
Clustering by a genetic algorithm with biased mutation operator

Benjamin Auffarth

Abstract—In this paper we propose a genetic algorithm that
partitions data into a given number of clusters. The algorithm
can use any cluster validity function as fitness function. Cluster
validity is used as a criterion for cross-over operations. The clus-
ter assignment for each point is accompanied by a temperature
and points with low confidence are preferentially mutated. We
present results applying this genetic algorithm to several UCI
machine learning data sets and using several objective cluster
validity functions for optimization. It is shown that given an
appropriate criterion function, the algorithm is able to converge
on good cluster partitions within few generations. Our main
contributions are: 1. to present a genetic algorithm that is fast
and able to converge on meaningful clusters for real-world data
sets, 2. to define and compare several cluster validity criteria.

I. INTRODUCTION

Clustering is a fundamental problem in pattern recognition.
It refers to visualization techniques that group data into
subsets (clusters), according to a distance measure. Cluster
analysis (CA) partitions points of a data set into groups, so
that data points within a group are more similar to each other
than to points in different groups.

The use of clustering technique constitutes often a first
step in a data mining process to reveal natural structures
and identify patterns in the data. Clustering is applied in
many disciplines and plays an important role in a broad
range of applications that include data mining. Applications
of clustering usually deal with large datasets and data with
many attributes, where simplification or concise summaries
can provide an idea of the structure of the data.

Formally, given a data set of m dimensions and n points,
D ∈ Rn,m = {d1, . . . , dn}, clustering is the process of
dividing the points up into k groups (clusters) based on
a distance (or similarity) measure, dist(di, dj). Often, the
number of clusters k is given as a pre-defined parameter to
the optimization problem. For crisp solutions, a membership
matrix U ∈ {1, k}n defines the attributed cluster membership
for each point. For fuzzy solutions, the membership for each
point would be defined in terms of probability for each
cluster, U ∈ [0, 1]n,k.

Many algorithms have been developed to tackle clustering
problems in a variety of application domains, including
the hierarchical agglomerative clustering algorithm [1], k–
means [2], and self–organizing maps [3]. The most popular
algorithms are probably the fuzzy c-means [4] and the k-
means algorithms. All of these clustering algorithms rely
on Euclidean distances from cluster centroids as criterion
function. Therefore they are limited to detecting spherical

Institute for Bioengineering of Catalonia and with the Department of
Electronical Engineering, University of Barcelona, Barcelona Science Park,
C/Baldiri Reixac 4-6 (torre I), 08028 BCN, Spain Contact: phone: +34 9340
31118; email: bauffarth@el.ub.es.

clusters and do not work well with non–Gaussian data [5, 6,
c.f. ].

In the case of k-means, the criterion function is as follows:

argmin
S

k∑
i=1

∑
xj∈Si

‖xj − µi ‖2 (1)

where S1, S2, . . . , Sk are partitioned point sets and µi is the
mean of points in Si.

A. Distance Measures

Other distance measures have been proposed, however,
have not found a wide application for reasons of compu-
tational efficiency or robustness. For example it has been
proposed to use the Mahalanobis distance for clustering, e.g.
Yih et˜al. [7] and Liu et˜al. [8] presented a fuzzy c-means
based on Mahalanobis distances.

Other solutions to produce nonlinear separating hyper-
surfaces between clusters involve kernel density estimation,
non-parametric regression, and spectral methods [9]. For ex-
ample, Gaffney and Smyth [10] proposed a clustering method
for univariate data based on probability estimates from a
mixture of non-parametric regression models and Wang [11]
presented a small simulation study with clustering using non–
parametric kernel regression. These solutions however can
be sensitive to the choice of bandwidth parameters and lack
robustness for a broad set of problems. In spectral clustering
[12, 13], data are preprocessed to extract eigenvalues of
the Laplacian of the distance matrix before clustering is
performed. These methods find, however, little application
to real-world data because of their high computational costs.

Information entropy is a measure of the uncertainty as-
sociated with a distribution. The Maximum Entropy Princi-
ple [14] and Renyi’s entropy [15] have been proposed as
information-theoretic distance measures between centroids
and data points. Butte and Kohane [16] computed entropy
between gene pairs and used thresholding to build clusters.
A problem underlying the computation of entropy measures
is the estimation of probability density, especially with data
that have few data points compared to number of attributes
(dimensions).

Most clustering algorithms rely on distances from cen-
troids because of the faster computation as compared to
measures that take into account complete linkage of points.

B. Genetic Algorithms for Clustering

Evolutionary algorithms [17] are optimization algorithms
that use mechanisms inspired by biological evolution such
as inheritance, mutation, selection, and crossover. At each
iteration the fitness of a population of candidate solutions
is computed and this determines their selection. A genetic



algorithm (GA), proposed by Holland [18], is a search
heuristic, mimicking the process of natural evolution, used
for optimization and search problems. Genetic algorithms
belong to the class of evolutionary algorithms in that they use
operations from evolutionary algorithms and extend evolu-
tionary algorithms by encoding candidate solutions as strings,
called chromosomes). GAs have the following phases:

• Initialization: Generate an initial population of K can-
didates and compute fitness.

• Selection: For each generation, select µK candidates
based on fitness to serve as parents.

• Crossover: Pair parents randomly and perform crossover
to generate offspring.

• Mutation: Mutate offspring.
• Replacement: Replace parents by offspring and start

over with selection.
Genetic algorithms have been applied to clustering prob-

lems before; see Sheikh et˜al. [19] for a survey. Genetic al-
gorithms have been used to overcome local minima, however
the associated computational costs have been prohibitive to
broad application.

Scheunders [20] demonstrated that a hybrid of k–means
and genetic algorithm depends less on initial conditions.
Krishna et˜al. [21] used the k–means clustering algorithm
as a cross-over operation. Maulik and Bandyopadhyay [22]
applied genetic algorithms to find cluster centers. This was
improved on by Lu et˜al. [23], who removed overhead from
the algorithm. Maulik and Bandyopadhyay [22] applied ge-
netic algorithms for selection of cluster centers and evaluated
fitness by Euclidean distances of points to these centers.
Laszlo and Mukherjee [24] also based their algorithm on
cluster centers.

We start off by presenting our genetic algorithm for
clustering, then we show several criterion functions1 that we
tried out, and then we present results by clustering real–world
data sets from the UCI machine learning repository. We
conclude with a discussion of applicability of our methods,
limitations, and suggest possible avenues for future research.

II. METHODS

A. A Genetic Clustering Algorithm with Local Annealing

In the proposed algorithm, the searching capability of
genetic algorithms is exploited to find appropriate cluster
partitions in the feature space so that a fitness metric of
the resulting clusters is optimized. The advantage of this
technique is the generality of the admitted fitness function.
We made the choice to not rely on the concept of a cluster
centroid (prototype). This was meant to allow the clustering
to find even very complex clusters, as opposed to Gaussian
or hyper–spheroidal shapes preferred by more conventional
algorithms (see introduction).

Our genetic algorithm has the following characteristics:

1Following common use of terminology in genetic algorithm literature,
we use the terms criterion function and fitness function interchangeably
throughout the article

• as fitness function any internal cluster validity measure
can be used,

• it incorporates a measure of intra–cluster distance in the
cross–over operation (as opposed to just fitness),

• it uses temperature to find appropriate genes (points) for
mutation,

• it adjusts the mutation rate self–adaptively in order to
keep variance of fitness between iterations within a
certain range,

• it keeps a small (M = 20) population of candidate
solutions and employs elitist recombination.

Algorithm 1 shows a pseudo–code to explain the algorithm.

Input: D, k
Output: U, M
// Parameter definitions:
maxiteration← 5000, K ← 20, minchange← 0.0001,
;
α← 0.1, i← 0, ;
// The mutation matrix of size n× k is

set to equal values and normalized
to row sum 1:

M ← 1n,k × 1/k;
// Algorithm starts:
U ← newgeneration(M,K,α);
while i < maxiteration and not stop do

(F, intra)K ← fitness(D,U);
if i > 0 then

learningrateupdate(F, Fold, α)
else
end
// Select the fittest individual:
w1 ← argmini F

i;
// Select the individual with the

best single cluster:
(w2,wc)← argmini,j intra

i,j ;
// Select the individual that is

best for a random cluster:
rc← ceil(rand× k);
w3 ← argmini intra

i,rc;
U1← Uw1 ;
U2← crossover(U1, Uw2 ,wc);
U3← crossover(U1, Uw3 , rc);
M ← mutationbiasupdate(F, intra,M);
U ← mutate(U1,K/2,M, α) ∪
mutate(U2,K/4,M, α) ∪mutate(U3,K/4,M, α);
i← i+ 1 ;

end
Algorithm 1: The genetic algorithm with biased muta-
tion and local cross–over (simplified description). Input
parameters are data D and number of clusters k. Pa-
rameters within learningrateupdata() are αmin ← 0.01,
αmax ← 0.5 and αinc ← 0.05. The stop criterion is
explained in the text.

Given data D and k the desired number of clusters the



Fig.˜1: Graphs show characteristics of the genetic algorithm: a displays the (probability) distribution of winners from 1000
iterations. b shows how mean temperature goes down over many iterations. Subfigures c and d show PCA plots of the wine
data set with dominant cluster assignment indicated in color and marker shape and local temperature indicated in marker
size.

algorithm returns a cluster assignment for each point in a
membership matrix U ∈ {1, k}n.

The population consists of K individual candidate solu-
tions, which are crisp cluster partitions in form of member-
ship matrices UK = {Un

1 , . . . , U
n
K}, where n are the number

of points in our dataset and U j
i ∈ [1, k]. K is the number of

individuals or chromosomes for each generation. Before the
first iteration one random parent is initialized and K children
are created from random permutations.

At each iteration the winner U1 was determined as the
individual from UK that obtained the highest fitness accord-
ing to a given cluster validity function. This individual was
then permuted to yield K/2 individuals. For the rest of K/2
individuals in the next generation we used the following
procedure: for each cluster assignment, we evaluated the
individual with the lowest intra-cluster distance (or inversely,
the highest intra-cluster similarity). We took the individual
with the best value for intra-cluster distance, cross-combined
it with the overall winner, and permuted the result to yield
K/4 individuals. We then randomly took one of the individu-
als with low intra-cluster distance to cross-combine with the
overall winner and again permuted to obtain K/4 individuals.

For permutations, the matrix M was taken as a mutation
bias for each point. M regulates mutation probability for
each point in the dataset. At each iteration this matrix M ∈
[0, 1]n,k is updated according to success and failure of cluster
assignment in the previous generation, giving each point its
proportional share.

A high variability in M between entries for a particular
point {M i,1, . . . ,M i,k} indicates that cluster assignment is
more certain, while a low variability means that different
cluster assignments are equally successful. Formally we
calculated the temperature of a vector m of M corresponding
to a point, with k elements as

T = 1− σ√
k

(2)

At the onset, point mutation biases are initialized to a
matrix 1n,k×1/k, which means that for any point, mutations
to any cluster assignment are assumed equally probable.
Over time, M should converge so that the arguments of
the maximum for each point reflect the cluster assignment.
In this way, the adaption of M is a simulated annealing.
The temperature of each point is indicative of the algorithms
confidence in its assignment, similar to a fuzzy cluster
membership matrix.

In fig.˜1a the distribution of winners in a sample trial with
the wine data set over 1000 iterations can be seen with K =
20. 20 corresponds to the winner of the last generation which
was kept over. The mutation rate was increased when the
fitness function could not distinguish between candidates and
decreased when the previous winner was best again.

Figure˜1b shows how mean temperature declines over
5000 iterations. In this case the cross–overs were not success-
ful, so that temperature stagnates. Figures 1c and 1d show
local temperatures in a PCA plot of the wine data set. Colors



and marker shape indicate the dominant cluster assignment
according to the mutation matrix. The temperature is indi-
cated by the size of the points. Figure˜1c shows temperature
at the onset after random initialization of M . It can be seen
that temperature is broadly distributed in the sense that it
is not specific for certain points or clusters. In figure˜1d
which shows temperature after 40 iterations it can be seen
that cluster 3 (points in blue with plus signs) and cluster 2
(points in cyan with crosses) are strongly overlapping. This
results in high temperatures for both clusters.

For the purpose of this bias mutation operator, mutations
had to be kept small so that cluster assignment would
not radically shift from one zone to another. Mutation rate
alpha is regulated between αmin and αmax. If the previous
winner comes up a second time as winner, this could mean
that mutations were too strong and α is down-regulated.
If, on the other hand, changes are so minuscule that the
chromosomes cannot be distinguished by the fitness function
(in our implementation this could be the case when the
winner is 1), α is up-regulated. We took the same value,
alphaInc for linear increments and decrements.

In each permutation, a × n points are pseudorandomly
sampled using temperature as weight vector so that points
with higher temperature are more likely to be taken. These
sampled points are then randomly assigned to a cluster,

We concluded in pre–trials (not reported in this thesis)
that the biased mutation operator gives a significant speed
up for optimization. We used as stopping criterion (stop),
a threshold minchange which is compared to changes to
the mutation bias operator M . If the changes per point
of M was not reached twice in a row this threshold, the
algorithm was terminated. Otherwise the algorithm iterated
until maxiteration.

B. Cluster Validity Measures

Assignment to clusters relies on a distance measure, in
the case of genetic algorithms, the criterion function of the
optimization is called the fitness function. In our algorithm,
we can plug in many different cluster validation functions. In
this subsection, we present some measures which we tested
with our algorithm.

As a general guideline, these measures should favor mini-
mal differences between points within clusters (intra–cluster
distance) and maximal differences between points of different
clusters (inter–cluster distance).

The distance measure can be any distance function or
goodness-of-fit function. A function that measures validity
of partitions based on the structure of data in the clusters
are called internal cluster validity measures. An overview
over some measures especially proposed for internal cluster
validation can be found in the review by Pfitzner et˜al. [25].
They define desiderata for internal cluster validity functions,
which include

• being able to work with different distributions,
• to be robust to outliers,
• being robust or invariant to scaling.

Internal validity measures that received special mention in
their article include information-theoretic measures such as
Lopez and Rajski’s measures [26, 27], and several normal-
ized mutual information measures [28, 29, 30, 31].

Other popular validity measures include Davies–Bouldin
[32], Calinski–Harabasz [33], Hartigan [34], Krzanowski–Lai
[35], and Silhouette [36].

C. Euclidean distance

The fuzzy c-means and k-means algorithms use the Eu-
clidean distance from centroids as criterion function. The
distance of a point x to centroid i, ci = {ci,1, . . . , ci,m} (m
features or dimensions) is defined as follows:

dEuclidean(ci, x) =

√√√√ m∑
j

(ci,j − xj)2 (3)

where ci, the centroid, is adapted at each iteration to the
center of gravity of cluster i. Points should be assigned to
a cluster such that distances to its cluster centroids are be
minimal, while distances to centroids of other clusters are
maximal.

D. Global and local Mahalanobis distances

The Mahalanobis distance [37] is a distance measure ca-
pable of dealing with hyper–elipsoidal distances, as opposed
to hyper–spherical distances (e.g. Euclidean). The point–
distance from cluster centroids would be defined as:

dMahalanobis(ci, x) =
√
(x− ci)TS−1(x− c) (4)

where S is the covariance matrix usually corresponds to D,
however there have been also experiments with taking cluster
covariances. It has been shown experimentally that taking
local and global results can make a big difference [38].

We implemented the Mahalanobis distance for our algo-
rithms in two variants, with global and local (cluster–specific)
covariances, which we will refer to as global and local
Mahalanobis.

The computation of the inverse of the covariance matrix
presented a problem with few data points, because it easily
becomes singular or near singular. This was especially true
for the local version, where the covariance is computed from
points of each cluster. The inverse of the covariance matrix
could take extreme values. To prevent this from happening,
a restriction was implemented, so that clusters had to have
at least the size (k−1)

k ∗ n
k , where k is the number of clusters

and n the number of points in the dataset. Smaller clusters
were heavily penalized. This restriction was implemented
for all used cluster validity measures in order to have them
comparable.

E. SVD entropy

Alter et˜al. [39] proposed an entropy measure based on
the distribution of eigenvalues. This entropy has found ap-
plication in different areas including feature filtering [40].
However, we are not aware of any previous application to
clustering. The main idea of the entropy criterion is to find



clusters with points that have a low entropy and, at the same
time, clusters that have a high entropy when joined with other
clusters.

Following the definition by Varshavsky et˜al. [40], for-
mally, if sj denotes the singular values of the matrix A, s2
are the eigenvalues of the n×n matrix AAt. The normalized
relative values are given as:

Vj =
s2j∑
k s

2
k

(5)

and the dataset entropy as:

H = − 1

log n

n∑
j=1

Vj log Vj (6)

This entropy takes values in the range [0, 1]. H = 0 stand
for an ultra-ordered dataset that can be explained by a single
eigenvector and H = 1 corresponds to a disordered matrix
with a uniformly distributed spectrum. We used this as our
intra–cluster distance.

As a measure of distance between two clusters, the inter–
cluster distance, we used this SVD entropy:

Hd = Hall − (H1 +H2) (7)

where H1 and H2 correspond to the SVD entropies of
clusters C1 and C2 and Hall to the entropy of the combined
cluster C1 ∪ C2.

We combined intra- and inter-cluster validity thus obtained
linearly and refer to this as the SVD Entropy Cluster-Validity
Index which we use as a fitness function.

F. Cluster Validation

For validation of our clustering method we use an external
validity measure that compares coincidence of clusters found
with our method with correct cluster assignments. For this
purpose we use the Jaccard index which measure similarity of
partitions. It is based on the Rand index [41] which compares
two hard partitions R and Q of some data.

Rand =
a+ d

a+ b+ c+ d
where, (8)

a denotes the number of point pairs belonging to same
partition in R as well as in Q.

b the number of point pairs belonging to the same cluster
in R but to different in Q.

c the number of point pairs belonging to different clusters
in R but to same clusters in Q.

d the number of point pairs belonging to different clusters
in R and different clusters in Q.

The term d can cause problems by becoming big, biasing
the index. The Jaccard coefficient˜[5] leaves out d with the
motivation that point pairs which are neither in the same clus-
ter in R nor in Q are insignificant for consistency between R
and Q. Denoeud et˜al. [42] showed experimentally that the
Jaccard index is approximately equally efficient with other

Data FCM GA-Eucl GA-MaG GA-MaL GA-Ent

Breast 0.5219 0.4035 0.6564 0.6750 0.4008
Wine 0.4120 0.4160 0.4261 0.5741 0.3565
Ionosphere 0.4314 0.4176 0.4544 0.5606 0.4040
Iris 0.6959 0.6997 0.6997 0.5779 0.4677

TABLE˜I: Comparison of clustering Results: Clustering
results of the fuzzy c–means algorithm and the genetic
algorithm based on four fitness functions. Units express the
coincidences between correct partitions and found partitions
(Jaccard Index). FCM stands for fuzzy c–means, GA for
the genetic algorithm. As for the fitness functions employed
for optimization in the genetic algorithm, Eucl stands as
Euclidean distance, MaG for the Mahalanobis distance with
global covariance, MaL for the Mahalanobis distance with
local (i.e. cluster) covariance, and Ent for SVD entropy. The
best results for each dataset are typeset in bold.

measures based on the Rand index, while showing lower
variance. Formally, the Jaccard index is defined as:

Jaccard =
a

a+ b+ c
where, (9)

We use the Jaccard index to quantify the correctness of
results from the genetic clustering algorithm by comparing
the correct cluster assignment and the obtained clusters from
the algorithm. A score of 1 would mean that all points were
correctly assigned.

III. RESULTS

We applied our algorithm to several data sets from the
UCI machine repository [43]. These were the wine, iris,
ionosphere, and breast data sets. We randomly initialized the
candidates, set K to 20, and set the maximum iterations for
our algorithm to 5000. The clustering of all data sets was
completed within several minutes on an off-the-shelf desktop
office computer

We compared our results to results from the fuzzy c-
means algorithm, which next to k-means is probably the most
popular algorithms for clustering. Fuzzy c-means [4] is an
improved version of k–means. Particularly it is more robust
to outliers and overlap than k-means (e.g.˜44).

Fig.˜2 shows how the genetic algorithm starting from ran-
dom initialization optimizes according to a fitness function.
The ordinate axis shows the goodness of a partition in terms
of the Jaccard index. The abscissa shows the number of
iterations of the genetic algorithm. K was set to 20. The
parameter set values are shown in algorithm 1.

Table˜I compares clustering performance by fuzzy cmeans
clustering (FCM) and the genetic algorithm (GA) based on
four different fitness functions, Euclidean distance (Eucl),
Global Mahalanobis (MaG), Local Mahalanobis (MaL), and
SVD Entropy (Ent). Values displayed correspond to averages
(medians) over 10 runs. The genetic algorithm was run for
5000 iterations.



(a) Clustering Breast (b) Clustering Wine

(c) Clustering Ionosphere (d) Clustering Iris

Fig.˜2: Optimization behavior of the genetic algorithm with different fitness functions

IV. DISCUSSION

A genetic algorithm for clustering clustering has been has
been proposed and tested here. We presented results of our
algorithm using measures that relied on information theoretic
measures on complete clusters (SVD entropy), two variants
of Mahalanobis distance with global and local covariance,
respectively, and the Euclidean distance. Results for real-
life datasets have been presented and compared to partitions
obtained by fuzzy c–means. The dataset comprises many
different data distributions. Clusters have different overlap,
different dimensionality, and number of points.

We think that the results show that some of the problems
are very difficult, where popular off–the–shelf algorithms
such as the fuzzy c-means do not achieve good results.
We conjecture that the unsatisfactory results for fuzzy c–
means reflect in part the fact that Euclidean distances from
the centroids are not very sensitive and might even be
inappropriate for some datasets. We think that our results
underline the importance of finding a fitness function that is
both sensitive to small changes in partitions and works for
the particular dataset [c.f. 5].

It was shown that — given a fitness function which is

appropriate for the data — the algorithm can converge to
good solutions. We conclude that the results from clustering
using our genetic algorithm were competitive with results
from fuzzy c–means. Our good results reflect in part the
use of proper fitness functions, the application of which
was made possible by our genetic algorithm. We tested the
algorithm with Euclidean distances, Mahalanobis distances,
but we could have used other validity measures, as well.
Results with the SVD Entropy measure were generally
disappointing, performing worse than the fuzzy c–means
algorithm in our tests. We think that both Mahalanobis
distances (local and global versions) gave very promising
results. The local version returned at least satisfactory results
for all data sets, achieving the top result for Breast, while
the global version performed well for Iris and Breast.

In practice, the algorithm often converged fast. We think
that the self–adaptation of the mutation rate helped greatly
to find solutions. We conjecture that this is because it helps
to maintain a certain level of correlation of fitness between
candidates [c.f. 45]. We think that another reason for this
good convergence is the cross–over operation, where we
applied a goodness value for each cluster. We are not aware
of a previous application of intra–cluster validity to the



crossover operation in genetic algorithms.
We think that the self–adaptation of the mutation rate

helped greatly to find solutions. We conjecture that this is
because it helps to maintain a certain level of correlation of
fitness [c.f. 45].

Preliminary experiments have been performed where this
genetic algorithm was extended to run without fixing the
parameter k in advance. The inter–cluster distance was used
to merge or split clusters. Further, by extensions of the
mutation routine new clusters could appear or old clusters
could disappear.

We want to emphasize that results from our algorithms
were achieved with a global set of parameters. We assume
that parameter optimization could yield better results. The
algorithm did not converge for some combinations of data
sets and fitness functions which shows that there is still work
to do and therefore we see total results as preliminary. There
is still testing to be done on more datasets, however we think
that results presented here are promising. Source code of
scripts in MATLAB can be made available upon request.

ACKNOWLEDGMENT

The author is supported by a grant from the federal state
government of Catalonia (formació de personal investigador,
FI). He wants to thank the anonymous reviewers, who made
very useful comments which helped to improve this article.

REFERENCES

[1] J˜Ward Jr. Hierarchical grouping to optimize an ob-
jective function. Journal of the American statistical
association, 58(301):236–244, 1963.

[2] J˜MacQueen. Some methods for classification and
analysis of multivariate observations. Proceedings of
the fifth Berkeley symposium, 233(233):281–297, 1967.

[3] T˜Kohonen. Self-organized formation of topologically
correct feature maps. Biological Cybernetics, 43(1):59–
69, 1982. ISSN 0340-1200.

[4] J.˜C Bezdek, R˜Ehrlich, and W˜Full. FCM: The fuzzy
c-means clustering algorithm. Computers & Geo-
sciences, 10(2-3):191–203, 1984. ISSN 00983004.

[5] A.˜K Jain and R.˜C Dubes. Algorithms for Clustering
Data, volume 355 of Prentice Hall Advanced Reference
Series. Prentice Hall, 1988. ISBN 013022278X.

[6] S.˜J Roberts. Parametric and non-parametric unsuper-
vised cluster analysis. Pattern Recognition, 30(2):261–
272, February 1997. ISSN 00313203.

[7] J˜Yih, Y˜Lin, H˜Liu, and C˜Yih. FCM & FPCM Algo-
rithm Based on Unsupervised Mahalanobis Distances
with Better Initial Values and Separable Criterion. In
ACS’08 Proceedings of the 8th conference on Applied
computer scince, volume˜3, pages 9–18, 2008.

[8] H.-c Liu, J.-m Yih, D.-b Wu, and S.-w Liu. Fuzzy pos-
sibility c-mean clustering algorithms based on complete
mahalanobis distances. In 2008 International Con-
ference on Wavelet Analysis and Pattern Recognition,
pages 50–55. IEEE, August 2008. ISBN 978-1-4244-
2238-8.

[9] M˜Filippone, F˜Camastra, F˜Masulli, and S˜Rovetta.
A survey of kernel and spectral methods for cluster-
ing. Pattern Recognition, 41(1):176–190, January 2008.
ISSN 00313203.

[10] S˜Gaffney and P˜Smyth. Trajectory clustering with
mixtures of regression models. In Proceedings of
the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD ’99,
pages 63–72, New York, New York, USA, 1999. ACM
Press. ISBN 1581131437.

[11] N˜Wang. Marginal nonparametric kernel regression
accounting for within-subject correlation. Biometrika,
90(1):43–52, March 2003. ISSN 0006-3444.

[12] U˜Luxburg. A tutorial on spectral clustering. Statistics
and Computing, 17(4):395–416, August 2007. ISSN
0960-3174.

[13] B˜Auffarth. Spectral Graph Clustering. Technical
report, Universitat de Barcelona, 2007.

[14] G˜Beni. A least biased fuzzy clustering method. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 16(9):954–960, 1994. ISSN 01628828.

[15] R˜Jenssen, K˜Hild, D˜Erdogmus, J˜Principe, and
T˜Eltoft. Clustering using Renyi’s entropy. In Pro-
ceedings of the International Joint Conference on Neu-
ral Networks, 2003., volume˜1, pages 523–528. IEEE,
2003. ISBN 0-7803-7898-9.

[16] a.˜J Butte and I.˜S Kohane. Mutual information rel-
evance networks: functional genomic clustering using
pairwise entropy measurements. Pacific Symposium
on Biocomputing. Pacific Symposium on Biocomputing,
pages 418–29, January 2000. ISSN 1793-5091.

[17] D.˜B Fogel. Evolutionary computation: toward a new
philosophy of machine intelligence. IEEE Press, 1995.
ISBN 0780310381.

[18] J˜Holland. Genetic algorithms. Scientific American, 267
(July):66—-72, 1992.

[19] R.˜H Sheikh, M˜Raghuwanshi, and A.˜N Jaiswal. Ge-
netic Algorithm Based Clustering: A Survey. 2008
First International Conference on Emerging Trends in
Engineering and Technology, 2(6):314–319, July 2008.

[20] P˜Scheunders. A genetic c-Means clustering algorithm
applied to color image quantization. Pattern Recogni-
tion, 30(6):859–866, June 1997. ISSN 00313203.

[21] K˜Krishna, N˜Murty, and Others. Genetic K-means
algorithm. Systems, Man, and Cybernetics, Part B: Cy-
bernetics, IEEE Transactions on, 29(3):433–439, 1999.

[22] U˜Maulik and S˜Bandyopadhyay. Genetic algorithm-
based clustering technique. Pattern recognition, 33(9):
1455–1465, 2000.

[23] Y˜Lu, S˜Lu, F˜Fotouhi, Y˜Deng, and S.˜J Brown.
FGKA : A Fast Genetic K-means Clustering Algorithm.
In Proceedings of the 2004 ACM symposium on Applied
computing, pages 1–2, 2004.

[24] M˜Laszlo and S˜Mukherjee. A genetic algorithm that
exchanges neighboring centers for k-means cluster-
ing. Pattern Recognition Letters, 28(16):2359–2366,



December 2007. ISSN 01678655.
[25] D˜Pfitzner, R˜Leibbrandt, and D˜Powers. Characteriza-

tion and evaluation of similarity measures for pairs of
clusterings. Knowledge and Information Systems, 19
(3):361–394, July 2009. ISSN 0219-1377.

[26] R.˜L.˜D Mántaras. A distance-based attribute selection
measure for decision tree induction. Machine Learning,
6(1):81–92, 1991. ISSN 08856125.

[27] C˜Rajski. A metric space of discrete probability dis-
tributions. Information and Control, 4(4):371–377,
December 1961. ISSN 00199958.

[28] F.˜M Malvestuto. Statistical Treatment of the Infor-
mation Content of a Database. Information Systems
Journal, 11(3):211–223, 1986.

[29] A˜Strehl and J˜Ghosh. Cluster EnsemblesA Knowledge
Reuse Framework for Combining Multiple Partitions.
Journal of Machine Learning Research, 3(3):583–617,
2003. ISSN 15324435.

[30] A.˜L.˜N Fred and A.˜K Jain. Robust data clustering.
Engineering, 2:II–128–II–133, 2003. ISSN 10636919.

[31] T.˜O Kvalseth. Entropy and correlation: Some com-
ments. Ieee Transactions On Systems Man And Cyber-
netics, 17(3):517–519, 1987. ISSN 00189472.

[32] D.˜L Davies and D.˜W Bouldin. A Cluster Separation
Measure. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PAMI-1(2):224–227, April 1979.
ISSN 0162-8828.

[33] T˜Calinski and J˜Harabasz. A dendrite method for
cluster analysis. Communications in Statistics Theory
and Methods, 3(1):1–27, 1974. ISSN 03610926.

[34] J.˜A Hartigan. Minimum mutation fits to a given tree.
Biometrics, 29(1):53–65, 1973. ISSN 0006341X.

[35] W.˜J Krzanowski and Y.˜T Lai. A Criterion for De-
termining the Number of Groups in a Data Set Using
Sum-of-Squares Clustering. Biometrics, 44(1):23–34,
1988. ISSN 0006341X.

[36] P˜Rousseeuw. Silhouettes: A graphical aid to the
interpretation and validation of cluster analysis. Journal
of Computational and Applied Mathematics, 20(1):53–
65, 1987. ISSN 03770427.

[37] P˜Mahalanobis. On the generalized distance in statis-
tics. In Proceedings of the National Institute of Science,
Calcutta, volume˜12, page˜49, 1936.

[38] L˜Lebart. Discrimination through the regularized near-
est cluster method. In Y˜Dodge and J˜Whittaker,
editors, Computational Statistics, volume˜1, pages 103–
118. Physica Verlag, Vienna, 1992.

[39] O˜Alter, P.˜O Brown, and D˜Botstein. Singular value
decomposition for genome-wide expression data pro-
cessing and modeling. Proceedings of the National
Academy of Sciences of the United States of America,
97(18):10101–10106, 2000.

[40] R˜Varshavsky, A˜Gottlieb, M˜Linial, and D˜Horn.
Novel unsupervised feature filtering of biological
data. Bioinformatics (Oxford, England), 22(14):e507–
13, July 2006. ISSN 1367-4811.

[41] W.˜M Rand. Objective Criteria for the Evaluation of
Clustering Methods. Journal of the American Statistical
Association, 66(336):846–850, 1971. ISSN 01621459.

[42] L˜Denoeud, H˜Garreta, and A˜Gu. Comparison of
distance indices between partitions. In P˜L., editor,
Applied Stochastic Models and Data Analysis, Studies
in Classification, Data Analysis, and Knowledge Or-
ganization, pages 21–28. Springer Berlin Heidelberg,
2005. ISBN 9783540344162.

[43] A˜Frank and A˜Asuncion. UCI Ma-
chine Learning Repository, 2010. URL
http://archive.ics.uci.edu/ml.

[44] S.˜a Mingoti and J.˜O Lima. Comparing SOM neural
network with Fuzzy c-means, K-means and traditional
hierarchical clustering algorithms. European Journal
of Operational Research, 174(3):1742–1759, November
2006. ISSN 03772217.

[45] L˜Altenberg. The Schema Theorem and Price s The-
orem. In Foundations of genetic algorithms, volume˜3,
pages 23–49. Citeseer, 1995.


