
WHERE AM I? SCENE RECOGNITION FOR MOBILE ROBOTS USING AUDIO FEATURES 
 

Selina Chu†, Shrikanth Narayanan*†, C.-C. Jay Kuo*†, and  Maja J. Matarić†

 
Department of Computer Science† and Department of Electrical Engineering*

University of Southern California, Los Angeles, CA 90089, USA 
E-mails: {selinach, shri, cckuo}@sipi.usc.edu, mataric@usc.edu 

 
ABSTRACT 

Automatic recognition of unstructured environments is an 
important problem for mobile robots. We focus on using 
audio features to recognize different auditory environments, 
where they are characterized by different types of sounds. 
The use of audio information provides a complementary 
means of scene recognition that can effectively augment 
visual information. In particular, audio can be used toward 
both the analysis and characterization of the environment at 
a higher level of abstraction. We begin our investigation of 
recognizing different auditory environments with the audio 
information. In this paper, we utilize low-level audio 
features from a mobile robot and investigate using high-
level features based on spectral analysis for scene 
characterization, and a recognition system was built to 
discriminate between different environments based on these 
audio features found.  

 
1. INTRODUCTION 

The method robotic systems navigate depends on their 
environment. Many robot navigation systems, especially 
those used indoors, employ model-based vision in a well-
defined and/or highly constrained environment [1]. While 
these approaches can perform well as long as distinct 
landmarks and other visual cues are available for model 
matching, they lose their robustness or their utility if visual 
indicators are compromised or totally absent. Other 
approaches, such as view-based methods [2], require the 
system to match new incoming images against learned ones. 
Image processing and segmentation algorithms can be 
computationally expensive, especially for on-device 
implementation. To mitigate the system’s dependency on 
vision alone, we propose to incorporate audio information 
into the scene recognition process. Using audio enables the 
system to capture additional, semantically rich information. 
Audio data can be obtained at any time, and are 
computationally cheaper to process than visual data. Thus, 
the fusion of audio and visual information can be 
advantageous, such as in disambiguation of environment 
and object types. 

Many robotic applications are being utilized for 
navigation in unstructured environments [3, 4]. There are 
other tasks that require knowing the environment. For 

example, Yanco [5] introduced a robotic wheelchair system 
that switches automatically between control modes for 
indoor and outdoor environments. Also, laser range-finder 
can track people in an outdoor environment [6].  In order to 
use any of these capabilities, we first have to determine the 
current context, e.g., the location type (outdoor environment 
or inside an office or hallway, etc). 

Characterizing the scene or environment is the first step 
to choosing which modality of interaction a robot should 
engage in.  Furthermore, environments are dynamic, and the 
setting might change even in the same area. With the loss of 
certain landmarks, a vision-based robot might not be able to 
recover from its displacement because it is unable to 
determine the environment that it is in.  Knowing the scene 
provides a coarse and efficient way to prune out irrelevant 
scenarios. Even with a GPS system and a well-defined map, 
without clear images, it is difficult to discern different 
characteristics of the environment. 

It is relatively easy for most people to make sense of 
what they hear or to discriminate where they are located in 
the environment on the basis of sound alone.  However, this 
is typically not the case with a robot. Surprisingly little 
research has been done on audio scene analysis in robots. 
With increasing number of robots being built for service 
and social settings, it is ever more important for the robots 
not only to identify locations, but to comprehend and 
characterize their auditory features. 

In this paper, we investigate using audio features to 
recognize different unstructured auditory environments. We 
begin by examining audio features, such as energy and 
spectral moments, gathered from a mobile robot and apply 
those to scene characterization. 
 

2. BASIC AUDIO FEATURE EXTRACTION   
One of the major issues in building a recognition system for 
multimedia data is the choice of proper signal processing 
features that are likely to result in effective discrimination 
between different auditory environments. Sounds from a 
general ambient environment are considered neither speech 
nor music, but a combination of some specific audio signals 
that are similar to noise. While much work has concentrated 
on speech and music, little research has been done on actual 
analysis of features for classification of environmental 
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sounds. One of the major goals of this work is to study the 
effect of various features on the efficiency of an auditory 
environmental recognition system. 

There are many features that can be used to describe 
audio signals.  We examined the following features in our 
experiments: Mel-frequency cepstrum coefficient analysis 
(MFCC), statistical moments from the audio signal’s 
spectrum (i.e. spectral centroid, spectral bandwidth, spectral 
asymmetry, and spectral flatness), zero-crossing rate, energy 
range, and frequency roll-off. The use of the term frequency 
roll-off in this paper refers to the rate at which the 
accumulative magnitude of the frequency response is equal 
to that of 95% of the total magnitude. Since the energy level 
varies depending on the location of the source of the sound, 
we do not use the mean of the energy.  Instead, we only use 
the range and standard deviation. The feature vector 
contained a total of 34 features, summarized in Table 1 
below.  

Table 1. List of features used in classification 
Feature No. Types of Features 
1-12 1st – 12th MFCCs 
13-24 Standard Deviation of 1st – 12th MFCCs 
25 Spectral Centroid, Sc

26 Spectral Bandwidth, Sw

27 Spectral Asymmetry, Sa

28 Spectral Flatness, Sf

29 Zero-Crossing 
30 Standard Deviation of Zero-Crossing 
31 Energy Range, Er

32 Standard Deviation of Energy Range 
33 Frequency Roll-off 
34 Standard Deviation of Roll-off 

 
3. ENVIRONMENTAL DATA ACQUISITION 

We would like to capture actual scenarios of situations 
where a robot might find itself, including any environmental 
sounds, along with additional noise generated by the robot. 
To simplify the problem, we restricted the number of scenes 
we examined and enforced each type of environmental 
sound not to overlap each other. The locations we 
considered are recorded within and around a multipurpose 
engineering building on the USC campus.  The diverse 
locations that were focused include: 1) a café area, 2) 
hallways where research labs are housed, 3) around and 
inside elevator areas, 4) lobby area, and 5) along the street 
on the south side of the building. 

We used a Pioneer DX mobile robot from ActivMedia, 
running Playerjoy and Playerv [7].  The robot was manually 
controlled using a laptop computer.  To train and test our 
algorithm, we collected about 3 hours of audio recordings of 
the five aforementioned types of environmental locations. 
We used an Edirol USB audio interface, along with a 
Sennheiser microphone mounted to the chassis of the robot. 
Several recordings were taken at each location, each about 
10-15 minutes long, taken on multiple days and at various 
times. This was done to introduce a variety of sounds and to 
prevent biases in the recordings. The robot was deliberately 
driven around with its sonar sensors turned on (and 

sometimes off) to resemble a more realistic situation and to 
include noises obtained from the onboard motors and sonar.  
We did not use the laser and camera because they produce 
little, if any, noticeable sound. Recordings were manually 
labeled and assigned to one of the five classes listed 
previously to aid the experiments described below. 

Our general observations about the sounds encountered 
at the different locations are:  
• Hallway: mostly quiet, with occasional doors 

opening/closing, distant sound from the elevators, and 
individuals quietly talking, some footsteps. 

• Café: many people talking, ringing of the cash registers, 
moving of chairs. 

• Lobby: footsteps with echos (different from hallways 
due to the type of flooring), people talking, sounds of 
rolling dollies from deliveries being made. 

• Elevators: bells and alerts from the elevator, footsteps, 
rolling of dollies on the steel frame of elevator 
entrance. 

• Outside: footsteps on concrete, traffic from buses and 
cars, bicycles, and occasional planes and helicopters. 

We chose for this study to focus on a few simple, yet robust 
features, which can be extracted in a straightforward 
manner. Features that require many thresholds were 
avoided.   

The audio data samples collected were mono-channel, 
16 bits per sample with a sampling rate of 44 kHz and of 
varying lengths. The input signal was down-sampled to a 
22050 Hz sampling rate. Each clip was further divided into 
4-second segments.  Features were calculated from a 20 
msec rectangular window with 10 msec overlap.  Each 4 sec 
segment makes up an instance for training/testing. All 
spectra were computed with a 512-point FFT.  All data were 
normalized to zero mean and unit variance. 
 

4. CLASSIFICATION METHODS 
To evaluate the performance of our recognition system, we 
examined the following three classification methods: K-
Nearest Neighbor (KNN) [8], Gaussian Mixture Models 
(GMM) [9], and Support Vector Machine (SVM) [10]. For 
KNN, we used the Euclidean distance as the distance 
measure and the 1-nearest neighbor queries to obtain the 
results. As for GMM, we set the number of mixtures for 
both training and testing to 5. For the SVM classifiers, we 
used a 2 degree polynomial as its kernel with C=10 and 
ε=1e-7, where C is the regularization parameter and ε 
controls the width of the ε-insensitive zone, which is used to 
fit the training data, affecting the number of support vectors 
used. Since SVM is a two-class classifier, we use the one-
against-the-rest algorithm [11] for our multi-class 
classification in all of the experiments. 

We performed leave-one-out cross-validation on the 
data. Although this method is computationally expensive, it 
has been shown to produce almost unbiased results. The 



recognition accuracy using leave-one-out cross-validation 
was found from calculating: 
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More than half of the data collected contained sonar and 
motor sounds emitted by the robot.  Motor noises were 
found to be less noticeable than those emitted by the sonars.  
To determine how the sonar sounds affect the classification, 
we manually separated the data into two sets: A) containing 
sonar and B) without any sonar sounds.  Classifications 
were performed on three sets of data: set A only, set B only, 
and sets A and B together.  The use of set-B only data 
would be unrealistic for mobile robots. The accuracy using 
all 34 features for KNN was 90.8%, 91.2%, and 89.5% for 
set A, B, and A&B respectively. For the rest of the paper, 
all experiments are performed using set A&B. 

 
Table 2: Summary of classification accuracy 

Classifiers Features Used Recognition 
Accuracy 

KNN All 34 features 89.5% 
Forward FS 1-3,  5-10, 12, 13, 16, 17, 28, 31, 33  94.3% 
Backward FS 1, 2, 3, 7, 8, 9, 28, 31, and 33  94.2% 
GMM All 34 features 89.5% 
Forward FS 1-10, 12-16, 20-22, 25, 26, 28,31-34 93.4% 
SVM All 34 features 95.1%  
Forward FS 1-3, 5-10, 13, 15, 18, 28, 31-33 96.6% 

 
5. EXPERIMENTAL RESULTS AND DISCUSSION 

One of the problems in using a large number of features is 
that there are many potentially irrelevant features that could 
negatively impact the quality of classification. In using 
feature selection techniques, we can choose a smaller 
feature set to reduce the computational cost and running 
time, as well as achieve an acceptable, if not higher, 
recognition rate.  Adding more features is not always 
helpful; as the feature dimension increases, data points 
become more sparse and some features are essentially noise. 
This leads to the issue of selecting an optimal subset of 
features from a larger set of possible features that will yield 
the most effective subset.  The optimal solution is using an 
exhaustive search of all the features.  This requires 234-1, or 
roughly 1010 combinations. 

Instead of performing 1010 computations, we use a 
greedy search for selecting the features. There are various 
ways of performing feature selection, such as forward 
feature selection, backward selection, branch and bound, 
and stochastic search, each with its advantages and 
disadvantages. We used forward feature selection for our 
experiments since it is simple and straightforward. The 
algorithm is given as: 

 Initialize selected set S = empty set 
 Initialize unselected set F = {1, …, M} 
 Repeat:  

Evaluate performance with    for each  ifS U Ffi ∈        

 and , where f

  

mfSS U=: mfFF \:= m gives  
maximum improvement in performance 

Stop when no significant improvement in classification 
or features 

Using this feature selection algorithm and evaluating by 
picking the feature fm that yields the maximum accuracy, we 
found that using 16 features enabled us to achieve a 
recognition accuracy of 96.6% for SVM and 94.3% for 
KNN. It took 25 features to achieve an accuracy of 93.4% 
for GMM. The results and features selected are summarized 
in Table 2. Figure 1 below shows a plot of various 
recognition accuracies with the different number of features. 
Using only 6 features (91.1% for KNN), we were able to 
surpass the accuracy of using all 34 features (89.5% for 
KNN). 

 

 
Fig. 1: The classification results with KNN, GMM, and SVM 
respectively. Parameters to these classifiers are given in Sec. 4 
 
Table 3: Confusion matrix of the KNN classification using 
forward feature selection with 16 features, in percentage 

 Street Elevator Café Hallway Lobby 

Street 94.4 0 0 0 5.6 

Elevator 0 90.0 1.1 7.8 1.1 

Café 0 0 95.6 0 4.4 

Hallway 0 0 0 100 0 

Lobby 2.2 0 3.3 0 94.4 

The confusion matrix in Table 3 shows the misclassified 
classes for the KNN classifier using 16 features. It can be 
seen that the worst performance was from the Elevator class 
and had most misclassification from Hallway. One reason 
for this comes from the fact that the area where the robot 
was driven for the Elevator class was actually part of the 
Hallway as well, so there was less separation between the 
two areas.  However, Hallway gave the best performance 
due to its distinct characteristic of being relatively quiet 
most of the time. We can also observe from the same table 
that Lobby and Street were confused, as both contained 
many sharp footstep noises, but on different types of 
flooring. The Lobby has granite tiling, while the Street is 
concrete. There are footstep noises in the Hallway class as 
well, but the flooring for the hallways is plastic so. the 
footsteps were less prominent than those from Lobby or 
Street and created less confusion. Footsteps in Café were 

Accuracy using Forward Feature Selection 

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Number of Features Used 

KNN

GMM

SVM



drowned out by other noises, such as crowds of people 
talking and shuffling of furnitures. 

Fig. 1 shows GMM to produce the worst result when 
compared to KNN. One possible reason is because we 
refined the parameters for the case of using all features and 
did not re-optimize parameters when performing the 
forward-search feature selection experiments. A final note 
on the various learning algorithms studied here: unlike 
KNN, both GMM and SVM require a careful choice in 
choosing the correct parameters. There are at least two 
degrees of freedom for GMM and four for SVM. For GMM, 
the numbers of mixtures for training and another testing 
must be picked a priori. For SVM, one needs to decide on 
C, ε, kernel type and its bias, as explained in Section 4. In 
other words, even minor changes, such as number of 
training samples, requires fine turning of parameters. In 
addition, both GMM and SVM are much higher in 
computational complexity. 

Despite the higher accuracy rate of SVM methods over 
KNN and GMM, SVM are very expensive to train even 
with five classes. The running times required for training 
and classification with a full feature set and no feature 
selection for KNN, GMM, and SVM are given as 1.1, 
148.9, and 1681.8 sec, respectively. The KNN classifier 
works well overall, outperforming GMM and is roughly 
1000 times faster than SVM. 

To check for overfitting and to confirm the validity of 
the selected features, we performed a sensitivity analysis 
with respect to the forward feature selection algorithm. 
Since GMM and SVM require tuning of many parameters 
and are more complex, we restricted this experiment to just 
the KNN algorithm. The experiment was as follows: 

Repeat for 100 times 
- Randomly pick half of the dataset 
- Repeat the forward feature selection algorithm on the subset 
- Record the features selected 
We tallied the selected features used in each trial and 

picked the features that were used more than half of the 
time, which resulted in 11 features.  With these 11 features, 
we performed a backward feature selection search.  Similar 
to the idea of forward search, backward search works by 
using all 11 features and begins by taking out one feature at 
a time.  Instead of picking the feature that yields the 
maximum recognition accuracy in the forward search, we 
selected the features that provided the minimum accuracy 
rate. The results returned 9 features, which were in turn fed 
back into the 1-NN classifier. We finally achieved 94.2% 
recognition accuracy on the entire dataset with these 9 
features. As listed in Table 3, the 9 features include 
MFCC1-4 and 9-10, zero-crossing, std dev of zero-crossing, 
std dev of roll-off frequency. 

 
6. CONCLUSIONS AND FUTURE WORK 

This paper investigates techniques for developing a scene 
classification system using audio features.  The 
classification system was successful in classifying the 5 

classes of environment using real data obtained from a tele-
operated mobile robot.  We also found that using high 
number of features is not always beneficial to classification.  
In using forward feature selection, a form of greedy search, 
only nine of the thirty-four features were required to achieve 
a high recognition rate. We have also identified features that 
can discriminate between these 5 types of environment. 

With success in using audio to discriminate between 
different unstructured environments, we have shown that it 
is feasible to build such a system. This work opens up a 
doorway to other challenges.  Here we focused on global 
characterization of the environment; we need to also 
examine localization and the effect of various sound sources 
on recognition.  Other issues include scaling and robustness 
to new environments. Our next step is to increase the 
number of classes of environments, as well as to 
investigating the combined use of audio and visual features.  
We then plan to implement an online version and 
incorporate it into a real autonomous robot for analysis. 
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