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6
The language of set theory

The students’ task in learning set theory is to steep themselves in unfamiliar
and essentially shallow generalities till they become so familiar that they can
be used with almost no conscious effort.

Paul R. Halmos, Naive set theory (adapted slightly).

The language of set theory is used throughout mathematics. Many
general results involve ‘an integer n’ or ‘a real number a’ and, to start
with, set theory notation provides a simple way of asserting for example
that n is an integer. However, it turns out that this language is remark-
ably flexible and powerful and in much mathematics it is indispensable
for a proper expression of the ideas involved.

In the second part of this book we introduce the basic vocabulary
of the language of sets and functions. The third part of the book will
then provide some experience in using this language as we use it to
give a precise formulation of the idea of counting, one of the earliest
mathematical concepts.

6.1 Sets

At this introductory level it is sufficient to define the notion of set as
any well-defined collection of objects. We can think of a set as a box
containing certain objects. In this section some ways of specifying sets
are introduced and also some frequently used notation.

We frequently use a single letter to denote a set. This represents a
further stage of mathematical abstraction. The reader will already have
accepted the abstract notion of a positive integer, for example ‘two’
is abstracted from ‘two apples’ and ‘two chairs’. Now we move on to
consider the set of all positive integers as a single mathematical object.
Each time there is further step of abstraction like this it takes time to
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62 Part II: Sets and functions

become familiar with new sorts of objects. At the end of this chapter
we will make a further abstraction step when we consider sets which are
collections of sets!

Particular sets which are often used have standard symbols to repre-
sent them. In this book the following will be used.

Z denotes the set of all integers.t

Z* denotes the set of all positive integers (natural} or counting num-
bers): 1, 2, 3, etc.

Z?Z denotes the set of all non-negative integers: 0, 1, 2, 3, etc.

Q denotes the set of all rational numbers (fractions).

R denotes the set of all real numbers (i.e. numbers expressible as infinite
decimals).

R* denotes the set of all positive real numbers.

RZ denotes the set of all non-negative real numbers.

C denotes the set of all complex numbers.

The objects in a set are called the elements, members or points of the
set. We write

r€E

to denote the fact that the object z is an element of the set E. Thus
for example ‘a € R’ is read ‘a is an element of the set of real numbers’
or more simply just ‘e is a real number’. The symbol ‘€’, first used
in this way by the Italian mathematician Giuseppe Peano towards the
end of the nineteenth century, is a variant of the Greek letter epsilon
and care should normally be taken to distinguish it from that letter
which is usually written ‘e’ or ‘¢’. However, some books do not make
this distinction and use epsilon in place of ‘€’. It is common to use
upper case letters to represent sets and lower case to represent elements
but this is not always appropriate: in geometry it is usual to use upper
case letters to represent points and lower case letters to represent lines
(which are sets of points); another exception occurs when a set is itself
considered as an element of another set.

The negation of the statement x € A is written ¢ A. Thus V2 ¢ Q
is the statement that v/2 is not a rational number.

There are basically three ways of specifying a set: we can list the.
t This symbol comes from ‘Zahlen’, the German word for ‘numbers’.
} Some people include the number 0 in the set of natural numbers but this seems to

me unnatural as we usually start counting at 1. Because of this ambiguity, in this

book we will normally refer to ‘the non-negative integers’ or ‘the positive integers’
depending on whether or not the number 0 is included.
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elements, specify a condition for membership, or give a formula or algo-
rithm constructing the elements of the set.

(a) Listing the elements of a set
When we list the elements of a set we denote the set by enclosing the
elements in curly brackets. Thus
A={1,3,r -14}

is the statement that A is the set whose four elements are 1, 3, 7 and
—14. In this case we have 1 € A and 2 ¢ A. Notice that the order in
which the elements are listed is unimportant and repeating an element
makes no difference. Thus, for the above set A we also have

A={rm3,-14,1} = {n;3,7,1,-14,—14}.

On the face of it the listing notation is only practical for sets with a
small number of elements. However it can be extended to large or even
infinite sets. For example we can write

Zt={1,2,3,...}

where as usual the dots are read ‘and so on’.

(b) The conditional definition of a set

Alternatively, a set may be described by specifying some condition which
determines whether or not an object is an element of the set. Let us
illustrate this with an example. Consider the set B defined as follows:

B={neZ|0<n<6}.

Here we write n € Z simply to indicate the sort of objects that we
are considering. The statement 0 < n < 6 is a predicate. The defini-
tion means that B is the set of integers which when substituted in this
predicate give a true proposition, i.e. given an integer n,

neB&0<n<6.

Of course we could have described this particular set by listing the ele-
ments,

B=1{1,2,3,4,5},

but in some cases this is difficult or impossible.
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In the conditional definition of a set the vertical linet ‘|’ is read as
‘such that’ and so the above definition would be read as ‘B is the set of
integers n such that 0 < n < 6’ or just ‘B is the set of integers between
0 and 6’. This last reading, which makes no reference to the variable ‘n’,
demonstrates that the symbol n in this definition represents a dummy
variable: its only role is to indicate the internal logic of the definition
and it can be replaced by any other symbol (not already in use) without
any change in meaning. Thus we could equally write

B={a€Z|0<a<6}.

Notice that, although 0 < n < 6 is a predicate and so a mathematical
statement in the sense of Chapter 1, {n € Z | 0 < n < 6} is not a
statement; it is simply a mathematical object and can be no more true
or false than the number 2 can be true or false. However, we can make
statements about this object, such as ‘2 € {n € Z |0 < n < 6}’ which
is true, or ‘m € {n € Z | 0 < n < 6}’ which is equivalent to ‘m € Z and
0<m<6.

(¢) The constructive definition of a set

The other systematic method of describing a set is to give a formula {(or
more generally an algorithm) constructing the elements of the set. For
example

{n?|neZ}=1{0,1,4,9,16,...}
is the set of integer squares, which means that the formula n? constructs
the elements of the set as n takes all possible integer values, i.e. an
element is in the set if and only if it can be written as n? for some integer
n. Notice that in this case all non-zero elements in the set arise twice.
This makes no difference to the set so that for example {n? | n € Z*}

defines the same set.
Similarly,

{2¢lqeZ}={...,—4,-2,0,2,4,6,...}
is the set of even integers, and
{a/bla,beZ, b#0}
is the set of rational numbers, Q. This last example illustrates the

i Alternative notations are to use a colon ‘.’ or a semi-colon ;’ here instead of ‘|’ as
follows: B={n€Z:0<n<6}lor{neZ;0<n<86}.
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convention that when more than one condition is listed after the symbol
‘|’ this means that all the conditions must be satisfied for an object to
be in the set so that the word ‘and’ is understood.

Equality of sets

Quite commonly problems in mathematics take the form of seeking to
pass between different ways of specifying the elements of a set. For
example when we learn how to solve quadratic equations of the form
az? + bz + ¢ = 0, where a, b and c are given real numbers, we are
learning how to list the elements of the set {z € R | az® + bz +c=0},
or possibly the set {x € C | az? + bx + ¢ = 0} if we allow complex
solutions.

Definition 6.1.1 Two sets A and B are|equal |, written| A = B, if they

have precisely the same elements, i.e. A= B meansz € A< x € B.

To put it another way: a set is determined by its elements. Notice
that this means that to show that two sets A and B are equal it is
necessary to prove two things (although they can often be done together
in simple cases): every element of A is an element of B and conversely
every element of B is an element of A.

Example 6.1.2 {zeR |72 -z -2=0} = {-1,2}.

Constructing a proof. This is another way of stating that, for z a
real number,
?—z-2=0z=-lorz=2.

This is easily proved by the factorization method.

Proof For z a real number, 22 —2-2=0& (z-2)(z+1) =0«
z—2=0or z+1 =0 (by Proposition 4.4.1) & z = 2 or z = —1. Hence
z? — ¢ — 2 =0if and only if z = —1 or z = 2, as required. a

At this stage it is convenient to introduce two other ideas from set
theory.

Definition 6.1.3 The | empty set | is the unique set which has no ele-

ments at all. It is denoted by the symbol .
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Thus the statement that the quadratic equation z2 + 2z + 2 = 0 has
no real solutions may be written {z € R |22 +2c+2=0}=90.

Take care to distinguish ‘@’ which is a variant of a Scandinavian letter
from the Greek letter phi written ‘¢’

Definition 6.1.4 Given sets A and B we say that| A is a subset of B |,

written | A C B, or B D A, when every element of A is an element of

B, ie. x € A= x € B. If A and B are in addition unequal so that
B contains some element not contained in A, then we say that A is a

proper | subset of B and write| A C B|.t

Thus
A=B& (ACBand BC A).

It is important to distinguish between the symbols € and C although
they are closely related as follows:

ac Ae {a} C A

If sets are defined by predicates then there is a correspondence between
the notions of ‘implication’ and ‘subset’: the universal statement that
P(a) = Q(a) for all a € A is equivalent to the statement that the set
{a€ A| P(a)}isasubset of {a € A|Q(a)}.

Notice that f AC Band BC Cthen ACCsinceze A=z¢€B
and z € B = z € C together imply that z € A = x € C. Furthermore
@ C A for all sets A whereas A C 0 only if A = 0.

6.2 Operations on sets

Definition 6.2.1 Given two sets A and B we car form the set of ele-

ments which lie both in A and in B. This is called the | intersection | of

A and B and is denoted by| AN B|. Thus

AnNB={z|zc€Aandz € B}.

1 Some mathematicians use C where C is used in this book. In fact when Peano
originally introduced this notation he used it the other way round, writing A D B
to indicate that A is a subset of B!
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Two sets A and B are said to be |disjoint | if ANB =0, i.e. A and B

have no elements in common.

Definition 6.2.2 Given two sets A and B we can form the set of ele-

ments which lie in A or lie in B. This is called the |union! of A and B

and is denoted by | AU B|. Thus

AUB={z|z€AorzeB}.

Definition 6.2.3 Given two sets A and B we can form the set of ele-

ments which lie in A but not in B. This is called the | difference | of A

and B and is denoted byt | A— B|. Thus

A-B={z|zc€Aandz ¢ B}

Notice that ANA=A=AUA ANP=0,, AUD=A, A—A=0and
A-0=A

Proposition 6.2.4 Given any two sets A and B, the three sets AN B,
A — B and B — A are pairwise disjoint (i.e. each pair of these sets is
disjoint) and

AUB=(ANB)U(A-B)U(B - A).

Probably the simplest way to prove a statement like this is by means
of truth tables as follows.

Proof Consider the truth tables on the following page.

The fact that the final two columns of the second table are the same
tells us that the above equality of sets holds. The fact that no row has
more than one T in the third, fourth and fifth columns of the first table

t The reader should be aware that this notation is sometimes used in algebra to
denote the set {a —b | a € A,b € B}. In this case the difference of the two sets
A and B is denoted by A\ B.
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tells us that the three corresponding sets are disjoint.

t€A z€B|z€ANB z€A-B z€B-4A

T T T F F
T F F T F
F T F F T
F F F F F
€A z€B|ze(ANB)U(A-B)U(B-A)|z€ AUB
T T T T
T F T T
F T T T
F F F F

g

In the truth tables in the above proof the columns are headed by
statements z € A, z € B, etc. which can be true or false, not simply by
the names of the sets A, B, etc. which would not be statements.

This proof illustrates the close relationship between the logical connec-
tives introduced in Chapter 1 and the operations on sets defined above
in terms of those connectives. Proofs of the above type are usually illus-
trated by a Venn diagram. We indicate a set A by the interior region of
some curve drawn on the page so that the elements of the set correspond

to points in the region. Thus for example in the following diagram z € A
but y & A.

*y

Two general sets A and B are described by two overlapping regions.
Consider the following diagram.
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<o

Here the interior of the left-hand rhombus (regions 1 and 2) denotes
A and the interior of the right-hand rhombus (regions 1 and 3) denotes
B. Then the four rows of the above truth tables correspond to the four
regions in the diagram. Thus region 1 corresponds to A N B, region 2
corresponds to A — B, region 3 corresponds to B — A and the three
regions 1, 2 and 3 together give A U B. The fact that regions 1, 2
and 3 are disjoint corresponds to the fact that the three sets on the
right-hand side of Example 6.2.4 are disjoint and the fact that these
three regions together make up AU B corresponds to the equality of sets
in Proposition 6.2.4. From this point of view the result is essentially
obvious. Care is needed in using this sort of diagrammatic proof in more
elaborate examples because unless proper care is taken it is sometimes
possible to draw a diagram that does not include all possible regions
or some feature of the diagram has nothing to do with the set theory
(see for example the solution to Exercise 6.6). Notice that this diagram
does not imply that AN B is non-empty for it may be that there are no
elements in the region 1. However, if we were given that AN B = @) then
we could denote this by the following Venn diagram.

We can represent A C B as follows.
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6.3 The power set

Definition 6.8.1 The|power set | of a set X, denoted by | P(X)|, is the

set of all subsets of the set X. Thus A € P(X) is another way of writing
ACX.

Example 6.3.2 If X = {a,b,c} then
P(X) = {07 {a}’ {b}, {c}? {a’ b}> {a> c}’ {b’ 0}7 X}

Notice that the empty set § is an element of the power set P(X) for
any set X since § C X. A set like {a} with a single element is called a
singleton. It is important to distinguish the singleton set {a} from the
element a. In particular the singleton {#} is to be distinguished from
the empty set §:. a box containing an empty box is not an empty box!

It is often the case that all the sets we are considering are subsets of
some fixed set, say the set of real numbers. We then consider this to be
the universal set.

Definition 6.3.3 Once we have fired a universal set U we can define

the | complement | of any A € P(U), denoted by | A°|, to be the difference
of U and A. Thus

A=U—-A={zeU|zgA}.

For example, if the universal set is Z, the set of integers, and F is the
set of even integers, then the complement E° is the set of odd integers.
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The intersection, union and complement of subsets of some universal
set U correspond to the logical connectives ‘and’; ‘or’ and ‘not’. The re-
lationships between these operations may be summed up in the following
theorem.

Theorem 6.3.4 Let A, B and C be subsets of some universal set U
(i.e. A,B,C € P(U)). Then we have the following identities.

(i) associativity: AU(BUC) = (AUB)UC, AN(BNC) = (ANB)NC.
(ii) commutativity: AUB=BUA, ANB=BnNA.
(iii) distributivity: AU(BNC)=(AUB)N(AUC), AN(BUC) =
(ANB)U(ANC).
(iv) De Morgan laws:t (AU B)¢ = A°N B¢, (AN B)° = A°U B°.
(v) complementation: AUA*=U, ANA°=0.
(vi) double complement: (A®)¢ = A.

These can be proved by truth tables or Venn diagrams. Alternatively
they can be proved by using logical argument from the definitions. Let
us illustrate this by writing out the proo/f of one part.

Proof of AN(BUC)=(ANB)U(ANC).

Proof of ‘C’: Suppose that z € AN(BUC). Thenz € A and z € (BUC).
Since z € BUC, z € Bor z € C. If ¢ € B then, since ¢ € A as well, we
have z € ANB and so z € (AN B)U(ANC) as required. On the other
hand, if z € B, then we must have z € C and so, since also z € A, we
havez€e ANCandsoz € (ANBYU(ANC).

Proof of ‘2’: Suppose now that x € (ANB)U(ANC). Thenz € ANB
orz€e ANC. fx€ ANB,thenx € A and z € B so that z € A and
x € BUC which gives z € AN (BUC) as required. On the other hand
ifz @ AN B then z € ANC and again we get z € AN (BUC). O

We can now use these results to derive other set identities by algebraic
manipulation. Here is an example.

Proposition 6.3.5
(AuB)N(CUD)=(ANC)U(AND)U(BNC)U (BN D).

t These results was observed independently in the nineteenth century by the British
mathematician Augustus De Morgan and the United States mathematician Ben-
jamin Peirce (see C.B. Boyer and U.C. Merzbach, A history of mathematics, Wiley,
Second edition 1989). They correspond to the equivalence of the statements ‘not
(P and Q)’ and ‘(not P) or (not Q)’ commented on in the solution to Exercise 1.2.
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Proof First notice that commutativity means that distributivity on one
side implies distributivity on the other side so that Theorem 6.3.4(iii)
implies that (AUB)NC =(ANC)U(BNC).

(AUB)N(CUD)
= (AN(CUD))u(BN(CUD)) by distributivity
= (ANCYU(AND)U(BNC)U(BND) by distributivity.

The associativity of the union operation means that we do not need any
additional brackets here. O

Exercises

6.1 The following are standard subsets of the set of real numbers known
as the real intervals with endpoints the real numbers a and b.

The open interval: (a,b)={z€R|a<z<b}.

The closed interval: [a,bj={z€R|a<z<b}.

The right half-open interval: [a,b)={z€R|a<z<b}.
The left half-open interval: (a,bj={z€R|a<z<b}.

(i) Prove that 0 ¢ (0,1), 0 € [0,1], 0 € [0,1) and O ¢ (0, 1].

(ii) Find the elements of the set [a,b] — (a,b).

(iii) Prove that (a,b) = 0 if and only if @ > b. [Hint: Prove the
contrapositive.]
Find the corresponding results for the other real intervals with
endpoints a and b.

(iv) Prove that, if a < b, then [a,b] C (c,d) if and only if ¢ < a and
b<d.

6.2 Prove that

(i) {zeR|z2+x-2=0}={1,-2},
() {z€R|22+2-2<0}=(=2,1),
(ili) {reR|22+z-2>0}={zeR|z< -2}u{zeR|z>1}.

6.3 Find predicates which determine the following subsets of the set of
integers Z: (i) {3}, (ii) {1,2, 3}, (iii) {1,3}.

6.4 By using a truth table prove that AN(BUC) = (ANB)U(ANC).
Draw a Venn diagram to illustrate the proof.

N\
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6.5 Prove that
(i) ACB& AUB =B,
(ii) ACB& ANB = A.

6.6 Prove by contradiction that, if ANB C Candz € B, thenz ¢ A-C.
[Work from the definitions of ‘AN B’, ‘A — C’, and ‘C’.]

6.7 Using the fact that an implication is equivalent to its contrapositive,
prove that, for subsets of a universal set U, A C B if and only if B¢ C A°.
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Quantifiers

In Chapter 1 a predicate was described as an expression containing one
or more free variables; it becomes a proposition, and so is true or false,
when a specific value is assigned to each free variable. Of course whether
this proposition is true or is false usually depends on the values selected.

However, we saw in the last chapter that a proposition can be created
from a predicate in another way — by making a statement about the
set of values of the free variables which make it true. Many results in
mathematics take the form of listing the values of this set, for example
when we solve an equation. But often results simply address the question
of whether there is any choice of values of the free variables resulting in
a true proposition and whether there is any choice resulting in a false
proposition. Statements that such values exist are known as existential
statements. Statements that they do not can be thought of as universal
statements. We met examples of universal statements when discussing
implications in Chapter 2.

In this chapter we discuss general universal and existential statements.

7.1 Universal statements

Suppose that P(a) is a predicate with a single free variable a with pos-
sible values in a set A. Usually P(a) is true for some elements of the
set A and false for others, and in the last chapter we described how
such a predicate could be used to describe a subset of A, denoted by
{a € A | P(a)}, the subset of elements of A for which the statement
P(a) is true. In certain cases this subset is the whole of A; the statement
that this occurs is a universal statement.

74
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Definition 7.1.1 The notation |Va € A, P(a)| is an alternative way of
writing

{a€ A|P(a)} = A

It is read: ‘for each element a in the set A the proposition P(a) is true’
or ‘P(a) is true for each a in the set A’.

In this notation, the comma between ‘Va € A’ and the predicate
‘P(a)’ is included simply to clarify the expression. Sometimes brackets
are used. The symbol ‘V’ is called the universal quantifier symbol and
is read ‘for each’, ‘for every’, ‘for all’ or ‘for any’. In this book we will
adopt the practice of putting quantifiers before the predicates to which
they refer. However, we will usually write these statements in words and
in this case show more flexibility about the order.

As an example consider Proposition 3.1.4 which asserts that.a® > 0
for any non-zero real number a. This is a statement about the set of
non-zero real numbers, R — {0}. The predicate is ‘a? > 0’. We may
write the statement in symbols as

YaeR~-{0},a®>0
or equivalently
{acR—-{0}|a®>0}=R-{0}.
A third way of writing the statement is as the universal implication
aeR-{0}=a®>0

and if you look back to Chapter 3 you will see that this is how we proved
the statement.

Notice that in all three of these expressions a is a ‘dummy’ or ‘bound’
variable and can be changed to any other symbol without changing the
meaning. For example

vreR-{0},z2>0

is equivalent to the above statements.

7.2 Existential statements

We now turn to the negation of a universal statement: the statement
that it is false. In Chapter 2 we considered the statement z > 0# z > 1
for real numbers z and explained that this meant that the universal
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statement z > 0 = = > 1, which is shorthand for the statement Vz €
R(z > 0 = = > 1), is false. Table 2.1.2 described the behaviour for
different values of z and of course, for any z such that 0 < =z < 1,
z > 0is true and z > 1 is false so that z > 0 = z > 1 is false.
However, to demonstrate that Vo € R(z > 0 = z > 1) is false we
simply have to show that there is a single value of z € R for which
z>0= 2z >1is false, i.e. z > 0 and z 2 1, in other words the set
{r €R|z>0and z # 1} is non-empty. The simplest way to do this is
to give a specific element in the set, such as 1/2: 1/2 > 0 and 1/2 2 1.
Such a statement, that the subset defined by a predicate is non-empty,
is called an ezistential statement.

Definition 7.2.1 The notation |3a € A, P(a) | is an alternative way of

writing
{ac A|P(a)} #0.

It is read: ‘for some element a in the set A the proposition P(a) is true’
or ‘P(a) is true for some a in the set A’.

The symbol ‘T’ is called the ezistential quantifier symbol and is read
‘for some’, ‘for at least one’ or sometimes ‘there exists . ..such that’.

Remarks 7.2.2 Notice that the word ‘any’ sometimes indicates a uni-
versal statement and sometimes an existential statement.

The normal meaning of ‘any’ is ‘every’ as in ‘a? > 0 for any real
number a’. This is a universal statement which can be written sym-
bolically as Va € R, a® > 0. Hovirever, in negative or interrogative
statements ‘any’ is used idiomatically to mean ‘some’. For example,
‘There is not any real real number a such that a? < 0’ is asserting that
the existential statement ‘Ja € R, a? < 0’ is false. And ‘Is there any real
number a such that a? = 27’ is asking whether the existential statement
‘Ja € R, a? = 2’ is true.

Fowler} gives some non-mathematical examples: ‘Have you any ba-
nanas?’ with the possible answers ‘No we haven’t any bananas’ and ‘Yes
we have some bananas’.

[3

Real care is required with questions involving ‘any’. ‘Is there any
integer a such that a > 17’ seems clear enough and is asking whether
‘Ja € Z, a 2 1’ is true. But ‘Is g > 1 for any integer a?’ seems less clear

i H.W. Fowler, A dictionary of modern English usage (revised by Ernest Gowers),
Oxford University Press, Second edition 1968.
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to me and might be taken to asking about the same statement as the
first question, ‘Ja € Z, a > 1’ (which is true) but might also be taken to
be asking about ‘Va € Z, a > 1’ (which is false). Great care is needed
in using ‘for any’ in interrogative statements.

7.3 Proving statements involving quantifiers

An enormous number of results in advanced mathematics take the form
of asserting the truth or falsehood of some universal or existential state-
ment; this is one of the factors which distinguishes advanced from el-
ementary mathematics and many of the results in this book take this
form. This section provides an overview of the main methods of proof
but in effect much of the whole book is about proving such results.

(a) Proving statements of the form Va € A, P(a)

We usually prove statements of this form by rewriting them in the form
a € A= P(a).

An example of this is the proof of Proposition 3.1.4 which we have
already discussed.

(b) Proving statements of the form 3a € A, P(a)

We often prove statements of this form by simply exhibiting a particular
element a € A for which P(a) is true. This is proof by ezample.

Example 7.3.1 To prove 3n € Z, n? = 9.

Solution Observe that 3 € Z and 32 = 9 and so n = 3 provides an
example proving this statement. O

There are, however, less direct methods of proving existential state-
ments such as the use of the counting arguments which will be considered
in Chapter 11.

(c) Proving statements involving both quantifiers

Very many statements involve both quantifiers. Consider the result of
Exercise 3.3.
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Proposition 7.3.2 For integers n, if n is even then n? is even.

This is a universal implication: Vn € Z (n is even = n? is even). How-
ever, the hypothesis that n is even is an existence statement, which may
be written dq € Z, n = 2q. We can use this by making use of some
specific integer ¢ such that n = 2¢. Thus we begin the proof of this
result, by the direct method, as follows.

Suppose that n is an even integer. Then n = 2q for some integer q.

The conclusion which we are aiming for is the statement that n? is
even, which may be written, again spelling out the definition, 3¢ €
Z, n? = 2q. Recall that in such statements the symbol ‘¢’ is a dummy
variable and its only rédle is to glue the notation together: in words we
could write this as ‘n? is twice some integer.” We could replace q by any
other symbol not already in use, for example Ip € Z, n® = 2p. Indeed
in this case we ought to do this since the symbol ¢ is already in use:
when we wrote ‘Then n = 2¢ for some integer ¢’ we were using ¢ to
denote some specific integer with the property that n = 2¢. It is only
by doing this that we can make use of the existence statement. We can
now proceed to find an integer p such that n? = 2p and complete the
proof as follows.

Therefore n? = (2¢)2 = 4¢*> = 2(2¢?) and so, since 2¢* is an integer, n® is
even.
Hence, if n is even, then n? is even.

This is actually written out without reference to ‘p’ although we could
have said ‘n? = 2p where p = 2¢? is an integer and so n? is even.’

There is a genuine ambiguity about the statement ‘n = 2q for some
g € Z’'. Tt may be the existential statement that the integer g exists and
this is what is meant by the statement Jg € Z, n = 2q. Alternatively,
it may be the statement that ¢ is a specific integer such that n = 2q as
occurs in this proof. The statement with the second meaning is possible
because of the statement with the first meaning, and we could make this
clear by writing out the proof as follows.

Suppose that n is even. Then 3¢ € Z, a = 2q. So let ¢ be an integer such
that n = 2g1. Then n? = (2¢1)® = 2(2¢f). Hence, since 2¢} is an integer,
3p € Z, n? = 2p. Thus n? is even.

Hence, if n is even then n? is even.

In practice this distinction is blurred and I would encourage the reader
not to worry about it — it is a case where ambiguity is better than
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pedantry. Most problems are avoided so long as a different dummy
variable is used each time a definition involving a quantifier is used in
the proof.

7.4 Disproving statements involving quantifiers

The idea of disproving statements can appear a little strange at first,
but to some extent this is a matter of presentation: disproving ‘P’ is the
same as proving ‘not P’.

(a) Disproving statements of the form Va € A, P(a)

We have already observed that the negation of this statement is the
statement

Ja € A, not P(a)

and so we can disprove it by giving a single example for which it is false.
This is called disproof by counterezample to P(a).

Example 7.4.1 To disprove the statement Vz € R, 22 > 2.

Solution A counterexample is provided by £ = 1 since 1 € R and 12 =
1<2. O

Great care is required in interpreting negatives of universal statements
in everyday speech. For example consider the statement ‘All the mem-
bers of the class are not here’ which would normally be taken to be
the negative of the universal statement ‘All the members of the class are
here’, in other words ‘Some member of the class is not here.” This differs
from our careful usage. Consider a mathematical statement of the same
structure: ‘All the numbers in the set are not even.” This must mean
the same as ‘All the numbers in the set are odd’ since ‘odd’ means the
same as ‘not even’. But the everyday usage indicated above would give
‘Some number in the set is odd.” Take care to use language forms which
are not open to misunderstanding: if we wish to indicate an absence
from a class then we should say ‘Not all the members of the class are
here.” But then, away from mathematics, one can have a lot of fun with
ambiguity!
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(b) Disproving statements of the form Ja € A, P(a)

The negation of this statement, often written
Za € A, P(a),

is the statement
Va € A, not P(a)

and this gives one way of disproving the statement. We made use of this
fact in the proof of Proposition 2.2.4. Here is another very simple and
familiar example.

Proposition 7.4.2 There does not erist a real number x such that x> =
-1.

Proof We know that, for all z € R, we have the inequality z2 > 0 and
so 22 # —1. Hence there does not exist = € R such that z? = —-1. [

The other way of disproving an existence statement is by contradic-
tion. Here we show that the statement P(a) where a € A necessarily
leads to a contradiction. Proposition 4.1.1 which is a non-existence
statement was proved using this method.

7.5 Proof by induction

We can reformulate the method of proof by induction using the lan-
guage of set theory. Recall from Chapter 5 that induction is used to
prove statements of the form Vn € Z*, P(n). Such a statement can be.
rewritten as {n € Z* | P(n)} = Z*. Thus induction can be thought
of as a method for proving that certain subsets of Z*, the set of posi-
tive integers, are in fact the whole set. From this point of view we can
express the induction principle (Axiom 5.1.1) as follows.

Axiom 7.5.1 (The induction principle reformulated) Suppose that
A 1s a subset of Z*t, the set of positive integers. Then A = Z% if

(i) 1€ A, and

(i) VkeZ* (ke A= k+1€ A).

This statement reduces to Axiom 5.1.1 if we put A = {n € Z* |
P(n)}. It can be deduced from Axiom 5.1.1 if we write P(n) for the
predicate n € A.

Induction is quite often formulated in this more formal way.
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7.6 Predicates involving more that one free variable

We have already met a number of universal and existential statements
involving more than one variable. If P(a,b) is a predicate involving two
free variables a € A and b € B then we can form propositions involving
quantifiers as follows.

(i) Ya € A, Vb € B, P(a,b).
(ii) Ja € A, 3b € B, P(a,b).
(iii) Va € A, 3b € B, P(a,b).
(iv) 3b € B, Va € A, P(a,b).
(v) Vb€ B, 3a € A, P(a,b).
(vi) 3a € A, Vb€ B, P(a,b).

The meaning of the first two of these is fairly clear. Examples of these
which we have aready met are as follows.

Proposition 3.1.1 Va,b € R*, a < b= a? < b?.
Proposition 3.2.1 Va,b € R, a < b = 4ab < (a + b)%.
Proposition 4.1.1 It is not true that Im,n € Z, 14m + 20n = 101.

Notice in these examples that ‘Va,b € A’ is a shorthand for ‘Va €
A, Vb € A’ and similarly for ‘3.

Statements involving both quantifiers require some care in particular
regarding the order of the quantifiers. Consider for example the predi-
cate ‘m < n’ involving positive integers m and n.

Example 7.6.1 Ym € Z*, In € Z*, m < n.

This is the statement that {m € Z* | In € Z*, m < n} = Z*
or that m € Z* = (3n € Z*, m < n). Notice how the use of the
single quantifier ‘In € Z¥’ leads to a predicate ‘In € Z+, m < n’ with
a single free variable m. We can then consider for which values of m
this predicate is true. In this case we are considering the assertion that
it holds for all positive integers m. This means that for each positive
integer m, there exists a greater integer n. This is clearly the case and
we can prove it by example: take n = m+ 1. We can write out a formal
proof as follows.

Proof This result is true because, given a positive integer m, if we put
n =m+ 1 then n is a positive integer and m < n. O
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Example 7.6.2 3n € Zt,Vm e Z*, m < n.

This is the statement that the set {n € Z* | Vm € Z*, m < n} is
non-empty. For a positive integer n to be in this set we must have Ym €
Z*, m < n, in other words it must be greater than all positive integers.
But it certainly isn’t greater than n itself and so we can disprove the
statement Vm € Z1, m < n by the counterexample m = n. Writing this
out formally gives the following.

Proof This result is false because, for each positive integer n, if we put
m = n then m is a positive integer and m £ n so that m = n provides
a counterexample to the statement Vm € Z%, m < n which is therefore
false. O

Alternatively, the proof might be written more briefly as follows leav-
ing the reader to sort out the quantifiers.

Proof This result is false because, for each positive integer n, if we put
m = n then m is a positive integer and m £ n. O

Example 7.6.3 Vn € Zt, Im € Z*, m < n.

Let us consider the set {n € Z* | 3m € Z*, m < n}. This is
the set of positive integers which are strictly greater than some other
positive integer. If n > 1 then n does lie in this set since we can take
m = n — 1 but on the other hand 1 is not an element of this set since
VmeZt,m>1 Hence {n€Z*|3ImeZ",m<n}=2"-{1}.
Since 1 does not lie in this set the universal statement is false. All we
need say is the following.

Proof This statement is false and a counterexample is n = 1 since m £ 1
for all positive integers m. O

Example 7.6.4 3me Zt,Vn € Z*, m < n.

This is the statement that the set {m € Z* | Vn € Z*, m < n}
is non-empty. For a positive integer m to be in this set we must have
Vn € Zt, m < n, in other words it must be smaller than all positive
integers. But it certainly isn’t smaller than itself and so we can disprove
the statement Vn € Z1, m < n by the counterexample n = m. Writing
this out formally gives the following.
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Proof This result is false because, for each positive integer m, if we put
n = m then n is a positive integer and m «£ n so that n = m provides
a counterexample to the statement ¥Yn € Z*, m < n which is therefore
false. O

The alternative more usual briefer form is as follows.

Proof This result is false because, for each positive integer m, if we put
n = m then n is a positive integer and m £ n. J

The reader should carefully compare the proofs in Example 7.6.2 and
Example 7.6.4. Although in both cases the implication used is that if
m = n then m £ n, in the first example we start from a general positive
integer n and then define m by m = n, whereas in the second example
we start from a general positive integer m and then define n by n = m.
The distinction may be clarified when the reader does Exercise 7.2.

7.7 The Cartesian product of two sets

At the beginning of this chapter we introduced quantifiers in terms of
properties of the subset defined by a predicate involving one free variable.
Predicates involving more than one free variable also define subsets — of a
set known as the Cartesian product. For simplicity we restrict attention
to the case of two free variables.

Definition 7.7.1 Given sets X and Y, the | Cartesian product | of X

and Y, denoted by | X X Y |, is the set of all ordered pairs (z,y) where
zeX andyeY. Thus

XxY={(z,y)|zeX andyeY}.

In referring to an |ordered pair | in this definition we mean that two

such pairs, (z1,11) and {(z2,¥2), are equal, (z1,y1) = (x2,y2), if and
only if x1 = z2 and y; = y2. We say that the ordered pair (z,y) has

coordinates | z and y.
When Y = X we write X x X = X°.

We can picture points in the Cartesian product as follows using lines
to represent the sets X and Y and a rectangle to represent X x Y. It is
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customary to use a horizontal line to denote the first set and a vertical
line to denote the second set.

Y XxY

L o __ - (z,y)

t

t

i

]

[}

:

I

oz X
Examples 7.7.2 (a) For X = {a,b,c} and Y = {a, b},

X xY = {{a,a),(a,b), (b,a), (b,b),{c,a),(c,b) }

and
Y x X = {(a,a),(a,b),(a,c), (b,a),(b,b), (b,c) }.

Notice that these two sets are different.

(b) R? = R x R is the familiar 2-dimensional Euclidean plane.

Now given a predicate P(a, b) involving free variablesa € Aand b € B,
we can define the subset {(a,b) € A x B | P(a,b)} of the Cartesian
product. This is familiar in R? from the study of plane curves using the
methods of Cartesian geometry; we can describe certain subsets of R? by
giving an equation. For example we say that the circle with centre (0, 0)
and radius 1 has equation z? + y% = 1 to mean that the set of points in
R? which lie on this circle is given by { (z,y) € R?> |22 +y* =1}.

Example 7.7.3 To illustrate the relationship between universal and ex-
istential statements involving a predicate with two free variables and the
subset defined by the predicate we look again at the examples considered
in the previous section. We can draw part of the picture of the subset

{(mn)€eZ* xZ* |m<n}CZ' xZ*

as in the diagram on the next page.
Here the solid dots () indicate the elements of the Cartesian product
for which the predicate m < n is true and the circles (o) those for which
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it is false. Thus (2,10) is in the subset determined by the predicate
whereas (9, 3) is not.
We now consider each example in turn.

Example 7.6.1 Ym € Z*, 3n € Z*, m < n. This is true because each
vertical line of elements in the Cartesian product contains an element in
the subset, for example {m} x Z*, the vertical line of points whose first
coordinate is m, contains the point (m,m + 1).

Example 7.6.2 3n € Z*,¥m € Z*, m < n. This is false because
no horizontal line lies entirely in the subset, for example Z* x {n}, the
horizontal line of points whose second coordinate is 2, contains the point
(n,n) which does not lie in the subset.

Example 7.6.3 Vn € Z*, 3m € Z*, m < n. This is false because there

is a horizontal line containing no elements of the subset, namely the line
Z* x {1}.

Example 7.6.4 3m € Z*, Yn € Z*, m < n. This is false because each
vertical line contains a point not in the subset, for example {m} x Z*
contains the point (m,m).
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To conclude this chapter here are some standard results relating the
Cartesian product to union and intersection.

Proposition 7.7.4 For all sets A, B, C and D the following hold:
(i) Ax(BUC)=(AxBYU(AxC);
(i) Ax(BNC)=(AxB)n(AxC);
(iii) (Ax B)N(C x D)=(ANC) x (BN D),
(iv) (Ax B)U(CxD)C (AUC) x (BUD,).
These statements may be proved directly from the definitions. As an

illustration here is a proof of part (ii). (Part (iv) appears as Exercise 7.7
and part (iil) appears in Problems II, Question 13.)

Proof of part (i) A proof that two sets are equal requires us to prove
two set inclusions. In this case we can do them together as follows.

(z,y) e Ax(BNC) & z€AandyeBnC
& rcAandyeBandyeC
& (r,y)€e AxBand (z,y) € AxC
& (z,y) e (AxB)N(AxC).

Thus (z,y) € Ax (BNC) & (z,y) € (A x B)N (A x C) as required.
|

Exercises

7.1 Determine the following sets:

@) {meZt|IneZ*,m<n},
(i) {meZ*|VneZt, m<n},
(iii) {n€Z* |IMmeZ, m<n},
(iv) {n€eZ* |VmeZ*, m<n}.

7.2 Prove or disprove the following statements.

(i) Vm,ne€ Z*, m < n.

(i) Im,neZ*, m< n
(iii) Ym € Z*, In € Z*, m < n.
(iv) ImeZ*,VneZt, m < n.
(v) VneZ*, Im e Zt, m < n.
(vi) 3n€ Z*,Vm e Z*, m < n.
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7.3 Prove or disprove the following statements.

(i) Vm,n € Z, m < n.

(if) Im,n € Z, m < n.
(iil) Ym € Z, In € Z, m < n.
(iv) I meZ,Vn€Z, m < n.

(V) VneZ,ImeZ, m<n.
(vi) Ine€eZ,VYmeZ, m < n.

7.4 Prove or disprove each of the following statements.

() VzeR, yeR, z+y=0.
(ii) IyeR, VzeR, z+y=0.
(i) Ve e R, Iy e R, zy = 0.
(iv) IyeR, Ve e R, zy = 0.
V) VzeR, yeR, zy=1.
(vi) yeR, VzeR, zy=1.
(vil) Vn € Z*, (n is even or n is odd).
(vili) (Vn € Z*, n is even) or (Vn € Z¥, n is odd).

7.5 Prove the following:
(3geZ,n=2¢g+1)= (3p€Z, n?=2p+1).

7.6 Write the following universal statement in terms of quantifiers and
prove it.

For integers a and b, if @ and b are even then so is a + b.

7.7 For sets A, B, C and D prove that
(AxB)U(CxD)C (AUC) x (BUD),

and give an example to show that these sets are not always equal.

7.8 Suppose that the set {(a,b) | P(a,b)} is given by the triangular
regions in the diagram below.

i AxB
Va

Al

A

Decide whether each of the following statements is true or false.
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(i) Ya € A, 3b € B, P(a,b).
(ii) 3b € B, Ya € A, P(a,b).
(iii) Vb € B, Ja € A, P(a,b).
(iv) da € A, Vb € B, P(a,b).

7.9 Find a reformulation of Axiom 5.4.1 (the strong induction principle)
as a method of proving that subsets of Z* are the whole set (similar to
Axiom 7.5.1).
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Functions

The notion of function is one of the most fundamental in mathematics.
It is probably familiar to the reader in the context of calculus, and it
is here that the concept was first clarified and the difference between
a function and a formula properly understood in the early years of the
nineteenth century. Today, the language of functions is used throughout
mathematics.

In this chapter the function concept is introduced. We discuss various
ways of defining a function and consider the graph of a function.

8.1 Functions and formulae

Definition 8.1.1 Suppose that X and Y are sets. A |function|, map

or mapping from the set X to the set Y is the assignment of a unique
element of Y to each element of X. If f is a function from X to Y we

write | f: X — Y | and denote the element of Y assigned to an element

z € X by| f(z)| writing|z — f(z)| The element f(z) € Y is called the

value | of f at £ € X or the|image| of x under f. The set X is called

the | domain | of the function f and the setY is called the | codomain |.

Example 8.1.2 The most basic way of describing a function is by
listing the values. For example, given X = {z,,z2,23,24} and ¥ =
{v1,y2,Y3,ya,¥s }, the following table determines a function f: X — Y.

89
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T Iy T2 T3 T4
f@lm v vs ¥s

We determine the value of the function at an element of X by locating
that element in the first row and reading down to the second row. Notice
that each element of the domain X occurs precisely once in the first row
so that this is a well-defined procedure. On the other hand elements of
the codomain Y may occur once in the second row, but they may also
occur more than once or not at all: an element of the codomain may be
the value of the function at several elements of the domain or may not
be a value at all.
We can picture this function as follows.

1 e /Olh
Tg .———J oY
Iz e Y3
T4 o——\ o Ys

T~eys

Here we find the value of f at an element of the domain X by following
the arrow which begins at that element. Each element of the domain lies
at the beginning of just one arrow so this is a well-defined procedure.
However, elements in the codomain may lie at the end of one arrow,
several arrows or no arrow at all.

Yet another way of describing a function is as follows. Think of the
elements of the codomain set as boxes. The function describes how to
place the objects of the domain set in these boxes. Thus the function
under consideration would be pictured as follows.

Y1 Y2 Y3 Ya Y5
[ [ ] ® [ ]
Ty T2 T3 T4

Again notice that each element of the domain set occurs precisely once
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in the picture. However, any given box, corresponding to an element of
the codomain, may contain one object, several objects or none at all.

The reader may wonder at this variety of ways of thinking about
a function. It is important to realize that mathematicians develop a
variety of ways of thinking about the rather abstract concepts they deal
with. Any given way may suit one person better than another and each
leads to different insights: it can be useful to be aware of several.

Example 8.1.3 Suppose that X = {a,b,c} and Y = {d, e}. Then there
are precisely eight functions from the set X to the set Y given as follows.

filz) folz) falx) falx) fs(z) felx) fr(z) fs(x)
d d d d e e e e
d d e e d d e e
d e d e d e d e-

o o 8ls

Here the functions f; and fg are examples of constant functions. Given
sets X and Y and any element yo € Y there is a constant function
Cyo: X — Y given by cy,(z) = yo for all z € X.

Of course a function can have the same set as domain and codomain
as in the next example.

Example 8.1.4 Suppose that Z = {a,b}. Then there are precisely four
functions from Z to Z as follows.

z | gi(x) go(z) ga(x) galx)
a a a b b
b a b a b

In this case the functions g; and g4 are constant functions. The function
g2 is an example of an identity function. Given a set X, the identity
functionon X, Ix: X — X, is given by Ix(z) =z for all z € X.

Describing a function by listing the values is only practical when the
domain set is small and impossible if the domain set is infinite. The
most common way of describing a function f is by giving a formula for
f which provides a procedure for finding the value of the function at
each element of the domain. When defining a function using a formula
it is important to be clear about which sets are the domain and the
codomain of the function.
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Example 8.1.5 Recall that R? denotes the subset of R, the set of
real numbers, given by {z € R | z > 0}. Consider the following four
functions:

(i) f1:R — R given by fi(z) = z%;
(ii) f2:RZ — R given by fo(z) = 22;
(iii) f3:R — R? given by f3(z) = z%;
(iv) fs:RZ — R? given by fu(z) = 2.

Notice that, although the formula f;(z) = 2 is the same for each of these
four functions, they are considered to be four distinct functions since the
domain and codomain are part of the definition of the function. We will
see later that these four functions have different properties even though
they are given by the same formula.

We need to take care that the formula makes sense for each element

of the domain.
24+ -2

Example 8.1.6 The formula fi(z) = ——i does not define a
function R — R since it gives no value for z = 1. When working with
the set of real numbers it is quite common not to specify the domain
and codomain of a function given by a formula. The convention is that,
if these are not specified, then we take as the domain the subset of R
consisting of the numbers for which the formula makes sense and we
take R as the codomain. Using this convention the above formula for f;
defines a function f;:R — {1} —» R.

If we really want a function with domain R then in an example like
this there are two basic techniques for extending f;.

Rewriting the formula: We can rewrite the formula in such a way that
it makes sense for all real numbers = using

@+z-2)/(z-1)=(z-1)(z+2)/(z~1) =z +2

for £ # 1. Then fa(z) = « + 2 does define a function on R, i.e. with
domain R, extending the function f;.

Ezplicit definition: Alternatively we can explicitly specify the value of
the function at the element 1 where the formula for f; does not work.
Thus

2+z-2
f3($)={ z—1 fz#1,
3

ifr=1,
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defines a function f3:R — R.

Notice that we may specify the values at individual points any way we
like. It doesn’t have to relate in a sensible way to the values elsewhere.
In defining f3(1) we selected that value given by the formula z + 2 so
that fo and f3 are in fact the same function. However, we could extend
the function f; to the whole of R in a-different way. For example

2 +z-2
falz) = z—1 ifz#1,
42 ifx=1,

is another way of extending the function f; to the whole of R.

Example 8.1.7 In some cases, for example = — 1/z, there appears to
be no way of rewriting the formula to include in the domain of definition
points where it gives no value (in this case x = 0). But in these cases
we can still use the second method. For example

[ 1)z ifz#0,
g(z)‘{m if x =0,

is a perfectly respectable function g:R — R.

We can use different formulae for different parts of the domain as in
the following example.

Example 8.1.8 The modulus function z — |z| is defined on R by

| = T ifz >0,
] -z ifzx<o0.

Notice here that the value of the function at 0 is given twice, since
0 > 0 and 0 < 0. This isn’t a problem since the two formulae (z — z
and z — —z) give the same value (namely 0) for z = 0. But when
specifying a function in this way we do need to be careful to check that
it is well-defined (i.e. there is a uniquely specified value) at each point.

Definition 8.1.9 Two functions f: X — Y and g: X — Y are|equalj,

written | f = g|, when they have the same value at each point of the

domain X, i.e. f(z) = g(z) for all x € X. Notice that it is implicit in
this definition that two equal functions have the same domain and the
same codomain.
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Example 8.1.10 The functions fo and f3 of Example 8.1.6 are equal
even though they are defined in different ways. Thus it is not the process
leading to the values which determines the function but what the values
are. Of course, in defining f3 the value of f3(1) was selected precisely
so that they would be equal.

We have seen in Example 8.1.6 how to extend the domain of a function.
We can also make the domain smaller.
Definition 8.1.11 Suppose that f: X — Y is a function and A is a
subset of X, i.e. A C X. Then we can define a function g:A — Y by
g(a) = f(a) for all a € A. This function is called the | restriction | of f

to A and is denoted by | flA|.

Examples 8.1.12 (a) In Example 8.1.3 fi|{a, b} = f2|{a,b} and is the
constant function taking the value d.
(b) In Example 8.1.5 f, = f1|R? and f; = f3|R>.

(c) In Example 8.1.6 fo|(R ~ {1}) = fy|(R - {1}) = f1.

8.2 Composition of functions

Suppose that f: X — Y and g:Y — Z. Then, given an element z € X,
the function f assigns to it an element y = f(z) € Y and now the
function g assigns to this an element g(y) = g(f(z)) € Z. Thus using
f and g an element of Z has been assigned to z. This process defines a
function with domain X and codomain Z called the composite of f and

g.

Definition 8.2.1 Given two functions f: X — Y and g:Y — Z the

composite | of f and g, denoted by|go f: X — Z | or simplygf: X — Z,
is defined by

go f(zx) = g(f(:v)) forallz € X.

The order of the f and g in this definition should be carefully noted.
Since we have adopted the convention (usualt in most areas of mathe-
matics) of writing the symbol for the function on the left of the element

t But not used universally. In some branches of algebra it is quite common to write
the value f(z) as zf or even /.
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where it is being evaluated (viz. f(z)) it is natural to denote the func-
tion obtained by applying f and then applying g by the symbol g o f
which presents them (from left to right) in the opposite order to their
application. We can write the following to indicate this:

gof:x4Lv %z

Examples 8.2.2 (a) The function z — (z + 1)? from R to R is the
composite of the function f:R — R defined by f(z) = z + 1 and the
function g:R — R defined by g(x) = z? because

gof(x)=glz+1)=(z+1)? forallze X.
Notice that the order does matter here because
fog(z)=f(a®) =2+ 1

composition of functions is not in general commutative. It is not usually
a good idea to refer simply to ‘the composite of f and ¢’ when both
orders are possible since there is no well-established convention about
which order these words indicate. It is best to use the symbolism g o f
or f o g in order to be quite clear.

(b) Suppose that A is a subset of a set X. Then we may define a function
3: A — X by i(a) = a for all a € A. This function is called the inclusion
function of A into X. If now f: X — Y is a function, then the composite
foi:A—Y is equal to the restriction flA: A — Y of f to A.
(c) Suppose that f: R — R is defined by f(z) = z2+1 and g: R—{0} - R
is defined by g(z) = 1/z. Then strictly speaking the composite g o f is
not defined since the codomain of f is not the same as the domain of g.
However, every value of f lies in the domain of g since z2+1>1>0
for all real numbers z so that g can be evaluated at each value of f. In
a case like this we can still attach a meaning to the composite g o f as
the function given by go f(z) = g(f(z)). This gives the function R —» R
determined by go f(z) = 1/(z? + 1).

Proposition 8.2.3 Suppose that f: X - Y, ¢Y > Z and :Z - W
are functions. Then

(i) (hog)of=ho(gof):X — 2,
() folx=f=Iyof: X Y.
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Proof These results are proved simply by evaluating the functions. For
example, given z € X, both the functions in (i) assign h(g(f(z))) to
this element and so the functions are equal. O

Notice that the first part of Proposition 8.2.3 means that we can write
h o go f without ambiguity. Composition of functions is associative.

8.3 Sequences

Definition 8.3.1 A function f : Zt — A is called a |sequence| in the
set A.

The study of sequences in R or C is of great importance in advanced
calculus and numerical analysis. Sequences may be defined by a formula,
suchasn—n? n— 1/n, n— 2" n— (14 1/n)" and n+— 1/n!. But
more interesting are those sequences defined inductively. We saw in
Chapter 5 that strictly speaking formulae involving the exponent n or
the factorial n! really have to be defined inductively. Another example
of an inductively defined sequence considered there was the Fibonacci
sequence.

It is common in advanced calculus to solve numerical problems by
generating a sequence of numbers z,, which provide increasingly good
approximations to the solution as n increases — the sequence converges
to a limit which is the required solution.}

One important reason for becoming adept at handling quantifiers is to
be able to handle the definition of the limit of a sequence. To illustrate
the ideas we introduce the idea of a null sequence, a sequence with limit
0.

Definition 8.3.2 Given a sequence f:Z* — R of real numbers, we say

that the sequence is {null |, written |lim f = 0| or| lim f(n) =0}, when
n—oo ]

VeeRY,IN € Z*,Vne Z* (n> N = |f(n)] < ¢).

t A good example is the Newton—Raphson method for solving an equation, de-
scribed in most books on advanced calculus (see for example G.B. Thomas and
R.S. Finney, Calculus and analytic geometry, Addison-Wesley, Eighth edition
1992).
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The use of € for a general positive real number in this definition is
traditional. This is not the place to investigate the full implications of
this definition which involves three quantifiers! Here is a simple example
of its use.

Example 8.3.3 The sequence n — 1/4/n is null.

Constructing a proof. We are required to prove that
VeeRY, AN € Z,VYne Zt* (n> N = 1/y/n <e¢).

[Notice that |1/4/n| = 1/4/n.] So suppose we are given € € R*. Then to
demonstrate the existence of the integer N we examine when 1//n < ¢.

1/Vn<eel/n<e? on>1/e

Hence so long as we choose a positive integer N such that N > 1/e% we
will have n > N =>n > 1/e? = 1/\/n < ¢ as required.

So for example, if € = 1 then we must choose N > 1, if ¢ = 1/2 then
we must choose N > 4, and if ¢ = 1/100 then N > 10000. The smaller
the number ¢ the greater the number N is required to be. But whatever
the positive real number ¢ is the condition N > 1/£? tells us how large
N has to be.

Proof Given a positive real number ¢, 1/{/n < ¢ if and only if n > 1/€2.
Hence if we choose N > 1/¢2 then n > N implies that n > 1/¢2 so that
1/4/n < € is required. a

This type of proof involving multiple quantifiers is quite elaborate and
this is in fact an extremely simple example. More complicated examples
are not considered in this book but are dealt with in detail in books on
infinite sequences and series, advanced calculus and analysis.}

8.4 The image of a function

Given a function f: X — Y, it is not necessary that every element of Y
is a value of the function. For example the function R — R given by
z +— z2 does not have —1 as a value. Thus we can obtain a subset of Y
by considering those elements which are values.

t See, for example, R. Haggerty, Fundamentals of mathematical analysis, Addison-
Wesley, Second edition 1993.
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Definition 8.4.1 Given a function f: X — Y, the subset of the codomain

Y consisting of those elements which are values of f is called the|image

of f and is denoted by |Imf|. Thus

Imf ={f(z) |z X}

This means that the function f provides a constructive definition of
the set Imf, as discussed in Chapter 6.

8.5 The graph of a function

Definition 8.5.1 Suppose that f: X — Y is a function. Then we define

the | graph| of f to be the subset of the Cartesian product X x Y given
by

Gr={(z,n) eX xY |y=f(z)} ={(z, f(z)) [z € X }.

Remarks 8.5.2 In the case that X and Y are subsets of R this is the
usual idea of the graph of a function. Work in calculus makes it clear
that the graph gives a great deal of information about the function and
that it is useful to develop skill in drawing graphs.

Example 8.5.3 The graphs of the functions f; and f> of Example 8.1.3
are as follows.

of o o o of o o e
ol * o o ol e e o
fi U fa N o

Here we indicate the elements of the graph by solid dots (e).

The graph of the function f: X — Y is a particular example of a
subset of the Cartesian product X x Y determined by a predicate: the
predicate is y = f(z). Not every subset of X XY arises as the graph of a
function. Each column {zp} x ¥ must contain a single element, namely
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(o, f(zo)). However, the function f is determined by its graph Gy, for,
given z9 € X, there is a unique element (z,y) = (o, yo) € Gy such that
x = xg, and then f(zg) = yo.t

Exercises

8.1 Define functions f and g:R? — R by:

_ Tty  |lz-yl
f(may) - 2 + 2 H
_ z ifz>zy,
9(zy) = {y <y

Prove that the function g is well-defined. Prove that f = g.

8.2 Define functions f and g:R — R by f(z) = z% and g(z) = 1 — z.
Find the functions (i) f o f, (ii) fog, (ili) go f, (iv) gog.
List the elements of the set {z € R | fg(z) = gf(z) }.

8.3 Find functions f;: R — R with images as follows:

(i) Imf; =R;

(ii) Imfy = R*;
(iii) Imfs =R - Z;
(iv) Imfy = Z.

8.4 Prove that the sequence n — 1/n is null.

8.5 Let X = {a,b,c,d} and Y = {w,z,y,2}. Which of the follow-
ing subsets of X x Y is the graph of a function f: X — Y? For those
which are write down a table for the corresponding function as in Ex-
ample 8.1.3. Explain why the others are not graphs of functions.

t Our definition of a function (Definition 8.1.1) is usually considered rather informal
in more advanced mathematics. There a function is defined to be a graph: in other
words a function X — Y is defined to be a subset of X x Y.in which each element
of X occurs as the first coordinate of an element precisely once (see for example
Daniel J. Velleman, How to prove it, a structured approach, Cambridge University
Press, 1994).
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9

Injections, surjections and bijections

In defining a function f: X — Y we insist that a unique element of ¥’
is assigned to each element of X. However, we do not require that each
element of Y is assigned to some element of X nor do we prevent the
possibility of the same element of Y being assigned to several (or even
all the) elements of X. By imposing additional conditions concerning
the number of elements of X to which elements of Y are assigned we
get functions with particular properties. In this chapter we consider
functions with particularly good properties and in particular functions
which are bijections for which we can define an inverse function.

9.1 Properties of functions

- Definition 9.1.1 Suppose that f: X — Y is a function.

(i) If no element of Y is assigned to more than one element of X, i.e.
the function takes a different value for each point of the domain, then

we say that the function f is an |injection| (or that it is injective or

one-to-one). In symbols we can write this

Vz1,T2 € X, (T1 # T2 = f(71) # f(22))
or equivalently using the contrapositive

Vri,z2 € X, (f(z1) = f(z2) = 21 = 22).

(i) If each element of Y is assigned to some element of X, i.e. each
point of the codomain is a value of the function, then we say that the

101
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function f is a|surjection | (or that it is surjective or onto). In symbols

we can write this
VyeY,dz e X, y= f(z).

(iil) If f is both an injection and a surjection then we say that it is a

bijection | (or that it is bijective or one-to-one and onto).

We can reformulate these definitions using the notion of a pre-image.

Definition 9.1.2 For a function f: X — Y, given an element y €Y a

pre-image | of y (under f) is an element x € X such that y = f(z).

So f is an injection if and only if every element of Y has at most one
pre-image; f is a surjection if and only if every element of Y has at least
one pre-image; and f is a bijection if and only if every element of Y has
precisely one pre-image.

These ideas are simply expressed in terms of the various models for a
function introduced in the previous chapter. If a function is described
by listing the values of the function as in Example 8.1.2 then we find the
pre-images of an element of the codomain by locating its occurrences
in the list of values and reading up to the corresponding elements of
the first row. Thus a function is injective when no element occurs more
than once in the list of values, it is surjective when every element of
the codomain does occur in the list of values and bijective when every
element of the codomain occurs precisely once in the list of values.

In terms of the picture representing the function by arrows from the
domain to the codomain (see page 90) we find pre-images by following
arrows backwards. Thus, for example, a function is bijective if every
point of the codomain is at the end of precisely one arrow.

Finally, if we think of a function as a procedure for placing the ele-
ments of the set X into a set of boxes Y (see page 90) then a pre-image
of a particular box y € Y is simply an element which is placed in that
box. From this point of view, f is injective when no two elements are
placed in the same box, it is surjective when no box is left empty, and
it is bijective when each box contains precisely one element.

Examples 9.1.3 (a) In Example 8.1.3 all the functions apart from the
constant functions f; and fg are surjections. None of the functions are
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injections.

(b) In Example 8.1.4 the non-constant functions f> and f3 are bijections.
Notice that, for any set X, the identity function Ix is a bijection.

(c) In Example 8.1.5 the function f; is neither an injection (since (—1)? =
12 = 1) nor a surjection (since there is no real number z such that z2 =
—1); the function f, is an injection (since 0 < 71 < z2 = =% < z2) but
not a surjection; the function f5 is a surjection but not an injection; and
the function f; is a bijection. This example illustrates the importance of
the domain and the codomain. For example, if a result has been proved
for injections then it can be applied to f; and to f4 but not to f; and

fs.

Remarks 9.1.4 Notice that we can easily convert any function into
a surjection by changing the codomain. Recall that, given a function
f: X — Y, the image of f, denoted by Imf, is the set of values of f.
The assignment determining the function f also determines a function
ft:X — Imf (ie. ft(z) = f(z)) which is a surjection.

Since the definitions of injectivity and surjectivity involve universal
and existential statements, proofs and disproofs of these properties usu-
ally follow the format discussed in Chapter 7.

Example 9.1.5 To determine whether the function fi: R — R given by
fi(z) =z + 1 is an injection, a surjection or a bijection.

For injectivity, it is usually easiest to use the second formulation:
fi(z1) = fi(z2) = 21 = 72
Filling in the definition of the function this gives
T1+l=z2+1=1) =129

which is certainly true so that f; is injective.
For surjectivity, we rewrite the definition as usual as a universal im-
plication:

yeR=3zeR, y=fi(z).

If we put the definition of the function into this then it easy to prove
the existential statement by example. For

y=hHE@)ey=z+ler=y-1
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which tells us that, given y € R, then y = fi(z) if z = y — 1 so that y
does have a pre-image under f;. Hence f; is surjective and so a bijection.

In fact, what is written above is rather inefficient; we can often prove
bijectivity in one fell swoop. The best way to discover whether a function
is injective or surjective can be to investigate the pre-images of a general
element in the codomain using the approach used above for surjectivity.
In this case if y is a general element of the codomain R then

z is a pre-image of y < y= fi(x)
& y=z+1
& r=y-—-1.

This shows that each element y of R has precisely one pre-image, namely
y — 1, so that the function is a bijection.
We can write out the solution to this problem quite briefly as follows.

Solution Sincey = fi(z) @ y=z+1 S c=y—1, forz, y € R, we see
that each element y of R has precisely one pre-image under f;. Hence
f1 is a bijection. I

Example 9.1.6 To determine whether the function fo: Rt — RY given
by fo{z) =z + 1 is injective, surjective or bijective.

This function is given by the same formula as the previous example.
If we try the pre-image approach we get almost the same argument:

z is a pre-image of y < y = fa(z)
o y=z+1
& rz=y-—1.

The difference becomes clear when we ask whether the formula for the
pre-image makes sense. Remember that if z is to be a pre-image then it
must certainly lie in the domain R* (otherwise f2(z) isn’t even defined).
But, given y € R*, y —1 € R if and only if y — 1 > 0 (by the definition
of RY), i.e. y > 1. So we see that y has a pre-image if and only if y > 1.
This proves that the image of f is the set {y € RY | y > 1} and, since
this is not the whole of R*, f, is not surjective. As usual, in the formal
proof we give an explicit counterexample, an element of Rt which is not
a value of the function.

However, the function is injective and the proof is just the same as in
the previous example.
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Solution The function is injective since, for 1, z2 € R, fo(z1) =
fo(z2) = 1+ 1 =122+ 1= z; = T5. However, if z € R* then z > 0 so0
that fa(z) =z + 1> 1. Thus 1/2 is not a value of f, which is not then
surjective. d

Example 9.1.7 To determine whether the function f3:R — R given by
f3(x) = 4% — 4z + 2 is injective, surjective or bijective.

This time the pre-image approach gives

y=filz) & y=4"-4x+2
& y=(02z-1)2+1

& zz=(1+£4/y-1)/2

Again we must check whether our formula for the pre-image makes sense.
Now if y < 1 then y — 1 has no (real) square root and so in that case
the formula has no meaning. Looking back through the steps above we
see what the problem is: y = (22 — 1)? + 1 tells us that if y is a value
then y > 1. This tells us that f3 is not surjective.

The other thing we notice in the formula for the pre-image is the
symbol +. This means that z is a pre-image for y if and only if z =
1++vy—1)/20r z=(1-+y—1)/2. In other words if /y — 1 exists
and is non-zero, then y has two pre-images. For example, taking y = 2
for which /3y —1=1,f we obtain f3(z) =2 z=(1+1)/2,ie.z=1
or x = 0. So fs is not injective.

Solution Because f3(0) = f3(1) = 2, the function is not injective.

For a real number z, f3(z) = 422 — 4z +2= (22 —1)2+ 1 > 1. Thus
0 is not a value of f3 and so it is not surjective. O

Notice that in presenting this proof no indication is given of how we
found the counterexample to injectivity. Formally this is not required for
the proof. In a case like this it is not difficult to spot such a counterex-
ample (for example from the graph of the function or from rewriting the
formula as (2z — 1)? + 1) but it is often a good idea to help the reader
by indicating how you found the counterexample.

t We adopt the usual convention that if y is a non-negative real number then /7

represents the non-negative square root of y, i.e. z = \/y if and only if y = z2 and
z20.
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Example 9.1.8 To determine whether the function fi:Rt — {z €
R* | z > 1} given by fi(z) = 422 — 4z + 2 is injective, surjective or
bijective.

The pre-image approach gives just the same formula as in the previous
example. However, if y is in the codomain then y > 1 and so the
square root in the formula for a pre-image element does determine a
real number. Furthermore (1 + /gy —1)/2 > 1/2 and so this gives one
pre-image for y showing that f, is surjective. For y > 1, we have a
second pre-image precisely when (1 — /y — 1)/2 > 0 which occurs when
vy —1< 1,ie.y < 2. This proves that f4 is not injective since elements
y in the codomain have two pre-images if y < 2. However, it is probably
more satisfying to give two specific elements of the domain where the
function takes the same value; we can get these by taking y = 5/4 which
has v/y — 1 = 1/2 and so the pre-images (1 +1/2)/2, i.e. 3/4 and 1/4.

Sketching the graph of this function is a great aid to seeing what is
going on. The reader should do this.

Solution Notice that y = fs(z) © = = (1 £ /y — 1)/2. The function

is surjective since given y > 1, y = fa{z) for z = (1 + /'y — 1)/2 € R*.
The function is not injective since f4(1/4) = f4(3/4) = 5/4. |

9.2 Bijections and inverses

Definition 9.2.1 A function f: X — Y is called | invertible | if] there
exists a function g:Y — X such that

y=flz)ez=9(y) forallz€ X and forally €Y.

In this case we call g an |inverse (function) | of f and write|g= f1|

The symmetry of the definition shows that in this case g is also in-
vertible and f is an inverse of g.

This means then that corresponding to the assignment of an element
of Y to each element of X there is a reverse assignment of an element
of X to each element of Y.

t The reader should note the way that the word ‘if’ is used in this definition. It really
means ‘if and only if’ since we are defining the meaning of the word ‘invertible’.
Saying that f is invertible means precisely the same as saying that there is a
function g with the properties given. This usage in definitions is very common
although it has on the whole been avoided so far in this book.
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Example 9.2.2 Suppose that f: R -— R is defined by f(z) =2z +1 and
g:R — R is defined by g(z) = (z — 1)/2. Then, for z,y € R,

y=flz)ey=2z+1oz=_y-1)/2e z=4g(y).

Thus f and g are invertible and each is the inverse of the other.

Theorem 9.2.3 Let f: X — Y. Then f is invertible if and only if it is
a bijection. Furthermore, if it is invertible, then its inverse function is
unique.

Constructing a proof. Intuitively this result is pretty clear. For ex-
ample if we think of the model of the function given by placing elements
from the set X in the set of boxes Y then we have observed that if the
function is bijective there is precisely one element of X in each box. In
this case the inverse function is given by associating to each box the
element which it contains. Furthermore this procedure is only possible
if there is only one element in each box which means that f is bijective.

The formal proof makes these ideas a bit more precise in terms of
the formal definitions of bijectivity and inverse and is constructed as so
often by simply spelling out these definitions. It may seem quite long,
but if you are clear about what you are trying to do there is really only
one possible way forward at each stage and so the proof more or less
writes itself.

The last part of the theorem asserts that f has a unique inverse.
This means that f has an inverse (for this is what is meant by stating
that it is invertible) but only one inverse. Uniqueness statements are
very common. The usual approach to proving them is illustrated in this
case: we demonstrate that if g; and go are inverses of f then g; = ga.
Arguments of this type have already been met in proofs of the injectivity
of a function f, for this asserts that each value of the function has
a unique pre-image: this is proved by demonstrating that if x; and
Z are pre-images of the same element then z; = z, (see for example
Example 9.1.5).

Proof For the first statement two things have to be proved.

(a) ‘f invertible = f bijective’: Suppose that f is invertible. Then, by
definition, there is an inverse function g: Y — X so that

y=fz)ez=9g(y) forallzec X andforallyeY.
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Now to prove that f is bijective we must prove that f is surjective and
that it is injective.

For injectivity, suppose that z1,z2 € X are such that f(z;) = f(z2);
then we must prove that 3 = z2. Put yo = f(z1) = f(z2). Then
Yo = f(z1) = z1 = g(yo) (from the definition of the inverse) but on
the other hand yo = g(x2) = z2 = g(yo). Hence z1 = g(y) = 2 as
required.

For surjectivity suppose that yg € Y. We must demonstrate that there
exists an element xo € X such that yo = f(xo). Put 2o = g(yo). Then it
is immediate from the definition of an inverse function that yo = f(z)
as required.

(b) ‘f bijective = f invertible’: Suppose that f is bijective. To show
that it is invertible we must construct an inverse function g:Y — X.
Suppose that yo € Y. Since f is a bijection, yo has precisely one pre-
image, say z¢ € X, such that f(xo) = 5. So we can define a function
by the rule that, for each y € Y, g(y) is the unique element z € X such
that f(z) = y. It follows from this definition that

y=flz)ezxz=g(y) foralzre X andforallyeyY
and so g is an inverse of f.

(c) ‘f invertible = it has a unique inverse’: Suppose that f is invertible
and g1:Y — X and g2:Y — X are inverse functions for f. To demon-
strate that g; = go we must show that g;(y) = g2(y) forall y € Y. Let
yo € Y. Then put x; = g1(yo) and z2 = g2(yo) so that we are required
to prove that x; = x2. This is easy because z; = ¢1(y0) = yo = f(z1)
and x2 = g2(yo) = yo = f(z2) so that f(z1) = f(z2). But now, since
f is invertible it is bijective (by (a)) and so in particular injective. It
follows that z1 = x, i.e. g(yo) = g2(¥o) as required. O

Because of this theorem the words ‘bijective’ and ‘invertible’ are used
interchangeably when referring to functions. Many standard functions
are not actually bijections but by suitable restrictions of the domain
and codomain can be converted into bijections. Here are some examples
from calculus.

Examples 9.2.4 (a) The function sin: R — R is neither injective (since,
for example, sin 0 = sin 7) nor surjective (since, for example, there is no
real number z such that sinz = 2). To define an inverse function sin™?
we restrict the domain and the codomain of sin so that it is bijective.
Surjectivity is easy: we simply change the codomain to the image of sin,
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i.e. Im(sin), which is the set [-1,1]] = {z € R| -1 < 2 < 1} (since we
know that each number in this set arises as a value of the sine function
on R). Injectivity is not much harder for we know that as x varies from
—m/2 to 7/2 the value of sinz increases steadily from —1 to 1 (sketch
the graph). So we take as our domain [-7/2,7/2] = {z € R| —7/2 <
z < m/2}. To sum up, the functionf}

sin: [—-m/2,7/2] — [-1,1]
is a bijection. By the above theorem it has an inverse
sin™':[—-1,1] — [-7/2,7/2].

In making this definition we had to choose a subset of R on which the
sine function was injective. There are many possibilities, for example
[w/2,3m/2], and each has its own inverse function. The above choice is
the most natural and the function it leads to is called the principal value
of the inverse. ‘

In the same way we can restrict the cosine and tangent functions to
obtain inverse functions

cos~1:[~1,1] = [0, 7]

and
tan™:R — (-7/2,7/2).

(b) Given n € Z*, the function z — z™'is a bijection R — R for n odd
and so in this case we do have an inverse function R — R, the nth root
function, denoted byt z — /™ or z — ¥/z.

t Strictly speaking this function should have a different name in order to indicate
the change of domain and codomain. However, it is usual to use the same name.

1 The notation z1/" is selected so that the law of exponents holds: (z!/m)" =
(z")1/" = g = z. With this definition it is possible to give some indication of the
problem in defining 0° referred to in Definition 5.3.3. Notice that 01/ is defined to
be 0. Furthermore, we have observed (Exercise 8.4) that the sequence 1/n is null,
lim 1/n = 0, which suggests that we ought to define 0° = 0. However, if the law
of indices is to hold then we must have z0 = 1 for non-zero z (see the solution to
Exercise 5.7) and this suggests that 0° = 1, the convention adopted in this book. It
is not possible to satisfy these conflicting demands. For (z,y) € RZ xR—-{(0,0)} it
is possible to define z¥ extending the definition for integer exponenents so that the
laws of exponents are satisfied and so that the function of two variables (z,y) — z¥
is ‘continuous’. It is not possible to extend this ‘continuous’ function to the point
(0,0). A full explanation of this, and the definition of ‘continuous’, is beyond
the scope of this book (see for example K.G. Binmore, Mathematical analysis, a
straightforward approach, Cambridge University Press, Second edition 1982).
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On the other hand it is neither an injection nor a surjection when n
is even. [The case n = 2 is typical and is discussed in Example 9.1.3(c).]
In this case we restrict the domain and the codomain to R? so that we
have a bijection. Thus the inverse function z — z!/™ = {/z is a function
R> — R>. The convention is that for even n the expressions z!/” and
{/z represent the non-negative root of a non-negative real number z.

The following equivalent formulation of Definition 9.2.1 is often useful.

Proposition 9.2.5 The functions f: X =Y and g: Y — X are inverses
of each other if and only ifgo f =Ix and fog=1Iy.

Proof ‘=’ Suppose that f and g are inverse to each other. Then
y=fz) o z=9(y) forallze X andallyeY.

Now, given zp € X, put yo = f(xo) so that zg = g{yo). Then go f(zg) =
9(yo) = zo, ie. go f = Ix.

Similarly fog = Iy.
‘«=’: Suppose that go f = I'x and fog = Iy. Suppose that yo = f(zo).
Then g(ys) = g © f(zo) = Ix{zo) = zo. Thus y = f(z) = = = g(y) for
alze X,yeY.

Similarly, z = g(y) = y = f(z) and so we have proved that f and g
are inverses of each other. |

9.3 Functions and subsets

In the previous section it has been demonstrated that a function f has
an inverse f~! if and only if it is a bijection. However, the reader
will discover that the notation f~! which has been used for the inverse
function is used even when the function f is not a bijection. This chapter
ends with a brief description of this more general use.

To begin with recall the definition of the power set (Definition 6.3.1):
the power set P(X) of a set X is the set of subsets of X so that A € P(X)
means simply A C X. We now describe how given a function f: X - Y
we can associate to it two functions between the power sets of X and
Y (one in each direction) each of which captures the function f in a
different way.

Definition 9.3.1 Suppose that f: X — Y is a function.
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(i) The function 7: P(X) — P(Y) is defined by

FAW)={f@]|ze4)
for A € P(X).
(ii) The function?:’P(Y) — P(X) is defined by

F(B)={zeX|f(x)e B}

for Be P(Y).

Remarks 9.3.2 The notations T and 7 are non-standard. Most writ-

ers denote the function 7) simply by f and denote the function 7 by
f~!. With experience this does not lead to confusion (and is another ex-
ample of how ambiguity can be better than pedantry). However, in this

book the notations ? and ? will be used since it seems potentially con-
fusing to have two different functions with the same name when meeting
these ideas for the first time.

In the case of ? notice that each element zg of X corresponds to an
element of P(X), namely the singleton subset {z¢}, and similarly for Y.

pa—
So we can think of f as an extension of f in the sense that

Tzo}) = { f(2) | 2 € {z0}} = { f(&) | =m0 } = {f(20)}.

Notice that T(X ) is the image of f, Im(f) (see Definition 8.4.1).

In the case of (—f—,
Tl ={zeX|f@) e{yw}}={zecX]|f(z)=v}

for each yo € Y. Thus ?({yo}) gives the set of pre-images of yp. In the
box model of a function (page 90) this gives the set of elements in the
box yo. Now, if f is a bijection with inverse f~!, then f(z) = yo if and
only if z = f~%(yo) so that 7({y0}) = {f"(yo)} and we can think of
‘f as an extension of L

If f is not a bijection then 7({3/}) will not be a singleton subset for
some elements of Y: if it is not a surjection then it will be empty for
elements y not in the image, and if not an injection then it will contain
more than one element for some y.
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9.4 Peano’s axioms for the natural numbers

The notion of the successor of an integer n was introduced in Section 5.1.
Chapter 5 was headed by a quotation from Richard Dedekind suggesting
that this idea captured the essence of the natural numbers (or positive
integers). The necessary language is now available so that some indica-
tion of the ideas behind the Dedekind quotation can be given.

Definition 9.4.1 The |successor function|, | s: Z+ — Zt |, is defined by

s(n)=n+1 forneZ*.

Dedekind observed that the existence of the successor function to-
gether with the number 1 completely captures the properties of the nat-
ural numbers. These ideas are now usually associated with the name of
the Italian mathematician Giuseppe Peano.t

Axioms 9.4.2 (Peano) The set of positive integers Z* is a set with a
function s : Zt — Z% and an element 1 € Z+ such that

(i) s is an injection,
(ii) 1 is not in the image of s, and
(iii) for ACZ*Y, if 1€ A, andn€ A= s(n) € A, then A=17".

Notice that (iii) is just the induction axiom as reformulated in Ax-
iom 7.5.1.

1 The first exposition of these ideas was by Richard Dedekind in his book Was sind
und was sollen die Zahlen? published in 1888. Peano formulated his axioms for
the natural numbers in his book Arithmetices principia, nova methodo exposita
published in 1889. Peano did not see Dedekind’s work until his own book was in
press and Peano’s exposition using the language of set theory is considered to have
been much more influential. It was in this bock that he introduced notations for
set membership (the modern symbol €) and set inclusion (he used an inverted ‘C’
which he also used for implication — recall that it was observed in Section 6.1 that
there is a strong connection between set inclusion and implication) and he seems
to have been the first to clarify the distinction between set membership and set
inclusion. Peano was a remarkable mathematician. It is curious that his 1889 book
was written in Latin rather than the Italian or French he usually used. In his book
about Peano (Reidel, 1980), Hubert Kennedy describes it as ‘the unique romantic
act of his scientific career’ and suggests that it reflected Peano’s awareness that he
was doing something historic — after all, the great classics such as Isaac Newton’s
Principia had been written in Latin. The following year brought Peano’s most
striking achievement, his construction of a space-filling curve; this is a curve in
the plane R2 given by continuous functions £ = f(t), y = g(t) such that, as ¢
varies over the interval [0, 1], (z,y) passes through every point of the unit square
[0,1] x [0,1]. This was perhaps the first indication of the subtlety of the notion of
dimension, confounding intuition, whose exploration has now led to the modern
study of fractal sets. (See for example Donald M. Davis, The nature and power of
mathematics, Princeton University Press, 1993.)
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It is not difficult to prove (by induction) that, given any set X with a
function s : X — X and a distinguished element 1 € X satisfying these
axioms, there is a bijection X — Z* under which the distinguished
elements 1 and the successor functions correspond.t This is what is
meant by saying that these statements provide axioms for the positive
integers.

We can use s to define algebraic operations on Z* inductively as
follows.

Definition 9.4.3 (Peano) The sum m +n of positive integers m and
n may be defined by induction on n by

(i) m+1=s(m), and
(ii) for k € Z*, m+ s(k) = s(m + k).

The product of positive integers mn or m X n is now defined (making
use of addition) by induction on n by

(i) mx1=m, and
(ii) forkeZ*t, mx s(k) =mx k+m.

It is an interesting exercise to prove the basic algebraic properties of
addition and multiplication starting from these definitions, for example
the commutativity of addition m + n = n + m.

Exercises

9.1 Determine whether each of the following functions R — R is injec-
tive, surjective or bijective.

(i) fi(z) =2z +5.
(ii) fo(z)=22+2z+1.
(iii) fa(x) = 2?2 — 27.
(

@) fuw) = { o7 O

9.2 In each of the above examples consider the effect of changing the
domain and the codomain to R¥.

1 See for example G. Birkhoff and S. Mac Lane, A survey of modern algebra, Macmil-
lan, Fourth edition 1977.
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9.3 Find inverses for the following functions:

(i) fi:R —> R given by fi(z) =3z + 2;

(ii) f2:R — R given by fo(z) = 2% + 1.

9.4 Suppose that f: X — Y and g:Y — Z are injections. Prove that
go f: X — Z is an injection.

9.5 Suppose that f: X - Y and g: Y — Z are bijections of sets. Prove
that the composite go f: X — Z is also a bijection and that
(gof) ' =flogiZ oY > X.

9.6 Let f: X — Y be a function with graph Gy C X x Y. Prove that f
is surjective if and only if Vy € Y, (X x {y} N Gy) # 0.

9.7 Let f: X — Y be a function and By, B; € P(Y). Prove that

(i) B C B2 = F(B1) C  (By),
(ii) ‘Z(Bl NBy) = F (BN Z(Bz),
(iii) F(B1UBy) = f (B1)U T (By).

Prove that the converse of the first of these statements is not universally
true (by constructing a counterexample).
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1 Prove the following statements:
(i) {reR|2?-3z+2=0}={z€Z|0<z <3}
(i) {zeR|2?-3z+2<0}={z€eR|z<2}n{zecR|z>1}
(iii) {zeR|2*-3z+2>0}={zeR|z>2}U{zeR |z <1}.
2. By using a truth table prove that, for sets A, B and C,
Au(BNC)=(AUB)N(AUCQ).

Draw a Venn diagram to illustrate the proof.

3. Prove the absorption laws:

(i) An(AUB) = 4;
(i) AU(ANB) = A.

4. Prove by contradiction or otherwise that ANB = ANC and AUB =
AUC if and only if B=C.

5. Using truth tables, prove that for sets A, B and C,

(i) (AuC)—-BC (A-B)uC,
(i) (AnC)—B=(A-B)nC.
Draw Venn diagrams to illustrate the proofs.
Prove that there is equality in the first of these results if and only if
BnC=4.
Deduce from the second of these results that

(A-B)nC=40ifand onlyif ANC C B.

115
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6. Use the distributivity law to prove that
(ANB)U(BNC)U(CNA)=(AUB)N(BUC)N(CU A).

7. For subsets of a universal set U prove that B C A° if and only if
AN B = {. By taking complements deduce that A° C B if and only if
AUB =U. Deduce that B = A°if and only if ANB = and AUB = U.

8. Given sets A, B € P(X), their symmetric difference is defined by
AAB=(A-B)U(B—-A)=(AUB) - (ANB).
Prove that

(i) the symmetric difference is associative, (AAB)AC = AA(BAC)
for all A, B,C € P(X),
(ii) there exists a unique set N € P(X) such that AAN = A for all
AeP(X)
[Hint: Guess what N is!],
(iii) for each A € P(X), there exists a unique A’ € P(X) such that

AAA' =N,
(iv) for each A,B € P(X), there exists a unique set C such that
AAC =B.

9. Using the notation of the previous problem, prove that for sets A, B,
C, D e P(X)
AAB =CAD & AAC = BAD.

10. We define half-infinite} intervals as follows:
(a,00) = {zeR|z>a};
[a,00) = {zeR|z>a}

Prove that

(1) (a,00) C [p,0) = a2b,
(i) [@,00) C (byo0) & a>b.

t The symbol ‘oo’ used in the notation in this question does not represent a number
‘infinity’. The expression (a,o0) is used by analogy with (a,b), where b is a real
number, but the definitions are different (cf. Exercise 6.1). In this book no meaning
is attached to the symbol ‘oo’ on its own and it is only used in the notations in
this question and in Definition 8.3.2. Further discussion of this use of the symbol
can be found in books on analysis, for example R. Haggerty, Fundamentals of
mathematical analysis, Addison-Wesley, Second edition 1993.
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11. Give a proof or a counterexample for each of the following state-
ments:

i) VzeR,yeR, z+y>0;
(i) VzeR,Iye R,z —y > 0;
(iif) Iz e R, Vy e R,z +y > 0;
(iv) Vz e R, 3y € R, zy > 0;
(v) IzeR, VyeR, zy > 0
(vi) Vze R,y eR, zy 2 0;
(vii) Iz e R, VYR, zy 2 0;
(viii) Vze R,y €R, (z+y >0or z+y=0);
(ix) VzeR,JyeR, (z+y>0and z +y = 0);
(x) (VzeR,yeR,z+y>0)and (VzeR,yeR, z+y=0).

12. Suppose that A C Z. Write the following statement entirely in
symbols using the quantifiers V and 3. Write out the negative of this
statement in symbols.

There is a greatest number in the set A.

Give an example of a set A for which this statement is true. Give another
example for which it is false.

13. Prove that, for sets A, B, C and D,

(i) Ax (BUC) = (Ax B)U(AxC),
(i) (Ax B)N(C x D)= (ANC) x (BND),

14. Define functions f and g:R — R by f(z) = 22 and g(z) = 22 - 1.
Find the functions fo f, fog,go f,gog.
List the elements of the set {z € R| fg(z) = gf(x) }.

15. Given A € P(X) define the characteristic function x4: X — {0,1}
by
_f 0 ifzgA,
xa(@) = { 1 ifzeA
Suppose that A and B are subsets of X.

(i) Prove that the function z — xa(z)xp(z) (multiplication of inte-
gers) is the characteristic function of the intersection AN B.
(ii) Find the subset C' whose characteristic function is given by

xc(z) = xa(z) + xB(z) — xa(z)xB(Z).
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16. Determine which of the following functions f;: R — R are injective,
which are surjective and which are bijective. Write down an inverse
function of each of the bijections.

() fil@) =2 —1;
(i) fa(z) = 2%
(ili) f3(z) = 2® — x;
(iv) falz) =23 -322+3z-1;
(v) fs(z) =€
ifx 20,

2
(vi) fe(z) = { izQ if £ <0.

17. Functions f:R — R and ¢g: R — R are defined as follows.

z+2 ifz<~1,
fl&) = -z if —1<z<1,

r—2 ifz>1.

r—2 ifzx<-1,
glz) = -z if —1<z<1,

r+2 ifz>1.

Find the functions fog and go f. Is g the inverse of the function f? Is
f injective or surjective? How about g? Sketch and compare the graphs
of these functions.

18. Suppose that f: X — Y and g:Y — Z are surjections. Prove that
the composite g o f: X — Z is a surjection.

19. Let f: X — Y be a function. Prove that there exists a function
g:Y — X such that fog = Iy if and only if f is a surjection. [g is
called a right inverse of f.]

20. Let f: X — Y be a function and A, A2 € P(X).

(i) Prove that A; C A; = T(Al) - T(Ag). Prove that the con-
verse is not universally true. Give a simple condition on f which
is equivalent to the converse.

(ii) Prove that ?(Al NA,) C 7(A1) N 7(A2). Prove that equality
is not universally true.

(if) Prove that f (A, U As) = f (A1) U f (As).
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21. Let f: X — Y be a function. Prove that
(i) f is injective < 7 is injective < ? is surjective,
(ii) f is surjective & 7 is surjective < 7 is injective.

22. Starting from Peano’s axioms prove that if n € Z* and n # 1 then
n is a successor, i.e. s(a) = n for some a € Z*.

[Let A =Im(s)U {1} and prove that A = Z%
23. Starting from Definition 9.4.3 prove that addition of positive inte-
gers is

(i) associative, i.e. (a+b)+c=a+ (b+ c) for positive integers a, b,
c,
(ii) commutative, i.e. a + b = b + a for positive integers a, b.

[For (ii), prove first of all that a + 1 = 1 + a by induction on a.]



