
Teamwork and Coordination under Model Uncertainty in DEC-POMDPs

Jun-young Kwak, Rong Yang, Zhengyu Yin, Matthew E. Taylor, Milind Tambe
{junyounk, yangrong, zhengyuy, taylorm, tambe}@usc.edu

University of Southern California
Los Angeles, California 90089

Abstract

Distributed Partially Observable Markov Decision Processes
(DEC-POMDPs) are a popular planning framework for mul-
tiagent teamwork to compute (near-)optimal plans. However,
these methods assume a complete and correct world model,
which is often violated in real-world domains. We provide
a new algorithm for DEC-POMDPs that is more robust to
model uncertainty, with a focus on domains with sparse agent
interactions. Our STC algorithm relies on the following key
ideas: (1) reduce planning-time computation by shifting some
of the burden to execution-time reasoning, (2) exploit sparse
interactions between agents, and (3) maintain an approximate
model of agents’ beliefs. We empirically show that STC is
often substantially faster to existing DEC-POMDP methods
without sacrificing reward performance.

Introduction
Distributed partially observable Markov decision processes
(DEC-POMDPs) have gained considerable popularity for
multiagent planning problems. Central to this popularity
is the ability of DEC-POMDPs to quantitatively express
observational and action uncertainty (Pynadath and Tambe
2002; Goldman and Zilberstein 2003; Seuken and Zilber-
stein 2007; Spaan, Oliehoek, and Vlassis 2008). DEC-
POMDP expressivity and optimality guarantees come at the
cost of doubly-exponential (NEXP-complete) policy genera-
tion complexity (Bernstein et al. 2002). Additionally, DEC-
POMDP planners assume completely accurate models: it
may contain uncertainties in action and observation prob-
abilities, but there can be no uncertainty about these uncer-
tainties! Thus, agents can execute pre-made plans without
any additional execution-time reasoning.

However, this DEC-POMDP framework conflicts with
the older belief-desires-intentions (BDI) models of team-
work (Levesque, Cohen, and Nunes 1990; Grosz and Kraus
1996; Tambe 1997) which were unable to perform such rea-
soning over uncertainty. BDI research suggests that domain
models are often inaccurate for real-world problems and that
relying on planners to provide perfectly-coordinated plans
is unrealistic. Instead, BDI research on teamwork has fo-
cused on robustness via execution-time reasoning about co-
ordination (Kaminka and Frenkel 2007; Tambe 1997). Thus,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

planners create high-level “team-oriented plans” that ignore
coordination; execution-time reasoning fills in required co-
ordination in the abstract plans as required.

Our work focuses on the challenges of multiagent team-
work under model uncertainty. In many domains, we may
only have an approximate model of agent observation, or
transition functions, which we show causes problems for ex-
isting DEC-POMDP planners. We do not downplay the sig-
nificant progress in DEC-POMDPs, but we do question the
wisdom of paying a high computational cost for a promised
high-quality DEC-POMDP policy — which may not be
realized in practice. Instead, inspired by BDI research,
this work proposes using approximate “team-oriented poli-
cies” that ignore the details of coordination and leave such
computations to execution-time reasoning. There has been
some past work (Xuan and Lesser 2002; Roth, Simmons,
and Veloso 2005; Wu, Zilberstein, and Chen 2009) explor-
ing such execution-time communication reasoning in DEC-
POMDPs, but they do not leverage existing BDI research,
nor do they account for model errors.

This paper introduces the SELECTIVE-TEAM-COMM
(STC) algorithm, which has four key properties. First,
STC policy-generation assumes zero-cost communication
for the given DEC-POMDP problem, resulting in the DEC-
POMDP problem being reduced to a single-agent POMDP
problem — an exponential improvement in the worst-case
computational complexity (Pynadath and Tambe 2002).
Since communication has inherent cost, agents individu-
ally reason about communication at execution time and se-
lectively communicate to maximize the expected reward.
Second, BDI-inspired “Trigger Points” heuristically choose
critical points of communication reasoning rather than rea-
soning at every time step, saving significant execution-
time computation. Third, particularly in domains with
interaction-sparseness, agents often benefit from utilizing
some form of pre-planning for individual actions (that do not
involve inter-agent interaction). This contrasts with previous
work in execution reasoning for DEC-POMDPs where every
step is planned online — regardless of whether it involves in-
teraction. Fourth, STC agents may maintain an approximate
model of joint beliefs, and they do not rely on these beliefs
for precise online planning. This not only provides signifi-
cant speed-ups, but it further improves robustness to model
uncertainty without sacrificing the team’s reward.



Background and Related Work
A DEC-POMDP, is described by a tuple
〈I, S, {Ai}, {Ωi}, T,R,O,b0〉, where
• I = {1, ..., n} is a finite set of agents.
• S = {s1, ..., sk} is a finite set of joint states.
• Ai is the finite set of actions of agent i. A =

∏
i∈I Ai is

the set of joint actions, where a = 〈a1, ..., an〉 denotes a
particular joint action (one individual action per agent).

• Ωi is the finite set of observations of agent i. Ω =∏
i∈I Ωi is the set of joint observations, where o =
〈o1, ..., on〉 denotes a joint observation.

• T : S×A×S 7→ R is the transition probability function,
where T (s′|s,a) denotes the transition probability from s
to s′ if joint action a is executed.

• O : S × A× Ω 7→ R is observation probability function,
where O(o|s′,a) denotes the probability of receiving the
joint observation o if the end state is s′ after a is taken.

• R : S × A × S 7→ R is the reward function, where
R(s,a, s′) denotes the reward agents get by taking a from
s and reaching s′.

• b0 is the initial joint belief state.
We denote the joint observation history at time step t

with ht = {o1,o2, . . . ,ot} and the set of ht with Ht.
H =

⋃
tH

t is the set of all possible joint observation his-
tories at all time steps. A joint policy π : H 7→ A is a
mapping from joint observation history to joint action. Let
hti = {o1i , o2i , . . . , oti} be the individual observation history
of agent i at time step t. The set of all possible hti is denoted
by Ht

i . Let Hi =
⋃
tH

t
i be the set of all possible individ-

ual observation histories at all time steps for agent i. The
individual policy for agent i, πi : Hi 7→ Ai, is a mapping
from agent i’s individual observation history to its individ-
ual action. We use ht−i to denote an observation history of
all agents except i and Ht

−i to denote the set of all possible
ht−i. π−i represents the policy for all agents except i.

We represent uncertainty in our model with a Dirich-
let distribution similar to previous work on single-agent
POMDP learning (Jaulmes, Pineau, and Precup 2007),
which is not applicable to multiagent domains since they did
not account for additional coordination among agents while
handling model errors (i.e., only focused on a single-agent
problem). A separate Dirichlet distribution for the observa-
tion and transition function is used for each joint state, ac-
tion, and observation. An L-dimensional Dirichlet distribu-
tion is a multinomial distribution parameterized by positive
hyper-parameters α = 〈α1, . . . , αL〉 that represents the de-
gree of model uncertainty. The probability density function
is given by

f(x1, ..., xL;α) =

∏L
i=1 x

αi−1
i

B(α)
, B(α) =

∏L
i=1 Γ(αi)

Γ(
∑L
i=1 αi)

,

and Γ(z) =
∫∞
0
tz−1e−tdt is the standard gamma function.

The maximum likelihood can be computed: x∗i = αi∑L
j=1 αj

,

for i = 1, ..., L. Let Ts,a be the vector of transition proba-
bilities from s to other states when a is taken and Os′,a be
the vector of observation probabilities when a is taken and

s′ is reached. Then Ts,a ∼ Dir(α) and Os′,a ∼ Dir(α′),
where α and α′ are two different hyper-parameters.

Existing DEC-POMDP Solution Methods
We are interested in teamwork when agents are allowed to
communicate. Such communication reasoning may be han-
dled at plan-time or at execution-time. COM-MTDP (Py-
nadath and Tambe 2002) and DEC-POMDP-COM (Gold-
man and Zilberstein 2003) provide theoretical frameworks
to generate an optimal policy for communication at plan-
time. However, these models assume correct domain mod-
els. Furthermore, given general communication costs, the
policy generation problem remains NEXP-complete. Al-
though execution-time approaches have also assumed model
correctness, they assume at least some degree of communi-
cation while planning to reduce its complexity and, there-
fore, have been shown to be more scalable. We now discuss
this literature on execution-time reasoning approaches, and
specifically algorithms are most relevant to our problem.

The ACE-PJB-COMM (Roth, Simmons, and Veloso
2005) algorithm assumes full/free communication when
planning and collapses the multi-agent problem to a sin-
gle agent POMDP. At execution time, if an agent detects an
expected utility improvement from communication that is
greater than the communication cost, it will share its history
with the rest of the team. Similarly, MAOP-COMM (Wu,
Zilberstein, and Chen 2009) communicates whenever it
detects a “history inconsistency” that might cause misco-
ordination. STC, instead, employs a fundamentally dif-
ferent mechanism of detecting critical points of commu-
nication and deciding whether to communicate by rely-
ing on BDI-inspired trigger points and cost-utility analysis.
Both MAOP-COMM and ACE-PJB-COMM reason about
how the belief space of an individual agent changes when
it does not know its teammate’s actions or observations.
These possible beliefs are represented by a tree, where each
path through the tree represents a joint observation history.
Roth (Roth, Simmons, and Veloso 2005) and Wu (Wu, Zil-
berstein, and Chen 2009) respectively define GrowTree and
JointHistoryPool at depth t to be the set of possible joint
beliefs of the team at time t. Each node (i.e., joint be-
lief) in GrowTree has a tuple consisting of 〈bt, pt,ht〉, and
JointHistoryPool has a tuple 〈bt,ht〉, where bt is the joint
belief given that observation history, ht is the joint observa-
tion history, and pt is the likelihood of observing ht.

For example, consider a 1-by-3 grid world with two
agents. The agents can wait (W ) or move in 2 directions:
east (Me), or west (Mw). The team’s goal is to execute a
joint action (J) at a pre-specified location to achieve a high
positive reward. Each agent can obtain two individual obser-
vations: they see that they are at the location of joint task (o)
or not (ō). This domain can be represented as a tree shown in
Figure 1(a). The initial distribution of possible joint beliefs
is composed of a single leaf at belief b0, the starting belief
of the team, with probability 1 and an empty observation his-
tory. Suppose that the team executes the action 〈Me,Mw〉.
The agents must consider the likelihood of all four possible
joint observations: 〈o, o〉, 〈o, ō〉, 〈ō, o〉, and 〈ō, ō〉. Then,
GrowTree and JointHistoryPool grow to contain four leaves.



(a) JB: Individually maintained by both agents (b) IB1: Maintained by agent 1

Figure 1: Example of joint beliefs: IB1 is subset of JB

BDI teamwork

BDI approaches emphasize the need for execution-time
teamwork reasoning as relying on pre-planned team coor-
dination may lead to failures when unanticipated events oc-
cur. We draw upon four key ideas from BDI teamwork ap-
proaches (Levesque, Cohen, and Nunes 1990; Grosz and
Kraus 1996; Tambe 1997).

First, BDI teamwork frameworks simplify planning by fo-
cusing on team-oriented programs that abstract away from
“low-level coordination,” instead shifting coordination rea-
soning (i.e., communication) to execution time. Second,
agents differentiate between individual actions and actions
that require interaction with others; indeed, in many team-
work domains, agents act individually for most tasks and
only occasionally perform tightly coupled actions. Third, an
agent distinguishes between its own individual beliefs and
the team’s joint beliefs. Fourth, agents only reason about
communication when the plan requires interactions with oth-
ers; agents do not continually reason about communication
at each step. For example, key teamwork execution systems
have been based on Joint Commitments (Levesque, Cohen,
and Nunes 1990). A joint commitment of two agents to a
joint goal P leads to two types of communications:

• In order to form a joint commitment, an agent requests
others to commit to its goal, P . We refer to this commu-
nication as “asking,” and an agent’s action changes based
on response from the other agent.

• Once jointly committed to P , if an agent privately comes
to believe that P is achieved, unachievable, or irrelevant,
it communicates this information to its teammates. We
refer to this form of communication as “telling,” and the
other agent’s action changes due to the communication.

We will use these in our algorithm by having a single-
agent POMDP planner plan a policy for the team by: (1)
assuming full/free communication and then have agents en-
gage in execution-time reasoning to decide when to actually
communicate with other agents, (2) having agents directly
execute individual actions in the policy but trigger commu-
nication when actions involve interactions with others (as
discussed in the following section), (3) allowing agents to
maintain an individual estimate of the team’s beliefs based
on its observations, and maintain an estimate of the entire
team’s estimated joint beliefs, and (4) adapting “asking” and
“telling” to the POMDP framework, as described next.

SELECTIVE-TEAM-COMM
Before explaining the details of our teamwork-inspired plan-
ner, we first introduce the concepts of “Trigger Points” and
then how belief updates are performed.

Trigger Points: In order to avoid reasoning about com-
munication on every time step, agents use “trigger points,”
heuristically-chosen time steps at which agents should rea-
son about communication to improve team performance. We
later show empirically that this heuristic allows for signifi-
cantly faster execution times while maintaining superior so-
lution quality compared to other methods.

Definition Time step t is a trigger point for agent i if either
of the following conditions are satisfied.
Asking Let hti be the actual individual observation history

of agent i. Time step t is an Asking trigger point for agent
i if there exist two different ht−i, h̃

t
−i ∈ Ht

−i such that
πi(h

t) 6= πi(h̃
t), where ht = hti ⊗ ht−i and h̃t = hti ⊗

h̃t−i.
Telling Time step t is a Telling trigger point for agent i if

there exists at least one ht−i ∈ Ht
−i, and two different

hti, h̃
t
i ∈ Ht

i , such that π−i(ht) 6= π−i(h̃
t), where ht =

hti ⊗ ht−i and h̃t = h̃ti ⊗ ht−i.
Joint/Individual Estimates of Joint Beliefs: Joint esti-

mate of joint Beliefs (JB) and Individual estimate of joint
Beliefs (IB) are concepts used in STC to estimate the most
likely actions of other agents and decide whether or not
communication would be beneficial. JB (as shown in Fig-
ure 1(a)) and IB (as shown in Figure 1(b)) are represented
by trees, which are similar to GrowTree (discussed in the
Background Section). JBt and IBt describe the set of nodes
of the possible belief trees of depth t. IBt can be concep-
tualized as a subset of JBt that depends on an agent’s local
history. Each node θ in JBt/IBt has a tuple consisting of
〈b(θ),h(θ),a(θ), p(θ)〉, where b(θ) is the joint belief given
that observation history, h(θ) is the joint observation history,
a(θ) is the joint action obtained from a given policy tree, and
p(θ) is the likelihood of observing h(θ). Details to compute
JB/IB are given in the following section.

SELECTIVE-TEAM-COMM Algorithm
The STC algorithm takes a joint policy as input. During pol-
icy execution, each node in JB/IB is expanded using possi-
ble observations and a joint action from the given policy, and
then STC detects trigger points based on the possible beliefs



in the belief tree. Once an agent detects a trigger point, it
reasons about whether communication would be beneficial.
If it does communicate, all the agents use their shared histo-
ries to agree on a common belief node and can thus choose a
joint action for the team. Otherwise, each agent chooses the
best locally optimal action that corresponds to the estimated
most likely actions of the other agents. If the agents do not
detect trigger points, they take individual actions from the
given policy, without any additional online planning.

STC is detailed in Algorithm 1. The joint policy
π is an input to STC and is a policy of the collapsed
POMDP obtained from a standard POMDP planner (Kael-
bling, Littman, and Cassandra 1998). In line 1, the initial
distribution of possible beliefs, JB0/IB0, is composed of
a single node at belief b0 (the starting belief of the team),
which has probability 1, an empty observation history, and
a joint action a0, which is described by the root of π. In
line 8, JB and IB are updated according to Algorithm 2.
Belief updates follow the standard Bayes update rule. Once
the belief tree is updated, STC decides whether or not a trig-
ger point exists on the current time step (line 9). If a trigger
point is detected, STC reasons about whether the expected
utility of coordination justifies communication (lines 11-23).
Specifically, when a trigger point is detected, agent i cal-
culates the expected utility assuming communication hap-
pens (line 11). Then, it gets a set of possible actions from
IBti, estimates most likely actions for other agents via JB,
and gets an optimal individual action of agent i assuming
other agents take the most likely action a∗−i (lines 12-15).
Agent i communicates when the expected utility gain by
communication is higher than a given communication cost
σ: UC(i) − UNC(i) > σ (line 17). Agents can then know
the actual joint observation histories and execute the opti-
mal joint action given by the policy (line 21). Otherwise,
they execute the estimated best joint action (line 23). We
assume communication is instantaneous and lossless.

Pruning
The number of possible beliefs in JB/IB grows rapidly over
time, particularly when agents choose not to communicate
for long periods of time. To address this problem, we use a
new pruning algorithm that keeps a fixed number of “most
likely” beliefs in JB and IB, which are used to reason about
communication. This is similar to memory-bounded policy
search (Seuken and Zilberstein 2007) and low probability
pruning (Emery-Montemerlo et al. 2005), but different from
particle filters (Roth, Simmons, and Veloso 2005) and joint
history merging (Wu, Zilberstein, and Chen 2009).

Our pruning method first expands beliefs using the Bayes
update rule and then selects the most likely belief, θ, at each
time step until the selected number of beliefs reaches a pre-
defined upper-limit. This reduced belief set is used to detect
trigger points and reason about communication in STC. The
expanded JB and IB are obtained by Algorithm 2. Then,
the pruning method retrieves the most likely node from the
propagated belief trees. We also provide a process to recover
a belief node that has been pruned while bounding the belief
nodes at each time step. Specifically, when agents commu-
nicate, there is a possibility that they cannot find the match-

Algorithm 1 STC(JOINTPOLICY π, AGENTINDEX i)
1: Initialize joint estimate JB0 and individual estimate IB0

i

2: a0 ← π(IB0
i )

3: Execute action a0i
4: τ ← false
5: for t = 1, . . . , T − 1 do
6: oti ← Get the observation from the environment
7: hti ← Update agent i’s own local history with oti
8:

{
JBt, IBti

}
← EXPAND(JBt−1, IBt−1

i , oti )
9: τ ← DETECTTRIGGERPOINT(π, IBti, JBt)

10: IF τ = true THEN
11: UC ←

∑
θ∈IBt

i
p(θ) · V (b(θ),a(θ))

12: Ati ← {πi(ht(θ))|θ ∈ IBti}
13: θ∗ = arg maxθ∈JBt p(θ)
14: a∗−i = a−i(θ

∗)
15: a∗i ← arg maxai∈At

i

∑
θ∈IBt

i
p(θ)V (b(θ), 〈ai, a∗−i〉)

16: UNC ←
∑
θ∈IBt

i
p(θ) · V (b(θ), 〈a∗i , a∗−i〉)

17: IF UC − UNC > σ THEN
18: SYNC hti WITH OTHER AGENTS
19: τ ← false
20:

{
JBt, IBti

}
← UPDATE BELIEF VIA COMMUNI-

CATED JOINT HISTORY ht

21: ati ← πi(IB
t
i)

22: ELSE
23: ati ← a∗i
24: ELSE
25: ati ← πi(IB

t
i)

26: EXECUTE THE ACTION ati

ing belief with a communicated local history in JB and IB.
Since agents sync and exchange their action and observation
history in STC, they can exactly construct the correct be-
lief node across the team members. This provides a way to
ascertain the team joint status and avoid miscoordination.

Empirical Validation

In this section, we show that STC successfully plans for
DEC-POMDPs with model uncertainty. We evaluate the
performance of STC on several domains and compare it with
two previous techniques: ACE-PJB-COMM (APC) (Roth,
Simmons, and Veloso 2005) and MAOP-COMM (Wu, Zil-
berstein, and Chen 2009). Since APC and MAOP have only
limited abilities to scale up to large domains, we first show
results in small domains with state spaces of up to 72 states
and a fixed time horizon (T=3). We then scale up STC using
pruning and show results for larger domains. The planning
time for all algorithms is identical and thus we only measure
the wall clock execution-reasoning time. The algorithms are
tested in a grid domain and a DEC-Tiger domain. Noise
in the transition and observation matrices follow a Dirich-
let distribution (which is not known by the planner or the
agents). The level of model error is represented by a param-
eter α in the distribution: error increases as α decreases. We
evaluate the performance under four levels of error by vary-
ing α from 10 to 10000. The experiments were run on Intel
Core2 Quadcore 2.4GHz CPU with 3GB main memory. All
results were averaged over 600 independent trials.



Algorithm 2 EXPAND (JOINTESTIMATE JBt, INDIVID-
UALESTIMATE IBti , LOCALOBSERVATION oti)
1:
{

JBt+1, IBt+1
i

}
← Φ

2: for all nodes θ ∈ JBt do
3: bt ← bt(θ)
4: at ← at(θ)
5: for all s′ ∈ S do
6: b′(s′)←

∑
s∈S T (s,at, s′)bt(s)

7: for all o ∈ Ω do
8: p←

∑
s∈S O(s,at,o)b′(s)

9: ht+1 ← ht ∪ {o}
10: for all s′ ∈ S do
11: b′(s′)← O(s′,at,o)

∑
s∈S b

t(s)

12: at+1 ← π(ht+1)
13: JBt+1 ← JBt+1 ∪ 〈b′,ht+1,at+1, p〉
14: for all nodes θ from IBti do
15: bt ← bt(θ)
16: at ← at(θ)
17: for all s′ ∈ S do
18: b′(s′)←

∑
s∈S T (s,at, s′)bt(s)

19: for all o−i ∈ Ω−i do
20: o← 〈oti, o−i〉
21: p←

∑
s∈S O(s,at,o)b′(s)

22: ht+1 ← ht ∪ {o}
23: for all s′ ∈ S do
24: b′(s′)← O(s′,at,o)

∑
s∈S b

t(s)

25: at+1 ← π(ht+1)
26: IBt+1

i ← IBt+1
i ∪ 〈b′,ht+1,at+1, p〉

27: normalize JBt+1 s.t.
∑
θ∈JBt+1 p(θ) = 1

28: normalize IBt+1
i s.t.

∑
θ∈IBt+1

i
p(θ) = 1

29: return
{

JBt+1, IBt+1
i

}

Small Domains, No Pruning
Grid Domain: A 2-by-3 grid was used for evaluation. In
this domain, there are two agents trying to perform one joint
task. We denote the location of a cell as (i, j), where i is the
row index and j is column index. Two agents are initially
located in cells (2, 1) and (2, 3), and the joint task is located
in cell (1, 2). Each agent has five actions: move east, move
west, move north, move south and perform joint task. Each
agent can obtain two observations: at-location-of-joint-task
and not-at-location-of-joint-task. There are 72 joint states,
25 joint actions and 4 joint observations in this configura-
tion. Every movement action incurs a small penalty of -0.2.
The joint task requires that both agents perform the task to-
gether at the joint location. If the joint task is successfully
performed, a reward of +10 is obtained. If only one agent
performs the joint task, a mis-coordination penalty of -5 is
given to the team. A penalty of -2 is given if the joint task
action is performed by both agents but at least one of the
agents is at the wrong location. The time horizon is set to 3,
as this is sufficient to complete the joint task.

Dec-Tiger Domain: The second domain used for our
evaluation is the Dec-Tiger domain (Nair et al. 2004). We
included this domain because APC was built specifically for
this domain. While STC focuses on domains where interac-
tions among agents are sparse, tiger domain has highly cou-
pled actions among agents. In these experiments, the time

(a) 2-by-3, Cc 5% (b) 2-by-3, Cc 20%

(c) 2-by-3, Cc 50% (d) Tiger, Cc 5%

(e) Tiger, Cc 20% (f) Tiger, Cc 50%

Figure 2: Comparing STC with APC and MAOP: Average
Performance in Small Domains

horizon is set to 3 as well.
Solution Quality Comparison: We compared the aver-

age rewards achieved by all algorithms for three different
communication costs in all three domain settings. The com-
munication costs are selected proportional to the expected
value of the policies: 5%, 20%, and 50%. The reward com-
parisons are shown in Figure 2. In Figure 2, the x-axis shows
α, the level of model error and y-axis shows the average
reward of each algorithm. Figures 2(a)–2(c) show the re-
sults in the 2-by-3 grid domain. Figures 2(d)–2(f) are for the
multi-agent tiger domain.

STC received much higher reward than both APC and
MAOP in the grid domain, whereas APC has slightly higher
reward than STC in the tiger domain. As communication
cost increases, the reward obtained by all three algorithms
decrease. With high communication cost (50%), STC is still
able to achieve positive reward but rewards obtained by APC
and MAOP become negative. The average reward of MAOP
in particular is affected by communication cost since it does
not reason about communication cost during execution. The
Dec-Tiger domain is qualitatively different from the grid do-
main because every action is a tightly-coupled action, allow-
ing APC to outperform STC.

Runtime Comparison: We also compared the average
(execution) runtime of the algorithms. In all domains, STC
and APC take similar amounts of time, but STC accrues sig-



nificantly higher rewards than APC. The runtime of MAOP
is 1.3–1.5 times that of STC’s runtime in both domains. A
more interesting question is whether we could scale up the
algorithms to run in even larger domains or with longer time
horizons. As we will show in the next section, pruning tech-
niques are necessary for STC to handle larger domains.

Large Domains with Pruning
Grid Domain with Individual Task: In this section, we
consider the following modification to the 2-by-3 domain.
Two individual tasks are added to the grid, which require
only one agent to perform. In this new domain, each agent
has one additional observation: location-of-individual-task
and two additional actions: perform-individual-task and
stay. The number of joint states is 288, the number of joint
actions is 49, and the number of joint observations is 9. If
any agent performs the individual task action at the correct
location, the team receives a reward of +5. If both agents
try to perform the same individual task, the team reward re-
mains +5. On the other hand, if an agent attempts to per-
forms the individual task at any incorrect location, a penalty
of -1 will be assessed. If an agent chooses the action stay,
there will be no penalty or reward. Other than the above
modifications, the new domain is the same as the 2-by-3 grid
domain defined in the previous section.

Scale-up in Maximum Number of Beliefs: We show
how the algorithm scales with respect to the maximum num-
ber of possible beliefs in JB and IB. We tested the algorithms
with two different communication costs, 5% and 100% of
the expected value of the policy. The maximum runtime per
trial was set to 1,800 seconds. MAOP-COMM was not able
to finish running within the time limit. APC uses a particle
filtering technique to improve speed, but even with only one
particle, APC takes more than one hour to finish a trial, ex-
ceeding the time limit. The final reward obtained by APC
using one particle is only 2.6. Figure 3(a) shows the reward
of STC: the x-axis is the number of belief nodes used in the
pruning technique and the y-axis is reward, averaged over
100 independent executions. Note that results are averaged
over four different model errors from Figure 2. Figure 3(b)
displays the runtime on the y-axis over the same set of exper-
iments. Experiments in the new domain use a time horizon
of 5. As can be seen in the figure, with small communica-
tion cost (5%), STC takes less than 250 seconds to run and
is roughly constant after the maximum belief nodes exceeds
10. The performance of STC also improves as the number of
belief nodes increases, up to a total of 10 belief nodes. With
very large communication cost (100%), the runtime of STC
is much longer since the number of beliefs that agents main-
tain grows quickly. After the number of maximum beliefs
becomes larger than 5, the runtime exceeds the time limit.
Thus, we do not report the reward values of the cases that
exceed the time limit in Figure 3(a).

Scale-up in Time Horizon: We then ran experiments
with increased time horizons. Figure 3(c) shows the reward
on the y-axis and the time horizon on the x-axis. Results
are averaged over four different model errors from Figure 2.
Figure 3(d) shows the runtime on the y-axis over the same
set of experiment as in Figure 3(c). We again set an upper

(a) Reward - max # of beliefs (b) Runtime - max # of beliefs

(c) Reward - time horizon (d) Runtime - time horizon

Figure 3: Scale-up results

bound on the execution time to 1,800 seconds and test the al-
gorithm with two different communication costs. STC used
10 belief nodes. MAOP and APC (with 1 particle) could
not solve the problem within the given time limit for even
the shortest time horizon (i.e., T=3). As the time horizon
increases, STC obtains better rewards, since there is more
time for agents to recover from any failed actions. With high
communication cost, STC takes much more time to run, but
the rewards obtained in the two communication settings are
similar. We also do not report the reward values of the cases
that exceed the time limit in Figure 3(c).

Discussion and Conclusion
This work details a new algorithm for DEC-POMDPs that
is more robust to model uncertainty than previous work,
with a focus on domains that have sparse inter-agent interac-
tions. Our work is inspired by the belief-desires-intentions
(BDI) framework, which, when faced with model uncer-
tainty, shifts teamwork-related computation from plan-time
to execution-time. STC relies on the following key ideas:
(1) reduce planning-time computation by shifting some of
the burden to execution-time reasoning, (2) exploit sparse in-
teractions between agents to reduce the required amount of
reasoning about coordination, and (3) maintain an approx-
imate model of agents’ beliefs. We empirically compared
STC to existing methods for execution-time DEC-POMDP
coordination reasoning and showed that STC can provide so-
lutions much faster than existing algorithms while achieving
comparable, or even superior, solution quality.

Acknowledgments
We thank the anonymous reviewers for their comments and
suggestions, and Maayan Roth for providing us with the
source code for ACE-PJB-COMM. This work was sup-
ported in part by US. Army SBIR contract number W15P7T-
09-C-S601, DARPA SBIR contract number W31P4Q-06-



0286, and Perceptronics Solutions, Inc.

References
Bernstein, D.; Givan, R.; Immerman, N.; and Zilberstein, S.
2002. The complexity of decentralized control of Markov
decision processes. Mathematics of Operations Research,
27(4), 819 - 840.
Emery-Montemerlo, R.; Gordon, G. J.; Schneider, J. G.; and
Thrun, S. 2005. Game theoretic control for robot teams. In
ICRA.
Goldman, C. V., and Zilberstein, S. 2003. Optimizing in-
formation exchange in cooperative multi-agent systems. In
AAMAS, 137–144.
Grosz, B., and Kraus, S. 1996. Collaborative plans for com-
plex group actions. Artificial lntelligence 86:269-358.
Jaulmes, R.; Pineau, J.; and Precup, D. 2007. A formal
framework for robot learning and control under model un-
certainty. In ICRA.
Kaelbling, L.; Littman, M.; and Cassandra, A. 1998. Plan-
ning and acting in partially observable stochastic domains.
Artificial Intelligence, 101.
Kaminka, G. A., and Frenkel, I. 2007. Integration of coordi-
nation mechanisms in the BITE multi-robot architecture. In
ICRA.
Levesque, H. J.; Cohen, P. R.; and Nunes, J. H. T. 1990. On
acting together. In AAAI, 94–99.
Nair, R.; Yokoo, M.; Roth, M.; and Tambe, M. 2004. Com-
munication for improving policy computation in distributed
POMDPs. In AAMAS.
Pynadath, D. V., and Tambe, M. 2002. The communica-
tive multiagent team decision problem: Analyzing team-
work theories and models. JAIR, Volume 16, pages 389 -
423.
Roth, M.; Simmons, R.; and Veloso, M. 2005. Reasoning
about joint beliefs for execution-time communication deci-
sions. In AAMAS.
Seuken, S., and Zilberstein, S. 2007. Memory-bounded
dynamic programming for DEC-POMDPs. In IJCAI.
Spaan, M. T. J.; Oliehoek, F. A.; and Vlassis, N. 2008. Mul-
tiagent planning under uncertainty with stochastic commu-
nication delays. In ICAPS, 338–345.
Tambe, M. 1997. Towards flexible teamwork. JAIR, Volume
7, Pages 83-124.
Wu, F.; Zilberstein, S.; and Chen, X. 2009. Multi-agent
online planning with communication. In ICAPS.
Xuan, P., and Lesser, V. 2002. Multi-agent policies: from
centralized ones to decentralized ones. In AAMAS.


