability of collision is high. This is an
important and necessary feature for a motion planning algorithm for a passenger-carrying
vehicle. We believe that our work is a significant step toward safe and reliable autonomous
navigation that is acceptable to human users.

69

Figure 6.13: Accumulated robot trace from a physical robot in dynamic environment.

The robot (green rectangle) looping through 3 target poses autonomously in 22x15m corridor
environment in the presence of pedestrians. Magenta line in this figure represents accumulated 7
minutes of robot trace, where the robot navigated successfully without any collision. The
variability of the trace is the result of the robot avoiding pedestrians.

70

Figure 6.14: Snapshot of the policy and trajectory optimization. The robot avoids an on-
coming pedestrian.

Robot safely avoids oncoming pedestrian in a narrow corridor.
Top: 364 trajectories evaluated (green-blue-red color gradient indicates better to worse) in 56ms
(left) to find the optimal solution (right) at t = 22s. Estimated robot and pedestrian pose, green
rectangle and purple triangles are drawn over the estimated trajectories at 1 sec interval.
Middle: 157 trajectories evaluated in 40ms (left) and the planned trajectory (right) after the robot
has passed the person at t = 24s. Th robot speeds up smoothly.
Bottom: Distance to the nearest obstacle, and linear and angular speed of the robot.

71

Figure 6.15: Snapshot of the policy and trajectory optimization. The robot moves around a
standing pedestrian.

Robot avoids a standing pedestrian while taking corner to the right.
Top: 233 trajectories are evaluated in 40ms (left), and the robot plans to make a large curve,
around v ' 0.5m/s and ω ' −0.5rad/s (right), at t = 59s
Middle: 392 trajectories evaluated in 60ms (left), and the planned trajectory (right) at t = 61 s.
Bottom: Distance to the nearest obstacle, and linear and angular speed of the robot.

72

Figure 6.16: Snapshot of the policy and trajectory optimization. The robot moves behind a
slow-moving pedestrian.

Top: Robot apparently following the person in front, while moving toward a goal pose to the left
side of the map. To make the maximal progress without collision, the robot has to trail the
pedestrian in front.
Bottom: Distance to the nearest obstacle, and linear and angular velocity of the robot.

73

Figure 6.17: Snapshot of the policy and trajectory optimization. The robot overtakes a
slow-moving pedestrian.

Top: Robot decides to overtake a pedestrian. 411 candidate trajectories are evaluated in 63 sec,
with initial robot speed at v = 0.68 m/s.
Middle: Robot safely passes the pedestrian and approaches the target pose at v = 0.93 m/s.
Bottom: Distance and velocity plot.

74

Figure 6.18: Snapshot of the policy and trajectory optimization that results in an apparent
following behavior.

Robot apparently moving alongside a pedestrian. The situation is essentially the same as Fig. 6.17,
but here the overall weight for the stage cost (quadratic in velocities) is twice (cv = 0.8) the
nominal value, rendering the preferred speed to be at v ' 0.6 m/s. In general, robot behavior
appears much less aggressive with higher cost on velocities, and vice versa, as expected.

Figure 6.19: Snapshot of the policy and trajectory optimization that allows the robot to wait
for a person to pass.

Robot can also wait for a person at short narrow passage as a result of direct optimization. If
moving forward will be likely to result in collision (Left), the optimal solution is to stay still. As
soon as the person clears however, the robot decides to move (Right).

75

Figure 6.20: Trace of the robot (' 40m) navigating autonomously among modestly dense
crowd in a large (' 60x6m) hallway.

Figure 6.21: The robot finding way through multiple pedestrians.

Figure 6.22: The optimal solution is to stay still when it is not safe to move.

76

CHAPTER VII

Conclusion and Future Work

Graceful navigation in the real world is difficult because of dynamic constraints, mod-
eling uncertainty, noisy measurements, partial sensory data, and real-time computation
requirements. In this thesis, we have presented our MPEPC algorithm for mobile robot
navigation in dynamic and uncertain environments. Our algorithm is a stochastic model
predictive control which determines the optimal control policy at each time step to mini-
mize the expected cost over a specified prediction horizon. The cost function is well defined
so that the desired performance can be achieved across a wide range of real-life situations,
and the policy is compactly parameterized so that the computational load is minimal and
can be run in real-time on a single core of a typical laptop.

This depends on four specific technical contributions. We define our expected cost so
that we can directly incorporate the time-varying uncertain constraints and the probability
of violating those constraints into the cost function, which tends to create a smooth cost sur-
face that is easy to optimize over. The dimensionality reduction of this problem critically
depends on the policy and closed-loop trajectory parameterization based on our Lyapunov-
based feedback control law, which we have developed for graceful motion of differential
wheeled mobile robots. The stability of this stochastic model predictive control critically
depends on our non-holonomic distance function, which is also a Control-Lyapunov func-
tion for unicycle-type vehicles. We also develop an accurate model of the robot for accurate
forward prediction.

We demonstrate that our method generates graceful (safe, smooth, comfortable, fast,
and intuitive) and customizable robot behavior in physical environments with pedestrians
in real time. The work presented in this thesis extends the state-of-the-art in analytic control
of mobile robots, sampling-based optimal path planning, and stochastic model predictive
control. The proposed algorithm addresses the difficult problem of navigating in uncertain
and dynamic environment safely and comfortably while avoiding hazards, which is a nec-
essary task for autonomous passenger vehicles. We believe that our work is a significant

77

step toward safe and reliable autonomous navigation that is acceptable to human users.
There are several important future research directions that could improve the perfor-

mance of the algorithm. First, since the performance of model predictive control in general
critically depends on the quality of the model, it would be ideal if we could learn an accu-
rate model of the robot over time. This will also greatly facilitate the implementation of the
algorithm to different physical platforms. Second, the algorithm can also benefit greatly
from more accurate predictions of other agents’ future motion. This will involve intention
estimation and agent-to-agent interaction modeling. Third, we note that the proper quan-
tification of user preference and comfort, and a quantifiable benchmark for the quality of
motion in general are other open areas. These will require further user studies.

78

APPENDICES

79

APPENDIX A

System Identification, State Estimation, and Low-Level
Control of a Physical Wheelchair

1 Here, we describe the system identification, state estimation and simulation, and
model-based feedforward-feedback velocity controller for our physical robot. The pro-
cesses described in this appendix provide necessary components for implementation of our
proposed motion planning and control algorithm to a physical system.

Figure A.1: Vulcan system diagram.

(Best viewed in color) Boxes (processes) in solid red lines uses the robot model. u is the joystick
position, νR and νL are the right and the left motor input, mR and mL are the right and the left
wheel/motor states, s̃ is the measured displacements of the wheels, p̂ is the estimated robot
position, q is the full robot state, {q} is the state trajectory, Î is relevant information of the
environment, ζ is parameterization of a (pose-stabilizing) control law, and v∗ is a target velocity.

1This is a revised (and extended) presentation of Park (2014).

80

The physical body of our robot is a commercially available powered wheelchair retro-
fitted with lidar sensors, an internal measurement unit, and odometers. Modelling the dy-
namics of this system was not trivial, partly because motor signals and wheel accelerations
were not observable (although detectable) due to lack of sensors, and partly due to the usual
difficulty of modelling and incorporating the non-linear friction in the system. We note that
to achieve desired accuracy in the model it was necessary to incorporate friction and motor
saturation in the system. An overview our implementation is illustrated in Fig. A.1.

The model and the system identification process are described in Section A.1, and we
show that our physics based model can accurately represent the dynamics of the real sys-
tem. This in turn allows the high-fidelity robot state estimation and model predictive sim-
ulation in Section A.2, and the model-based feedforward-feedback control of wheel veloc-
ities in Section A.3.

A.1 Modelling Vehicle Dynamics with Friction

Here, we describe our model of joystick-controlled differential-drive electric powered
wheelchair, Vulcan (Fig. 3.7). This driving platform, Quantum6000z from Pride Mobility,
is proprietary and the specific information about internal parameters are not available. Our
discrete-time model of the vehicle (Fig. A.2) is composed of three subsystems: (i) a map-
ping from joystick positions into motor commands; (ii) load-motor-wheel dynamics model;
and (iii) vehicle body which maps wheel speeds into vehicle velocities and integrates poses.

Figure A.2: System diagram for our vehicle model.

u is the external control input (joystick), ν is the motor input, m is the motor/wheel state, and q is
the full robot state. Superscripts R/L denote right/left.

The full state vector for the robot consists of the pose p = [x y θ]T and the two mo-
tor/wheel states m = [ṡ, s̈] where s is displacement of a wheel, i.e., q ≡ [pmRmL]T =

[x y φ ṡR s̈R ṡL s̈L]T , where the superscripts R and L denote the right and the left wheel
of the differential drive vehicle. Note that there exists a bijective relation between the ve-
hicle velocities [v ω] and the wheel velocities [ṡR ṡL] (see (A.7)), so [x y φ ṡR s̈R ṡL s̈L] ∼

81

[x y φ v ω s̈R s̈L].
We will show that the dynamics of the system can be closely approximated by a differ-

ence equation (A.1), that is parametrized by 8 positive constant, c0, c1, c2, α, β, γ, µ, and
L. The meaning of the constants will be discussed later. Formally, we write

qk+1 = f(qk, uk) = f(qk, uk; c0, c1, c2, α, β, γ, µ, L) (A.1)

where qk and the uk are the state and control input of the robot at the k-th step at time
tk, and qk+1 is the state at the next time step. The control input uk = [ufk u

l
k]
T consists

of the forward (uf) and the lateral (ul) joystick positions, which are the only available
control input to the system. The robot is equipped with encoders and SLAM, which gives
us observations on individual wheel speeds and pose.

A.1.1 Input Mapping

Empirically, we have found the following non-linear model for joystick-input-to-motor-
input mapping work well with data when combined with the other subsystems:[

νR

νL

]
=

[
1 gu(u

f)

1 −gu(uf)

][
uf

ul

]
(A.2)

where νR and νL are unitless inputs to the right and the left motors, uf and ul are the
forward and lateral joystick positions, and

gu(u
f) =

{
c0 if uf = 0

c1(1− c2|uf |) otherwise
(A.3)

is a non-linear scaling factor for the lateral joystick position which models interaction be-
tween forward-backward and left-right joystick commands, where c0, c1 and c2 are non-
zero positive constants that parameterize this mapping.

A.1.2 Load-motor-wheel Subsystem

This subsection describes a model for the load-motor-wheel subsystem, i.e., an electric
motor connected to a wheel under a constant unknown load. Let sk be the displacement
of the wheel, and νk is the unitless input to the motor which is converted to jerk (which is
proportional to Voltage for electric motors) via some gain. Then we can write the following

82

model for the load-motor-wheel subsystem,[
ṡk+1

s̈k+1

]
=

[
1 hk

−βhk 1− γhk

][
ṡk

s̈k

]
+

[
hk

0

]
gr(ṡk, s̈k;µ) +

[
0

αhk

]
νk (A.4)

where ṡk and s̈k are speed and acceleration of the wheel which constitute the state vector
mk ≡ [ṡk s̈k]

T for this subsystem, which we call wheel/motor state, and hk ≡ tk+1−tk is the
time interval between k- and k + 1-th time step. The positive constants α, β and γ models
the input gain, velocity- and current-induced resistance for standard DC-motors, respec-
tively, and gr(·) models acceleration from the load-induced mechanical friction Kikuuwe

et al. (2005)2

gr(ṡk, s̈k;µ) =

{
µ̄(·) if |µ̄(·)| ≤ µ

sgn(µ̄(·))µ otherwise
(A.5)

where
µ̄(ṡk, s̈k) ≡ −

ṡk
hk
− s̈k (A.6)

and the positive constant µ is a parameter for the maximum friction-induced acceleration
which is a function of unknown but constant load and friction coefficient.

In this model, there are four parameters to fit for each wheel-motor-load subsystem, α,
β, γ, and µ, which represents input gain, and velocity-, current-, and load- induced resis-
tances. We assume identical wheel, motor and load for the right and the left subsystems.

A.1.3 Differential-drive Motion Model

For the motion of differential-drive vehicles on 2D plane, we can write[
v

ω

]
=

[
1
2

1
2

1
L
− 1
L

][
ṡR

ṡL

]
(A.7)

where v and ω are linear and angular velocity of the rigid body, L is the length of the axle
between two denote the length of the axle between the two drive wheels, and ṡR and ṡL are
the speed of the right and the left wheel.

Assuming no-slip condition, the linear and angular velocities are inputs to the following

2This paper Kikuuwe et al. (2005) is an excellent reference for different friction models for discrete-time
systems. The key feature of (A.5)-(A.6) is the speed drops exactly to zero in a single step if |µ̄(·)| ≤ µ,
removing the need of special event detection and special rules near zero speed, which can often become
unnecessarily complicated. Here we start with a simple constant Coulomb friction model, but it can be
extended to include arbitrary velocity dependencies by modifying (A.6) if needed.

83

motion model of the vehicle: xk+1

yk+1

φk+1

 =

 xk + v̄khk cos(φk + 1
2
ω̄khk)

yk + v̄khk sin(φk + 1
2
ω̄khk)

φk + ω̄khk

 (A.8)

where pk ≡ [xk yk φk]
T is the pose of the vehicle at time tk, and v̄k and ω̄k are average

linear and angular velocity over the time interval hk, approximated with v̄ = 1
2
(vk + vk+1)

and ω̄ = 1
2
(ωk + ωk+1). This half turn-drive-half turn approach closely approximates real

vehicle motion (Wang, 1988).

A.1.4 Evaluation

Fig. A.3-A.5 shows comparison between linear and angular velocities measured from
the encoders (blue) to the velocities predicted by the model (magenta). The model is only
given the initial state q = [0, 0, 0, 0, 0, 0, 0]T and the measured control inputs t = [0 945]

(seconds), and the system model (A.1) is recursively applied to the state and the control
input to generate model-based prediction of linear and angular velocity. Overall, the pre-
diction stays highly accurate for the entire duration of the dataset, without using any state
measurement except the initial condition.

A.2 Simulation and State Estimation

Robot trajectory simulation is a repeated application of (A.1) to a robot state q given
some control u, propagating the state through time to obtain an estimate of future trajectory.
This propagation is carried out in two steps: First, the motor/wheel states m̂R

k and m̂L
k are

propagated under the control uk via (A.2)-(A.6); Then, the pose p̂k is propagated under
average velocities v̄k and ω̄k via (A.8), where the average velocities are computed from
velocities mapped from the previous and new motor/wheel state estimates via (A.7). Note
that all mappings are well defined and the uncertainties can also be propagated.

For state estimation, we use Kalman filters. We employ three separate filters, one each
for prediction and correction of the statesmR,mL and p. Relevant observations are encoder
readings s̃R and s̃L from each wheel, and the pose estimate p̂ from the localization module
(Fig. A.6).

The equations (A.2)-(A.8) are the process models for the prediction step of the Kalman
filters. For mR and mL, the process model consists of (A.2)-(A.6), and the observation

84

Figure A.3: The model prediction vs. measurements at low velocities with step inputs.

(Best viewed in color) The model prediction (magenta) vs. measurement (blue) at low velocities
with step inputs. The model prediction is using state measurement only at t = 0, and recursively
simulated forward via the proposed model.

Figure A.4: The model prediction vs. measurements at higher velocities with step inputs.

Figure A.5: The model prediction vs. measurements with random step and sinusoidal in-
puts.

The model is able to predict the robot velocities accurately for the entire duration of the dataset
(945 seconds), without using any state measurement except the initial condition.

85

Figure A.6: State estimator diagram.

The joystick positions u propagates the wheel/motor states which is corrected with encoder
readings s̃. The estimated wheel/motor states m̂ is mapped into vehicle velocities, treated as input
to the vehicle kinematic model and used to update vehicle pose using the estimate of the robot pose
p̂ from localization module.

model3 using the encoder readings s̃ is

ˆ̇sk =
s̃k+1 − s̃k

hk
(A.9)

For p, the process model consists of (A.7)-(A.8), and the observation model is identity, as
the full pose estimate and the covariance is available as the result of the localization.

Note that, in all our equations, we explicitly state that the time interval hk can be time-
varying. That is because in practice time interval between observations from sensors is
almost never constant, and have to be re-evaluated at each update using the sensor time
stamps.

A.3 Model-based Velocity Control

Here we describe a method to stabilize the velocity of the vehicle to a desired value.
For our system, we know from data that constant input (joystick position) corresponds
to certain steady-state velocity, which is typical for a commercially developed platform
intended for human use. To use that for our benefit, we begin with the steady-state analysis
of the load-motor-wheel subsystem (A.4), and construct a feedforward-feedback control
design.

3For the load-motor-wheel subsystem (A.4), the acceleration s̈ is not directly observable but it is detectable
via observation of the speed ṡ, thus it is possible to estimate the full wheel/motor state.

86

A.3.1 Steady-state Analysis

Suppose the load-motor-wheel subsystem (A.4) is in steady state so that ṡk = ṡ∞ and
s̈k = s̈∞ for ∀k under some constant input ν. To begin, assume the vehicle is moving
forward at constant speed, i.e. ṡ, s̈ > 0 and |µ̄(·)| > µ, then we have from (A.4)-(A.5)[

ṡ∞

s̈∞

]
=

[
1 h

−βh 1− γh

][
ṡ∞

s̈∞

]
+

[
−µh

0

]
+

[
0

αh

]
ν∞ (A.10)

so that {
ṡ∞ = α

β
ν∞ − µγ

β
(ν∞ > µγ

α
)

s̈∞ = µ
(A.11)

which means the steady-state speed is a function of constant input, and when in steady state
the constant motor acceleration is cancelled out by constant friction, as expected.

Performing this analysis for all cases, we can write

ṡ∞ =

α
β
ν∞ − µγ

β
if ν∞ > µγ

α
α
β
ν∞ + µγ

β
if ν∞ < −µγ

α

0 otherwise

(A.12)

and

ν∞

= β

α
ṡ∞ + µγ

α
if ṡ∞ > 0

∈ [−µγ
α
, µγ
α

] if ṡ∞ = 0

= β
α
ṡ∞ − µγ

α
if ṡ∞ < 0.

(A.13)

Eq. (A.12), and Eq. (A.13) with collapsed nullspace (ν∞ = 0 if ṡ∞ = 0) are shown in Fig.
A.7.

Figure A.7: Steady-state wheel speeds and steady-state motor inputs.
Left: Steady state motor input vs. speed. Right: Steady state speed vs. motor input.

87

A.3.2 Feedforward Control

Eq. (A.13) allows us to construct a model-based feedforward control. Suppose we want
to achieve a steady-state velocity v∗, ω∗. By inverting (A.7), we get the corresponding
steady-state wheel speeds [

ṡ∗R

ṡ∗L

]
=

[
1 L

2

1 −L
2

][
v∗

ω∗

]
(A.14)

which then can be mapped to the corresponding command ν∗ for each motor, with

ν∗ =

{
β
α
ṡ∗ + sgn(ṡ∗)µγ

α
if ṡ∗ 6= 0

0 ṡ∗ = 0
(A.15)

which is constructed from (A.13) by substituting ṡ∞ with ṡ∗ and taking ν = 0 if ṡ∗ = 0.
Now, inverting the joystick-to-motor mapping (A.2), we get

uffeedforward =
1

2
(ν∗R + ν∗L) (A.16)

ulfeedforward =
1

2gu(uf)
(ν∗R − ν∗L) (A.17)

where ν∗R and ν∗L are the commands for the right and the left motors obtained by (A.15).
Eq.(A.14)-(A.17) maps the steady-state velocities to corresponding joystick commands,
assuming accurate model.

A.3.3 Feedforward-feedback Control

We rely on the feedforward control to achieve the desired steady state, but it is often
desirable to have additional feedback control to improve transient response of the system or
to reduce error due to imperfect model. We have implemented a simple saturation-imposed
P-controller for that purpose. Combined with the feedforward control (A.16)-(A.17), the
full controller can be written as

uf =
1

2
(ν∗R + ν∗L) + Pv gv(v

∗ − v̂) (A.18)

ul =
1

2gu(uf)
(ν∗R − ν∗L) + Pω gω(ω∗ − ω̂) (A.19)

88

where the Pv and Pω are the gains, the v̂ and ω̂ are current estimate of the linear and angular
velocities, and

gv(v
∗ − v̂) = sgn(v∗ − v̂) ·min(|v∗ − v̂|, ufmax/Pv)

gω(ω∗ − ω̂) = sgn(ω∗ − ω̂) ·min(|ω∗ − ω̂|, ulmax/Pω)

where ufmax and ulmax are user-imposed saturation bounds.

89

BIBLIOGRAPHY

90

BIBLIOGRAPHY

Aguiar, A., and A. Pascoal (2007), Dynamic positioning and way-point tracking of un-
deractuated AUVs in the presence of ocean currents, International Journal of Control,
80(7), 1092–1108.

Aicardi, M., G. Casalino, A. Bicchi, and A. Balestrino (1995), Closed loop steering of
unicycle-like vehicles via Lyapunov techniques, IEEE Robotics and Automation Maga-
zine, 2(1), 27–35.

Aoude, G., B. Luders, J. Joseph, N. Roy, and J. How (2013), Probabilistically safe mo-
tion planning to avoid dynamic obstacles with uncertain motion patterns, Autonomous
Robots, 35(1), 51–76.

Bacha, A., et al. (2008), Odin: Team Victor Tango’s entry in the DARPA urban challenge,
Journal of Field Robotics, 25(8), 467–492.

Bakaric, V., Z. Vukic, and R. Antonic (2004), Improved basic planar algorithm of vehicle
guidance through waypoints by the line of sight, in First Int. Symposium on Control,
Communications and Signal Processing, pp. 541–544.

Bentley, J. L. (1975), Multidimensional binary search trees used for associative searching,
Communications of ACM, 18(9), 509–517.

Bertrand, S., T. Hamel, and H. Piet-Lahanier (2006), Performance improvement of an adap-
tive controller using model predictive control : Application to an UAV model, in 4th
IFAC Symposium on Mechatronic Systems, vol. 4, pp. 770–775.

Blackmore, L., H. Li, and B. Williams (2006), A probabilistic approach to optimal robust
path planning with obstacles, in American Control Conference, pp. 7–13.

Bohren, J., et al. (2008), Little ben: the ben franklin racing team’s entry in the 2007 darpa
urban challenge, Journal of Field Robotics, 25(9), 598–614.

Borenstein, J., and Y. Koren (1991), The vector field histogram-fast obstacle avoidance for
mobile robots, IEEE Transactions on Robotics and Automation, 7(3), 278–288.

Breivik, M., and T. Fossen (2008), Guidance laws for planar motion control, in 47th IEEE
Conference on Decision and Control, pp. 570–577.

91

Brockett, R. W. (1983), Asymptotic stability and feedback stabilization, in Differential
Geometric Control Theory, edited by R. W. Brockett, R. S. Millman, and H. J. Sussmann,
pp. 181–191, Birkhauser, Boston, MA.

Burridge, R., A. Rizzi, and D. Koditschek (1999), Sequential composition of dynamically
dexterous robot behaviors, International Journal of Robotics Resaech, 18(6), 534–555.

Charnes, A., and W. W. Cooper (1959), Chance-constrained programming, Management
Science, 6(1), 73–79.

Cheng, P., and S. M. LaValle (2001), Reducing metric sensitivity in randomized trajectory
design, in 2001 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 43–
48.

Choset, H., K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E. Kavraki, and
S. Thrun (2005), Principles of Robot Motion: Theory, Algorithms, and Implementations,
The MIT Press, Cambridge, MA.

Chou, C. T., J.-Y. Li, M.-F. Chang, and L. C. Fu (2011), Multi-robot cooperation based
human tracking system using laser range finder, in 2011 IEEE Int. Conf. on Robotics
and Automation (ICRA), pp. 532–537.

Dijkstra, E. (1959), A note on two problems in connexion with graphs, Numerische Math-
ematik, 1(1), 269–271.

Dolgov, D., S. Thrun, M. Montemerlo, and J. Diebel (2010), Path planning for au-
tonomous vehicles in unknown semi-structured environments, The International Journal
of Robotics Research, 29(5), 485–501.

Droge, G., and M. Egerstedt (2011), Adaptive look-ahead for robotic navigation in un-
known environments, in 2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pp. 1134–1139.

Du Toit, N., and J. Burdick (2011), Probabilistic collision checking with chance constratins,
IEEE Transactions on Robotics, 27(4), 809–815.

Du Toit, N., and J. Burdick (2012), Robot motion planning in dynamic, uncertain environ-
ments, IEEE Transactions on Robotics, 28(1), 101–115.

Feldman, A. G., and M. F. Levin (2009), The equilibrium-point hypothesis past, present
and future, in Progress in Motor Control, Advances in Experimental Medicine and Biol-
ogy, vol. 629, edited by D. Sternad, pp. 699–726, Springer US.

Ferguson, D., and A. Stentz (2007), Field D∗: An interpolation-based path planner and re-
planner, in Robotics Research, Springer Tracts in Advanced Robotics, vol. 28, edited by
S. Thrun, R. Brooks, and H. Durrant-Whyte, pp. 239–253, Springer Berlin Heidelberg.

Ferguson, D., T. M. Howard, and M. Likhachev (2008), Motion planning in urban environ-
ments, Journal of Field Robotics, 25(11-12), 939–960.

92

Fiorini, P., and Z. Shiller (1998), Motion planning in dynamic environments using velocity
obstacles, The International Journal of Robotics Research, 17(7), 760–772.

Fox, D., W. Burgard, and S. Thrun (1997), The dynamic window approach to collision
avoidance, IEEE Robotics Automation Magazine, 4(1), 23 –33.

Frew, E. (2005), Receding horizon control using random search for UAV navigation with
passive, non-cooperative sensing, in 2005 AIAA Guidance, Navigation, and Control
Conf. and Exhibit, pp. 1–13.

Frintrop, S., A. Knigs, F. Hoeller, and D. Schulz (2010), A component-based approach
to visual person tracking from a mobile platform, Intternaltional Journal of Social
Robotics, 2, 53–62.

Germa, T., F. Lerasle, N. Ouadah, V. Cadenat, and M. Devy (2009), Vision and rfid-based
person tracking in crowds from a mobile robot, in 2009 IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS), pp. 5591–5596.

Glassman, E., and R. Tedrake (2010), A quadratic regulator-based heuristic for rapidly
exploring state space, in 2010 IEEE Int. Conf. on Robotics and Automation (ICRA), pp.
5021–5028.

Gockley, R., and M. Mataric (2006), Encouraging physical therapy compliance with a
hands-off mobile robot, in Proceedings of Human-Robot Interaction, Salt Lake City,
Utah, pp. 150–155.

Gockley, R., J. Forlizzi, and R. Simmons (2007), Natural person-following behavior for
social robots, in Human-Robot Interaction (HRI), 2007 2nd ACM/IEEE International
Conference on, pp. 17–24.

Goretkin, G., A. Perez, R. Platt, and G. Konidaris (2013), Optimal sampling-based plan-
ning for linear-quadratic kinodynamic systems, in 2013 IEEE Int. Conf. on Robotics and
Automation (ICRA), pp. 2429–2436.

Grancharova, A., and T. A. Johansen (2012), Nonlinear model predictive control, in Ex-
plicit Nonlinear Model Predictive Control, Lecture Notes in Control and Information
Sciences, vol. 429, pp. 39–69, Springer Berlin / Heidelberg.

Green, C., and A. Kelly (2007), Toward optimal sampling in the space of paths, in 13th
International Symposium of Robotics Research, pp. 281–292.

Gulati, S. (2011), A framework for characterization and planning of safe, comfortable, and
customizable motion of assistive mobile robots, Ph.D. thesis, The University of Texas at
Austin.

Gulati, S., and B. Kuipers (2008), High performance control for graceful motion of an
intelligent wheelchair, in 2008 IEEE Int. Conf. on Robotics and Automation (ICRA), pp.
3932–3938.

93

Gulati, S., C. Jhurani, B. Kuipers, and R. Longoria (2009), A framework for planning
vomfortable and vustomizable motion of an assistive mobile robot, in 2009 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), pp. 4253–4260.

Hart, P., N. Nilsson, and B. Raphael (1968), A formal basis for the heuristic determination
of minimum cost paths, IEEE Tranactions on Systems Science and Cybernetics, 4(2),
100–107.

Hemachandra, S., T. Kollar, N. Roy, and S. Teller (2011), Following and interpreting nar-
rated guided tours, in 2011 IEEE Int. Conf. on Robotics and Automation (ICRA), pp.
2574–2579.

Hoeller, F., D. Schulz, M. Moors, and F. Schneider (2007), Accompanying persons with a
mobile robot using motion prediction and probabilistic roadmaps, in 2007 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), pp. 1260–1265.

Horiuchi, T., S. Thompson, S. Kagami, and Y. Ehara (2007), Pedestrian tracking from a
mobile robot using a laser range finder, in IEEE Int. Conf. on Systems, Man and Cyber-
netics, pp. 931–936.

Howard, T., C. Green, and A. Kelly (2009), Receding horizon model-predictive control
for mobile robot navigation of intricate paths, in Proceedings of the 7th International
Conferences on Field and Service Robotics, pp. 69–78.

Hu, C.-H., X.-D. Ma, and X.-Z. Dai (2009), Reliable person following approach for mobile
robot in indoor environment, in 2009 Int. Conf. on Machine Learning and Cybernetics,
pp. 1815–1821.

Indiveri, G., A. Nücheter, and K. Lingmann (2007), High speed differential drive mobile
robot path following control with bounded wheel speed commands, in 2007 IEEE Int.
Conf. on Robotics and Automation (ICRA), pp. 2202–2207.

Jadbabaie, A., J. Yu, and J. Hauser (1999), Stabilizing receding horizon control of nonlinear
systems: a control lyapunov function approach, in American Control Conference, vol. 3,
pp. 1535–1539.

Jadbabaie, A., J. Yu, and J. Hauser (2001), Unconstrained receding-horizon control of non-
linear systems, IEEE Transactions on Automatic Control, 46(5), 776–783.

Johnson, S. G. (), The NLopt nonlinear-optimization package, http://ab-
initio.mit.edu/nlopt.

Karaman, S., and E. Frazzoli (2011), Sampling-based algorithms for optimal motion plan-
ning, The International Journal of Robotics Research, 30(7), 846–894.

Karaman, S., and E. Frazzoli (2013), Sampling-based optimal motion planning for non-
holonomic dynamical systems, in 2013 IEEE Int. Conf. on Robotics and Automation
(ICRA), pp. 5041–5047.

94

Karaman, S., M. R. Walter, A. Perez, E. Frazzoli, and S. Teller (2011), Anytime motion
planning using the RRT*, in 2011 IEEE Int. Conf. on Robotics and Automation (ICRA),
pp. 1478–1483.

Khalil, H. K. (2002), Nonlinear Systems (3rd Edition), 3 ed., Prentice Hall, New York, NY,
U.S.

Khatib, O. (1986), Real-time obstacle avoidance for manipulators and mobile robots, The
International Journal of Robotics Research, 5(1), 90–98.

Kikuuwe, R., N. Takesue, A. Sano, H. Mochiyama, and H. Fukimoto (2005), Fixed-step
friction simulation: From classical coulomb model to modern continuous models, in
2005 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 1009–1016.

Kim, B., and P. Tsiotras (2002), Controllers for unicycle-type wheeled robots: Theoreti-
cal results and experimental validation, IEEE Transaction on Robotics and Automation,
18(3), 294–307.

Knepper, R. A., and M. T. Mason (2009), Path diversity is only part of the problem, in 2009
IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 3224–3229.

Knepper, R. A., and M. T. Mason (2012), Real-time informed path sampling for motion
planning search, The International Journal of Robotics Research, 31(11), 1231–1250.

Konolige, K. (2000), A gradient method for realtime robot control, in 2000 IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), vol. 1, pp. 639 –646.

Konolige, K., M. Agrawal, R. Bolles, C. Cowan, M. Fischler, and B. Gerkey (2008), Out-
door mapping and navigation using stereo vision, in Experimental Robotics, Springer
Tracts in Advanced Robotics, vol. 39, pp. 179–190, Springer Berlin Heidelberg.

Koren, Y., and J. Borenstein (1991), Potential field methods and their inherent limita-
tions for mobile robot navigation, in 1991 IEEE Int. Conf. on Robotics and Automation
(ICRA), vol. 2, pp. 1398 –1404.

Kuipers, B., and K. Astrom (1994), The composition and validation of heterogeneous con-
trol laws, Automatica, 30(2), 233–249.

Lam, C.-P., C.-T. Chou, K.-H. Chiang, and L.-C. Fu (2011), Human-centered robot naviga-
tion –towards a harmoniously human-robot coexisting environment, IEEE Transactions
on Robotics, 27(1), 99–112.

Lambert, A., D. Gruyer, and G. S. Pierre (2008), A fast monte carlo algorithm for collision
probability estimation, in 10th Int. Conf. on Control, Automation, Robotics and Vision
(ICARCV), pp. 406–411.

Lapierre, L., D. Soetanto, and A. Pascoal (2006), Nonsingular path following control of a
unicycle in the presence of parametric modeling uncertainties, International Journal of
Robust Nonlinear Control, 16(10), 485–503.

95

LaValle, S. M. (1998), Rapidly-exploring Random Trees: A new tool for path planning,
Tech. Rep. 98-11, Computer Science Dept., Iowa State University.

LaValle, S. M. (2006), Planning Algorithms, Cambridge University Press, Cambridge,
U.K., available at http://planning.cs.uiuc.edu/.

LaValle, S. M. (2011a), Motion planning: The essentials, IEEE Robotics and Automation
Society Magazine, 18(1), 79–89.

LaValle, S. M. (2011b), Motion planning: Wild frontiers, IEEE Robotics and Automation
Society Magazine, 18(2), 108–118.

LaValle, S. M., and J. J. Kuffner (2000), Rapidly-exploring Random Trees: Progress and
prospects, in Algorithmic and Computational Robotics: New Directions, pp. 293–308.

Lee, J. H. (2011), Model predictive control: Review of the three decades of development,
International Journal of Control, Automation and Systems, 9(3), 415–424.

Lindemann, S. R., and S. M. LaValle (2009), Simple and efficient algorithms for computing
smooth, collision-free feedback laws over given cell decompositions, The International
Journal of Robotics Research, 28(5), 600–621.

Luders, B., M. Kothari, and J. P. How (2010), Chance constrained RRT for probabilis-
tic robustness to environmental uncertainty, in AIAA guidance, navigation, and control
conference (GNC).

Ma, X., C. Hu, X. Dai, and K. Qian (2008), Sensor integration for person tracking and
following with mobile robot, in 2008 IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pp. 3254–3259.

Magid, E., D. Keren, E. Rivlin, and I. Yavneh (2006), Spline-based robot navigation, in
2006 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 2296–2301.

Mason, M. T., and J. K. Salisbury Jr (1985), Robot hands and the mechanics of manipula-
tion, The MIT Press, Cambridge, MA.

Mayne, D. Q., J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert (2000), Constrained model
predictive control: Stability and optimality, Automatica, 36(6), 789–814.

Micaelli, A., and C. Samson (1993), Trajectory tracking for unicycle-type and two-steering
wheels mobile robots, Tech. Rep. 2097.

MicroStrain (), 3DM-GX2, http://www.microstrain.com/3dm-gx2.aspx.

Miller, D. P. (1996), Moving in tandem: automated person pacing for wheelchair users, in
Developing Assistive Technology for People with Disabilities, AAAI-96 Fall Symposium
Series, pp. 86–88.

Modayil, J., and B. Kuipers (2008), The initial development of object knowledge by a
learning robot, Robots and Autonomous Systems, 56(11), 879–890.

96

Nagarajan, U., G. Kantor, and R. Hollis (2013), Integrated motion planning and control
for graceful balancing mobile robots, The International Journal of Robotics Research,
32(1), 1005–1029.

Nakamura, K., H. Zhao, R. Shibasaki, K. Sakamoto, T. Ohga, and N. Suzukawa (2006),
Tracking pedestrians using multiple single-row laser range scanners and its reliability
evaluation, in Systems and Computers in Japan, pp. 1–11.

Oftadeh, R., R. Ghabcheloo, and J. Mattila (2015), A time-optimal bounded velocity path-
following controller for generic wheeled mobile robots, in 2015 IEEE Int. Conf. on
Robotics and Automation (ICRA), pp. 676–683.

Ogren, P., and N. Leonard (2005), A convergent dynamic window approach to obstacle
avoidance, IEEE Transactions on Robotics, 21(2), 188–195.

Palmieri, L., and K. O. Arras (2014), Distance metric learning for RRT-based motion plan-
ning for wheeled mobile robots, in 2014 IROS Machine Learning in Planning and Con-
trol of Robot Motion Workshop.

Park, J. (2014), Modeling, state estimation, and steady-state control for a powered
wheelchair, Tech. rep.

Park, J., and B. Kuipers (2011), A smooth control law for graceful motion of differential
wheeled mobile robots in 2d environment, in 2011 IEEE Int. Conf. on Robotics and
Automation (ICRA), pp. 4896–4902.

Park, J., and B. Kuipers (2013), Autonomous person pacing and following with Model Pre-
dictive Equilibrium Point control, in 2013 IEEE Int. Conf. on Robotics and Automation
(ICRA), pp. 1060–1067.

Park, J., and B. Kuipers (2015), Feedback motion planning via non-holonomic RRT∗, in
2015 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 4035–4040.

Park, J., C. Johnson, and B. Kuipers (2012a), Robot navigation with Model Predictive
Equilibrium Point Control, in 2012 IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems (IROS), pp. 4945–4952.

Park, J., C. Johnson, and B. Kuipers (2012b), Robot navigation with MPEPC in dy-
namic and uncertain environments: From theory to practice, in IROS 2012 Workshop
on Progress, Challenges and Future Perspectives in Navigation and Manipulation As-
sistance for Robotic Wheelchairs.

Perez, A., R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez (2012), LQR-RRT∗:
Optimal sampling-based motion planning with automatically derived extension heuris-
tics, in 2012 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 2537–2542.

Piazzi, A., and C. Bianco (2004), Quintic g2-splines for trajectory planning of autonomous
vehicles, in IEEE Intelligent Vehicle Symposium, pp. 620–625.

97

Prassler, E., D. Bank, and B. Kluge (2002), Motion coordination between a human and a
mobile robot, in 2002 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp.
1228–1233.

Rauskolb, F. W., et al. (2008), Caroline: An autonomously driving vehicle for urban envi-
ronments, Journal of Field Robotics, 25(9), 674–724.

Rawlings, J. (2000), Tutorial overview of model predictive control, IEEE Control Systems,
20(3), 38 –52.

Rimon, E., and D. E. Koditschek (1992), Exact robot navigation using artificial potential
functions, IEEE Transactions on Robotics and Automation, 8(5), 501–518.

Satake, J., and J. Miura (2009), Robust stereo-based person detection and tracking for a
person following robot, in 2009 ICRA Workshop on Person Detection and Tracking.

Schouwenaars, T., J. How, and E. Feron (2004), Receding horizon path planning with
implicit safety guarantees, in American Control Conference, vol. 6, pp. 5576–5581.

Singh, L., and J. Fuller (2001), Trajectory generation for a UAV in urban terrain, using
nonlinear mpc, in American Control Conference, vol. 3, pp. 2301–2308.

Snape, J., J. van den Berg, S. Guy, and D. Manocha (2011), The hybrid reciprocal velocity
obstacle, IEEE Transactions on Robotics, 27(4), 696–706.

Takemura, H., N. Zentaro, and H. Mizoguchi (2009), Development of vision based person
following module for mobile robots in/out door environment, in 2009 IEEE Int. Conf. on
Robotics and Biomimetics (ROBIO), pp. 1675–1680.

Tedrake, R., I. R. Manchester, M. Tobenkin, and J. W. Roberts (2010), LQR-trees: Feed-
back motion planning via sums-of-squares verification, The International Journal of
Robotics Research, 29(8), 1038–1052.

Thrun, S., W. Burgard, and D. Fox (2005), Probabilistic Robotics (Intelligent Robotics and
Autonomous Agents), The MIT Press, Cambridge, MA.

Topp, E., and H. Christensen (2005), Tracking for following and passing persons, in 2005
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp. 2321–2327.

Trautman, P., J. Ma, R. Murray, and A. Krause (2013), Robot navigation in dense human
crowds: the case for cooperation, in 2013 IEEE Int. Conf. on Robotics and Automation
(ICRA), pp. 2153–2160.

Trautman, P., J. Ma, R. M. Murray, and A. Krause (2015), Robot navigation in dense human
crowds: Statistical models and experimental studies of human–robot cooperation, The
International Journal of Robotics Research, 34(3), 335–356.

van den Berg, J., M. Lin, and D. Manocha (2008), Reciprocal velocity obstacles for
real-time multi-agent navigation, in 2008 IEEE Int. Conf. on Robotics and Automation
(ICRA), pp. 1928 –1935.

98

Von Hundelshausen, F., M. Himmelsbach, F. Hecker, A. Mueller, and H.-J. Wuensche
(2008), Driving with tentacles: Integral structures for sensing and motion, Journal of
Field Robotics, 25(9), 640–673.

Walters, M., K. Dautenhahn, R. te Boekhorst, K. L. Koay, C. Kaouri, S. Woods, C. Nehaniv,
D. Lee, and I. Werry (2005), The influence of subjects’ personality traits on personal
spatial zones in a human-robot interaction experiment, in IEEE Int. Workshop on Robot
and Human Interactive Communication (ROMAN), pp. 347–352.

Wang, C. M. (1988), Location estimation and uncertainty analysis for mobile robots, in
1988 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1231–1235.

Webb, D. J., and J. v. d. Berg (2012), Kinodynamic RRT∗: Optimal motion planning for
systems with linear differential constraints, arXiv preprint arXiv:1205.5088.

Weisstein, E. W. (), Archimedean spiral, from MathWorld–A Wolfram Web Resource,
http://mathworld.wolfram.com/ArchimedeanSpiral.html.

Zhang, L., S. M. LaValle, and D. Manocha (2009), Global vector field computation for
feedback motion planning, in 2009 IEEE Int. Conf. on Robotics and Automation (ICRA),
pp. 477–482.

99

