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Abstract

This thesis investigates the feasibility of using a set of non-invasive biomedical signals
to monitor respiration. The signals of interest being the electrocardiogram (ECG), photo-
plethysmography (PPG) and impedance plethysmography (IP) signals.
The work has two main aims; the first being to estimate breathing rates from the signals,
the second being to detect apnoeas from the signals.
The fusion of information from different signals is used throughout in developing algorithms
that give more accurate respiratory information than that obtained using one signal alone.
Respiratory waveforms are derived from the signals, and the accuracy of detecting individual
breaths from the waveforms is assessed and compared objectively. Results from evaluations
on two separate databases show there is no waveform that gives sufficient accuracy to con-
sider using alone.
A novel fusion method is developed which uses measurements from all three signals. This
fusion method is based on weighting the estimates from each signal, according to the inno-
vation from a Kalman filter model, applied to each respiratory waveform separately. The
fused estimates give a higher overall correlation with respect to the reference breathing rate
values than any of the breathing estimates derived from a single waveform.
The detection of both central and obstructive sleep apnoea from the signals is investigated.
It is shown the accuracy of detecting central apnoeas from the IP signal using a time-domain
method, often used in practice, can be improved by combining it with information from the
frequency-domain.
When discriminating between obstructive sleep apnoeic and non-apnoeic data it is seen that
combining features from two signals results in a superior classification accuracy than using
features from just one signal. The proposed classification system using just one of these
signals, the ECG, is shown to give a performance accuracy comparable to that found in the
literature.
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Chapter 1

Introduction

1.1 Aim

The aim of this thesis is to investigate the feasibility of performing reliable respiratory mon-

itoring from non-invasive sensors. The signals of primary interest are:

� the electrocardiogram (ECG),

� the transthoracic electrical impedance plethysmography signal (IP),

� the photoplethysmography signal (PPG).

These signals are chosen for investigation because they can all be obtained non-invasively,

they are known to be influenced by respiration and all are currently measured in clinical en-

vironments. Hence a successful solution based on these signals would not require additional

hardware or monitoring devices.

1.2 Motivation

Respiration is defined as [5]:

“a.The act or an instance of breathing or

b. a single inspiration or expiration; a breath”.
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There are many clinical reasons for requiring a reliable measure of respiration. Some of

these are found in the literature on methods for respiratory monitoring. For example, Moody

et al. [71] maintain that the clinical significance of certain cardiac arrhythmias can be under-

stood only by reference to respiration. Knowledge of the respiration cycle is also useful for

synchronisation and compensation of MRI scans of sequences of the heart and thorax [34].

Lindberg et al. [58] quote several examples where respiration information is important. For

example, in postoperative care it is extremely important to monitor both the cardiac func-

tion and respiration as post-operative patients can be influenced by analgesics that depress

respiration.

The detection of sleep apnoea is also important. Apnoea is defined as a temporary cessation

of breathing. There are two main types of sleep apnoea, central and obstructive. Central

apnoea is very common in neonates, while obstructive sleep apnoea currently affects up to

8% of the male population in the 40-59 year age group [67].

Several methods have been proposed to measure respiration. A description of these is found

in Section 1.2.1. Although there are reliable methods which are used in high-dependency or

intensive care units, these are either invasive or can cause discomfort. Hence these methods

are not used on the general ward. Current methods of detecting apnoeas are given in the

chapters which focus on this topic (Chapters 6 and 7).

1.2.1 Current monitoring devices

Several approaches have been designed to measure respiration and they can be categorised

into direct and indirect methods.

In direct methods, a sensor is coupled to the airway and measures the movement or other

properties of air transported into and out of the lungs. For example nasal thermistors mea-

sure the temperature changes in the air and carbon dioxide sensors measure the change

in carbon dioxide in inhaled and exhaled air [12]. Respiration can also be monitored in-

directly by measuring changes in body volume; examples of such techniques are transtho-

racic inductance and impedance plethysmographs, strain gauge measurement of thoracic

circumferences, pneumatic respiration and whole body plethysmographs [71]. Transthoracic

impedance and inductance plethysmography are the indirect methods most commonly em-

ployed. In inductance plethysmography, compliant inductance loops are placed around the
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chest and abdomen. During inhalation and exhalation the volumes of the chest and ab-

domen change, and this changes the area of the coils and hence their inductance. Impedance

plethysmography measures the change in electrical impedance across the chest and abdomen

with respiration.

Each method has advantages and disadvantages. Direct measurements tend to be more ac-

curate but can interfere with normal respiration. Although the whole body plethysmograph

can be highly accurate and does not interfere with respiration, it requires immobilising the

patient. Transthoracic impedance plethysmography is often combined with heart rate moni-

toring. However changes in blood flow generate a cardiac-synchronous change in impedance

which can be a significant source of error in the generated respiratory signal; aortic blood

flow can give rise to a signal of the same order of magnitude as the variations caused by

respiration [58]. The impedance plethysmography signal is also very sensitive to body move-

ment [88]. Nevertheless, this method is non-invasive and therefore features in this thesis. It

is considered in more detail in Chapter 2.

1.3 Objectives

The objective of this thesis is to use signal processing techniques to improve or provide res-

piration information from signals routinely obtained in a hospital or other clinical environ-

ments. The main objectives of the work are now summarised.

Although there are many published works relating to the task of deriving respiration from

signals such as the ECG and PPG including [34], [58], [71], [107] and [117], none of these

present objective, reproducible evaluations of the performance of their methods. Such eval-

uation is necessary to compare the accuracy of one method with another. Therefore the first

objective of this thesis is to:

� establish objective and reproducible evaluation procedures for methods of obtaining

breath-by-breath information

Methods developed in this work for obtaining respiration are tested and compared with

methods described in the literature. A logical question to then ask is whether informa-

tion from the different signals can be combined (or fused) to obtain an improved measure of

respiration. Therefore a second objective of this thesis is to:
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� develop a method for combining breathing rate measurements from multiple signals to

obtain a more accurate estimate of breathing rate than is available from any individual

signal.

Of as much clinical importance is the ability to detect the cessation of respiration. This

motivates the final objectives of determining:

� the accuracy of detecting central sleep apnoeas, using information from the non-invasive

signals of interest,

� the accuracy of detecting episodes of obstructive sleep apnoea using the non-invasive

signals of interest.

1.4 Overview of thesis

This thesis is organised as follows:

Chapter 2 introduces the relevant biomedical signals, namely the ECG, blood pressure,

IP, and PPG. An overview of the origin and measurement of these signals is given. The

influence of respiration on these signals is also described. The databases used in this

thesis are also introduced.

Chapter 3 reviews the signal processing techniques used in this thesis. Classification

and Auto-Regressive modelling for frequency-domain estimation are discussed. An

overview of data fusion is given, as data fusion is used in a number of applications

in this thesis.

Chapter 4 presents a literature review of previous approaches to extracting respiration

information from the biomedical signals in question. An evaluation procedure for as-

sessing the performance of methods that automatically detect breaths from the signals

is proposed. The different signal processing methods for deriving the breaths are then

discussed. Methods suggested in the literature are also implemented for comparison.

Finally, results of testing these methods on the databases are presented.

Chapter 5 investigates methods of improving the estimates of breathing rate measure-

ments. The Kalman filter is introduced as an optimal estimator and data fusion meth-

ods using Kalman filter theory are presented. Due to the inherent nature of the biomed-
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ical signals under investigation, the design of accurate models of measurement noise is

a very difficult if not impossible task. Kalman filter methods rely on accurate models of

both process and measurement. Therefore a novel method of combining the breathing

rate measurements from the different signals is derived.

Chapter 6 investigates methods of detecting central apnoeas using the IP, PPG and

ECG signals. It is noted that central apnoea monitors tend to have a very high false

alarm rate. A review of studies carried out with existing apnoea monitors which employ

non-invasive techniques is given. A time-domain approach based on existing methods is

implemented and provides a set of benchmark results against which a novel frequency-

domain technique is evaluated. A method that fuses information from the time and

frequency domains at a decision level is also assessed.

Chapter 7 investigates methods of detecting obstructive apnoeas using the ECG and

blood pressure signals. A classification system is proposed that classifies time windows

into the set
���������
	���
�������

�
�������
	�����

. An Auto-Regressive model parameterisation of

the signals forms a set of features, used as the input to a statistical classifier. Two

approaches to combining information from the ECG and blood pressure are assessed.

The classification system is tested on two databases.

Chapter 8 summarises the findings and draws conclusions on obtaining respiration

information from the non-invasive signals under consideration in this thesis. Possible

avenues of further work are also discussed.



Chapter 2

The Primary Signals

2.1 Introduction

The aim of this thesis is to investigate the feasibility of reliably monitoring respiration using

a set of non-invasive biomedical signals. The signals of primary interest are:

� the electrocardiogram (ECG),

� the transthoracic (electrical) impedance plethysmography signal (IP),

� the photoplethysmography signal (PPG),

these signals being chosen because they are all measured non-invasively and generally avail-

able in clinical environments. The work is carried out on two databases, both of which in-

clude recordings of the ECG, IP, and airflow respiration signals, the latter being used as

the reference respiration measure. The database that is part of the Physionet archive [70]

however, does not include a PPG signal but an intra-arterial blood pressure signal. Several

clinical papers argue that the PPG signal can in fact be used as a non-invasive measure of

the blood pressure waveform [36],[45]. This argument is further discussed in Section 2.4.1.

In work with the Physionet database, the blood pressure signal is used for “proof of concept”,

although ultimately all signals would be measured non-invasively.

Figure 2.1 shows a one-minute section of typical signals from one of the databases used in

this work. This chapter reviews the physiological origin of the signals, how they are recorded
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Figure 2.1: A one-minute section of the signals under investigation from the Physionet
Polysomnography database. The signals have been scaled to allow visual comparison, hence
no vertical scales are provided.

and how they are affected by respiration. The effect of apnoea on the signals is left until later,

in the chapters relevant to apnoea detection. Finally Section 2.6 describes the two databases

on which the work in this thesis is carried out.

2.2 The electrocardiogram (ECG)

An ECG is a graphic recording of the electrical activity produced by the heart. The heart is a

four-chambered pump that provides the driving force for the circulation of blood [100]. With

each heart beat the synchronised depolarisation spreading through the heart causes currents

in the extracellular fluid that establish field potentials over the whole body. These potential

differences can be detected by electrodes placed on the body’s surface. The pattern of the

ECG varies according to the electrodes’ position but certain features are always present.

These features were labelled as PQRST by Einthoven [32]. Details of the underlying cardiac

events that cause these features can be found in [49]. Figure 2.2 shows the ECG with respect

to time obtained during one complete cardiac cycle. This cycle is repeated with every heart

beat. It is the QRS complex of the ECG that is of most interest in this work.
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Figure 2.2: A schematic representation of part of an ECG waveform, corresponding to a
cardiac cycle. The y-axis corresponds to potential and the x-axis to time. Taken from [4].

Electrical activity radiates from the heart in all directions. The location of recording elec-

trodes influences the view point of the heart recorded. An electrocardiographic lead is a pair

of polar terminals connected to electrodes [8].

The electrodes are fixed at points that are both convenient and likely to reveal the pattern of

greatest clinical interest. The time-honoured method, originally described by Einthoven [32]

and known as Einthoven’s Triangle, is to affix them to the right arm, left arm and left leg.

The connections between them are known as Lead I (right arm and left arm), Lead II (right

arm and left leg) and Lead III (left arm and left leg). In short-term monitoring for diagnostic

purposes, a 12-lead ECG is usually employed. In this work, information from a single lead

ECG is used; Lead II unless otherwise stated.

2.2.1 The ECG and respiration

It is well recognised that there are breathing-related characteristics in the ECG. The effects

on the ECG of heart displacements produced by respiratory movements were first system-

atically analysed by Einthoven et al. in 1913 [32]. Nowadays it is a well known fact that

respiratory action produces a rotation of the cardiac vector (see 2. below); as is the effect of

the Respiratory Sinus Arrhythmia on the ECG signal. The three dominant effects of respi-

ration on the ECG are listed below:

1. Respiratory Sinus Arrhythmia (RSA) refers to the cyclic variation in heart rate

that is associated with respiration. Heart rate accelerates during inspiration and slows

during expiration [60]. The magnitude of the oscillation is variable and varies from

individual to individual. The amount of RSA also depends on breathing frequency,
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Figure 2.3: A reference respiration signal (lower trace), obtained from a nasal thermistor
and an ECG (upper trace). The amplitude of the R-S distance can be seen to be modulated
by respiration.

tending to decrease with breathing rate [17].

2. R-S Amplitude Modulation During inspiration, the apex of the heart is stretched to-

wards the abdomen because of the filling of the lungs, helped by the shifting down of the

diaphragm. During expiration the elevation of the diaphragm, that helps the emptying

of the lungs, compresses the apex of the heart towards the breast. Thus respiration

changes the angle that the electric cardiac vector makes with a reference vector [107].

These changes modulate the amplitude of the ECG signal. It is noted that the modu-

lation of the QRS amplitude is particularly significant. Appropriate positioning of the

ECG electrodes can maximise the respiration-induced modulation; it is suggested that

Lead II for example, shows greater modulation than lead I [77]. Figure 2.3 shows a

20-second section of an ECG and a corresponding reference respiration signal obtained

from a nasal thermistor. The R-S amplitude of the ECG can be seen to change with

respiration.

3. Baseline Wander Low frequency wander of the ECG signal can be caused by respi-

ration [8]. The expansion and contraction of the chest that accompanies respiration

results in the motion of chest electrodes with respect to the heart. This can cause a

baseline wander in the ECG, usually only seen in deep or exaggerated breathing.

2.3 Blood pressure

Blood pressure is the pressure of the blood flowing through the blood vessels against the

vessel walls. It depends on the quantity of blood flow and the resistance of the blood vessels
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to this flow. Each time the heart beats, a surge of blood is pumped from the heart into the

arteries. This increases the pressure in the arteries. In between heart beats the pressure in

the arteries decreases. The blood pressure is reported as two numbers, e.g. 120/80. The first,

higher number (systolic) is the pressure of the blood against the artery walls when the heart

contracts. The second, lower number (diastolic) is the pressure against the artery walls when

the heart relaxes between beats.

Blood pressure may be measured using direct or indirect techniques. Direct measurements

use catheters for the invasive determination of blood pressure, whereas indirect methods

utilise a variety of non-invasive techniques.

Direct measurements employ one of two different types of sensors, in conjunction with a

catheter. Extravascular sensors are located outside of the body and use the principle of wave

propagation to transmit vascular pressure from the measurement site to the sensor via a

fluid-filled catheter. In contrast, intravascular sensors, such as fiber-optic pressure sensors,

are positioned on the tip of the catheter and inserted into the artery. Catheter systems are

often used for direct, continuous measurement of intra-arterial blood pressure in the aorta,

which is considered the “gold standard” for blood pressure measurement.

The non-invasive measurement of blood pressure may be performed in several different ways.

One such method employs an air-filled cuff to the upper arm to temporarily occlude blood

flow through the brachial artery. The cuff pressure is monitored with an in-line transducer

as the cuff is slowly deflated. The systolic and diastolic pressures can be computed from the

cardiac-synchronous oscillations in cuff pressure during the process.

2.3.1 Blood pressure and respiration

1. Pulsus Paradoxus is the inspiratory decrease in systolic blood pressure which is pro-

portional to changes in intrathoracic pressure during inspiration and expiration [36].

Inspiratory decline of the arterial pulse was first described in asthma sufferers by

Floyer in 1717 [51]. The exaggerated decrease in blood pressure was termed pulsus

paradoxus by Kussmaul in 1873. Pulsus paradoxus is increased by respiratory dis-

eases, such as asthma, the degree of pulsus paradoxus reflecting the severity of the

underlying disorder. A value of greater than 10 ��� ��� is considered significant. Al-

though strictly speaking, the term pulsus paradoxus refers to a systolic blood pressure
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Figure 2.4: The upper trace shows a blood pressure signal obtained from an intra-arterial
catheter and the lower trace a reference respiration signal.

variation of more than 10 ��� � � , it is used in this thesis to refer to any respiratory

dependent systolic blood pressure variation.

Figure 2.4 shows a 20-second section of an intra-arterial blood pressure signal and a

corresponding respiration signal obtained from a nasal thermistor from the Physionet

MIT-BIH Polysomnography Database [3]. A marks the highest systolic blood pressure

during the respiration cycle (i.e., during expiration) and B the lowest.

2. Blood Pressure Variability As described in Section 2.3, when the heart contracts,

blood is pushed through the aorta into the arteries. This sudden increase in volume

of blood causes vasodilatation and the blood vessels expand. After each dilation, the

arteries force the blood along in a series of waves. Each wave is known as a pulse

and the peak of the pulse corresponds to the systolic blood pressure. Beat-to-beat time

intervals of systolic blood pressure have been shown to have a cyclical variation related

to respiration [21].

2.4 Photoplethysmography signal (PPG)

Photoplethysmography is the electro-optic technique of measuring the cardiovascular pulse

wave found throughout the human body. This pulse wave is caused by the periodic pul-

sations in arterial blood volume and is measured by the consequential changing optical

absorption that this induces. The measurement system consists of a light source (usually

infra-red), a detector (positioned in reflection or transmission mode) and a signal recov-

ery/processor/display system. Infra-red light is predominantly used since it is relatively well

absorbed in blood and weakly absorbed in tissue; blood volume changes are therefore ob-
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Figure 2.5: A PPG signal (upper trace) and the corresponding reference respiration signal

served with reasonable contrast. The PPG measurement is entirely non-invasive and can

be applied to any blood bearing tissue, although the majority of investigations performed to

date are of peripheral microcirculation [46].

The use of PPG in pulse oximetry has become a standard means of obtaining valuable blood

oxygenation data in a non-invasive and continuous manner [45]. Pulse oximetry uses two

wavelengths of light to determine oxygen saturation ( �
�����

). Haemoglobin is the carrier of

oxygen in the blood. The two common forms of the molecule, oxidised haemoglobin ���
���

and

reduced haemoglobin ��� have very different optical spectra in the wavelength range from

500nm to 1000nm. This wavelength range also corresponds to the range for which there is

least attenuation of light by body tissues [106]. Oxygen saturation is defined as the ratio of

oxyhaemoglobin (HbO2) to the total concentration of haemoglobin present in the blood.

� ����� �
�	� � �

��� �
��� ��� (2.1)

Figure 2.5 shows a PPG signal from one of the databases used in this work, recorded from

a healthy subject over one minute. Pulse rate can be measured by tracking the interval be-

tween consecutive peaks on the PPG waveform (about 1 pulse per second in Figure 2.5) and

also the amplitude of the waveform may reflect the adequacy of peripheral perfusion. The

attenuation of light by the body can be thought of as being due to three independent com-

ponents; arterial blood flow, venous blood and tissues. The high frequency component of the

signal is produced by pulsatile arterial blood volume with each heart beat. The absorption by

nonpulsatile arterial blood, venous and capillary blood and tissue absorption gives rise to the

steady state signal. However, other slow variations in blood flow also affect the modulation
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of light intensity. These slower modulations can be seen in Figure 2.5. One of these is the

variation in venous return to the heart, due to changes in intrathoracic pressure caused by

respiration [58]. Figure 2.5 clearly shows the modulation due to respiration at a frequency

of about 0.16 ��� (6 breaths in the one-minute segment shown).

2.4.1 Respiration and PPG: relationship between the PPG and blood
pressure

PPG measures the pulse wave caused by periodic pulsations in arterial blood volume. These

periodic pulsations give rise to the blood pressure waveform. Several studies have attempted

to determine the correlation between the respiration induced effects in the blood pressure

and PPG signals, the aim of these studies being to investigate the possibility of non-invasive

analysis of pulsus paradoxus using PPG. Steele et al. [97] report on different methods of

continuous non-invasive monitoring of pulsus paradoxus. The reference measurement of

pulsus paradoxus is taken as the measurement derived from an arterial catheter — i.e., the

difference between the highest (during expiration) and lowest (during inspiration) systolic

blood pressure. Pulsus paradoxus determined by a non-invasive continuous blood pressure

signal (obtained using a Finapres, see Appendix C) and the PPG signal are compared with

the reference measurement. A respiratory cycle is determined using a strain gauge placed

around the chest. It is concluded that the PPG pulsus paradoxus measurement, although

less accurate than the Finapres measurement shows a strong linear correlation with the

reference measurement.

Frey et al. [36] carried out a study with the aim of evaluating the relationship between pulsus

paradoxus measured intra-arterially and PPG wave changes. Recordings of the PPG wave-

form, arterial blood pressure and breathing cycle are taken from sixty two nonintubated

patients. All the analysed PPG waves and arterial blood pressure waves are in phase, with

the lowest values occurring in inspiration and the highest values in expiration. It is con-

cluded that the PPG signal appears to be a rapid and easily performed, non-invasive method

for the objective estimation of the degree of pulsus paradoxus.

Hartert et al. [45] studied 26 people who had severe breathing difficulties (asthma or em-

physema). The change in baseline in the PPG signal between expiration and inspiration was

recorded. The magnitude of this change was found to correlate strongly with the strength of
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pulsus paradoxus. After treatment and clinical improvement the change in baseline between

expiration and inspiration was greatly reduced, and the modulation due to respiration was

no longer visible by eye.

These studies show that the effect of respiration can be clearly seen in the PPG of subjects

with breathing difficulties such as asthma. More recently it has been shown that the sensors

used to measure PPG are sensitive enough to detect the pulsus paradoxus effect in the blood

volume change even in healthy subjects [53].

2.5 Impedance plethysmography (IP)

The IP signal is a measure of respiratory effort and is sometimes used to display a respiratory

waveform in a clinical environment. A low amplitude current is passed through the subject

via electrodes. As the patient inhales and exhales, the electrical impedance of the chest

cavity changes as a result of changes in air volume in the lungs and hence the conductive

path between the electrodes.

Air in the thoracic cavity undergoes large changes in volume in the lung during normal

breathing but the volume of blood also varies over the cardiac cycle due to changes in the

amount of blood in the heart and blood vessels [4]. Thus, the electrical impedance of the

lungs and heart changes both with change in air and blood volumes. Most monitors utilise

two standard ECG electrodes placed on the subject’s anterior chest. The impedance across

the chest is seen to increase with inspiration due to increased gas volume in the thorax and

blood volume during the cardiac cycle. The impedance contributed by muscle and fat remains

relatively constant. Usually the variation in thoracic impedance is greater during respiration

than during the cardiac cycle. Impedance monitoring has inherent short comings in accurate

respiration detection in cases of body movement and postural changes. In cases of shallow

breathing, the monitor may detect the cardiac cycle and count them as respirations, causing

a false estimation of displayed respiratory rate [94].
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2.6 Databases

Descriptions of the two databases on which the work in the thesis is carried out are found in

Sections 2.6.1 and 2.6.2 below. The first database, the MIT-BIH Polysomnography database

is part of the Physionet archive of biomedical signal databases. The second database was

collected during the course of this DPhil. study. It was designed with investigating the

feasibility of monitoring respiration from the non-invasive signals discussed in this chapter.

2.6.1 MIT-BIH Polysomnography database

The PhysioNet website contains an archive of well characterised multi-parameter biomedical

signals for use by the research community [39]. The use of objective assessment procedures

alongside the available databases allows researchers to objectively test and compare algo-

rithms.

The MIT-BIH Polysomnography Database comprises 16 continuous polysomnography record-

ings from male subjects all of whom suffer from sleep apnoea. The recordings are between 2

and 7 hours in duration and digitised at 250 � � with 12 bit resolution.

The signals used in this thesis are the ECG, IP and blood pressure signals measured using

an intra-arterial catheter. A direct respiratory signal is also available, obtained from a nasal

thermistor, i.e., a thermistor placed in the airflow of the nasal passages. This is used as the

reference respiration signal. The following information is available for each recording:

� the location of QRS complexes in each ECG record;

� markers for events such as apnoeas, arousals, and movement.

2.6.2 Controlled-breathing database

The second database used in this work was collected in January 2002 by the Signal Pro-

cessing and Neural Networks research group at Oxford University. It is referred to as the

Controlled-breathing database throughout this thesis. For the purpose of the respiration

monitoring feasibility study, the protocol included subjects breathing at a range of rates and

depths. Central apnoeas were also mimicked by asking the subject to stop breathing for

short periods. The full protocol is found in Appendix A. The data was collected from 10 male
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subjects, none of whom had known medical conditions. The signals were collected using

a multi-parameter patient monitoring system, developed to collect and analyse biomedical

signals [102]. The relevant signals are:

� ECG: a three lead ECG was recorded, the signals being digitised with 12 bit accuracy

at a sampling rate of 256 � � .

� IP: a 22 � ��� electrical signal of very low amplitude ( ��� ) is injected into the subject

through two of the ECG electrodes. The IP signal is sampled at 68 ��� with 16-bit

precision.

� PPG: this signal is sampled at 81.3 ��� with an accuracy of 16 bits.

� a direct respiratory signal: an oral airflow trace was obtained by recording the breath-

by-breath temperature variations within a tube through which the subject breathed.

2.6.3 Labelling the data

The Polysomnography database [113] is made available with a set of labels, corresponding

to each 30-second epoch of data. The labels define events that occur within the 30-second

epoch. These events include central and obstructive sleep apnoeas and hypopneas. The

Controlled-breathing database was labelled as the data collection was undertaken. Exact

times of beginnings and endings of different breathing conditions were noted as the protocol

in Appendix A was followed.

Breath-by-breath annotation files corresponding to salient points in the breathing cycle, the

start of inhalation and exhalation, were created as part of this work. To construct breath-

by-breath reference time-stamps for each database, the peaks of the reference airflow respi-

ratory signals are taken to be the start of each respiratory cycle. Every peak is labelled to

define a breath in the reference annotation files. Peak detection was first performed using

an automated peak detection algorithm. The results from this algorithm were subsequently

edited manually using the Wave Analyzer, Viewer and Editor (WAVE) [113].



Chapter 3

Signal Processing Methods

3.1 Introduction

This chapter gives an overview of some of the signal processing techniques used in this

thesis. Feature extraction is introduced and a technique used for feature extraction, Auto-

Regressive modelling, are described in Sections 3.2 and 3.3. Section 3.4 discusses classifica-

tion, with particular reference to neural networks. A discussion of the topic of data fusion is

presented in Section 3.10.

3.2 Feature extraction

The goal of features is to characterise data by measurements whose values are very similar

for objects in the same class, and very different for objects in a different class. As well as pro-

viding discriminatory information, one of the most important functions of feature extraction

is dimensionality reduction of the data.

In this work, on respiratory signals, it is known that discriminatory information can be found

in the frequency-domain. The most well known frequency-domain transformation is the Fast

Fourier Transform (FFT). However the FFT transformation results in a set of coefficients of

equal number to the original data. The Auto-Regressive (AR) model estimate of the power

spectrum allows a low dimensional representation of the data.
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3.3 AR spectral estimation

AR spectral estimation often gives a very significant improvement in frequency resolution

compared to the traditional periodogram method as implemented by the FFT [79]. The es-

timated AR spectrum is a continuous function of frequency and can thus be evaluated nu-

merically at any number of frequencies — uniformly spaced or otherwise — in the interval,

������� �����	��
 where �	
 is the sampling frequency. Conversely the periodogram is a dis-

crete spectrum, evaluated only at uniformly spaced frequencies, determined by the sequence

length. If the sequence is short the periodogram may fail to resolve spectral peaks that are

close together. The sampling frequencies of the signals used in this work range from 68 ���

to 256 � � , with breathing frequencies of interest being between 0.1 ��� and 0.5 ��� . There-

fore long sequences are needed to resolve these frequencies, however stationarity cannot be

assumed for such long sequences. A second limitation is due to the implicit windowing of

the data that occurs when processing the periodogram. Windowing manifests itself as “leak-

age” in the spectral domain, i.e., energy in the main lobe of a spectral response “leaks” into

the sidelobes, obscuring and distorting other spectral responses that are present. In fact,

weak signal spectral responses can be masked by higher sidelobes from stronger spectral

responses. Skilful selection of tapered data windows can reduce the sidelobe leakage, but

always at the expense of reduced resolution. These two performance limitations of the pe-

riodogram approach are particularly troublesome when analysing short data records. Short

data records occur frequently in practice because many measured processes are brief in du-

ration or have slowly varying time spectra that may be considered stationary only for short

record lengths. Another advantage of the AR spectral estimation is that very few cycles or

even fractions of a cycle can often be reliably detected [56].

Parametric time series analysis uses mathematical models to estimate the spectral density

and covariance function of discrete time signals. An AR model framework assumes that an

all-pole linear filter describes the generation of the signal under consideration and that the

filter is driven by a white noise signal. The AR model therefore specifies the shape of the

signal’s spectrum.

In the time-domain an AR model can be viewed as a linear predictor. A discrete time series
�� ��� may be described as the output of an AR model of order

�
as follows:
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�� ��� �
	�
�����

� � �  � ����� � 	  ��� (3.1)

where
� � (k=1,2...p) are the coefficients of the AR model, � is the discrete time index and

	  ���
is the prediction error, i.e., the error between the actual value and the predicted value.

Eq. 3.1 can be expressed in the � -domain

�  � � � �  � � 
	�
�	�
�

� � ��� � � � �  � � (3.2)

or

�  � � � �  � � �  � � (3.3)

where �  � � and �  � � are the z transforms of �� ��� and
	  ��� respectively and the model transfer

function, �  � � is

�  � � � 


 �� 	 ����� � � � � � �


� 	
� ���  
 � � � � � � � (3.4)

The z-domain PSD is expressed as

���  � � ��� �  � ���
� �

�  � � (3.5)

The frequency-domain representation of the PSD may be estimated by substitution of

� �
	�� ������� � (3.6)

where � � is the sampling interval and the expression in 3.5 is evaluated over � ����
� � � �

����
� .

If
	  ��� is a white noise sequence with zero mean and variance �

�
then its power spectrum is

flat with amplitude �
�
� � . The AR frequency power spectral density estimate ���  � � is given

by
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� �  � � � �
�
� ��� 
 �� 	 �	��� � � 	 � ��� � � ������� ��� ��

� (3.7)

Thus to estimate the PSD one need only estimate
� ��� � � � ��� � � � � � 	 � �

�
. A number of algorithms

exist for estimating the parameters and details and derivations may be found in [56, 79].

In this thesis the Maximum Entropy Method, that is known to produce a minimum bias

solution [56], is used. The PSD obtained using the AR model method consists of a number of

Gaussian curves, centred at the resonant frequencies. Each resonant frequency ��	 is related

to a pair of complex conjugate poles. A
�
th order model has 	 � poles or resonant frequencies

for an even value of
�
, and 	 � � 
 for an odd value of

�
. To estimate the power at a certain

peak or resonant frequency � 	 , Eq. 3.7 maybe solved for � � � 	 . Alternatively, Andersen et

al. [54] suggest a graphical method, using knowledge of the pole distribution inside the unit

circle.

Re-writing Eq. 3.5 as

�
�  � � � �
�
� �

�  � � ��
  ��� � (3.8)

and noting from Eq. 3.4

�  � � � 
� 	
� ���  
 � � � � � � � �

� 	� 	
� ���  � � � � � (3.9)

Substitution of Eq. 3.9 into Eq. 3.8 gives

�
�  � � � �
�
� �� 	

� ��� � � � � 	 �
� (3.10)

This equation has geometric interpretations in terms of vectors connecting the poles of �  � �
to the point on the unit circle with phase of the frequency of interest.
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The peak associated with a resonant frequency occurs at the angular location of the pole � �

� 	 �����������
	�����
�  � �  � � ����� 	  � � � � (3.11)

These equations give the relationship between the magnitude of the poles in the pole plot in

the z-domain and the power at the corresponding frequency. If a pole is close to the unit circle,

a well resolved peak appears in the spectrum. Poles distant from the unit circle contribute

little to the shaping of the spectrum. Their main effect is to scale the overall spectrum up or

down, thus ensuring conservation of the total power.

3.3.1 Reflection coefficients

As well as the coefficients
� � (k=1,2...p), the reflection coefficients � � , also provide a parame-

terisation of the power spectrum of the data ��� .
The reflection coefficients define the reduction in residual signal-model error, � , when the

AR model increases its order from � � 
 to � ,

� � ��� 
 ���
�
��� � � � � (3.12)

Reflection coefficients have the advantage that an increase in model order does not effect the

coefficients from the previous order and hence there is little cross-correlation between the

coefficients, making them more suitable for pattern analysis techniques than the correlated

AR coefficients [23]. A further advantage is that reflection coefficients are independent of

signal amplitude and always lie between -1 and +1, so they do not always require normali-

sation when used as features for classification. The AR model or reflection coefficients form

a compact representation of the signal power spectrum. In addition the representation is

adaptive since the parameters of the estimated spectrum give the location and sharpness

of the dominant frequencies wherever they may be in the spectrum (unlike the FFT that

provides a fixed frequency representation).

AR models are implemented in Matlab 6.1 using the Burg algorithm [56], which solves the

Maximum Entropy Method, wherever they are used in this thesis.
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3.4 Classification

A classifier can be viewed as a mapping from a set of input variables (features) � , represent-

ing the object or data to be classifed to an output y which represents a class label

� � �  � ��� � (3.13)

where � denotes the vector of parameters representing the mapping. In general it is not pos-

sible to determine a suitable form for the required mapping, except with the help of a data

set of examples [10]. The process of using data to determine the parameters of a classifier is

referred to as training. Many different training techniques exist, using either supervised or

unsupervised training methods. Unsupervised techniques take no account of class informa-

tion and so the mapping that takes place may lead to very poor grouping for a classification

problem. Unsupervised techniques are often used for visualisation or cluster analysis in an

attempt to discover any underlying structure in the data. Supervised techniques use class

information to find an optimal decision boundary to be selected with respect to the target

class.

Parametric methods of estimation of the parameter vector � asssume a specific functional

form for the mapping. The data is used to fit the model to the data set. Non-parametric

estimation does not assume a particular functional form and allows the mapping to be deter-

mined entirely by the data.

The simplest type of decision boundary is linear. A linear discriminant function, which is

linear in the components of � , can be written as

�  � � � ��� � ���	� (3.14)

For a two class problem, an input vector � is assigned to class 
 � if �  � ��� � and to class 
 �

if �  � � � � [10].

Linear discriminants can be extended to a � class problem by using a discriminant function
� �  � � for each class 
 � . A new input vector � is assigned to class 
 � if � �  � �� � �  � � for all
���� � . This leads to a set of decision regions that are always simply connected and convex.

However there are many real-world problems for which the optimal decision boundaries are
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Figure 3.1: Schematic diagram of a perceptron

not linear.

There are many supervised classification techniques that lead to non-linear decision bound-

aries, including Support Vector Machines (SVM) [92], Gaussian Mixture Models (GMM),

Hidden Markov models (HMM) [59], Bayesian discriminants [112], Radial Basis function

and Multi-Layer Perceptron (MLP) neural networks [10]. GMMs and HMMs like MLPs (un-

der certain conditions, See Section 3.5) all output normalised probability scores, the posterior

probability of belonging to a class. GMMs and HMMs make the assumption that the system

or data can be modelled or represented by a weighted sum of Gaussians, but require a lot of

data for training.

A neural network is used as a classifier in this work as no explicit analytical model of the

data is needed. The section which follows gives an overview of the MLP; this is the neural

network chosen to solve the classification problem of Chapter 7.

3.5 Multi-layer perceptron neural networks

The theory of neural networks is well documented in texts such as [10],[29] and [101] a brief

overview is given here.

Figure 3.1 shows a schematic diagram of a perceptron. The output � is formed by passing

a weighted sum of the input vector � , added to a bias term � , through a non-linearity � .

The non-linearity � is known as the activation function and is normally one of a number

of standard monotonic functions. In the original work by Rosenblatt [101] the function is

the Heaviside function, a hard-limiter which gives an output of 1 for one class and 0 for the

complementary class. Another commonly used non-linearity is the logistic sigmoid function.
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� 	 � �  � � � � (3.15)

The logistic sigmoid activation function has the advantage over the original Heaviside func-

tion that allows the outputs of the discriminant to be interpreted as posterior probabilities.

This implies that such a discriminant is providing more than simply a classification decision,

and is potentially a very powerful result [10].

Figure 3.1 shows a single-layer neural network. A single-layer neural network can be re-

garded as a generalised linear discriminant function. The input variables are linearly com-

bined and transformed with a non-linear function. Single-layer neural networks have a

number of limitations in terms of the range of functions they can represent. It is known how-

ever that networks with two layers of weights are capable of approximating any continuous

functional mapping [10]. Multi-layered networks having either threshold or sigmoidal acti-

vation functions are known as Multi-Layer Perceptrons (MLP). An example of a two-layer

MLP is shown in Figure 3.2. The units that are not output units are known as hidden units.

MLPs are sometimes referred to as having an � � � � � architecture , where � is the number

of input parameters, � the number of hidden units and � the number of outputs.
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3.6 Training

Learning or training consists of adjusting the weights � to minimise the classification error.

Training of a neural network consists of gradually adjusting the weight vector � to minimise

a cost function representing the error between the desired and actual outputs when the

neural network is presented with a set of input data, known as the training set.

There are various choices for the error function. The simplest is the sum-of-squares error

function:

�  � � � 

�

��
� ���

	�
�	���  � �  �

� � � � � � � � �
�

(3.16)

For a single-layer network this error function is a smooth function of the weights, a quadratic

function, and hence its derivatives with respect to the weights are linear functions of the

weights.

Training an MLP is a more complex procedure. In the original perceptron model the hard

limiting activation function meant that there is no obvious way of attaching target values to

the hidden layer units. Therefore it is impossible to determine the contribution of any hidden

layer unit to the output error, and hence the weights between the input and hidden layers

cannot be adjusted. If the hard-limiting activation function is replaced by a continuously

differentiable function, such as the sigmoid function, then the activations of the output units

become differentiable functions of both the input variables, and of the weights and biases

[10]. If an error function is chosen that is a differentiable function of the network outputs,

then the error is itself a differentiable function of the weights. The aim of the training process

is to find the minimum point of the error function in weight space. The minimisation of non-

linear, multi-dimensional functions is covered in Section 3.7. A computationally efficient

algorithm for evaluating the derivatives of the error function is known as the error back-

propagation algorithm. This is described fully in [10],(pages 141-148).

In the problems considered in this thesis, there are only two classes of patterns. It is shown

for a two class problem [10],(p.230) that appropriate choices of activation and error functions
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are the logistic activation function:

�  � � � 



�������  � � �

� (3.17)

and the cross-entropy error:

� � �
�
�

�
�
� � ��� � � � � � �  
 � � � � � � � �  
 � � � � � � � � (3.18)

where �
� � � is the desired output value for the

�
-th input vector and � �

� � is the network output

for that input vector.

3.7 Parameter optimisation techniques

Numerical algorithms for minimising an error function usually consist of iterative processes

of the form

� �	� � � � � ��
 � � (3.19)

where

 � � is the wight update, i.e., the change in weight from the current weight to the

next weight. These numerical minimisation techniques face a number of implementation

issues. Firstly, the algorithm needs to converge, and secondly an identified minimum may

not be a true global minimum, merely one of many local minima.

The simplest minimisation algorithm is that of gradient descent. An initial weight vector
� � is chosen and the gradient of the error function is calculated with respect to each weight.

The next weight vector � � is obtained by moving a small distance in the direction of the

steepest descent, i.e., along the negative of the gradient. For an individual weight
�
� , the

weight update

 �

� is given by [101]:


 � �
� �

�� �
� � � (3.20)
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where � is a small, arbritary fixed parameter that sets the step size. The gradient descent

method is in general an inefficient method.

Conjugate gradient methods use a line search strategy. This differs from gradient descent

in that rather than moving a fixed step size in the direction of the local negative gradient of

the error function, movement takes place along the direction of the local negative gradient to

find the point at which the error is minimised. This gives an automatic procedure for setting

the step length. At the new point the component in the search direction of the error gradient

vanishes. A new search direction is chosen that does not “spoil” the minimisation achieved in

the previous direction, i.e., that keeps the projection of the gradient in the previous direction

null. Minimisation again occurs in this new direction, and the procedure is repeated iter-

atively. Scaled conjugate gradient methods include some further developments to the line

search algorithm and these are described in [10], pages 282-285.

Single-layer neural networks can also be trained using the algorithms outlined above for

MLPs. However, it is also possible to take advantage of the linear structure of the network

and use a special-purpose training algorithm known as iterated re-weighted least squares

(IRLS) [73].

In Chapter 7 the scaled conjugate gradient algorithm is used when training MLPs and the

IRLS algorithm is applied to the training of the single-layer networks. The algorithms are

implemented using the Netlab pattern recognition software [72].

3.8 Network architecture

The number of inputs � in an � � � � � MLP is determined by the number of features or

input parameters. The number of outputs � is equal to the number of classes (although a

two-class problem only requires a single output unit). Too high a value of � forms a decision

boundary that is too complex, the network tends to fit the noise in the training data, rather

than learning the general mapping. A network with too high a number of hidden units does

not generalise well on an unseen test set. Too small a value of � forms a network not capable

of separating the different classes.

The choice of � is also influenced by the amount of training data available. The number

of weights in a network increases linearly with the number of hidden units, therefore the
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amount of training data also increases linearly. Tarassenko [101] recommends that there

should be at least as many training examples as weights, and preferably an order of magni-

tude greater.

Training therefore consists in determining the optimal number � of hidden units. For every

value of � considered in this search, at least ten different � � � � � networks should be

trained, with a different set of initial weights in each case. The different random initialisa-

tions produce different weight sets when training is stopped, each corresponding to a local

minimum [101]. The optimal set of weights is the one chosen to give the best classification

performance on a validation set.

3.8.1 Overfitting

A network that is over-trained learns the details of the training data rather than the underly-

ing input-output mapping and is therefore likely to perform poorly when given new data that

it has not previously seen [101]. “Early-stopping” is one method of preventing over-training.

The overall training set is partitioned into a smaller training set and a validation set. After

each training epoch is completed the classification error or Mean Square Error (MSE) of the

validation set is assessed. When the validation error stops decreasing, or starts increasing

training should be stopped.

Regularisation can also be used to prevent overfitting. Regularisation aims to prevent the

network from modelling the noise in the training data by limiting the complexity of the

decision boundaries. Regularisation involves adding a penalty term to the error function �

which is designed to penalize mappings which are not smooth [10]. The new error function,

��� , is given by

� � � �
��� � � (3.21)

where � is the original error function, � is the regularisation term and
�

is a parameter that

determines the relative importance of the complexity of the boundaries with respect to the

network performance on the training set.
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One of the most common regularisation terms is known as weight decay and is given by

� � 

�
�
�

� �
� � (3.22)

This term is motivated by the idea that a complex boundary has a high curvature which,

in turn, requires large network weights [101]. The sum-of-squares form of this regulariser

encourages the weights to remain small.

The weight update equation is then

�
� � � �

�
� � � � (3.23)

The regularisation term,
�
, described here is applied to all weights individually. Regularisa-

tion is not normally used for bias weights so that they remain free to be modified in the face

of offsets in input values [10].

The process of regularisation merely prevents the network from over-fitting the training

data, it does not provide an indication of when the training process should be stopped. In

the work described in Chapter 7, an initial study is carried out in which the misclassification

error of the validation set is examined after each training epoch, the number of training

epochs required being chosen on the basis of this inspection.

3.9 Data sets

The data available for a neural network study is partitioned into three groups, the training,

validation and test sets. The training data is used for the supervised learning of the network,

the validation set is used to decide when to stop training (“early-stopping”) and to decide

upon a suitable network architecture. The optimal network, in terms of performance on

the validation set is then evaluated on the test data. Ideally the amount of data available

allows a ratio of 1:1:1 between the training, validation and test sets. [101]. The strategy for

partitioning the data also needs to be considered. The data could be partitioned randomly

or if data is limited a cross-validation procedure may be used [10]. The data is divided into

� segments. A network is then trained using data from � � 
 of the segments and its

performance evaluated using the � ��� segment. The process is repeated for each of the �
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possible combinations of the data.

3.10 Data fusion

Data fusion is the term used to describe the integration and combination of data/information,

either from multiple sources or from the same source over time.

Data fusion is useful in situations where a required parameter cannot be measured di-

rectly [96]. Examples where it is useful include remote sensing, target identification, ma-

chine condition monitoring and diagnosis, and more relevantly in non-invasive medicine

[35],[31],[104]. It is a means of improving the performance of a pattern recognition or mea-

surement system by integrating multiple sensors’ data.

In the literature on data fusion, fusion is often described as taking place at one of three

different levels of representation, namely [22]:

� Data level: combines (unprocessed) sensor data;

� Feature level: combines features extracted from different sensor data;

� Decision level: combines detections (or detection probabilities) from different sen-

sors.

There are numerous methods that have been developed for all levels of data fusion. A com-

plete review may be found in Chapter 2 of [6]. An overview is given in the following sections

with a discussion of methods relevant to the work described in this thesis.

3.10.1 Data level fusion

One means of implementing signal or data fusion is by taking a weighted average of the

composite signals or data, with weights based on estimated variances of the signals [6].

Whereas this method allows for real-time processing of dynamic low level data, in most cases,

a Kalman filter is preferred because it provides a method that is nearly equal in processing

requirements and in contrast to a weighted average, it results in an estimate for the fused

data that is optimal in a statistical sense. For systems that have linear dynamics and linear

observation models, the standard Kalman filter is the optimal (in the sense of the minimum
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mean square error) estimator. It is also possible to utilise multiple models (with different dy-

namics or process noise models) to improve the reliability of the estimate. These approaches

either switch between models (via a decision rule) or combine them via a weighted average

based on their a posteriori likelihood of being the “correct” model. Kalman-filter-based fusion

is considered in Chapter 5 and the underlying theory is presented there.

3.10.2 Feature level fusion

In practice, features are usually fused by combining features from multiple sources or sen-

sors and forming a single input vector to a statistical classifier. Sanderson et al. [91] use

a combination of features from speech and visual signals as an input to a Gaussian Mix-

ture Model to design a person verification system. In building a landmine detection system

Stanley et al. [95] combine features from two different types of sensors. This combination

of features is used as an input to a neural network. Jimenez et al. [52] also use a neural

network with a combination of features from different sensors to classify remote images.

3.10.3 Decision level fusion

Decision level fusion can be categorised into hard and soft decision level fusion; hard de-

cisions being all-or-nothing declarations, while soft decisions utilise information about the

confidence each sensor places in its individual decisions [43]. Soft decisions may be in the

form of, for example, an a posteriori probability estimate, or in the form of a score or ranking

from the decision maker. Whether the decision is hard or soft defines how the decisions are

combined. Soft decisions are usually considered superior to hard decisions as they result in

more information being used to make the ultimate decision.

Hard decisions are usually combined using majority voting [57] or logical AND or OR oper-

ators [111]. Soft decisions may be combined in a multitude of ways. At the simplest level,

summation, averaging or weighted averages, products and geometric means of the individ-

ual decisions have all been suggested as a way of arriving at a resultant single soft decision.

If the decisions are interpreted as fuzzy membership values, belief values or evidence fuzzy

rules, belief functions and Dempster-Shafer techniques are used [57]. Finally it is possible to

treat the decision making as a classification problem and train a classifier using the decisions
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as new features.

A number of empirical studies have been carried out to compare different methods of com-

bining soft decisions. For example, Verlinde et al. [111] compare the performance of sev-

eral methods for combining the scores of a number of biometric identity verification sys-

tems. A variety of statistical classifiers including a k-Nearest Neighbour classifier, an MLP,

a maximum a posteriori probability classifier based on Bayes decision theory and linear and

quadratic classifiers are used, as well as AND and OR operators after thresholding the deci-

sions to produce hard decisions. Although a Bayesian approach leads to an optimal classifier

in the sense that it implements the lowest Bayes risk, in practice, poor a priori knowledge

leads to inferior results. It is concluded that, for this application, a logisitic regression clas-

sifier gives the best performance with a simple AND operator giving comparable results.

Kittler et al. [57] suggest combining the decisions using product, sum, minimum and maxi-

mum rules. It is shown in two separate experiments, of different applications, that the sum

rule outperforms all the individual classifiers and gives the best performance of the combined

classifiers.

Cremer et al. [22] give a comparison of decision-level sensor-fusion methods for anti-personnel

landmine detection. Both non-statistical fusion techniques, including Dempster-Shafer the-

ory, fuzzy probabilities, rule-based threshold functions and voting methods are used as well

as an optimal Bayes statistical technique. All the fusion methods perform better than the

best single sensor, however no method is shown to be optimal in terms of sensitivity and

specificity.

Duc et al. [28] compare a Bayesian approach with a geometrical mean method for combining

two soft decisions from experts using either audio or video information for person identifica-

tion. In this work it is shown that the Bayesian approach gives the better performance in

terms of the total error rate.

3.11 Relevance to this thesis

Some of the signal processing techniques used throughout this thesis are described in this

chapter. Feature extraction using AR models is described in Chapters 6 and 7. In Chapter 7

a neural network classification of these features is presented.
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Chapter 5 describes the use of a Kalman filter based fusion technique to combine breathing

rate measurements from the different primary signals. As pre-processing of the signals takes

place before fusion it is argued this fusion occurs at a feature level.

A description of an approach that fuses hard decisions from two sources of information from

the same signal is found in Chapter 6. The fusion of features is described in Chapter 7.

Features are fused from two signals by concatenating the feature vectors from both signals

before classification. Results of fusion at a soft decision level, combining the outputs of clas-

sifiers that use features from a single signal, are also reported.



Chapter 4

Detection of Breath-by-Breath

Respiration

4.1 Introduction

This chapter describes an investigation into automated time-domain methods for detecting

breath-by-breath respiration from the ECG, blood pressure, PPG and IP signals. The IP sig-

nal is sometimes used to display a respiratory waveform in clinical environments. However

it is susceptible to artefacts, such as chest distortion resulting from the beating heart, and

noise. It is also very sensitive to body movement [88].

The aim of this work is to assess a number of methods in order to determine which gives

the most reliable and accurate measurement of breath-by-breath respiration. Ideally such a

method is robust to inter and intra patient variability. Respiratory waveforms are derived

from the signals and breaths are detected from these waveforms. Following this study, sev-

eral of the derived respiratory waveforms are used in subsequent chapters of this thesis. The

studies are carried out on the two databases described in Section 2.6, the Polysomnography

and Controlled-breathing databases.

The chapter is structured as follows. In Sections 4.1.1 and 4.1.2 a review of previous work

on extracting respiration from the ECG and PPG signals is given. Section 4.2 describes an

objective assessment procedure, which is used to evaluate and compare the different signal
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processing methods for deriving respiratory waveforms from the four original signals. These

methods are described in detail in Sections 4.4-4.6, methods suggested in the literature are

also implemented for comparison. The results of testing these methods on the Polysomnogra-

phy and Controlled-breathing databases are presented in Section 4.7, and Section 4.8 draws

conclusions from these results.

4.1.1 Previous work on extracting respiration information from the
ECG

Much of the previous work on extracting respiration information from the ECG follows an

approach of using direct measurements of respiratory-induced characteristics of the time-

series ECG signal. These measurements are used to derive respiratory waveforms.

In their definitive paper, Moody et al. [71] outline a method for generating an ECG Derived

Respiratory waveform (EDR) using two ECG leads. After subtracting the baseline, the area

of each normal QRS complex in each of the two leads is measured over a fixed window (the

width of which is determined during a learning phase to match the interval from the PQ

junction to the J-point1 of a normal QRS). Since the window width is fixed, the area is pro-

portional to the mean amplitude of the signal, hence to the projection of the mean cardiac

electrical vector onto the lead axis. Assuming that the leads are orthogonal, the arctangent

of the ratio of the areas measured in the two leads gives the angle of the mean axis with

respect to one of the axes. The axis direction measurement provides one sample of the EDR.

A pseudo-continuous EDR is then obtained by interpolating using a cubic spline. The EDR

is compared visually to chest Pneumatic Respiration Transducer (PRT) measurements.

Zhao et al. [117] use a similar, if not identical, method to Moody et al. [71]. However they

use a more analytical method to determine how well the derived waveforms correspond to

the recorded respiration signal. The power spectra (over a two minute period of fixed rate

breathing) of both the EDR and PRT signals are obtained and compared statistically.

Travaglini et al. [107] again use the angle changes in the cardiac vector to derive an EDR.

However in this work eight ECG leads are utilised. Their method is based upon the hy-

pothesis that the breath-representative points are laid out around the preferred direction in

1the J-point is defined as the end of the S-wave.
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an 8-D space. Once this main direction, named the “respiratory direction”, is located, the

method produces an EDR. A centre of gravity is defined for each lead as the average area of

the relevant QRS complex for the first 16 beats. A vector of eight elements for every subse-

quent heart beat is then determined, the element for each lead being the area of the QRS

complex minus the centre of gravity. The projection of this vector onto the respiration direc-

tion is then taken as the EDR sample for that point. Results are again assessed visually, by

comparing the EDR to a PRT for 10 volunteers who underwent periods of normal breathing

interspersed with breath holding.

Felblinger et al. [34] use the amplitude of the R wave to obtain an EDR. The height of each R

peak is plotted as a step function to represent the respiratory signal. Results are compared

visually against the reference respiratory signal, which was obtained from a pneumatic pres-

sure belt.

Earlier work simply examined the power-spectra of the ECG to establish the presence of com-

ponents at a respiratory frequency. Pallas-Areny et al. [78] describe a study aimed at showing

that rotation of the cardiac vector introduces respiratory information in the power spectrum

of the ECG. An ECG was recorded on a patient wearing a pacemaker (to eliminate the ef-

fects of RSA) and also undergoing artificial ventilation. The electrodes for standard leads

were placed at extremities so that there were no respiratory-induced movements (baseline

wander). The power spectra of leads I, II and III were obtained. Respiration harmonics were

found to be present in the spectra. As the cardiac rhythm was constant, the presence of these

harmonics was attributed to the displacement of the heart vector.

4.1.2 Previous work on extracting respiration information from the
PPG

In comparison with the work done on deriving respiration from the ECG, very little has been

done using the PPG. Lindberg et al. [58] employ a band-pass filter to eliminate all frequencies

of the PPG other than the range in which respiration is likely to be present, the filtered

signal being the derived respiratory waveform. The pass-band of the filter is chosen to be

from 0.1 to 0.5 � � . Subjects were kept in a supine position and asked to breathe normally.

The number of breaths (peaks) recorded by the reference IP method are compared with the

number of breaths (peaks) in the derived respiratory waveform over a ten-minute period.
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Nakajima et al. [74] also use a band-pass filter approach. In their work the cut-off frequency

of the low-pass filter is selected depending on the current heart rate; increasing from 0.3 � � to

0.55 ��� , as the heart rate rose. In order to assess the performance of this method, the median

value of the breathing rate over five sequential breaths detected from the derived respiratory

waveform is compared with the same measure from a reference transthoracic impedance

plethysmogram. The study involved the subjects increasing their heart and breathing rates

by pedalling on a stationary bicycle. It is found that the largest errors in derived breathing

rate are at higher breathing rates, an error of 7 breaths min � � , when the actual rate was 35

breaths min � � . At lower breathing rates the results are more accurate.

4.2 Quantitative assessment of breath-by-breath respi-

ration algorithms

In the previous work (described in Sections 4.1.1 and 4.1.2) that has attempted to derive

a respiration measure from other physiological signals, for example the ECG [71],[107], re-

sults have been assessed visually by comparing the EDR with a reference respiratory signal

(commonly using a pneumatic respiration transducer). The visual assessment is inevitably

subjective and not easily reproducible. In their work on extracting an EDR from the MIT-BIH

and AHA Arrhythmia Databases [48][62], Moody et al. [71] acknowledge that signals qual-

itatively similar to respiratory waveforms could be recovered in all cases. However, since

no independent respiration measurements were available, the fidelity of the recovered sig-

nals could not be evaluated quantitatively. No quantitative, objective method for evaluating

respiratory derivation algorithms has previously been reported.

An evaluation method that is used to assess the performance of different methods for the

automatic detection of breath-by-breath respiration is described in the next section.

4.3 Evaluation method

Standardised methods exist for evaluating ECG analysis algorithms [1][2], but at present

there are no similar standards for algorithms that derive a respiratory measure from other

physiological signals. Using methods and statistics analogous to those published for ECG
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analysers, a method for evaluating the performance of respiratory derivation algorithms is

now described.

Most ECG analysis algorithms attempt to detect heart beats (i.e., the QRS complex of the

ECG) before classifying these beats and performing subsequent analysis. The Association

for the Advancement of Medical Instrumentation (AAMI) has published standards for test-

ing beat-by-beat analysis algorithms so that meaningful comparisons between different al-

gorithms may be performed [1],[2]. When detecting beats it is specified that there must be

a close temporal match between the beat label in a reference annotation file and that pro-

duced by the algorithm under test. This beat matching must occur within a time window of
� 
 � � ��� .

In this work, the aim is to detect breaths from a Derived Respiratory waveform (DR). By

introducing a labelling scheme whereby a salient point of the respiration cycle, e.g. the start

of the cycle, is labelled, a similar approach to the detection of heartbeats in the ECG may

be used. The time at which a breath is detected by the algorithm under test is compared

with the time of the corresponding ‘gold standard’ reference breath annotation which is

derived from the available respiratory signal. As a breath interval is greater than a heart

rate interval, the time window (about the reference time) within which the derived breath

should be found is expanded with respect to that used in ECG analysis.

To illustrate this, Figure 4.1 shows a reference respiratory signal (lower trace) and an ex-

ample EDR (upper trace). The EDR has been cubic-splined for qualitative appearance. The

waveforms can be seen to exhibit an antiphase relationship. This is due to the fact that in

certain leads the amplitude of the QRS complex increases with inhalation while in others it

decreases. For example, in lead I the amplitude decreases with inhalation and in lead III

it increases [117]. The times of the peaks of the reference signal serve as the breath labels

and in this example the troughs of the EDR are the salient points labelled as breaths by the

algorithm under test. The times of the derived breaths can then be compared with the times

of the corresponding reference breaths.

As in the standards for ECG analysis the detection statistics employ the mutually exclusive

categories of True Positives (TP), False Positives (FP), and False Negatives (FN) that are

well-recognised in medical testing [41]. A TP is a derived breath that falls within the time-

match window associated with the reference breath label. A FP is a derived breath which
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has no corresponding breath in the reference annotation file, and a FN occurs when a breath

in the reference annotation file is not matched by a corresponding derived breath.

To evaluate how well an algorithm performs, the results are recorded in terms of sensitivity

and positive predictivity. Using positive predictivity ensures that high values of sensitivity

caused by high false positive rates are clearly identified.

� Sensitivity (Se) is the fraction of real events (breaths) that are correctly detected:

� 	 �
� �

� � ��� � � 
 � ��� (4.1)

� Positive Predictivity (+P) is the fraction of detections that are real events (breaths):

� � �
� �

� � ��� � � 
� ��� (4.2)

4.3.1 Databases for detection of breath-by-breath respiration

Breath-by-breath respiration is obtained using the methods described in the following sec-

tions on a subset of the two databases used in this thesis. The assessment procedure of

Section 4.2 is used to evaluate each of the algorithms and to allow for a fair comparison

between these different methods.

The presence of apnoeas in the Polysomnography database creates complications in the ob-

jective evaluation of the respiratory derivation algorithms. In view of this a database is
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Figure 4.1: A reference respiration signal (lower trace), obtained from a nasal thermistor and
an EDR (upper trace), the EDR was cubic-splined. The signals have been manually scaled to
permit visual comparison, hence no vertical axis scales are provided. The signals are taken
from record slp02b in the Polysomnography database.
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Table 4.1: Time durations of the longest sections of non-apnoeic clean data for each record
in the Polysomnography database.

Record Start Sample No End Sample No Duration(mins)
slp02b 205853 464176 17.2
slp03 2748292 3472103 48.25
slp04 3832987 4393917 37.40
slp14 569743 998036 28.55
slp16 2908003 3206856 19.92
slp32 1875243 1906295 2.07
slp37 2515411 2574371 3.93
slp41 3498887 4559463 70.71
slp45 5362042 5691310 21.95
slp48 2756692 3595661 55.93
slp59 298131 425570 8.50
slp60 1571615 1888612 21.13
slp66 1400280 1629701 15.29

created consisting of only non-apnoeic data. The data is first selected using the annotation

files, that are part of the Polysomnography database, to find the longest sections of data from

each record that do not contain apnoeas. This data is further examined visually and any

sections of non-apnoeic data that do not contain very clear reference respiration signals are

also discarded. This is to ensure that all reference labels are as accurate as possible. Table

4.1 shows the duration and location of the selected data for each record of the Polysomnogra-

phy database. As explained in Section 2.1 this database does not contain a PPG signal. An

intra-arterial blood pressure signal is used in this work for proof of concept.

Appendix A gives the protocol of the data collection procedure for the Controlled-breathing

database. For the work in this chapter three separate data sets are extracted from the over-

all database, corresponding to different data collection conditions. Data Set A includes all

data, apart from periods of breath holding and sections for which the subjects were asked to

breathe at a rate which was as fast or faster than the cardiac rate. The data in Data Set A

contains breathing at different rates, from 6 to 20 breaths per minute, and different depths of

inspired air, from 300 ml to 1500ml. It includes a period during which the subjects undertook

light exercise, as well as periods during which the subjects breathed normally. Data Set B

consists of four minutes of resisted breathing. During these times the subjects were asked to

breathe through resistance tubes at normal rates. Finally Data Set C consists of 15-minute

periods during which the subjects breathed at their own normal (relaxed) rate and depth.
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Figure 4.2: Schematic diagram of the method of deriving breath-by-breath respiration from
the original signals; ECG, blood pressure and PPG.

4.4 Overview of signal processing and evaluation proce-

dure

The following sections of the chapter describe a number of different methods of deriving

breath-by-breath respiration measures from the ECG, blood pressure, PPG and IP signals.

Two general approaches are taken. The first approach makes direct measurements of the

characteristics in the signals that are known to be modulated by respiration. These respiratory-

induced characteristics are described in Sections 2.2.1, 2.3.1 and 2.4.1.

A second, more conventional, signal processing approach is used for comparison. The signals

are band-pass filtered, leaving only components in the frequency range in which breathing

is normally expected to occur. Both approaches result in derived respiratory waveforms.

For evaluation, time stamps for each breath are then defined from the derived waveforms

and compared against the reference breath time stamps, as described in Section 4.3. The

generation of the reference breath time stamps is described in Chapter 2. The breath time

stamps identified from the IP signal, that is often used to display a respiratory waveform in

a clinical environment, are also compared with the reference breaths.

Figure 4.2 summarises the sequence of processes for deriving and assessing breath-by-breath

respiration from the original signals (ECG, blood pressure, PPG and IP). After pre-processing

methods for deriving a respiratory waveform are carried out on each signal. Once the wave-

form is derived, breath times are defined by automatically searching for the peaks in the

signal. To assess the performance of each algorithm, the breath times are compared with the

known reference breath times.

Section 4.5 describes the pre-processing steps. Section 4.6 outlines each of the methods

for obtaining respiratory waveforms and Section 4.6.8 presents the generic peak detection

algorithm used to define breath times from the waveforms.
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4.5 Signal preprocessing

The three signals, ECG, blood pressure and PPG, used to derive respiratory waveforms are

all filtered to eliminate any artefact (outside the breathing range) or unwanted components

of the signal.

There are a number of noise sources that can cause interference in the ECG. These include

mains interference (50 � � ), muscle artefact and electrode contact noise as well as patient

movement [8]. The ECG is band-pass filtered, the high-pass cut-off frequency being chosen

as 0.1 ��� to eliminate baseline wander. This assumes that the lowest possible breathing

frequency is 0.1 � � , 6 breaths minute � � . The low-pass cut-off is 40 ��� to eliminate mains

noise and any other high-frequency noise whilst preserving characteristics of the ECG of

interest, for example the QRS amplitude.

Artefacts in the PPG signal can be induced by any phenomenon which causes a transient

change in the light received by the PPG sensor. Any variation in the optical coupling between

the probe head and the subject or physiological changes which dynamically alter the amount

of light transmitted (or received) give rise to what is commonly termed as motion artefact. A

subject raising or lowering their hand whilst attached to a finger probe dynamically alters

the pressure their finger exerts on the probe which in turn alters the optical coupling, whilst

simultaneously causing a change in venous blood flow which also affects light transmission

through the tissue [46]. The intra-arterial blood pressure signal is less prone to noise than

the PPG, however some low frequency baseline wander is sometimes seen. Both the PPG

and blood pressure signals are therefore band-pass filtered, from 0.1 to 40 ��� , as is the ECG.

Finite Impulse Response (FIR) filters are used throughout this work, because they can be

made symmetrical in form. This produces an ideal linear-phase characteristic, equivalent

to a pure time delay of all frequency components passing through the filter, i.e., there is no

phase (and hence shape) distortion.
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Figure 4.3: The figure shows an ECG, the R-DR (red), formed by tracing the height of the
R-wave and the reference nasal thermistor respiratory signal (top trace) for record slp14.
The signals have been manually scaled to permit visual comparison, hence no vertical axis
scales are provided.

4.6 Deriving respiratory waveforms

4.6.1 Deriving respiration from QRS amplitude modulation of the
ECG

As described in Section 2.2.1, the amplitude of the QRS wave is modulated as the heart

rotates during the breathing cycle. The method described here makes direct measurements

of the QRS amplitude to form an EDR. The position of each QRS complex in the ECG is first

located. In the case of the Polysomnography database, the QRS annotations are used and

a further scan made in a symmetrical window (of length 1-second) about the annotation to

identify the exact position of the R-wave. The QRS complexes of the Controlled-breathing

database are found using Engelese and Zeelenberg’s ’sqrs’ algorithm [33].

The amplitude of the peak of the R-wave is measured both with respect to the baseline (after

high-pass filtering to reduce baseline wander) and with respect to the amplitude of the S

wave. The latter is found by searching for the minimum value of the ECG in a time window,

of length 0.1 seconds, beginning at the peak of the R-wave.

An EDR, referred to as the R-DR, is formed by plotting the difference in amplitude between

the peak of the R-wave and the baseline, at the time of the occurrence of the R-peak. A

waveform is created by interpolating between these samples. The RS-DR is formed in the

same way but the samples of the derived waveform are the differences in magnitude between

the R and S waves of the QRS complex. To illustrate the R-DR Figure 4.3 shows an ECG, a

reference respiration signal (obtained using a nasal thermistor) and the R-DR.
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Once the EDR is formed, the fiducial point corresponding to each breath must be defined.

This point is either at the peak or trough of the respiration frequency EDR. Whether the

EDR is in or out of phase with the reference respiratory signal depends on the lead used and

the placement of the electrodes. For example, lead II is known to be affected by respiration

and normally the QRS wave is a positive slope followed by a negative slope with the R-wave

being at the most positive potential of the ECG (see Section 2.2). However if the positions

of the two lead II electrodes are swapped the R-wave occurs at the lowest potential. The

derived waveforms are analysed to determine whether they are in-phase or anti-phase with

the reference respiratory signal in order to decide whether the peak or trough should be

labelled as the breath time stamp.

4.6.2 Detecting breath-by-breath respiration from Respiratory Si-
nus Arrhythmia

Respiratory Sinus Arrhythmia (RSA), as described in Section 2.2.1, refers to the cyclic vari-

ation in heart rate which is associated with respiration. Heart rate accelerates during inspi-

ration and slows during expiration [60]. The method uses a direct measurement of RSA to

form an EDR, the RSA-DR. The times of the R-wave peaks are identified using the method

in Section 4.6.1. To form a heart rate sequence the time between successive R-wave peaks

(R-R interval) is measured in seconds.

Instantaneous heart rate is then defined as:

Heart rate � � �
RR intervalbeats min � � (4.3)

There are a number of recognised methods for combining the R-R intervals in order to form

a signal that represents heart rate. The method used here plots the value of R-R interval

against the time at which the interval ends [26]. This heart rate signal forms the RSA-DR.

Figure 4.4 shows an example of an RSA-DR and the corresponding nasal thermistor respi-

ratory signal for a record from the Controlled-breathing database. Heart rate accelerates

during inspiration. The times of the troughs of the RSA-DR are therefore defined as the

breath times to be compared with the reference annotation labels (which correspond to the

start of each respiration cycle).
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Figure 4.4: RSA-DR (upper trace) and nasal thermistor respiratory signal (lower trace) for a
record from the Controlled-breathing database. The waveforms have been manually scaled
to permit visual comparison, hence no vertical axis scales are provided.

4.6.3 Detecting breath-by-breath respiration using pulsus paradoxus

Pulsus paradoxus is described in Section 2.3.1 as the inspiratory decrease in systolic blood

pressure signal. The following method uses a direct measurement of pulsus paradoxus in

the blood pressure to form a derived respiratory waveform. The peaks of the blood pressure

signal are first detected using the automated peak detection algorithm described in Section

4.6.8. Due to the presence of a dicrotic notch in the arterial blood pressure signal a magnitude

threshold is used to identify the main peaks. An average of the peak-to-trough value in the

first five minutes of the blood pressure signals from each patient in the Polysomnography

database is found (after high pass filtering as described in Section 4.5 to eliminate baseline

wander). After some investigation the amplitude threshold is chosen to be 66% of the peak-

to-trough value in order to eliminate the dicrotic notch from the analysis.

The amplitude of each systolic peak provides one sample of a pulsus paradoxus-derived respi-

ratory waveform (PP-DR). An example of a PP-DR and the corresponding respiratory signal

are shown in Figure 4.5. As noted in Section 2.3.1, the minimum systolic blood pressure

occurs during inspiration, and the maximum during expiration. The reference respiration

labels for the Polysomnography database mark the start of the respiration cycle i.e., the

start of inspiration. Therefore the times of troughs of the PP-DR are detected and defined as

the breath time stamps.
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Figure 4.5: A section of blood pressure signal, with the PP-DR (red) and nasal thermistor
signal (upper trace) from record slp02b. The waveforms have been manually scaled to permit
visual comparison, hence no vertical axis scales are provided.

4.6.4 Detecting breath-by-breath respiration using blood pressure
peak variability

The periodic pulses seen in the arterial blood pressure signal are due to the heart pumping

blood from the aortic valve. The times at which the pulses arrive at the blood pressure

measuring site therefore have a dependence on the heart rate. If the measuring site is a lag

distance from the heart, other factors also start to influence the relative timing of the pulses.

The stiffness and tension in the arterial walls are the principal factors determining the speed

of transmission of the pulse wave, and these change as blood pressure changes [83]. However

if the measuring site is close enough to the heart, these factors may be ignored and the times

of the pulses assumed to depend only on heart rate. To form a derived waveform, the times

of the peaks of the blood pressure signal are identified as in Section 4.6.3. The time between

successive peaks is calculated. The peak interval is plotted against the time at which the

interval ends. This signal then forms a BPV-DR. The times of the peaks of this waveform are

then compared with the reference breath time stamps.

4.6.5 Detecting breath-by-breath respiration using pulsus paradoxus
induced effects of the PPG

As discussed in Section 2.4.1, the effects of pulsus paradoxus are also seen in the PPG signal.

A derived respiratory waveform is generated from the pulsus paradoxus effect on the PPG

signal using the same method as for the blood pressure signal. The peaks of the pulse waves

are first identified using the peak detection algorithm and the height of these peaks used as

a sample of the derived waveform at the time at which the peak occurs. Figure 4.6 shows a
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Figure 4.6: A PPG signal (lower trace), showing the pulsus paradoxus derived respiratory
waveform and the reference nasal thermistor reference signal (upper trace). The signals
have been manually scaled to permit visual comparison, hence no vertical axis scales are
provided.

Table 4.2: The characteristics of the filters used in band-pass filtering to obtain respiratory
waveforms.

Signal Filter Stopband Passband Attenuation order
Fc ( ��� ) Fc ( ��� ) (dB)

ECG (Polysomnography) High Pass ��� 
� ��� 0.1 40 374
Low Pass 0.5 0.4 40 355

BP (Polysomnography) High Pass ��� 
 � ��� 0.1 40 374
Low Pass 0.5 0.4 40 355

PPG(Controlled-breathing database) High Pass ��� 
� ��� 0.1 40 122
Low Pass 0.5 0.4 50 138

section of a PPG signal, a respiratory waveform as described (red) and a reference respiratory

signal obtained using a nasal thermistor.

4.6.6 Band-pass filtering

All of the signals considered contain a frequency component at the respiration frequency.

Lindberg et al. [58] suggest deriving a respiration signal directly by band-pass filtering the

PPG signal. The suggested high and low-pass cut-off frequencies are 0.1 ��� and 0.5 ���

respectively. This idea is used here and band-pass filtering is compared, as a means of deriv-

ing a respiratory waveform, with the non-linear methods described in the previous sections.

Each of the signals used in this work is band-pass filtered at 0.1-0.4 ��� . To enable the de-

sign of filters with a sharp roll-off in the transition band, the signals are downsampled by

a factor of 10. Equiripple FIR filters are used in all cases and Table 4.2 shows the filter

characteristics used for each of the signals.
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Figure 4.7: A derived respiratory waveform, generated through band-pass filtering (red lower
trace), a derived respiratory signal using RS amplitude measurements (red middle) and a
reference respiration signal (blue) obtained using a nasal thermistor, from record slp02b of
the Polysomnography database. The waveforms have been manually scaled to permit visual
comparison, hence no vertical axis scales are provided.

Figure 4.7 shows two ECG derived respiratory waveforms in red, the lower trace derived by

band-pass filtering of the ECG and the middle waveform derived from RS amplitude mea-

surements of the same ECG signal. The upper blue signal shows the reference respiration

signal for this 40-second segment. Although the respiratory frequency can be seen in the

band-pass derived waveform, other frequency components are also present, whereas the RS

amplitude derived waveform tends here, to contain only the respiratory frequency.

The peak detection algorithm described in Section 4.6.8 is used to determine the time stamps

for each breath from the band-pass filtered signal. Amplitude thresholds are introduced to

eliminate the detection of spurious peaks, most of these being due to the fact that the original

signals contain a number of components in the frequency range 0.1 ��� to 0.4 ��� other than

the respiratory induced component. A good summary of the components that may occur in

the PPG and blood pressure signals can be found in Lindberg [58].

4.6.7 Impedance pneumography (IP)

The IP signal was recorded as part of the Controlled-breathing database and is also available

with a number of the records of the Polysomnography database. The IP signal is filtered

between 0.1 ��� and 0.4 � � and breaths detected using the peak detection algorithm as for

the other methods.
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4.6.8 Peak detection algorithm

As illustrated in Figure 4.1, peaks of the derived respiratory signals are defined as the breath

time stamps for comparison with the reference times.

Peak detection is one of the most commonly encountered problems in the digital processing

of biological signals. Many schemes for peak detection can be found in the literature [30].

Those relevant to the detection of peaks in the time-series analysis of respiratory waveforms

include [88] and [116]. The main difficulty lies in distinguishing between artefactual peaks

(caused for example, by patient movement) and authentic peaks. To overcome this problem

it is often suggested that arbitrary thresholds be set to eliminate spurious peaks. These

thresholds may be applied to amplitude, slope or duration — or a combination of them [30].

The peak-trough detection algorithm used in this work is a rule-based method, using a gra-

dient approach. There are only a few points for each breathing cycle in every derived respi-

ratory waveform. After detrending, changes in sign of the gradient are searched for and a

peak/trough is defined to occur at a given point if:

1. the appropriate change of gradient has occurred (i.e., positive to negative for peak and

opposite for trough),

2. the previous extremum labelled is the opposite of that being detected currently,

3. the value of the point in question is above the mean for that section of data (or below

for the trough),

4. the time elapsed since a similar extremum detected is greater than 2 seconds.

This simple peak-detection algorithm is found to work well. The waveform from which peaks

are to be detected in this work are derived from the respiratory induced characteristics in

other signals. The relative magnitude of these characteristics depend on the depth and rate

of breathing. For example the modulation of the QRS wave in the ECG reduces with shallow

breathing, and RSA diminishes with faster breathing rates. The derived waveforms are also

susceptible to artefactual peaks introduced through body movement and contain components

other than those due to breathing. These artefactual peaks are often of a comparable size to

that of the peaks caused by respiration. An amplitude threshold is therefore very difficult to

choose and tends to lead to a decrease in sensitivity and an increase in positive predictivity.
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This is confirmed in an earlier study in which peaks are detected from an ECG derived

respiratory waveform [63].

Peak detection from all the derived respiratory waveforms follows the algorithm described in

this section. Any modifications in threshold levels are described where appropriate.

4.6.9 Choosing a window length

The assessment procedure described in Section 4.3 requires a time-match window around

the reference breath within which each test breath must be found. The length of the window

is investigated here. If too long a window is used, when shorter breath periods occur the

reference windows may be longer than the breath period. This results in the overlap of

windows of consecutive reference breaths. To ensure that each test breath is classified just

once the assessment procedure is designed so that the detected test breath is classified with

respect only to the closest reference breath. Extraneous breaths, whether they occur within

the time window or outside the time window are counted as false positives. As all test breaths

are classified once with reference to the nearest reference breath increasing the window size

does not give rise to the same test breath being classified twice.

Figures 4.8 and 4.9 show the effect of varying the length of the time-match window when test-

ing algorithms on the Polysomnography and Controlled-breathing databases respectively.

The top plot of Figure 4.8 shows the effect on sensitivity and positive predictivity when ex-

panding the time-match windows while using an ECG derived respiratory waveform to de-

tect breaths. The lower plot shows the same parameters when using a blood pressure derived

respiratory waveform. As can be seen from the plots, there is a significant improvement in

performance for both methods when the windows are extended from 1 to 2 seconds (7% or 8%

sensitivity and positive predictivity in both cases). However when the window is lengthened

from 2 to 3 seconds, the performance improvement is negligible; less than or equal to 1%.

Figure 4.9 shows the effect of changing the window size from 1 second to 4 seconds when

testing methods on the Controlled-breathing database. The top plot shows the results from

a PPG derived respiratory waveform and the lower plot the results from an ECG derived

algorithm. It can be seen from the figure that increasing the window size from 1 second

to 2 seconds gives rise to an increase of over 20% in sensitivity and positive predictivity in

both the PPG and ECG based methods. The increase from 2 seconds to 3 seconds results
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Figure 4.8: Sensitivity and positive predictivity as a function of window length for an ECG
derived algorithm (upper trace plot) and a blood pressure derived algorithm (lower trace).
The analysis was carried out on the Polysomnography database.
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Figure 4.9: Sensitivity and positive predictivity as a function of window length for an ECG
derived algorithm (top plot) and a PPG derived algorithm (lower trace). The analysis was
carried out on the Controlled-breathing database.
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in notable increases in the performance of the PPG method (9% sensitivity and 9% positive

predictivity respectively), but smaller increases in the ECG method (3% sensitivity and 3%

positive predictivity).

Figure 4.9 suggests that the phase between the respiration signal and the derived wave-

form is not constant and changes over time, i.e., increasing the window around the reference

breath allows more true positive breaths to be detected. The mean breathing periods of the

Polysomnography and Controlled-breathing databases are found to be 3.8 and 5.5 seconds

respectively. Using this information, together with the results of Figures 4.8 and 4.9 a sym-

metrical window of 2 seconds is chosen when testing the algorithms on the Polysomnography

database, while a 3 second window is chosen for the Controlled-breathing database.

4.7 Results

4.7.1 Polysomnography database

Tables 4.3 and 4.4 show the results of deriving breath-by-breath respiration using the ECG

and blood pressure signals respectively. The breath time stamps calculated from the vari-

ous derived respiratory waveforms are compared with the reference breath times which are

obtained from a nasal airflow thermistor. A symmetrical time-match window of 2 seconds

length before and after the reference breath is used.

Table 4.3 gives a summary of the results of ECG based methods. The first section shows the

results obtained using the RS amplitude measure method (RS-DR), the R amplitude method

(R-DR), and the RSA method (RSA-DR).

The second section shows the results of using the MIT EDR (downloaded from [113]) to com-

pare this alternative method of deriving an EDR with the methods proposed in this work.

The MIT EDR method is described in Section 4.1.1. It should be noted that the MIT algo-

rithm is used in the exact form in which it is found on the web and that the default value

of an 80 � �
	��

window over which to take the area of the QRS complex is used (i.e., 40 ���
	��

before and after the QRS time). The times at which the QRS complex occur are taken as

those available in the annotation files available with the Polysomnography database. The

MIT algorithm is used for each subject in its default form; it is expected that making it adap-
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Table 4.3: Summary of gross results of different methods of deriving breath-by-breath
respiration from the ECG on the Polysomnography database.

Method TPs FPs FNs Se(%) +P(%)
RS-DR 5028 906 180 97 85
R-DR 4840 953 369 93 84
RSA-DR 4314 762 939 82 85
MIT-EDR 4656 2124 554 89 69
ECG band-pass 4556 1058 654 87 81

Table 4.4: Summary of gross results of different methods of deriving breath-by-breath
respiration from the blood pressure on the Polysomnography database.

Method TPs FPs FNs Se(%) +P(%)
PP-DR 4982 179 220 96 97
BPV-DR 4498 650 712 86 88
Blood pressure band-pass 4814 940 396 92 84

tive proffers better results. Moody et al. [71] also report that the method works best when

two orthogonal ECG leads are available, here it is used on the one available lead.

It can be seen from the table, that of the ECG based methods those which use measures of

the QRS amplitude, the RS-DR and R-DR give the best performance in terms of both sensi-

tivity and positive predictivity, with the RS-DR slightly out-performing the R-DR. The other

methods show comparable results, with the MIT-EDR showing a lower positive predictivity.

Table 4.4 compares the results for different methods of deriving breath-by-breath respiration

from the invasive blood pressure signal. The pulsus-paradoxus method PP-DR is shown

as the first result, the peak interval time method BPV-DR as the second and the result

of band-pass filtering the signal is shown as the third result. It is seen that the pulsus-

paradoxus based method PP-DR performs extremely well, giving a sensitivity of 96% and

positive predictivity of 97%. The BPV-DR gives results comparable to the RSA-DR, an ECG

based method, which is expected as they are based on the same physiological phenomenon,

i.e., Respiratory Sinus Arrhythmia. The band-pass filtered method gives a high sensitivity

but a lower positive predictivity due to other frequency components in the filtered range.

Table 4.5 shows the results of detecting breaths from the IP signal and again comparing them

with the reference breaths obtained from the nasal thermistor signal. Not all records of the

Polysomnography database contain an IP signal. The IP gives results comparable with the

better ECG based methods but does not perform as well as the best blood pressure method
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Table 4.5: Breath-by-breath detection derived from the band-pass filtered IP signal: Total
number of breaths 2648.

Method TPs FPs FNs Se(%) +P(%)
IP 2482 313 166 93.73 88.80

(PP-DR).

4.7.2 Controlled-breathing database

Tables 4.6, 4.7 and 4.8 give summaries of the results for detecting breath-by-breath respi-

ration from the Controlled-breathing database. Methods using three non-invasive signals,

namely the ECG, PPG and IP signals, are compared.

The window size used is a symmetrical window of 3 seconds either side of the reference

breath (in comparison to the window used on the Polysomnography database which consists

of a 2 second symmetrical window).

Each of the tables is made up of three sections, corresponding to different data collection

conditions, as described in Section 4.3.1. Data Set A is taken from all data, apart from

periods of breath holding and sections for which the subjects where asked to breathe at a

rate which was as fast or faster than the cardiac rate. Subjects breathed at different rates

from 6 to 20 breaths per minute, and different depths of inspired air, from 300 ml to 1500ml.

The subjects also underwent light exercise, as well as periods of normal relaxed breathing.

Data Set B consists of four minutes of resisted breathing. During these times the subjects

were asked to breathe through resistance tubes at normal rates. Finally, Data Set C consists

of 15-minute periods during which the subjects breathed at their own relaxed rate and depth.

The aim of breaking up the data into sections for analysis is to establish whether different

conditions have an effect on the methods. However as can be seen from the tables the results

are consistent across the different breathing conditions.

Looking at the results for the ECG derived waveforms in Table 4.6 the methods based on

QRS amplitude measurements show greater sensitivity than the method that uses RSA.

However the RSA based method consistently shows greater positive predictivity. The ECG

band-pass filtering method consistently shows a lower sensitivity than the QRS amplitude

based methods with a comparable or lower positive predictivity.
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Table 4.6: Comparison of obtaining breath-by-breath respiration from the ECG, using both
direct measurements and band-pass filtering methods.

METHOD TPs FPs FNs Se(%) + P(%)
Data Set A: All non-apnoeic data (13907 breaths)
RS-DR 12610 5791 1297 90.67 67.87
R-DR 12224 4394 1683 87.90 73.56
RSA-DR 11630 2709 2277 83.63 81.11
Band-Pass Filt 0.4-0.5 (50dB atten) 11953 6571 1954 85.95 64.53
Data Set B: Resisted breathing (637 breaths)
RS-DR 579 196 58 90.88 74.71
R-DR 566 139 81 87.28 80.0
RSA-DR 538 105 99 84.46 83.67
Band-Pass Filt 0.4-0.5 (50dB atten) 545 301 92 85.56 64.42
Data Set C:Normal breathing (2041 breaths)
RS-DR 1918 852 123 93.97 69.24
R-DR 1884 583 157 92.31 76.37
RSA-DR 1821 313 220 89.22 85.33
Band-Pass Filt 0.4-0.5 (50dB atten) 1818 795 216 89.38 69.58

Table 4.7: Comparison of obtaining breath-by-breath respiration from the PPG, using both
amplitude of the PPG pulse measurements and band-pass filtering methods.
[Comparison of obtaining breath-by-breath respiration from the PPG, using both amplitude

of the PPG pulse measurements and band-pass filtering methods.

]

METHOD TPs FPs FNs Se(%) + P(%)
Data Set A: All non-apnoeic data (13907 breaths)
PP-DR 9164 1559 4745 65.89 85.6
Band-Pass Filt 0.4-0.5 (50dB atten) 9088 2166 4821 65.34 80.75
Data Set B: Resisted breathing (637 breaths)
PP-DR 456 46 181 71.59 90.84
Band-Pass Filt 0.4-0.5 (50dB atten) 452 88 185 70.96 83.70
Data Set C: Normal breathing (2041 breaths)
PP-DR 1401 109 633 68.88 92.78
Band-Pass Filt 0.4-0.5 (50dB atten) 1358 266 676 69.80 83.62

Table 4.8: Breath-by-breath detection derived from the band-pass filtered IP signal of the
Controlled-breathing database.

METHOD TPs FPs FNs Se(%) + P(%)
Data Set A: All non-apnoeic data (13907 breaths)
IP 11693 3987 1849 86.35 74.57
Data Set B: Resisted breathing (637 breaths)
IP 550 206 87 86.34 72.75
Data Set C:Normal breathing (2041 breaths)
IP 1900 558 134 93.41 77.30
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From Table 4.7 the two PPG methods, the pulsus-paradoxus method PP-DR and band-pass

filtered method show similar sensitivities across all data sections, with the PP-DR giving

higher positive predictivities. The PPG methods are most successful (in terms of both sensi-

tivity and positive predictivity) when used on resisted breathing. This is in agreement with

the reported clinical papers (see Section 2.4.1) that describe the increase in pulsus paradoxus

which occurs in resisted breathing i.e., breathing difficulties such as asthma. The PPG based

methods give rise to a much lower sensitivity than the ECG based methods. The PPG meth-

ods however, give a very high positive predictivity. This suggests that at times the effect

of pulsus paradoxus is not significant enough to modulate the PPG signal. It is also impor-

tant to note that this work is carried out on healthy subjects none of whom had diagnosed

respiratory difficulties. Pulsus paradoxus is therefore not expected to be prominent.

Deriving breaths from the IP signal gives lower sensitivities but higher positive predictivities

than the best performing ECG algorithm.

4.8 Discussions and conclusions

The work in this chapter investigates different methods for automatically detecting breath-

by-breath respiration from four signals, the ECG, blood pressure, IP and PPG. Two sets of

data are used. The Polysomnography database is recorded over-night from subjects with

suspected sleep breathing-related problems. The Controlled-breathing database is recorded

from healthy subjects. All methods are carried out on the same sections of data, and breaths

detected in the same automated way in order to make the assessment procedure as fair and

as objective as possible.

Some of the methods use direct measurements of the respiratory induced characteristics in

the ECG, blood pressure and PPG signals described in Sections 2.2.1, 2.3.1 and 2.4.1. A

simple band-pass filtering method is used as a comparison to these non-linear methods. As

a benchmark method, breaths are detected from the IP signal, which is sometimes used to

display a respiratory signal in a clinical environment.

Results are compared quantitatively using the assessment method described in Section 4.2.

This assessment method is used to make the comparison between respiration derivation

algorithms as objective as possible. It is acknowledged that the method of detecting breaths,
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i.e., peak detection, is a source of subjectivity. The same algorithm is used for detecting

the breaths from each algorithm. The possible use of amplitude thresholds is discussed.

Setting amplitude thresholds for the peak detection from these derived waveforms is however

problematic. The waveforms are all derived from biomedical signals which are known to

contain respiratory induced components. The magnitude of these components show inter-

patient variability as well as intra-patient variability changing unpredictably over time due

to any of the following: patient movement, sensor movement and breathing rate and depth.

An earlier study carried out and published [63] showed that, as suspected, an amplitude

threshold results in a trade off between sensitivity and positive predictivity.

4.8.1 Comparison of results on the two databases

Looking first at the ECG derived methods, it is seen that the methods using direct measure-

ments of the QRS amplitude give better results (higher values of both sensitivity and positive

predictivity) on the Polysomnography database than on the Controlled-breathing database.

The reasons for this may be due to the fact that the position of the ECG electrodes in the

Controlled-breathing database is chosen to give an optimum IP signal, also generated from

these electrodes rather than in the position (nominally lead II) that sees the biggest effect of

the cardiac axis change with breathing.

The second direct measurement method, the RSA method, gives comparable results on both

databases. This is despite the databases being collected from different subject groups: one

consists of young healthy males, who are expected to exhibit RSA, the second being older

males suffering from sleep disorders. RSA is not always found in less healthy individuals.

When deriving respiration from the blood pressure (Polysomnography database) and PPG

(Controlled-breathing database) signals, far better results are obtained using the blood pres-

sure signals . The reasons for this are thought to be two-fold,

� the blood pressure signal is intra-arterial, while the PPG signal is a non-invasive, indi-

rect measurement of blood flow. The PPG is prone to more artefact as well as being less

sensitive to the sometimes subtle changes in systolic blood pressure due to respiration

than the invasive blood pressure signal.

� the Controlled-breathing database (PPG signal) was recorded from healthy subjects
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with no known breathing related difficulties, while the Polysomnography database was

recorded from subjects with known or suspected breathing difficulties. Therefore pulsus

paradoxus is expected to be much more pronounced in subjects from the latter.

In all cases the methods that make direct measurements of the respiratory induced effects

outperform the band-pass filtering methods. It is suggested that this is because the band-

pass filter used has a fixed pass-band to allow for a range of breathing frequencies. The

original signals contain other frequency components in this range. This makes automatically

detecting breaths a much harder problem due to other peaks in the resultant signal.

The IP signal, which is sometimes already used to display a respiratory waveform does not

show significantly better results than the best performing non-invasive alternative methods.

Exploring further the meaning of the values of sensitivity and positive predictivity in re-

lation to the breathing rate obtained from these methods, the results of the R-amplitude

method are used as an example. Results of 88% and 74% of sensitivity and positive predic-

tivity respectively are obtained on the Controlled-breathing database. If the errors in breath

detection occurred evenly across the entire database over a 1-minute data section, when a

subject is breathing at a normal rate of 12 breaths per minute, there would be on average

12% breaths not detected and about 26% extra breaths i.e., an extra � 1.5 breaths detected.

However a visual inspection finds that many of the extra detected breaths occurred together

due to noisy sections of the ECG. The results in this chapter give an overall indication of the

number of breaths that could be correctly detected. The results give no indication of where

the errors occur or whether they tend to occur together in time or manifest as constant off-set

errors.

To address these questions and also investigate the possibility of combining information from

different methods of obtaining breath-by-breath respiration a further study is carried out.

This study is described in Chapter 5.

4.8.2 Conclusion

The aim of the work in this chapter is to investigate how accurately breath-by-breath respi-

ration can be found from one of a number of biomedical signals. The results are compared

with those derived from an IP signal. While it is possible to obtain a sensitivity of 96% and
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positive predictivity of 97% when using the intra-arterial blood pressure signal ultimately

the measurement technique would be non-invasive. Of the non-invasive methods no single

technique results in a significant improvement in deriving breaths over using the IP signal.



Chapter 5

Breathing Rate

5.1 Introduction

An evaluation of methods for the automatic detection of respiration, on a breath-by-breath

basis, from several sources of information is given in Chapter 4. It is seen that an invasive

signal, the arterial blood pressure signal, gives an almost perfect breath-by-breath measure

of respiration but outside of the intensive care unit it is not ethical to monitor patients inva-

sively.

The aim of this work is to derive robust and accurate breathing rates from the information

available from non-invasive sensors. In this chapter a novel method that uses a Kalman

filtering technique is presented for combining breathing rate measurements from multiple

sources (derived respiratory waveforms) to obtain a more accurate estimate than is available

from any individual source.

The individual accuracy of the methods reviewed in Chapter 4 for tracking breathing rate

over time are first considered. The evaluation parameters for assessment and comparison

are presented in Section 5.3. A Kalman filter method to estimate the state of a system

from a single source of noisy measurements is introduced in Section 5.6. This method is

used to derive improved estimates of breathing rate from each of the single source methods

of Chapter 4. Section 5.8 presents specific methodology and models for the estimation of

breathing rate using Kalman filtering. Section 5.9 then introduces a novel method of fusing
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the information from the different methods. Results of the fusion method are presented

and discussed in Section 5.10 and compared with traditional fusion methods as well as the

estimates from a single source of information. It is seen that the fusion method results in

more accurate estimates than any single source of measurements. Finally conclusions and

suggestions for further work are presented in Section 5.11.

5.2 Estimating breathing rates

Chapter 4 investigates a number of methods for automatically deriving breath-by-breath

respiration from the PPG and ECG in the Controlled-breathing database. These methods use

characteristics induced in these signals in order to derive respiratory waveforms. From the

derived waveforms breath times are defined. The performance of these methods for deriving

breathing are compared with that of detecting breaths from the IP signal, a conventional

method for obtaining a respiratory waveform non-invasively. The reference respiration signal

was derived from an oral airflow thermistor.

Four of these methods, each based on a different breathing-induced characteristic, are in-

vestigated here for tracking breathing rate over time. The methods investigated are those

termed the R-DR, RSA-DR, PP-DR and IP methods in Chapter 4. Collectively the methods

are referred to as the “four respiratory waveform methods”. Individually the methods are

referred to as the R-Amplitude (R-DR), RSA (RSA-DR), PPG (PP-DR) and IP methods. In

the first three cases this indicates the phenomenon from which the respiratory waveform

arises. These methods have been chosen as they each rely on a different source of respiration

information.

The aim of this chapter is to develop an algorithm for deriving the most accurate estimate

of breathing rate from the respiratory information that can be extracted using the four non-

invasive methods.

5.2.1 Instantaneous breathing rate

Once the breath time is calculated from the derived respiratory waveform the instantaneous

breathing rate can be obtained. The instantaneous breathing rate is the rate calculated at
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the instant at which the current breath is defined from the derived respiratory waveform.

The breathing rate in breaths per minute (BPM) is defined as

� �
time interval between current and previous breath (seconds) (5.1)

The instantaneous breathing rate sequence can be viewed as an unevenly sampled time se-

ries. Figure 5.1 shows the instantaneous breathing rate sequences for one of the subjects

from the Controlled-breathing database, obtained using each of the four respiratory wave-

form methods. The breathing rate sequences are superimposed on the reference breathing

rate sequence (acquired from the oral air-flow thermistor). Visually the IP method shows

the closest agreement with the reference breathing rate. The other three methods show good

agreement in some sections but there are also times when the derived and reference rates de-

viate, in this example tending to over-estimate the breathing rate. This is due to artefactual

peaks in the derived respiratory waveform, resulting in false positive breath detections.

Figure 5.2 shows data from a different subject. During the time shown the subject was

asked to breathe for five-minute periods at rates of 6, 10 and 20 BPM. All the methods show

some sections of reasonable agreement interspersed with noisy estimates. The RSA and R-

Amplitude methods show a tendency to over-estimate the breathing rate at lower frequencies

(6 BPM). The PPG method seems to be best at tracking this lower frequency. The IP and R-

Amplitude methods show good agreement during the 10 and 20 BPM sections. The PPG

method appears unable to follow the highest breathing rate.

5.3 Evaluation criteria for comparing methods of track-

ing breathing rates

In order to evaluate and compare the performance of each of the four respiratory waveform

methods when estimating breathing rate, a number of performance parameters are defined.

As discussed in Chapter 4, there is always a lead or lag between the reference breath time

stamp and the time at which the breath is defined from the derived respiratory waveform. In

Chapter 4 the evaluation procedure for methods that obtain breath-by-breath times defines

a symmetrical time-match window within which the test method must identify a breath in
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Figure 5.1: Instantaneous breathing rate sequences from each of the four respiratory wave-
form methods (blue), IP, PPG, R-Amplitude and RSA superimposed on the (red) reference
breathing rate (obtained using an oral airflow thermistor) in each case. This data is from a
period of time during which the subject was asked to breathe in a relaxed fashion at a rate
and depth of their choice.
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Figure 5.2: Instantaneous breathing rate sequences for record 3010. In each plot the red line
corresponds to the reference rate (obtained using an oral airflow thermistor) and blue line is
the breathing rate obtained from one of the test methods (labelled at the top of each plot).
This data is from a period of time during which the subject was asked to breathe at a rate of
6,10 and 20 BPM.
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order for a true positive to be declared. In the general clinical environment an instantaneous

breathing rate is not required. Instead, the clinicians require the breathing rate over the

last minute or, at best, the last 30 seconds. Hence the rest of this chapter concentrates on

computing the average breathing rate over 30 seconds in order to assess the performance of

each method. This also means that the time lag between the defined breath times and the

reference time stamps is unimportant. The performance criteria that are examined are

� the overall correlation between the average breathing rates estimated by the test meth-

ods and the reference signal;

� the percentage error in the estimates.

5.3.1 Correlation between average reference and test breathing rates

Correlation enables us to measure the degree of linear relationship between two variables

[18]. Pearson’s correlation coefficient � is used:

� � covariance of x and y
standard deviation of x � standard deviation of y (5.2)

where in this case x is the reference breathing rate and y the test rate. Values of � lie be-

tween -1 and +1 with positive values implying that x and y are positively correlated (increase

in x implies increase in y) and negative values implying x and y are negatively correlated (in-

crease in x implies decrease in y). A value of +1 shows the data follows a relationship of the

form

� � � � � �
(5.3)

where � and
�

are real numbers. Ideally in this case the relationship is as near to � � �

as possible. Once the correlation between the reference and test has been calculated, the

statistical significance of the result is tested. The general procedures for significance tests

can be found in [11],[18].
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Figure 5.3: Bar chart to show distribution of averaged breathing rates of 30-second reference
epochs.

5.3.2 Percentage error curves

Correlation gives an overall measure of how close the test breathing rates are to the reference

breathing rates. The percentage error at different breathing rates are examined in order to

investigate how well the methods perform at different breathing rates. The errors calculated

are absolute values. Confidence intervals (95%) are also considered when comparing final

results. Ideally percentage errors are as low as possible at all breathing rates.

5.3.3 The data on which the methods are tested

The different methods for estimating breathing rates are tested on the Controlled-breathing

database (Section 2.6). All the data from this database is used with the exception of breathing

rates known to be above 30 BPM. In evaluating the methods attention is paid to the sections

of data corresponding to controlled breathing rates of 6, 10 and 20 BPM. An evaluation of

the entire database is also undertaken. In all, 2788 30-second epochs ( � 24 hours) of data are

used from a total of 10 subjects. Figure 5.3 shows how these epochs are distributed across

the breathing rate range.
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5.4 Evaluation of the four respiratory waveform meth-

ods for tracking breathing rate

The performance of estimating breathing rates from the four respiratory waveform methods

is evaluated in terms of the parameters defined in Section 5.3. These parameters are used

as benchmark measures for the rest of this chapter.

The left-hand plots in Figure 5.4 are the scatter plots showing the test breathing rates with

respect to the reference breathing rates for each of the four test methods. The corresponding

right-hand plots show the Pearson correlation coefficient of the test data with the reference

data represented as a horizontal black line. The correlation coefficients of the random per-

mutations of the reference and test breathing rates are also given on these plots. These

surrogate correlation coefficients are always much lower than the correlation coefficient of

interest.

As the reference and test breathing rates are found to have approximate Gaussian distribu-

tions, the � significance test is carried out. In all cases the correlations are shown to be very

highly significant (99.9%).

Figure 5.5 shows the percentage error curves for each of the four respiratory waveform meth-

ods. The mean percentage error (over all the subjects in the database) for a given band of

breathing rates is calculated and plotted against the rate.

Table 5.1 shows the correlation coefficients for the four respiratory waveform methods for

individual subjects in the database. The table illustrates how the different methods show

different degree of success on individual subjects.

5.4.1 Discussion

Figure 5.4 shows that the IP method gives the highest correlation ( � = 0.64) between the

reference and test breathing rates, while the R-Amplitude method shows the weakest corre-

lation ( � = 0.36). The PPG and RSA methods have similar correlations of � = 0.45 and 0.48

respectively.

From Figure 5.5 it is seen that the PPG method gives the flattest percentage error curve,

showing that the percentage error is fairly consistent across all breathing rates. The other



5.4 Evaluation of the four respiratory waveform methods for tracking breathing rate 70

0 10 20 30
0

10

20

30

20 40 60 80
0

0.2

0.4

0.6

0.8

0 10 20 30
0

10

20

30

20 40 60 80
0

0.2

0.4

0.6

0 10 20 30
0

10

20

30

20 40 60 80
0

0.2

0.4

0.6

0 10 20 30
0

10

20

30

Ref. breathing rate (BPM)

T
e

s
t 

b
r
e

a
th

in
g

 r
a

te
(
B

P
M

)

20 40 60 80
0

0.2

0.4

Surrogate No.

C
o

r
r
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

0.64 

0.45 

0.48 

0.36 

I P 

PPG 

RSA 

R Amplitude 

Figure 5.4: The left-hand figures show the scatter plots for the test breathing rates (y-axis)
against the reference breathing rates (x-axis). The right-hand plots show the correlation
coefficient level (horizontal black line on each plot) the asterisks being the correlation coeffi-
cients of the random permutations of the reference and test values.
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Figure 5.5: Mean percentage errors in breathing rate for each of the four respiratory wave-
form methods.

Table 5.1: Correlation coefficients of four respiratory waveform methods for individual
subjects in the Controlled-breathing database. Each column corresponds to a different
method for estimating breathing rate, the rows correspond to different test subjects. It can
be seen that no single method performs well on all subjects.

Subject IP PPG RSA R Amp
3002 0.70 0.51 0.72 0.10
3003 0.80 0.39 0.31 0.31
3004 0.46 0.54 0.41 0.31
3005 0.75 0.51 0.60 0.37
3006 0.56 0.30 0.14 0.06
3007 0.37 0.29 0.57 0.44
3008 0.58 0.49 0.65 0.24
3009 0.55 0.66 0.47 0.51
3010 0.73 0.31 0.59 0.64
3011 0.81 0.29 0.52 0.43
Gross 0.64 0.45 0.48 0.36
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methods show a trend of performing better at high breathing rates. The IP method, which

gives the best performance overall, has a higher percentage error than the PPG method at

rates below 11 BPM but at higher rates the IP method gives smaller errors.

The potential for high percentage errors in the R-Amplitude method is apparent from Figure

5.2. This figure shows the over-estimation of the breathing rate at the lower breathing rate

by the R-Amplitude methods and to a lesser extent the RSA method. These results are also

confirmed by those of Chapter 4, where it is seen that the R-Amplitude method shows a

consistently lower positive predictivity than the other methods. A low positive predictivity

occurs when extraneous breaths are defined (false positives), leading to an over-estimation

of breathing rate and high percentage errors. From Figure 5.5 it is clear that these false

positive detections mostly occur at lower breathing rates.

5.5 Optimal estimation

The results in Section 5.4 show that the four respiratory waveform methods produce noisy

estimates of the breathing rate. The rest of this chapter investigates methods to estimate

the state of the system (in this case the breathing rate) from these noisy measurements.

Estimations from a single respiratory waveform method (source) are first investigated. The

sources are all independent to some degree and the causes of artefact and noise do not affect

each source in the same way. Therefore fusing information from more than one source to

obtain a more accurate estimate is investigated. The derived respiratory waveform methods

are referred to as “sources” of information in keeping with the literature on data fusion.

An optimal estimator is a computational algorithm that processes measurements to deduce a

minimum error estimate of the state of a system by utilizing: knowledge of system and mea-

surement dynamics, assumed statistics of system noise and measurement errors, and initial

condition information[38]. Among the advantages of this type of data processor are that

it minimises the estimation error in a well defined statistical sense and that it utilises all

measurement data plus prior knowledge about the system. The corresponding potential dis-

advantages are its sensitivity to erroneous a priori models and statistics.

Probably the best known optimal filtering technique is that developed by Kalman [55].
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5.6 Kalman filter

The discrete-time Kalman filter is a first-order recursive filter used to estimate the first and

second order statistics of a signal in the presence of noise. A Kalman filter combines all

available measurement data plus prior knowledge about the system and measuring device

to produce an optimal estimate of the desired variables in such a manner that the error is

minimised statistically [64].

An estimate, �� , is the computed value of a quantity, � , based upon a set of measurements,
� . An unbiased estimate is one whose expected value is the same as that of the quantity

being estimated. A minimum variance estimate has the property that its error variance is

less than or equal to that of any other unbiased estimate. A consistent estimate is one which

converges to the true value of � as the number of measurements increases. The Kalman filter

is an unbiased, minimum variance, consistent estimator [38].

5.6.1 Derivation of Kalman filter algorithm

The Kalman filter is formulated using the state-space approach in which the system is de-

scribed by a set of state variables. The state contains all the information regarding the

system at a certain point in time. This information should be the least amount of data one

is required to know about the past behaviour of a system in order to predict its future be-

haviour.

The proof and derivation of the Kalman filter are given in this chapter for completeness.

For readers wishing to gain a brief overview, the equations needed to implement the filter

are outlined in rectangular boxes. The familiar reader may wish to skip to Section 5.7. The

notation and derivation follows that found in [16].

It is assumed the process to be estimated can be modelled in the form

� � � � � � � � � � � � (5.4)

The observation (measurement) of the process is assumed to occur at discrete points in time
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in accordance with the linear relationship

� � � � � � � ��� � (5.5)

where:

� � =  � � 
 � process state vector at time � � .
� � =  � � � � matrix relating � � to � � � � in the absence of a forcing function.

� � =  � � 
 � vector — assumed to be a white (uncorrelated) sequence with known co-

variance structure, � .

� � =  � � 
 � vector measurement at time � � .
� � =  � � � � matrix giving the ideal (noiseless) connection between the measurement

and the state vector at time � � .
� � =  � � 
 � measurement error — assumed to be a white sequence with known covari-

ance, � and uncorrelated with the � � sequence.

The covariance matrices for � � and
� � are given by

��� ��� �
	�� � � � �
� �

� �
� �� �

(5.6)

��� � � � 	� � � � � �
� �

� �
� �� �

(5.7)

��� ��� � 	� � � � for all k and i (5.8)

It is assumed at this point that we have an initial estimate of the process at some point in



5.6 Kalman filter 75

time � � , and that this estimate is based on all of our knowledge about the process prior to � � .
This a priori estimate is denoted �� � where the circumflex denotes an estimate and the “super

minus” is a reminder that this is our best estimate prior to assimilating the measurement

at time � � . It is also assumed that the error covariance matrix associated with �� �� is known.

That is the estimation error is defined to be

� �� � � � � � �� (5.9)

and the associated error covariance matrix (assuming the estimation error has zero mean) is

� �� � ��� � �� � � 	� � � ���  � � ���� �� �  � � ���� �� � � � (5.10)

In many cases, there are no prior measurements. Then, if the process mean is zero, the initial

estimate is zero and the associated error covariance matrix is simply the covariance matrix

of � itself. Given the prior estimate of the system state at time � � , an updated estimate is

calculated based on the use of a measurement � � . This estimate is linear and recursive in

form.

�� � ���� �� ��� �  � � � � � �� �� �
where

�� � = updated estimate

� � = weighting matrix, as yet unspecified.

The problem now is to find the particular weighting matrix
� � that yields an updated es-

timate that is optimal in some sense. The minimum mean-square (MMSE) error is used

as the performance criterion. The error covariance matrix associated with the updated (a

posteriori) estimate is

� � � ��� � � � 	� � � ���  � � ���� � �  � � ���� � � � � (5.11)
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By substituting Eq.5.5 into Eq.5.11 and then substituting the resulting expression for �� �
into Eq.5.11 we obtain

� � � �
�  � � ���� �� � � � �  � � � � � � � � � � �� �� � � �  � � ���� �� � � � �  � � � � ��� � � � � �� �� � � � (5.12)

Performing the indicated expectation and noting that � � � �� �� is the a priori estimation error

that is uncorrelated with the measurement error
� � we have

� � �  � � � � � � � � ��  � � � � � � � � � � � � � � � � (5.13)

Eq. 5.13 is a general expression for the updated error covariance matrix and applies for any

gain
� � , suboptimal or otherwise.

Returning to the optimisation problem, we wish to find the particular
� � that minimises

the individual terms along the major diagonal of � � , because these terms represent the

estimation error variances for the elements of the state vector being estimated. The cost

function for the optimisation is chosen to be

� � � � � � � ��� � � � (5.14)

where � is any positive semi-definite matrix. It can be demonstrated that the optimal esti-

mate is independent of � [38]; hence we may as well choose � � � , yielding

� � � trace � � � � (5.15)

This is equivalent to minimising the a posteriori error vector. To find the value of
� � which

provides a minimum it is necessary to take the partial derivative of � � with respect to
� �

and equate it to zero. Use is made of the relation for the partial derivative of the trace of the
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product of two matrices A and B (when B is symmetric [38],

�
� �
� trace  ��� � � � � � � ��� (5.16)

From Eqs. 5.13 and 5.14 the result is

� �  � � � � � � � � �� � � � � � � � � � � � (5.17)

Solving for
� � ,

� � � � �� � � � � � � � �� � � � � � � � � �

which is referred to as the Kalman gain matrix. The optimised value of the updated estima-

tion error covariance matrix can now be found by substitution of Eq.5.18 into Eq.5.13

� � �  � � � � � � � � ��  � � � � � � � � � � � � � � � �
� � �� � � � � � � �� � � �� � � � � � � � � �  � � � �� � � � � � � � � � � (5.18)

Substitution of Eq.5.18 leads to

� � �  � � � � � � � � ��
We now have a means of assimilating the measurement at � � by the use of Eq.5.11 with

� � set

equal to the Kalman gain as given by Eq.5.18. Note that we need �� �� and � �� to accomplish

this and we can anticipate a similar need at the next step in order to make optimal use

of the measurement � � � � . The updated estimated � � is projected ahead via the transition

matrix � . The contribution of � � in Eq. 5.4 can be ignored because it has zero mean and is

uncorrelated with the previous � ’s. Thus we have

�� �� � � � � � �� ��
The error covariance matrix associated with �� �� � � is obtained by formulating the expression
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Figure 5.6: Kalman filter loop, taken from [16]. Note that � is used in place of � in this
figure.

for the a priori error

� �� � � � � � � � ���� �� � �
�  � � � � � � � � � � � �� �

� � � � � � � �
(5.19)

Noting that � � and � � are uncorrelated the expression for � �� � � is

� �� � � � � � � �� � � � �� � � � �
� � �  � � � � � � � �  � � � � � � � � � �

(5.20)

� �� � � � � � � � � � � � � �
We now have the needed quantities at time � � � � and the measurement � � � � can be assimi-

lated as in the previous step. Eqs.5.11, 5.18, 5.19, 5.19 and 5.21 comprise the Kalman filter

recursive equations. These equations and the sequence of computational steps are shown

pictorially in Figure 5.6, which summarises what is known as the Kalman filter loop.
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5.6.2 Filter parameters � and �

In the derivation of the Kalman filter it is assumed that process and measurement noise �
and

�
are independent of each other and white with Gaussian probability distributions

�  � � � � �� � � � (5.21)

�  � � � � �� � � � (5.22)

� represents the uncertainty or inherent noise in the system model. For example, in a

constant velocity model the target may not have constant velocity for all time. There is

uncertainty in the target trajectory, the target accelerating or turning at any given time. �

is the amount of error the measurement sensor introduces. In the actual implementation

of the filter the measurement noise covariance, � , is usually measured prior to operation

of the filter. The determination of � is generally more difficult as we do not always have

the ability to directly observe or indeed have the prior knowledge to predict the process. If

enough knowledge of the process or measurement covariances is known to model either of the

variables mathematically, these models can be integrated into the Kalman filter equations;

for example, Grewal et al. [40] show how to incorporate correlated noise into the equations.

5.7 Kalman filter for data fusion

The Kalman filter lends itself well to the fusion of measurements from different sources or

sensors. Two commonly used methods exist for Kalman-filter-based fusion, known as the

state vector fusion and measurement fusion methods [37]. State vector fusion methods use

a bank of Kalman filters to obtain individual sensor-based estimates which are then fused

to obtain an improved joint state estimate. Measurement fusion methods fuse the sensor

measurements to obtain a weighted or combined measurement and then use a single Kalman

filter to obtain the final state estimation based upon the fused observation. Figure 5.7 shows

a diagrammatic representation of these two methods.
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Figure 5.7: The two types of Kalman filter fusion methods. The upper diagram shows the
state-vector method, for which estimates ( �� ) from parallel Kalman filters are combined via
Eq.5.23. The lower figure shows the measurement fusion method. Here parallel measure-
ments ( � ) are combined via Eq. 5.25.

5.7.1 State vector fusion

State vector fusion (an example of decentralised fusion) combines estimates of each Kalman

filter in a minimum mean square error (MMSE) sense. The mechanism for data fusion in

state vector fusion is

�� � � 
��
� �
�

 � � � � � � � � �
��
� ���
�  � � � � � � �� � � � (5.23)

where �� � is the global estimate of state at each time � and the  � � � � � � are the inverses of the

state error covariance matrices for each of the
�

sensors. �� � � is the local state vector estimate

at each sensor. The global state error covariance matrix is given by

� � � 
��
� ���

 � � � � � � � � � (5.24)
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It is noted that under conditions when � � and � � are constant, both the estimation error

covariance � � and the Kalman gain
� � stabilise quickly and remain constant. Therefore the

state vector estimates are given the same weighting throughout.

5.7.2 Measurement fusion

The measurement fusion method (an example of centralised fusion) combines the measure-

ments from each information source in a MMSE sense [37]

� � � 
��
� ���

 � � � � � � � � �
��
� ���
�  � � � � � � � � � � (5.25)

� � � 
��
� ���

 � � � � � � � � �
��
� ���
�  � � � � � � � � � � (5.26)

� � � 
��
� ���

 � � � � � � � � � (5.27)

5.7.3 Previous work using the Kalman filter

The Kalman filter has found numerous applications since 1960 when Kalman’s seminal pa-

per was published. The filter is used to estimate the state parameters from noisy sensor

measurements in navigation, surveying, vehicle tracking (aircraft, spacecraft, missiles), ge-

ology, oceanography, fluid dynamics, steel/paper/power industries, and demographic estima-

tion, to mention just a few of the many application areas. The Kalman filter has been used

extensively to fuse or integrate the measurements of a number of sensors or sources of in-

formation. Much of the published work is applied to the task of multi-sensor tracking of

vehicles [40].

New applications for the Kalman filter are continually being found. For example, Helle-

brandt et al. [47] use a Kalman filter to optimise the estimation of the position and velocity

of mobiles in a cellular radio network, using measurements of the signal strength of the
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mobile to surrounding base stations. Recently Kalman filters have been used to combine

multi-media sources (audio and video) for object localisation. This has applications in video

conferencing, automatic scene analysis and security monitoring [99]. Fewer applications of

the Kalman filter are currently found in the biomedical signal processing area. Vauhko-

nen [110] uses a Kalman filter to track fast impedance changes in the body using electrical

impedance tomography measurements 1. Ebrahim et al. [31] propose a method for the robust

fusion of the estimation of the heart rate from a number of sensor measurements including

the ECG, PPG and intra-arterial blood pressure signals. Measurement values of heart rate

from each signal are combined in a measurement fusion scheme. However prior to fusion

a threshold based decision is made on whether a measurement is nominal, in which case

it should be included in the fusion scheme, or artefactual in which case it should not be.

This decision is based firstly on whether the individual measurements are physiologically

plausible. If they are, further tests are carried out to determine whether the measurements

show consensus. These tests are based on finding the maximum likelihood that the sensor

measurements fit one of a number of hypothesis models, the hypotheses covering every pos-

sible combination of each of the sensors being artefactual or nominal ( � �

hypotheses for N

sensors).

5.8 Kalman filtering of signals from single sources

The aim of the work described in this chapter is to track the breathing rate from a number

of noisy measurements acquired from several sources.

The first step in investigating the use of a Kalman filter to obtain an improved estimate of

the measurements, is to determine the process and measurement models.

5.8.1 The process model

In this work the state being estimated is the breathing rate of a human subject. The breath-

ing rate of a resting healthy subject is approximately constant. There are clinical conditions,

1in electrical impedance tomography an estimate for the cross-sectional impedance distribution is obtained from
the body by injecting a small high-frequency current using surface electrodes and making voltage from the elec-
trodes.
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for example Cheyne-Stokes respiration [9], for which the breathing rate varies rapidly. How-

ever for the subjects in the Controlled-breathing database, it is reasonable to assume that the

breathing rate remains approximately constant, with small changes from breath-to-breath.

Thus the process (Eq.5.4) can be modelled as a first-order Markov process

� � � � � � � � � � (5.28)

In this case the state vector (breathing rate) is a scalar and hence matrices in Eqs.5.11, 5.18,

5.19, 5.19 and 5.21 become scalar quantities and we use variances instead of covariance

noises. In addition � from Eq. 5.4 is equal to 1, and the variance of the process noise
�

is now related to the amount by which the breathing rate may be assumed to change from

breath to breath.

The measurement is made directly of the state, leading to a measurement model (Eq.5.5)

� � � � � ��� � (5.29)

with � of Eq.5.5 equal to 1.

An approach to choosing the variances of the process and measurement noise ( � and � ) is

proposed by Mehra [68]. In this method the variances � and � are adjusted based on a test

of the filter optimality. A fundamental property of the Kalman filter is that if the physical

system actually evolves according to the state and measurement equations (Eq.s 5.4 and 5.5),

the filter generates an innovation sequence 2 that is zero mean and white [108].

For large enough
�

the autocorrelation sequence (correlogram) of a white noise sequence has

distribution

� ��� �  � � 
 � � � (5.30)

values of � � greater than � ��� � can be regarded as significant at about the 5% level. An

off-line test may be carried out and � and � adjusted to make the innovation as white as

possible by examining the autocorrelation sequence. As our innovation sequence is unevenly

sampled this test is not so easy to carry out. Also it is not practicable to perform “off-line”

2the innovation is the difference between the predicted measurement and the observed measurement.
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Table 5.2: The statistics of the measurement errors for each of the different sources. These
statisitics are available as in this work the actual state values are known.

Method Expected Error (BPM) Variance in Error
IP 1.9 17.9
PPG -1.6 31.5
RSA 2.9 34.5
R amp 3.52 37.7

tests on all subjects to be monitored subsequently.

The chosen value of � needs to be large enough to track changes in breathing rate, however

the larger the value � the less smooth the tracking. A value of � ��� is chosen as a reasonable

estimate, corresponding to a standard deviation of � � � breaths per minute.

The measurement noise, � , is very difficult if not impossible to determine, especially as

the estimation method is intended to be generic rather than subject specific. The breathing

rate measurements are made from features or characteristics extracted from a number of

different biological signals. Variation in the measurement noise both inter-and-intra subject

is expected. It is seen in Table 5.1 that there is a subject dependence in the quality of results

obtained from the different sources. Also the measurement noise varies intra-subject across

time, depending on numerous factors; patient movement, depth and rate of breathing, and

the relative position of the sensors on the body.

In this work the actual state, the breathing rate, is directly observed as a reference using an

oral airflow thermistor. Therefore the statistics in the measurement errors over the whole

database may be obtained by examining the error between the actual state values (the ref-

erence values obtained from the thermistor) and the measured values. Table 5.2 shows the

expected values and the variances of the measurement errors for each of the methods. The

values have been calculated over all subjects in the Controlled-breathing database.

As can be seen from this table the measurement error values are all slightly biased. The bias

in the measurement noise may be incorporated into the Kalman filter equations by simply

subtracting it from the measurement before using it. Equation 5.5 then becomes

� � � � � � � ��� � � bias (5.31)
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However, although there is an overall bias in the measurements in this data, the bias is

unlikely to be in the form of a constant offset in the measurement, especially across all

patients and therefore Eq. 5.31 is not necessarily a more accurate representation.

Although a value of � could be chosen for each subject, intra-subject noise causes unpre-

dictable variations over time. Instead the variances shown in Table 5.2 are chosen as the

values for � for each method, as these are our best estimates of a “generic” measurement

noise. It is further assumed that the measurement noise is white.

5.8.2 Initialisation

Part of the requirements for a Kalman filter is the specification of initial conditions for the

state vector � � and the state covariance matrix �
�
. An estimate of the values is needed as

they are not generally known. A simple way to initialise the state vector is to calculate an

average of measurement values obtained during an initialisation period, prior to the start

of filtering. The state covariance matrix is usually set to be a multiple (usually 10) of the

process noise matrix � . It can be shown that provided the system is observable the error due

to poor initialisation tends to zero as ����� . Good initialisation is not essential in linear

system models, the estimator merely takes longer to settle down [76].

In the Kalman filters implemented in this work, the initial state, � � , is taken to be the

average of measurements taken over an initialisation period of one-minute for each subject.

The value of � � is chosen as 20 ( 
 ��� � ).

5.8.3 Implementation

Acknowledging that the measurement noise model is non-optimal a Kalman filter is used to

estimate the value of breathing rate from each of the four respiratory waveform methods.

The Kalman filters for each respiratory waveform have the same process model, but the

values of � depend on the particular respiratory waveform. The incorporation of a bias

in measurement noise (Eq.5.31) is compared with assuming zero-mean measurement noise

(Eq.5.5). Results are given in the following section.



5.8 Kalman filtering of signals from single sources 86

Table 5.3: Pearson correlation coefficients for the unfiltered measurements and the filtered
estimates (with and without bias) with respect to reference breathing rate measurements.
All correlation coefficients are found to be very highly significant.

Method Unfiltered With bias Without bias
IP 0.64 0.67 0.67
PPG 0.45 0.51 0.51
RSA 0.48 0.54 0.53
R amp 0.36 0.38 0.37

5.8.4 Results of estimating breathing rate using a single source and
a Kalman filter

Figure 5.8 shows the percentage error curves for the Kalman filter estimates of average

breathing rate. The data for these curves is calculated in the same way as those in Figure

5.5 which show the results for the unfiltered measurements of the four sources (respiratory

waveform methods). Thus, the average breathing rate is calculated over a 30-second window,

with no overlap between windows. The percentage error for each window is calculated and a

mean percentage error for separate breathing rate ranges is found.

For comparison, the error curves obtained using the unfiltered measurements of the single

sources are also shown. Table 5.3 shows the correlation of the different methods, using

unfiltered measurements and Kalman filter estimates. The Kalman filter is used both with

and without incorporating the bias in the measurement model.

In all methods the Kalman filter estimates are seen to give a better correlation with the

reference breathing rate, than that obtained using the unfiltered measurement. The effect

of incorporating the bias in the measurement error model can be seen in Figure 5.8. The

use of the bias in the measurement decreases the percentage error in the low breathing

rate range, but has the opposite effect at higher breathing rates, showing that the bias is

not consistent across the different breathing rates, and that the constant bias measurement

model is not accurate. The difference in overall correlation when using bias and when not

using it is negligible. The bias just has the effect of “shifting” the errors in the breathing rate

spectrum.

The fact that there is an improvement in correlation with the Kalman filter estimates shows

that the filter, as suggested in the literature, still functions even under poor model conditions
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Figure 5.8: Each plot the percentage errors of the estimates from a Kalman filter with and
without bias in the measurement model. The percentage errors for the unfiltered measure-
ments (reproduced from Figure 5.5) are shown for comparison. Each plot corresponds to one
of the four respiratory waveform methods.
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[115].

5.9 Innovation fusion method

As mentioned in Section 5.5 the input sensors, used for acquiring the signals from which

the respiratory waveforms are derived, are independent to some degree: the physiological

phenomenon giving rise to breathing information in the different sensors are related but not

the same and artefact affects each sensor differently. This motivates the investigation into

fusing the measurements from each derived respiratory waveform.

Although Section 5.8.4 shows that a Kalman filter applied to noisy measurements of breath-

ing rate can lead to improved estimates, the inability to accurately predict, and hence model

both the process noise and the measurement noise leads to sub-optimal estimation. Similarly,

the standard methods for data fusion with a Kalman filter discussed in Section 5.7 all rely

on accurate models which incorporate well-characterised prior knowledge. Such information

is not available for physiological signals which suffer considerable intra- and inter-patient

variation.

In this section we therefore suggest an alternative method for fusing the measurements. The

innovation � � of the scalar Kalman filter operation is defined as (in scalar notation)

� � � � � � � � � �� (5.32)

i.e., the difference between the measurement � � and the measurement prediction � � � �� at

time � . If the physical system evolves according to the state and measurement equations

(Eq.s 5.4 and 5.11), the Kalman filter generates a � � sequence that is zero mean and white

[108]. In two separate works by Tylee [108] and Gustafson et al. [44] the innovation is used

as a means of assessing information about a measured signal.

Gustafson et al. [44] aim to classify R-R intervals into specific arrhythmia patterns. Four

Kalman filters are implemented in parallel, each with a different process model. All the

Kalman filters operate on the same observed data, the R-R interval sequence. The statistical

description of the innovation sequence for a given time epoch from each of the parallel filters
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is examined. This information, together with the probabilities of the previous epoch having

been generated by one of the models, is used to calculate the probabilities of the current

sequence being generated by one of the models.

In the work of Tylee [108] a bank of Kalman filters are used to generate optimal estimates

of the state of a nuclear plant. To increase safety, a method for detecting the sensor failure

is needed. The innovations from each sensor after Kalman filtering of each reading are

compared. If one innovation shows a large discrepancy from the innovations of the other

sensors, a potential failure of that sensor is detected. If the innovations of all the sensors are

all unpredictably large it is assumed that there is a true change in the estimated state.

In the proposed fusion method the innovation is used as a confidence measure in the cur-

rent measurement; a separate Kalman filter is applied to each of the noisy measurements

of breathing rate from the four respiratory methods. The innovations of each Kalman filter

output are used as a confidence measure in the current measurement from each source of

information. The confidence levels are used to calculate the weighting given to each mea-

surement in the fusion method.

The measurements are combined linearly based on a MMSE criterion. Appendix A shows

that
�

estimates of a value � 	 , each with a confidence value � 	 , can be combined to obtain an

optimum (in a MMSE sense) estimate ���� in a linear fashion

���� �

��
	 ��� � 	

��
	 (5.33)

with a weighting parameter � 	 defined as

� 	 � 

�
�
	 

�
� �
� �

����
(5.34)
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when
�

is equal to 2 this gives

� � � �
�
�

�
�� � �

�
� (5.35)

�
�

� �
��

�
�� � �

�
� (5.36)

Consider the following situations with reference to Eq. 5.34:

� Large innovations from all Kalman filters: there is a change in state and the measure-

ments are given similar weightings. The fusion method follows the change with little

or no lag, which is not usually the case in conventional Kalman filter methods.

� One innovation much greater than the others: it is assumed that there is no change in

state and hence there must be a large error in one of the measurements caused either

by the respiration characteristic not being found in the signal or artefact appearing in

the derived respiratory waveform. The “rogue” measurement is given a small weighting

compared to the others.

� Small innovations from the output of all filters imply that there is no change in the

system state; all measurements are considered accurate and given similar weightings.

5.9.1 Implementation of the innovation fusion algorithm

Figure 5.9 represents the fusion process. A Kalman filter is used to obtain individual esti-

mates from each source (derived respiratory waveform). The unfiltered measurements � � and

innovations � � are then combined according to Eq.s 5.33 and 5.34 to obtain an improved joint

state estimate. This differs from conventional decentralised fusion methods where the state

estimate and the error covariance are used to obtain the joint estimate. Fusion occurs when-

ever a measurement is made. For example when fusing two channels, each measurement

from one channel is fused with the two nearest (in time) estimates from the other channel.

For each Kalman filter, the process model, measurement model and parameter values � and

� of Section 5.8 are used.
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Figure 5.9: The innovation fusion process. � � is the measurement from each source, � � the
innovation from the corresponding Kalman filter. The fusing algorithm is described by Eqs.
5.33 and 5.34.

5.9.2 Correlation between measurement noise

The best fused estimates are obtained by combining those sources that do not show a strong

correlation in their measurement errors. Table 5.4 shows a matrix of the correlations be-

tween the absolute errors in the breathing rates of the four derived respiratory waveforms

across the entire Controlled-breathing database.

The RSA and R-Amplitude sources show the highest correlation in errors. This may be due

to the fact that these sources both rely on the correct detection of the QRS complex. The PPG

source shows a negligible correlation with all other sources.

Figure 5.4 showed that the breathing rate obtained from the IP method gives the best cor-

relation with the reference rate by a substantial margin. Therefore the IP source is first

combined with the other 3 sources in turn, to give 3 combinations of two sources. It is ex-

pected that the combined PPG and IP estimates would give the best estimate due to the low

correlation between the measurement errors from these methods. The fusion of three sources

of information is also explored, combining the PPG, IP and RSA sources as well as the PPG,

IP and R-Amplitude sources.
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Table 5.4: The correlation between the measurement errors of the four respiratory waveform
methods. The RSA and R-Amplitude sources show the highest correlation, while the PPG
source shows the least correlation with all other sources.

Sources IP PPG RSA R-Amplitude
IP 1 0.06 0.25 0.32
PPG 0.06 1 0.09 0.04
RSA 0.25 0.09 1 0.35
R-Amplitude 0.32 0.04 0.35 1

5.10 Results of estimating breathing rate by combining

sources using innovation fusion

The results are evaluated in terms of the parameters described in Section 5.3 and are com-

pared with the results previously obtained when using the unfiltered measurements from

a single source. The percentage error curves are shown in Figure 5.10. For reference, the

upper plot shows the percentage errors for each of the breathing rate bands of the unfiltered

measurements for each of the four sources. The middle plot shows the percentage errors

when two of the sources are combined. These are superimposed on the curves for the unfil-

tered IP and PPG sources (in blue) which are reproduced from the plot above for comparison.

Fusing the PPG and IP sources gives the lowest errors of all methods from 9-17 BPM, with

just slightly higher errors at lower rates than the single PPG measurement source. At rates

above 17 BPM the combined IP and RSA method shows the best performance. The combined

PPG and IP method gives rise to 8 of the 10 breathing rate bands having mean percentage

errors of less than 20%, compared to only 6 in the combined PPG and IP.

The lower plot shows the curves obtained when fusing three sources. The combined plots

are in black and superimposed are the curves for the combination of two sources, reproduced

from the middle plot for comparison. It can be seen that the two combinations of three

sources show similar curves. However there is a large deviation at lower breathing rates,

where the method that uses RSA rather than the R-Amplitude source gives lower errors.

When the curves for the fused methods are compared with those obtained from measure-

ments of a single source, the characteristics of the single sources are evident in the curves

for the fused methods. For instance, the two combinations of three sources in the lower plot

are identical at high breathing rates but show deviation in the lower two breathing rate
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Figure 5.10: The percentage errors curves resulting from fusing more than one source of
information. The upper plot shows the unfiltered measurement percentage error curves, as
in Figure 5.5 reproduced here for comparison. The middle plot shows the error curves when
fusing two sources of information, and the lower plot shows the result of fusing three sources
of information. The maximum value of the y-axis decreases as the figures go from top to
bottom.



5.10 Results of estimating breathing rate by combining sources using innovation fusion 94

 5−7  7−9  9−11 11−13 13−15 15−17 17−19 19−21 21−23 23−25
0

10

20

30

40

50

60

70

80

90

100

Breathing Rate (BPM)

M
ea

n 
%

 E
rro

r

PPG estimate  
              
              
IP estimate   
              
              
Fused Estimate

Figure 5.11: The mean and 95% confidence intervals for the fused and best performing single
estimates.

bands. The fusion method that uses RSA rather than the R-Amplitude source has a lower

error rate in these bands as could be expected from the top plot.

Figure 5.11 shows the averaged means for the best performing single sources, IP and PPG

with the 95% confidence intervals drawn in. Also shown (in black) are the corresponding

values for the fused estimate that uses the IP, PPG and RSA sources. It can be seen that

in 8 of the 10 frequency bands the confidence interval is either lower or overlaps the best

performing single source confidence interval.

Table 5.5 shows the overall correlation of the fused estimates of breathing rate with the ref-

erence rates. The values in the left-hand column show the correlations for the innovation

fusion method, corresponding to the methods represented in Figure 5.10. To compare the

performance of the proposed innovation fusion method with the conventional Kalman filter

based fusion methods of state vector and measurement fusion (described in Section 5.7), the

middle and right-hand columns show the correlations of the estimates obtained when imple-

menting these methods. These implementations used the Kalman filter models of Section

5.8, as does the innovation fusion method. The correlations for these methods are all lower

than the values corresponding to the innovation method, showing that the lack of accuracy

in the measurement noise model leads to sub-optimal estimation.
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Table 5.5: Pearson correlation coefficients for the fusion of different sources. Results for
the Innovation fusion method are shown along with the result of using the State Vector
and Measurement fusion methods. All correlation coefficients are found to be very highly
significant.

Correlation
Sources Innovation Fusion Method State Vector Measurement Vector
IP and PPG 0.77 0.66 0.69
IP and R Amp 0.69 0.57 0.67
IP and RSA 0.73 0.64 0.70
IP,RSA and PPG 0.80 0.69 0.72
IP,R Amp and PPG 0.77 0.65 0.69

When the correlation values for the innovation fusion method are considered in more detail

the fusion of PPG and IP is seen to give the highest correlation ( � = 0.77) of any of the two

source combinations. This is improved by combining with the RSA source ( � � ��� � ), however

no improvement is seen when incorporating the R-Amplitude source.

Although the innovation fusion method does not necessarily give a lower mean percentage

error at all breathing rates (see Figure 5.10), Table 5.5 demonstrates that overall the esti-

mates from this method are more strongly correlated with the reference breathing rate, than

the correlations of any single source estimate (See Table 5.1). This shows that the variance

in the errors is lower than that in the single source estimate errors.

To illustrate the improvement in performance in tracking the breathing rate using the inno-

vation fusion method with the best choice of sources (IP, PPG and RSA), Figures 5.12, 5.13,

5.14 and 5.15 show plots of the instantaneous breathing rates over time for four different

subjects. In each of the plots the reference breathing rate is shown in red, while the test

breathing rate is shown in blue. In the top three plots of each figure, the breathing rates

obtained from three unfiltered measurements (the sources labelled IP, PPG and RSA) are

displayed, the lowest plot in each case being the breathing rate sequence obtained by fusing

the three sources using the innovation fusion method. It can be seen that the fused estimate

of breathing rate closely follows the reference breathing rate in all four examples. Figures

5.12 and 5.13 represent times during which the subjects were asked to breath at a relaxed

rate and depth.

Figure 5.14 shows a period of time during which a subject was asked to breathe at specified

rates of 6, 10 and 20 BPM for 5 minute durations. At the end of each five minute duration
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Figure 5.12: Instantaneous breathing rate sequences for record 3011. In each plot the red
line corresponds to the reference rate (obtained using an oral airflow thermistor). In the top
three plots the blue line is the breathing rate obtained from one of the test methods (labelled
at the top of each plot).The fourth plot shows the breathing rate from the IP,PPG and RSA
combined using the innovation fusion method. This data is from a period of time during
which the subject was asked to breathe in a relaxed fashion at a rate and depth of their
choice.
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Figure 5.13: Instantaneous breathing rate sequences for record 3002. In each plot the red
line corresponds to the reference rate (obtained using a signal from an oral airflow thermis-
tor). In the top three plots the blue line is the breathing rate obtained from one of the test
methods (labelled at the top of each plot). The fourth plot shows the breathing rate from the
IP,PPG and RSA combined using the innovation fusion method. This data is from a period of
time during which the subject was asked to breathe in a relaxed fashion at a rate and depth
of their choice.
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the subject was asked to hold their breath for 30 seconds. The single IP source estimates the

breathing rate accurately at 20 BPM, but is noisier and tends to over-estimate the values

of the lower breathing rates. The PPG source gives very good estimates at 10 BPM, and in

the last two of the 6 BPM sections. The RSA source shows noisier estimates, at times being

very near the reference rate and others showing sharp deviations. The result of fusing these

sources using the innovation fusion method is accurate estimates at 10 and 20 BPM, as the

steady sources are given higher weighting than the noisier sources. In the first section of 6

BPM breathing, all single sources are noisy and over-estimate the rates. In this situation

the fusion method has the effect of smoothing the estimates, but can obviously not track

the reference values when all the sources are giving inaccurate measurements. The periods

during which the subject held their breath can be seen on the reference rate signal as dips

after each constant section. None of the single sources detect this and therefore the fusion

method does not track this either.

Figure 5.15 shows similar breathing conditions as those in Figure 5.14 but shows results for

another subject (3010).

5.11 Conclusion

Methods for estimating the breathing rate from a number of noisy sources obtained from

non-invasive signals are investigated in this chapter. A Kalman filter is used to estimate the

rate from the measurements of a single source. The fact that the measurements are made

from signals that are prone to unpredictable human inter and intra-variation, artefact such

as subject movement and sensor movement means that a robust, accurate generic model of

measurement noise is impossible.

This makes this type of Kalman filtering sub-optimal. A fusion method that overcomes the

need for an accurate measurement model is presented. This fusion method is able to track

the reference breathing rate, and results in better performance than either the use of a single

source only or fusing the sources with conventional Kalman filter fusion methods.

The innovation fusion method does not give accurate results when all source measurements

are noisy, or when one source gives inaccurate measurements with a constant offset from

the true value. If this situation continues for long enough the innovations from this source
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Figure 5.14: Instantaneous breathing rates for record 3005. In each plot the red line cor-
responds to the reference rate (obtained using a signal from an oral airflow thermistor). In
the top three plots the blue line is the breathing rate obtained from one of the test methods
(labelled at the top of each plot).The fourth plot shows the breathing rate from the IP,PPG
and RSA combined using the innovation fusion method. This data is from a period of time
during which the subject was asked to breathe at specific rates of 6 ,10 and 20 BPM.
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Figure 5.15: Instantaneous breathing rates for record 3010, c.f Figure 5.2. In each plot
the red line corresponds to the reference rate (obtained using a signal from an oral airflow
thermistor). In the top three plots the blue line is the breathing rate obtained from one of
the test methods (labelled at the top of each plot).The fourth plot shows the breathing rate
from the IP,PPG and RSA combined using the innovation fusion method. This data is from a
period of time during which the subject was asked to breathe at specific rates of 6 ,10 and 20
BPM.
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become small and the inaccurate measurements given too large a weighting.

The innovation fusion method works very well on all breathing rates above 9 BPM, the mean

percentage error being less than 20% in all ranges. However less accurate tracking is ob-

served at lower breathing rates. It should be noted that these lower breathing rates incor-

porate periods of time during which the subjects were asked to stop breathing. It is known

that there is a tendency [63] for the single source methods considered here to detect breaths

during these apnoeic periods.

Chapters 6 and 7 looks at detecting episodes of apnoea as a separate issue.



Chapter 6

Central Apnoea

6.1 Introduction

This chapter looks at how accurately central apnoeas can be detected from the non-invasive

signals IP, ECG, and PPG. Central apnoea monitors (usually designed for infants) tend to

have a very high false alarm rate. A review of studies carried out with existing apnoea

monitors that employ non-invasive techniques is found in Section 6.2. Section 6.3 discusses

the performance parameters used to evaluate apnoea detection in this work. Section 6.4

describes a time-domain approach for detecting central apnoeas from non-invasive signals.

This approach is based on existing methods and provides a set of benchmark results against

which a novel frequency-domain technique is evaluated. The frequency-domain approach is

described in Section 6.5. The possibility of fusing information from the time and frequency-

domain methods is discussed in Section 6.7 and a simple fusion technique proposed. Results

obtained with this technique are presented in Section 6.7.1.

6.2 Central Apnoeas and current detection methods

Apnoea is the absence of ventilation and is abnormally long if it exceeds 15 seconds. Shorter

events, especially 10-12 seconds or less in duration, are commonly seen in most infants stud-

ied in sleep [9]. There are three different categories of apnoea:
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� Central Apnoea - absence or suppression of the signal stimulating the inspiratory

muscles of respiration. There is a complete cessation of airflow in the absence of respi-

ratory effort.

� Obstructive Apnoea - respiratory effort persists, however is ineffective due to the

airways being obstructed.

� Mixed Apnoea - a single event composed of contiguous central apnoea and intervals

of obstruction or ineffective breaths.

This chapter focuses on detecting central apnoeas. Central apnoea monitoring is usually

associated with infants.

Respiratory pauses in infants are of clinical significance because infants have a higher rate of

oxygen consumption, lower oxygen stores and smaller lung volumes. They are therefore far

more sensitive and vulnerable to a lack of oxygen [94]. Home infant apnoea monitoring grew

out of the suspected relationship between apnoea and sudden infant death syndrome [86].

Classical infant apnoea monitors tend to record the ECG and an indirect respiration signal,

usually obtained using either impedance or inductance plethysmography. These monitors

set alarms for apnoea and bradycardia 1 according to a set of pre-determined rules, based

on heart rate thresholds and the absence of breath detection from the respiration signal.

These monitors however all suffer from an unacceptably high false alarm rate. As described

in Section 2.5, impedance plethysmograpy (IP) monitoring has inherent short comings in

accurate respiration detection when there is frequent body movement and postural changes,

as there are in infants. Cardiac artefact is a major cause of interference and placement of

the leads is also critical. Recent “memory” or “documentation” monitor systems, (for example

the Arvee 4800, Arvee Medical, Texas, USA and the Nellcor Edentec 336 assurance monitor,

Nellcor Puritan Bennett, Minnesota, USA) record ECG trends, respiratory waveforms and

pulse oximetry data so that whenever an alarm occurs, the carer of the monitored infant is

able to use the recorded data make a decison as to whether or not the alarm indicates a true

positive event.

A number of published studies emphasise the problem of false alarm rates for commercial

apnoea monitors. Weese-Mayer et al. [114] report on a study carried out to assess the alarms

triggered by a number of commercial infant apnoea monitors. These monitors use transtho-

1a slowing of the heart rate to below 60 beats per minute.
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racic IP and ECG to trigger alarms for apnoea and bradycardia. Data was collected from

83 patients. Of the 14,131 alarms recorded in a retrospective visual inspection of the data

collected only 8% were classified as a true event, a true event being defined as one where the

IP and ECG signals verified apnoea or bradycardia. The automatic detection methods used

in the monitors are not described.

Brouillette et al. [15] report on a comparison of inductance plethysmography and IP for ap-

noea monitoring. Apnoeas are automatically detected from the impedance plethysmograph

whenever the signal was below a fixed generic threshold (i.e., not subject specific) during a

6-second period. It was reported that all of the 60 central apnoeic events in the study were

detected using the processed IP signals, however 14 false positive events were also recorded.

The inductance plethysmography method detected apnoeas using a similar threshold based

approach; however the breath detection threshold was made subject-specific and set to 25%

of the average tidal volume calculated during a 10 minute calibration period. Inductance

plethysmography also gave 100% sensitivity, however only 4 false apnoeas were detected.

The Collaborative Home Infant Monitoring Evaluation (CHIME) study is described by Ra-

manthan et al. [86]. ECG and inductance plethysmography signals were recorded from 1079

babies using the CHIME monitor (NonInvasive Monitoring Systems, Miami, USA). The mon-

itor recognises a breath whenever there is an excursion of at least 25% of the peak amplitude

in the IP signal determined during a calibration period (the first 5 minutes after the monitor

is turned on). An apnoea is defined to occur when there is no breath detected for a time

exceeding a specified threshold. The four-year study concluded that less than 10% of the

alarmed events corresponded to clinically relevant events.

In view of the high false alarm and low positive predictivity of current methods for detect-

ing central apnoeas this chapter focuses on achieving the high sensitivity required whilst

increasing the positive predictivity.

6.3 Detection from non-invasive signals

Current apnoea detection methods tend to take a time-domain approach. When detecting

apnoeas, latency is a key issue, as an alarm is needed as soon as possible. If a frequency-

domain approach is adopted, the time-frequency resolution is an important consideration.
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Figure 6.1: Cyclical central apnoeas. The top signal is the reference respiration signal fol-
lowed by the IP, ECG and PPG signals. Three central apnoeic events occur, most clearly seen
in the reference respiration signal.

Any window used needs to be short enough in duration to give a safe time delay between

the start of the apnoea and its subsequent detection. On the other hand, accurate spectral

estimation needs a long enough window for frequency resolution.

In this chapter, both time and frequency-domain analysis of the ECG, PPG and IP are consid-

ered for the detection of central apnoeas. The approaches described in the following sections

are applied to the IP signal, respiratory waveforms derived from the ECG (R-DR and RSA-

DR, described in Section 4.6.1), and a respiratory waveform derived from the PPG (PP-DR,

described in Section 4.6.3).

6.3.1 The central apnoeic data

The Controlled-breathing database includes, in each record, a section mimicking cyclical

central apnoeas. The subjects were asked to cease breathing every minute, for a period

between 10 and 20 seconds, depending on how comfortable they felt. This cycle lasted for 10

minutes. The times of the start of each apnoea were recorded during the data collection. The

evaluation of the automated apnoea detection method is carried out on this data, i.e., in total

100 minutes of data including 100 apnoeic events. Figure 6.1 shows a 150-second section
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of the IP, ECG and PPG signal during the cyclical central apnoeas from one of the records

of the Controlled-breathing database. The top signal shows the reference respiration signal

(recorded with an oral airflow thermistor).

6.3.2 Evaluation procedure

The performance of the automated central apnoea detection methods are assessed using

the performance parameters of sensitivity and positive predictivity. These are the same

parameters used in the evaluation of automated detection of breaths in Chapter 4. In this

case however, a true positive (TP) corresponds to the detection of an apnoea, given that an

apnoea has occurred and a false positive (FP) is a detection of an apnoea when an apnoea

has not occurred. A false negative (FN) is the failure to detect an apnoeic event.

A time window is defined around the known start time of the apnoea. To be defined as a

true positive the automatic detection system must specify that the start of the apnoea has

occurred within this time-match window.

Figure 6.2 shows the time-match window with respect to the beginning ( � � ) and end ( � � ) of

an apnoeic event. The time-match window is declared to end 15 seconds after the start of

the apnoea, this time is thought to be an acceptable delay from the start of the apnoea to an

alarm being sounded. The value of � is chosen to be half the length of the data window in

which analysis takes place.

6.4 Time-domain approach

The time-domain method for detecting apnoeas from non-invasive signals is based on the

rule-based, threshold methods found in current apnoea monitors. An apnoea is defined if the

amplitude of the respiration waveform is below a pre-determined threshold for a given time

period.

In this work the respiratory waveforms investigated are the IP, R-DR, RSA-DR and PP-DR.

An average peak-trough amplitude of the respiratory waveform is calculated in a 5-minute

calibration period at the beginning of the record for each subject; it is known that the subject

was breathing at a relaxed rate and depth during this period.
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Figure 6.2: The time-match window for apnoea detection. The top line shows the timings of
the apnoeic event. The red line shows the time match window and the line below this shows
two true positive detections. The lowest line shows two false positive detections, the starts of
the detections are outside the time match window. � is taken to be half the window length.

The breath detection threshold, THRESH ���
	 is set to be a percentage of the average peak-

trough amplitude. If a breath is not detected for a given time threshold, THRESH ��� ��� , an

apnoea is declared. A range of values of THRESH � � 	 and THRESH ��� ��� are investigated.

6.5 Frequency-domain approach

Respiration is not a stationary process, indeed it is abrupt changes respiration corresponding

to apnoeas that are of interest. Spectral estimation requires stationary stochastic processes.

In practice, however the definition of stationarity can be treated loosely [14]. For example,

speech can be considered as quasi-stationary over small intervals and these short-time spec-

tra provide useful information.

The approach of segmenting data in order to assume quasi-stationarity and hence compute

the spectra (estimated by an AR model) is commonly used in the EEG, to detect for example

changes in vigilance [89], or in sleep states [80]. Anderson et al. [7] use AR model coeffi-

cients computed over 0.25-second windows, to discriminate between various mental tasks

from EEG recordings.

Cerutti et al. [19] use AR model estimation to detect atrial fibrillation episodes from the ECG.
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2. If the AR spectrum of the windowed R-R interval sequence does not contain at least one

relevant and stable rhythmic component, atrial fibrillation is assumed. The presence of the

rhythmic component is assessed by looking at the maximum modulus of the complex poles of

the model; if the maximum modulus is below a threshold, atrial fibrillation is defined.

In this work, an AR model is used to detect the presence (or absence) of dominant poles

within the physiologically viable breathing frequencies. Since breathing usually occurs at a

rate of between 6 and 25 breaths per minute, this range of frequencies is taken to be 0.1 ���

to 0.42 ��� . The respiration waveform is windowed and the AR spectral estimate for each

window calculated. The � -plane representation of the AR model is examined for the presence

of a pole within the angular range that corresponds to breathing frequencies. The absence of

this pole indicates an apnoea.

A “breathing-pole”, � � therefore has a phase � � that falls within the corresponding angular

range in the unit circle

�
��� ��� 
�� � � � � � ��� � � � � ��� � (6.1)

The magnitude of the pole is also a decision criterion. As is discussed in Section 3.3 the

magnitude of the pole in the � -plane is (non-linearly) related to the power in the estimated

spectra. The more dominant a frequency in a signal, the nearer the position of the corre-

sponding pole to the unit circle. A lower bound threshold, � � is set. For a pole to be classed

as a breathing-pole, � � it must have phase � � and magnitude

�� � � � � � � 
 (6.2)

Figure 6.3 shows five 15-second windows of the time-domain IP signal (upper plots) and the

corresponding pole plots and estimated power spectrum (using a seventh-order AR model)

directly below each of the time windows. Only the upper half of the complex plane is shown,

as the pole plot is always symmetric about the real axis. The third time window shows an

apnoeic period, while all the other windows show normal breathing. The pole plots show

the area in which a “breathing-pole” must be found and is outlined in magenta. The phase

2Atrial fibrillation is an abnormal heart rhythm, characterised by an irregular heart rate, which may be very
fast.
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criterion from Eq. 6.1 is used and in this example the magnitude threshold � � is set to be

0.8. It can be seen that the AR model estimate results in the presence of a breathing pole in

the four windows of normal breathing, whereas in the window corresponding to an apnoea

the breathing pole is absent.

6.5.1 Model order

When constructing an AR model it is important to determine the order of the model which

best fits the data. The model order can be thought of as the number of past data samples

needed to predict the present value of the data and it is therefore is dependent on the data

sampling rate.

Since the best choice of model order is not generally known a priori, it is usually necessary

in practice to postulate several model orders. Based on these, one then computes some error

criterion that indicates which model order to choose [56]. Too low a value of model order

results in a highly smoothed spectral estimate. Too high an order introduces spurious detail

into the spectrum. There are a number of suggested criteria for selecting the optimum model

order. As the prediction error of a model decreases monotonically with increasing model

order, these criteria combine a goodness-of-fit term with a cost function that penalizes some

measure of the model’s complexity, i.e., some function of
�

[79]. Well established criteria

include the Akaike information criterion (AIC) and the final prediction error (FPE) criterion

[56]. Recent work by Broersen [13] suggests a number of criteria for finite samples. Samples

are considered to be finite if the maximum candidate model order for selection is greater

than
�� � , where � denotes the number of observations. In this work, it is expected that

the respiration signals have at most two predominant frequencies, one due to the breathing

frequency and another due to the cardiac frequency that is often present in the recorded

signal. Using this a priori knowledge of the signal, a model order of at least 4 seems suitable.

Model orders from 3 to 9 are considered here.

Figure 6.4 shows the prediction error curve ( ��	 ) with the corresponding FPE curve with

respect to model order. The curves are calculated by averaging the model prediction error of

15-second windows of all the IP data used in this study. The FPE is defined as

� � �  � � �
�
�
� � �



� �

�
� 
�� � 	 (6.3)
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Figure 6.3: The upper row shows a windowed IP signal, with the corresponding pole plots and
spectra estimated using a ����� -order AR model below each time window. The “breathing-pole”
region is outlined in magenta. The third column corresponds to an apnoea and it is seen that
no breathing-pole is present in the corresponding pole plot. The data is from subject 3011 in
the Controlled-breathing database.
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Figure 6.4: Prediction error with respect to model order with corresponding values of the
FPE criterion.

The figure shows a minimum in the FPE criterion at a model order of 8, which also corre-

sponds to a ’knee’ in the prediction error curve. As a guideline the curves suggest that a

model order of 8 represents the data most accurately. However in choosing the final model

order, the performance of the different model orders in terms of their success in detecting

central apnoeas is considered the most important criterion.

6.5.2 Windowing

As discussed in Section 6.3 when detecting apnoeas, latency is an issue: an alarm should be

generated as soon as possible. Any window needs to be short enough in duration to give a

safe time delay between the start of and the detection of an apnoea. Apnoeic episodes can be

as short as 10 or 12 seconds, giving an idea of a suitable window length.

A window length of 15 seconds is selected, and the evaluation is carried out on both overlap-

ping windows (by 10 seconds) and non-overlapping windows.

6.6 Results

A high sensitivity in the detection of apnoeas is the most important performance criterion,

but Section 6.2 illustrates that in practice a high sensitivity is often achieved at the cost of a

very low positive predictivity.

Initial analysis of the Controlled-breathing database showed that the application of the time

and frequency-domain algorithms to respiratory waveforms derived from the ECG and PPG
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results in very poor performance. For example, when applying the time-domain approach

to an ECG-derived respiratory waveform, the RSA-DR, results show that a sensitivity of

greater than 98% can not be reached without compromising the positive predictivity to a

value of less than 10%. There are similar findings for the frequency-domain approach. This

result is interesting in view of a recent study by Thayer et al. [103]. In this work an AR

model estimation of the R-R interval sequence is used to obtain an estimate of the breathing

frequency. It is concluded that the estimated frequency, obtained by measuring the phase

of the relevant spectral peak is a useful indicator of the known breathing frequency. It

should be noted however that the estimations are made over windows of duration of at least

3.5 minutes (c.f. 15 seconds used here) and that the breathing rates are known to remain

constant over these windows. It is suggested therefore that 15 seconds is too short a window

over which to estimate the breathing frequency using this approach.

The application of both approaches to the PPG-derived respiratory waveform, the PP-DR,

result in a similarly low positive predictivity. Therefore the results reported in the rest of the

chapter focus entirely on the analysis of the IP waveform.

6.6.1 Time-domain approach

Figure 6.5 shows the sensitivity (upper plot) with respect to the amplitude threshold THRESH � � 	

for different time thresholds THRESH ������� . As expected, increasing the value of the thresh-

olds results in a higher sensitivity at the cost of a lower positive predictivity. A number of

threshold conditions result in very high sensitivities, but it is decided to aim for a combina-

tion that results in the highest positive predictivity given a sensitivity of at least 98%.

A time threshold, THRESH ��� ��� of 5.5 seconds together with an amplitude threshold, THRESH ���
	

of 0.35 result in a sensitivity of 98% and positive predictivity of 43%.

6.6.2 Frequency-domain approach

The use of an AR model with 15 second non-overlapping windows invariably gives a suffi-

ciently high sensitivity (of at least 98% and in some threshold conditions 100%). The intro-

duction of overlap in the windowing simply results in a lower positive predictivity.

Figure 6.6 shows the sensitivity (upper plot) and positive predictivity of the different model
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Figure 6.5: Sensitivity (upper plot) and positive predictivity (lower plot) for different values
of THRESH ������� with respect to THRESH � � 	 .

orders (from 5 to 9), as the magnitude threshold � � is increased from 0.4 to 0.9 when applying

the pole tracking method to the IP signal.

Compared to the lower order models, the models of higher order (8 and 9) show the lowest

sensitivity at all values of � � , though the difference is more significant at lower values of
� � . This suggests that the model order is too high; the complex poles, in the absence of

definite periodic frequencies, are dispersed in phase around the origin and there is a higher

likelihood that one of these poles happens to fall into the breathing phase range (Eq.6.1), with

the result that the apnoea is not detected. Figure 6.7 shows an example of this phenomenon.

The left-hand column shows the windowed IP signal (time going from top to bottom), apnoeic

episodes being plotted in red. The middle column shows the corresponding pole plots for the
� ��� -order model, and the right-hand column the corresponding pole plots for the � ��� -order

model. For the time windows corresponding to the first and third apnoeas, the � ��� -order

model disperses the poles approximately equally in phase around the origin, with the moduli

of the poles tending to be high (in this case the moduli are greater than 0.8, the value of

the magnitude threshold � � chosen in this example). The model is trying to fit the noise

that occurs in the IP signal during the apnoea. The ����� -order model however gives poles of
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Figure 6.6: Sensitivity (upper plot) and positive predictivity (lower plot) for AR models of
orders 5-9 with respect to � � .

lower modulus resulting in a flat spectrum more representative of the random noise in the

IP signal at this time.

Conversely the � ��� -order model gives a very high sensitivity at the cost of a lower positive

predictivity for all values of � � . The high sensitivity and low positive predictivity suggests

that at times a model of � ��� order is not sufficiently complex to estimate the IP signal. Figure

6.8 illustrates this with an example of a noisier IP signal than that shown in Figure 6.7. In

the second row of the figure, the � ��� -order model can be seen to have sufficient poles to fit

some of the dominant noise as well as the breathing component that can be detected visually.

In contrast, there are not enough poles available in the ����� -order model. This phenomenon

also occurs in the seventh and tenth rows of this figure.

The sensitivity and positive predictivity curves for each model order show similar trends

in Figure 6.6. In most cases there is a greater gradient in the positive predictivity and

sensitivity curves when � � increases from 0.7 to 0.9 than at lower values of � � . This shows

that there are some poles in the breathing phase range (Eq.6.1) that have magnitudes of

approximately 0.7 that correspond to both breathing and apnoea time windows.

If the curves are extrapolated back to lower values of � � , it can be seen that positive pre-
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Figure 6.7: The first column shows the windowed IP signal with the corresponding AR mod-
els of � ��� and � ��� order to the right of the relevant window. The apnoeic events are shown in
red in the IP signal. The � ��� order model places poles in the “breathing pole” area resulting
in a low sensitivity in detecting apnoeas. The x-axis scales on the left hand column corre-
spond to the time at the start of the window, the bottom pole plots show axis scales that are
the same for all the pole plots.
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Figure 6.8: The first column shows the windowed IP signal with the corresponding AR mod-
els of ����� and � ��� order to the right of the relevant window. The apnoeic events are shown
in red in the IP signal. The ����� order model does not have enough complex pole pairs to ac-
curately model the noisier IP signal, hence poles are not placed in the “breathing pole” area
and apnoeas are falsely detected. The x-axis scales on the left hand column correspond to
the time at the start of the window, the bottom pole plots show axis scales that are the same
for all the pole plots.
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Table 6.1: The values of sensitivity and positive predictivity (%) for varying values of � �

when detecting apnoeas from the IP signal using AR models of � ��� and ����� order.

Model Order 6 Model Order 7�� Se +P Se +P
0.4 86 66 94 56
0.5 86 65 94 56
0.6 86 65 95 56
0.7 89 63 97 56
0.8 96 58 98 55
0.9 99 47 100 46

dictivity does not reach 100%, implying that in some cases, a pole does not exist within the

breathing phase range, even when breathing is occurring. Thus there are always false posi-

tives regardless of the value of � � .

A ����� or � ��� -order model gives the best compromise between sensitivity and positive predic-

tivity, implying that these provide better models for the purpose of detecting apnoeas than

either the � ��� or � ��� order models. Table 6.1 shows the sensitivity and positive predictivity

values for increasing values of � � for ����� and ����� order models. When � � is set to 0.9, the

models show similar results with sensitivities of 99 and 100% and positive predictivities of

47 and 46%. A model order of 7 is selected with � � � � � � as this satisifies the criteria for

selecting the time-domain method thresholds, i.e., the highest positive predicitivity given a

sensitivity of at least 98%.

6.7 Fusion

Information fusion is the process of combining evidence from different information sources

in order to make a better judgement. It can also be the process of combining information

from different algorithms applied to the same sensor output to make a better decision. As

discussed in Section 3.10 fusion can take place at different levels of representation, at data,

feature or decision level. Decision level fusion combines the decisions from each information

source. This process reduces diverse data to a common format (binary decisions or detection

probabilities), which are readily combined using conventional statistical techniques. Deci-

sion level fusion can be categorised into hard and soft decision level fusion; hard decisions

being all-or-nothing declarations, while soft decisions utilise information about the confi-
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Figure 6.9: Illustration of the definition of concurring apnoeas in the time and frequency-
domain approaches.

dence each sensor places in its individual decisions [43].

In the work described in the previous sections, two separate decisions regarding the presence

or absence of a central apnoea are made from the same IP signal, one from a time-domain

method and the other from a frequency-domain method. The decisions are considered as

hard decisions. They are reached using threshold techniques in both the time and frequency-

domain methods. The values of these thresholds are selected as they give the best results on

the data available.

Both the time and frequency-domain approaches give a very high sensitivity; the frequency-

domain approach, 98% and time-domain 98%, with positive predictivity values of 55% and

43% respectively. To improve the accuracy of detection, the number of false positives should

decrease without compromising sensitivity. To investigate whether logical operators combin-

ing the information from the frequency and time-domain would produce this, the coincidence

in the timing of the false positives from the two approaches is investigated.

The timing of the apnoea detections is defined to match if the apnoeic period defined by the

time-domain approach overlaps (to any extent) the window over which the frequency-domain

approach declares an apnoea. Figure 6.9 illustrates this definition.

On the database studied in this chapter, the frequency and time-domain approaches result

in 88 and 139 false positives respectively. Of these 58 are coincident. This suggests that

an AND voting system would improve the accuracy of detection by lowering the incidence of
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false positives, assuming coincidence of timing for true positives.

An AND voting decision level fusion approach is therefore investigated as a means of fusing

the outputs from the two analysis methods. For each 15-second window, a hard (binary)

decision is made by the frequency and time-domain approaches. These decisions are fused

using an AND voting rule. In light of the results presented in Section 6.6, the AR model

of order � is chosen for the frequency-domain approach. For the time-domain method, the

chosen combination is a THRESH � � 	 of 0.35 and THRESH ��� � � of 5.5 seconds, as reported in

Section 6.6.

6.7.1 Results

Figure 6.10 shows the performance curves (in red) resulting from the decision level fu-

sion. For comparison the figure shows the performance curves obtained using the frequency-

domain approach (with a ����� order model) as this gives the better results of the two unfused

approaches. The sensitivity (upper) and positive predictivity (lower) plots show the same

scales. It can be seen that for a small decrease in sensitivity ( � 1%), an increase in positive

predictivity of 10% can be gained by using the decison fusion algorithm. Hence the optimal

apnoea detector is one in which the outputs from the time-domain (with THRESH ���
	 = 0.35

and THRESH ��� � � � ��� � seconds) and the frequency-domain approach (with AR model of 7

and � � =0.8) are fused to give a sensitivity of 97% and a positive predictivity of 65%.

6.8 Conclusions

This chapter investigates how accurately central apnoeas can be detected from the non-

invasive signals, IP, ECG, and PPG.

Time-domain and frequency-domain approaches are employed. The time-domain method is

based on the simple methods for detection of central apnoeas described in the literature.

The frequency-domain method estimates the spectra of windowed respiratory signals using

an AR model. The identification of apnoeas relies on the positions of the poles in the pole

plot. For normal breathing it is assumed that a pole has to occur with a phase within a

physiologically plausible range and a magnitude above a certain threshold.
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Figure 6.10: Sensitivity (upper plot) and positive predictivity (lower plot) with repect to pole
magnitude � � for the fused estimate.

It is clear that the use of the ECG and PPG signals gives very inaccurate detection of central

apnoeas on the Controlled-breathing database. The chapter therefore focused on detection

from the IP waveform. With the proviso that sensitivity should be at least 98%, it is found

that the time and frequency-domain approaches result in a positive predictivity of 43% and

55% respectively. A further increase of 10% to a positive predictivity of 65% is obtained by

fusing the decisions from the two approaches at a cost of only 1% in sensitivity.

As concluded by a number of authors including [15], [12] and [116] the IP signal is inher-

ently noisy, partly due to cardiac artefact. It is demonstrated in Chapter 5 that the accuracy

of breath detection from the IP signal could be greatly improved by the fusion of information

from other signals, namely the ECG and PPG. However in the detection of central apnoeas,

using the methods proposed in this chapter, the ECG and PPG signals do not provide suffi-

ciently accurate information to consider fusing this information with that obtained from the

IP signal.



Chapter 7

Obstructive Sleep Apnoea

7.1 Introduction

Detecting obstructive sleep apnoea (OSA) is a very different problem to that of detecting cen-

tral apnoeas. Obstructive apnoeas occur when the airway becomes obstructed, but respira-

tory effort still continues. Due to the continuation of respiratory effort the single impedance

plethysmography (IP) signal indicates the occurrence of normal breathing.

This chapter investigates the use of a statistical classifier, a neural network, to assign win-

dows of the ECG and blood pressure signal into the set
���������
	��� � ����� � �������
	����� (apnoeic refer-

ring to OSA). Reflection coefficients of an AR model estimation of derived respiratory wave-

forms are used as the feature (input) vectors to the classifier. Although various frequency-

domain representations of the ECG and blood pressure signals have previously been used as

features for classifying OSA, the use of a reflection coefficient parameterisation is novel.

Fusion of information, from the different respiratory waveforms, at both a decision and fea-

ture level is considered and the classification performance of the fusion methods compared

with that of classifiers that use information from only a single derived respiratory wave-

form. It is seen that a classifier that fuses at a feature level gives the best classification

performance.

Section 7.2 outlines the effect of OSA on the ECG and blood pressure signal and Section

7.3 discusses current methods of detecting OSA. A review of signal processing work that
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has been carried out on detecting episodes of OSA from the ECG is given in Section 7.4.

Section 7.6 describes the proposed classification system from feature extraction to training

and testing of the classifier. The results of the classification of the Polysomnography database

are presented in Section 7.7. Fusion techniques are put forward in Section 7.8 and the results

of these techniques are given in Section 7.8.3. The classification system is validated on

another database, which is used in the previous works described in Section 7.4. Finally a

discussion of the results and conclusions are found in Sections 7.10 and 7.11 respectively.

7.2 Effect of OSA on the signals

The physiological phenomena associated with obstructive sleep apnoea are far more complex

than those associated with central apnoea. To maintain successful respiration the upper

airways have to be kept open by activation of the upper airway muscles. This does not hap-

pen during obstructive sleep apnoeas. During each apnoea the upper airways collapse while

respiratory efforts persist. The repetitive respiratory effort originating from diaphragm con-

tractions causes effort-related negative intra-thoracic pressure changes. As the apnoea pro-

ceeds, the oxygen saturation drops continuously. At the same time the respiratory effort

increases in amplitude. Finally the low oxygen levels lead to a central nervous activation,

an arousal. An arousal is a shift from the current sleep state to a lighter one or wakefulness

and is usually detected by an abrupt shift in the electroencephalogram (EEG). The arousal

causes a re-establishing of respiratory intervention and an opening of the upper airways for

the next few breaths. The arousal also causes sleep fragmentation, an interruption of the

sleep stage, without making the patient aware of this phenomenon [82].

The following sections illustrate the effects of obstructive sleep apnoea on the ECG and blood

pressure signals.

7.2.1 Effect of OSA on blood pressure

Systolic blood pressure falls during an OSA and then rises sharply in the period following

the apnoea which is coincident with an arousal. The magnitude of the rise in blood pressure

following apnoea can be large (more than 10 ��� ��� systolic). This blood pressure change oc-

curs reproducibly after every apnoea and hence potentially hundreds of times throughout the
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Figure 7.1: Systolic blood pressure (PP-DR) from record slp03 of the Polysomnography
database. The first five-minute section (blue) corresponds to a period of quiet sleep, while
the second five-minute section (red) shows an obstructive apnoeic period. Five episodes of a
decrease followed by a sharp increase in systolic blood pressure can be seen. These episodes
correspond to the apnoea labels.

night [24]. Several clinical physiological studies have reported and analysed this response

[81]. The size of the inspiratory blood pressure decrease is a semi-quantitative indicator of

the degree of effort [25]. Figure 7.1 shows the systolic blood pressure waveform (PP-DR) from

a section of the record slp03 of the Polysomnography database. The first 5-minute section

corresponds to a period of quiet sleep, while the second section shows a period during which

cyclical obstructive apnoeas occur. For each of the five apnoeic episodes, a sharp increase,

preceeded by a decrease in systolic blood pressure can be seen. This phenomenon has been

considered as a possible indirect marker in the assessment of patients thought to be suffering

from obstructive sleep apnoea [25].

7.2.2 Effect of OSA on the ECG

More than 80% of patients with OSA demonstrate a prominent sinus brady-tachyarrhythmia
1 in association with an apnoeic event [81]. Bradycardia during apnoea is reported in some

of the earliest studies of patients with OSA [118]. However the relationship between heart

rate and OSA is not simple. Recent studies have found that the decrease in heart rate

during apnoea varies, in part depending on the current sleep stage. Occasionally, individuals

with well characterised OSA do not demonstrate apnoea-related decreases in heart rate.

The relationship between heart rate and apnoea depends on the degree of hypoxaemia and

oxyhaemoglobin desaturation. In summary, short apnoeas without hypoxaemia do not result

in bradycardia, and the combination of apnoea with hypoxaemia appears to be required to

1A marked increase in heart rate, followed by a slower than normal heart rate
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Figure 7.2: R-R interval signal (RSA-DR) from record slp03 of the Polysomnography
database. The first five minute section (blue) corresponds to a period of quiet sleep, while
the second five minute section (red) shows an obstructive apnoeic period. Five cyclical varia-
tions in heart rate can be seen, which correspond to the apnoea labels.

produce significant bradycardia [118].

Guilleminault et al. [42] were the first to show that the presence of cyclical variation of

heart rate (CVHR) can identify patients with sleep apnoea. Stein et al. [98] discovered that

there is no common heart rate pattern associated with apnoea, the patterns varying across

and within subjects. However they were successful in identifying 29 out of the 30 apnoea

patients in the Computers in Cardiology 2000 competition [50] by a visual examination of

the heart rate signal.

Figure 7.2 shows the R-R interval waveform (equivalent to the RSA-DR) from two five-minute

sections of the record slp03 from the Polysomnography database. The first section (blue)

is taken from a period of quiet sleep, while the second section (red) shows a period where

cyclical OSAs are taking place. The corresponding PP-DR is shown in Figure 7.1.

Raymond et al. [87] note that each apnoea causes a swing in the baseline of the ECG-derived

respiratory waveform (EDR). Figure 7.3 shows the R-DR, during the same time period rep-

resented by Figures 7.1 and 7.2. The swings in baseline can be seen clearly as each of the

five apnoeas occurs.

7.3 Detecting apnoea

OSA is typically treated by surgical intervention or nasal continuous positive airway pres-

sure (CPAP) treatment. Given the prevalence of OSA and the availability of treatment op-

tions, it is important that individuals suffering from the disease are identified. The defini-
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Figure 7.3: R-DR from record slp03 of the Polysomnography database. The first five minute
section (blue) corresponds to a period of quiet sleep, while the second five minute section
(red) shows an obstructive apnoeic period. Five major oscillations in the signal can be seen
and these correspond to the apnoea labels.

tive diagnosis is based on standardised polysomnography (PSG) techniques with overnight

recordings of sleep stage (assessed from two channels of EEG and EOG), respiratory effort,

oronasal airflow, ECG analysis and oxyhaemoglobin saturation parameters in an attended

laboratory setting. This “gold standard” is labour intensive, requires considerable instru-

mentation, and is expensive to conduct [61]. The raw data from the overnight recordings is

screened by clinicians to look for events in the recorded signals that indicate apnoeas or other

sleep-related breathing disorders. More recently there have been efforts made at designing

portable apnoea monitors. Man et al. [61] carried out a study to validate one of these devices.

Rather than record the whole set of signals associated with conventional PSG, only oronasal

airflow, thorax and abdominal movement, oximetry, ECG and body position were recorded,

omitting the EEG. However although the system gave very high sensitivity and specificity

compared with a full PSG, it still required experts to analyse the raw data retrospectively, as

with conventional PSG analysis.

OSA is associated with arousals. The recognised way to detect an arousal is from the EEG,

but this is difficult and time consuming [27]. Pitson and Stradling [84], recognising the need

for less labour intensive measures of sleep fragmentation in patients undergoing investi-

gation for OSA, considered a number of non-invasive autonomic markers for the recurrent

arousals believed to be stimulated by the increases in inspiratory effort in OSA patients. An

automated rule-based method was used to search for transient rises (above certain thresh-

old values) in blood pressure and heart rate. It was found that blood pressure rises were

better correlated with the more conventional indices (i.e., EEG micro-arousals and oxygen

saturation dips) of sleep fragmentation than heart rate rises. It was concluded that auto-
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matic detection of blood pressure rises may provide a useful alternative to manual scoring of

EEG micro-arousals (the accepted gold standard) according to the American Sleep Disorders

Association (ASDA) criteria.

7.4 Review of methods for detecting OSA from the ECG

Until recently there has been very little signal processing or pattern recognition work carried

out on the detection of OSA events from signals recorded routinely in clinical environments.

In 2000, the organisers of the IEEE Computers in Cardiology conference [50], made available

a database consisting of a single channel of ECG recorded from subjects suffering from OSA.

Competitors were invited to either:

a. classify the test recordings as being from subjects who did or did not suffer apnoeas, or

b. generate a minute-by-minute annotation file for each recording specifying when ap-

noeas occurred.

The goal of the competition was to demonstrate the efficacy of ECG-based methods for de-

tecting apnoea using a large, well-characterised, and representative set of data [50]. Details

of the most successful methods are published in the Proceedings of the Computers in Cardi-

ology conference (2000). Both rule-based and learning algorithms were applied to the classi-

fication task. The majority of the successful methods used information from the heart rate

(R-R interval) signal, computing the short-term magnitude frequency spectrum, and calcu-

lating the energy in the low-frequency band (about 0.01 ��� — 0.07 � � ) which is increased

during OSA as apnoeas tend to occur periodically (with a period of the order of 15-100 sec-

onds, this periodicity is seen in Figures 7.1, 7.2 and 7.3). Other authors concentrated on

the tachy-bradycardia time-domain patterns of heart rate that tend to occur with OSA. The

most successful approaches to automatically classifying minute-by-minute result in accura-

cies ranging from 63% to 85%.

Raymond et al. [87] report on a mixture model classifier using one feature vector (of only four

elements) per minute of recording. Two of these features consist of two discrete-harmonic-

wavelet coefficients representing frequency spectra measures of an EDR. The EDR in this

work is generated from measurements of the T-wave amplitude. Apnoea causes a swing

in the baseline of the EDR. Therefore the wavelet coefficients used as features correspond
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to the frequency of the periodic apnoea episode repetition. The arousals that terminate an

obstructive sleep apnoea event are marked by a tachy/bradycardia cycle in heart rate. The

slope and magnitude of the cycle make up the remaining two features of the mixture model.

This method resulted in an accuracy of 81%.

Garcia et al. [75] use a wavelet coefficient representation of the ECG to construct a Bayesian

hierarchical model. The posterior probability that the test coefficients fit into the class model

is calculated and if it exceeds a pre-defined threshold the signal is accepted as belonging to

that model. An accuracy of 63% is reported.

McNames et al. [66] use various features of the ECG such as the heart rate, S-wave amplitude

and an amplitude measurement of the QRS complex to train a hidden Markov model for

classification (the exact features used are not specified). Using this approach 78% of the

minute epochs are correctly classified.

Shinar et al. [93] employ a rule-based approach. A number of parameters of the R-R in-

terval sequence are examined including the power in the frequency range 0.01-0.04 ��� , as

well as transient decreases in the time-domain signal. If these parameters do not meet set

thresholds an apnoea is defined in the segment of data being examined. This method gives

an accuracy of 85%.

Mietus et al. [69] apply a Hilbert transform to the R-R interval sequence to derive instan-

taneous amplitudes and frequencies of the sequence. After calculating their averages and

standard deviations over a 5-second moving window, a thresholding technique is used and

windows within the threshold limits are detected as apnoeas. 84.5 % of windows are identi-

fied correctly.

7.5 Detection of obstructive sleep apnoea from the Polysomnog-

raphy database

As discussed in Section 7.4 the work published on the detection of obstructive sleep apnoea

from the ECG uses a variety of measures (features) of the signal for classification, these

features being derived from both the time and frequency-domains. The features are either

extracted directly from the ECG signal or from waveforms derived from the signal. In the
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rest of this chapter the use of features extracted from respiratory waveforms (derived from

the ECG and blood pressure) to classify 30-second epochs of data into the set
���������
	���
�������

�
�������
	�����

is investigated. The respiratory waveforms are those referred to as R-DR, RSA-DR

and PP-DR in Chapter 4.

The use of information extracted from each individual waveform is first considered. Infor-

mation from the different waveforms is then combined using fusion either at a feature or

decision level to investigate whether this improves the classification performance.

To compare the results with those published in the literature, the proposed methods are

also applied to the Computers in Cardiology database referred to in Section 7.4. Since this

database consists only of the ECG signal, it only allows a direct comparison of classification

based on features derived solely from the ECG.

7.5.1 The data set

The Polysomnography database is made available with a set of labels, corresponding to each

30-second epoch of data. The labels define events that occur within the 30-second epoch. The

aim here is to distinguish between normal and obstructive apnoeic epochs and so all epochs

that are labelled as either obstructive sleep apnoea or normal sleep are selected to construct

the data set. Any epochs labelled as hypopnea or central apnoea are discarded.

7.5.2 Evaluation parameters

For a two-class problem such as this the evaluation parameters used are sensitivity (defined

in Chapter 4), specificity and accuracy. Specificity is the fraction of normals (in this prob-

lem an apnoea is defined as a true event, therefore a normal is a negative event) correctly

detected:

� ��	�� � � �� � � � �
� �

� �
��� � � 
� ��� (7.1)
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Accuracy is defined as the percentage of the correct decisions for both the normal and apnoea

classes:

� � � � � � � � �
� � � � �

� �
� � � ��� � ��� � � 
 � ��� (7.2)

The Receiver Operating Characteristic (ROC) of the classification systems is also examined.

An ROC curve is a plot of Sensitivity (y-axis) with respect to 1-Specificity (x-axis) as a thresh-

old varies. The curves illustrate two main points:

� the trade-off between sensitivity and specificity (any increase in sensitivity is accompa-

nied by a decrease in specificity).

� the area under the curve is a measure of classifier accuracy.

7.6 The classification system

7.6.1 Features

It can be seen from Section 7.4 that the majority of previous studies on the detection of ob-

structive apnoeic episodes from the ECG use frequency spectra measures of the R-R interval

sequence. However none of them use an AR model estimation, which is an efficient way of

representing the frequency-spectra (See Chapter 3). In this work three derived respiratory

waveforms (R-DR, RSA-DR and PP-DR) are parameterised using the reflection coefficients of

an AR model. As is described in Section 3.3.1, the reflection coefficients define the reduction

in residual signal-model error, � , when the AR model increases its order from � � 
 to � ,

� � � � 
 ���
�
��� � � � � (7.3)

Reflection coefficients have the advantage that an increase in model order does not effect

the coefficients from the previous order. Hence there is little cross-correlation between the

coefficients, making them more suitable for pattern analysis techniques than the correlated

AR coefficients [23]. A further advantage is that reflection coefficients always lie between -1

and +1, hence each feature has a similar dynamic range.
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Figure 7.4: Prediction error ( ��	 ) and FPE curves with respect to model order for each of the
three derived respiratory waveforms, PP-DR (left), RSA-DR (middle) and R-DR (right). The
continuous line corresponds to the � 	 curve and the circles to the FPE curve.

All three of the derived respiratory waveforms are unevenly sampled, as they are derived

from direct measurements of the source signals. Cubic-spline interpolation and resampling

at 4 ��� are therefore used to generate an evenly-sampled time series.

As in Chapter 6 the model order is chosen taking into consideration both prior knowledge of

the signal and the prediction error curves. During normal breathing, the R-DR and PP-DR

are expected to exhibit one dominant frequency, while the RSA-DR (R-R interval sequence) is

know to contain two dominant frequencies. During OSA the derived signals exhibit a change

in characteristic (this is shown in Figures 7.1, 7.2 and 7.3), with a greater proportion of the

power in the frequency spectra being at lower frequencies. Figure 7.4 shows the prediction

error ( � 	 ) curve and the corresponding FPE curve with respect to model order for each of

the derived respiratory waveforms. The curves are calculated by averaging the AR model

prediction error for all the 30-second windows in the data set.

The “knee” in the prediction error curves occurs around a value of 3 or 4 for all the derived

waveforms. There are no distinct minima in the FPE curves though in all cases the curves

either flatten or show a slight increase at a model of order of 5. In view of this a model order

of 5 is selected. Figure 7.5 shows the power spectra obtained using a � ��� order AR model for

epochs of each of the derived respiratory waveforms for a subject from the Polysomnography

database. The red curves show the power spectra from apnoeic epochs and the blue curves

show the power spectra estimates from non-apnoeic epochs. It can be seen that the curves

for the two classes are different; hence the AR reflection coefficients are expected to show

discriminatory information.
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Figure 7.5: Averaged PSDs for the three derived respiratory waveforms, PP-DR (left), RSA-
DR (middle) and R-DR (right) for a subject from the Polysomnography database (slp59). The
PSDs are estimated with a � ��� order model and the resultant curves are obtained by averag-
ing the PSD corresponding to every epoch of each class.

7.6.2 Training procedure

In this work the limited amount of available data in the Polysomnography database does not

allow the data to be partitioned into equal training and test data sets. Therefore a cross-

validation procedure is used [10]. The data is divided into � segments. In this work each of

the � segments corresponds to data from each of the � subjects. A network is then trained

using data from � � 
 of the segments and its performance evaluated using the � ��� subject.

The process is repeated for each of the � possible combinations of the data. This method is

sometimes referred to as the “leave-one-out” method.

A balanced database is constructed by selecting an equal number of apnoea and normal

epochs from each subject. The number selected is the minimum number of apnoea or normal

epochs available for that subject. Table 7.1 shows the partitioning of data for the training

and testing of � networks.

7.6.3 Parameter optimisation

As is discussed in Section 3.7 various minimisation algorithms exist for training a neural

network.

A scaled conjugate gradient method is used for training the MLPs with a regularisation

parameter to ensure that the networks are not over-fitted. The regularisation parameter is

chosen to be 0.1, and a total of 1000 training epochs are carried out. On checking the training
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Table 7.1: The � � 
 � different data partitions used in the “leave-one-out” training and
testing procedure. The total number of epochs is 2348.

Partition Training data No. of Test data No. of
No. subjects epochs subjects epochs
1 slp03,slp04,slp14,slp16,slp48,slp59,slp60,slp61,slp66 2262 slp02b 86
2 slp02b,slp04,slp14,slp16,slp48,slp59,slp60,slp61,slp66 2278 slp03 70
3 slp02b,slp03,slp14,slp16,slp48,slp59,slp60,slp61,slp66 2076 slp04 272
4 slp02b,slp03,slp04,slp16,slp48,slp59,slp60,slp61,slp66 2154 slp14 194
5 slp02b,slp03,slp04,slp14,slp48,slp59,slp60,slp61,slp66 1934 slp16 414
6 slp02b,slp03,slp04,slp14,slp16,slp59,slp60,slp61,slp66 2064 slp48 284
7 slp02b,slp03,slp04,slp14,slp16,slp48,slp60,slp61,slp66 2186 slp59 162
8 slp02b,slp03,slp04,slp14,slp16,slp48,slp59,slp61,slp66 1930 slp60 418
9 slp02b,slp03,slp04,slp14,slp16,slp48,slp59,slp60,slp66 1928 slp61 420
10 slp02b,slp03,slp04,slp14,slp16,slp48,slp59,slp60,slp61 2320 slp66 28
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Figure 7.6: Misclassification error (%) with respect to the number of training epochs of a
5-5-1 MLP. The MLP is trained on the feature set from the R-DR and the errors are averaged
over the � data partitions.

set error term during training it is seen that this value ensures that under-training does not

occur. Figure 7.6 shows the misclassification error with respect to the number of training

epochs for a 5-5-1 MLP trained on the R-DR feature set. It can be seen that any change in

misclassification error is negligible at 1000 training epochs. Similar curves are obtained for

the PP-DR and RSA-DR feature sets.

7.6.4 Network architecture optimisation

The optimum network architecture for the chosen features ( ����� order reflection coefficients)

is investigated using a validation set. This validation set comprises 20% of the epochs (from

each class) randomly selected from the training sets in each of the � partitions of the data,
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Figure 7.7: Misclassification error (%) for 5- � -1 MLP as � is varied from 2 to 9. The dashed
line in each case shows the result for a single-layer neural network. The results in the top
plot are obtained using R-DR reflection coefficients, the lower plot uses PP-DR reflection
coefficients.

described in Table 7.1. A network is trained for each of the � � 
� data partitions, and tested

on the validation set. For each data partition 10 networks are trained with different weight

initialisations. The error of the best performing network is taken as the error value for that

data partition.

Figure 7.7 shows the effect on the percentage misclassification error of changing the number

of hidden nodes from 2 to 9. The misclassification value is calculated as the average of

the misclassification errors of the validation sets from each of the (best of 10) � networks.

Changing the number of hidden nodes has little effect on classification accuracy. The MSE

and misclassification rate should fall as the number of hidden nodes is increased beyond 2 if

the optimal decision plane is non-linear. A single-layer neural network is therefore trained

and the corresponding misclassification errors calculated. The errors are plotted on Figure

7.7 and it can be seen that a single-layer neural network gives similar (or better) accuracy

than the MLPs, implying that for the chosen feature sets the optimal decision boundaries

are linear.
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Table 7.2: Classification accuracy of single-layer network using the features from only a
single derived respiratory waveform. The accuracy is averaged over all � � 
� test subjects.

Waveforms used No. of inputs % Accuracy
R-DR 5 63
RSA-DR 5 58
PP-DR 5 66

7.7 Results of single-layer network classification, using

features from one waveform

In view of the results of Section 7.6.4, the rest of this chapter concentrates on the use of a

linear discriminant function, in the form of a single-layer neural network, for classification

of the reflection coefficient feature set.

Table 7.2 shows the classification accuracy for each of the single source networks. It can be

seen that using the reflection coefficients of the PP-DR as features gives the best performance

resulting in an accuracy of 66%.

7.8 Fusion of information from more than one derived

respiratory waveforms

7.8.1 Feature level fusion

Feature-level fusion is performed by concatenating the feature vectors from combinations of

the different derived waveforms. The concatenated vector is used as the input to a single-

layer neural network which is trained as in Section 7.6.4. There are three single sources (R-

DR, PP-DR, RSA-DR) and therefore three different combinations of two sources, and a single

combination of all three. Table 7.3 shows the results in terms of the classification accuracy.

In all cases there is at least a marginal improvement with respect to using a single set

of features. The biggest improvement is seen when using a combination of features from all

three derived respiratory waveforms. However, this is negligible in comparison to fusing only

the RSA-DR and PP-DR reflection coefficients, in this case the accuracy increases to 72%, an
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Table 7.3: Results of a feature-level fusion using a single-layer neural network. In the
first three examples features of two derived respiratory waveforms are combined, whilst
in the last example features from all three are combined. It can be seen that combining
the features from the RSA-DR and PP-DR gives the best accuracy, with only a slight
improvement when using features from all three.

Waveforms used No. of inputs % Accuracy
R+PP 10 68
RSA+PP 10 72
RSA+RS 10 65
RSA+R+PP 15 73

improvement of 6% with respect to the best performing single source classifier (which uses

the PP-DR feature set).

7.8.2 Decision level fusion

To compare the performance of decision level fusion with that of feature level fusion for this

problem, a decision level fusion scheme is proposed. The outputs of individual classifiers

which use features from different derived respiratory waveforms are combined. The outputs

are in the form of estimates of a posteriori probabilities for each class, leading to soft decision

level fusion. As discussed in Chapter 3, there are a number of ways of combining soft deci-

sions. The empirical studies by Kittler [57] and Verlinde [111], discussed in Chapter 3, show

that non-statistical techniques such as logical operators or sum combinations often result in

similar or better results than statistical techniques.

In view of these results, a simple non-statistical fusion technique is applied to the decision

outputs of the single source neural networks that give the best feature fusion results, i.e.,

those using PP and RSA-DR features. A sum rule is used: the outputs of the two networks

are averaged and a decision made on the averaged value (a threshold of 0.5 is used initially).

This decision fusion method results in an accuracy of 70%, slightly less than that found using

feature fusion (72%).
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7.8.3 Comparison of results

The classification schemes proposed in this chapter all output a posteriori probabilities for

either class. The results reported are all obtained using a decision threshold of 0.5, i.e., a

positive classification is made if the probability is greater than 0.5.

Figure 7.8 shows the ROC curve (left) and corresponding accuracy curves with respect to

threshold (right). The curves for the performance of the best classifier that uses features

from only one derived respiratory waveform (PP-DR) are shown in red. The values of the

decision thresholds are varied from 0.1 to 0.9. It is seen that the highest accuracy always

occurs at a threshold of 0.5. However the relative values of sensitivity and specificity may

be adjusted, depending on the importance of detecting all events versus the number of false

positives. The points on the three curves that correspond to a threshold of 0.5 are marked

with a square. It can be seen that for the feature fusion case, the 0.5 threshold corresponds

to a sensitivity of 71% and a specificity of 72% so the two values are balanced. If a higher

sensitivity is required a threshold of 0.4 results in a sensitivity of 77% with a specificity of

only 61%, in which case more false positives occur.

Both curves show that the feature fusion classification method outperforms the best classifier

that uses features from only a single derived respiratory waveform. The ROC curve for the

feature fusion lies nearer the (0,1) point (the point at which 100% sensitivity and specificity

are achieved) of the ROC plot at all times, apart from at thresholds of 0.8 or above. This

characteristic is also seen in the accuracy curves.

7.9 Validation of method on Computers in Cardiology

apnoea database

As there are currently no published results on the use of the ECG and blood pressure signal

to classify the 30-second epochs of the Polysomnography database, the classification method

proposed in this chapter is also applied to the Computers in Cardiology database [50]. As

discussed in Section 7.4 there are a number of published results with which to compare the

accuracy of the proposed classification method on this database.

There are several differences between the Polysomnography database and the Computers in
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Figure 7.8: The ROC curves (left) and corresponding accuracy curves (right) for the classifiers
using feature and decision fusion (of the PP-DR and RSA-DR). The best performing classifier
uses only features from a single respiratory waveform (the PP-DR). It can be seen that the
feature fusion classifier outperforms the single waveform classifier at all thresholds except
high thresholds (greater than 0.8) where it gives a similar performance.

Cardiology apnoea database:

� the Computers in Cardiology database comprises only of a single lead ECG, therefore

information is available from only one signal.

� the labels in the Computers in Cardiology database correspond to 60-second epochs,

rather than 30-second epochs in the Polysomnography database.

� the Computers in Cardiology database contains a total of 34208 epochs while the cor-

responding value for the Polysomnography database is only 2348.

� the sampling rate of the Computers in Cardiology database is 100 � � in comparison to

a rate of 250 ��� in the Polysomnography database.

7.9.1 Methodology

The Computers in Cardiology database consists of 70 night-time ECG recordings each of a

duration of between 7 and 10 hours. The data is partitioned into training and test data sets

of 35 recordings each, exactly as in the published work that uses this database.

As the epochs being classified are twice the length of those in the Polysomnography database,
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Figure 7.9: Prediction error � 	 and FPE curves with respect to model order for the RSA-DR
(left) and R-DR (right).The continuous line corresponds to the � 	 curve and the circles to the
FPE curve.

the AR model order is reconsidered. Figure 7.9 shows the prediction error curve ( � 	 ) curve

and the corresponding FPE curve with respect to model order for the two ECG derived respi-

ratory waveforms. The curves are calculated by averaging the model prediction error over all

60-second epochs in the training set. Both prediction error curves show a “knee” at a model

order of 5. The FPE curve of the RSA-DR, shows a minimum at 6, while the corresponding

curve for the R-DR does not show a minimum. A number of studies indicate that the FPE

criterion tends to under-estimate the optimal model order [85], therefore a model order of 7

is chosen for the AR model order for both waveforms.

Two individual single-layer neural network are trained using the reflection coefficients (of a

����� order AR model) for 60-second epochs of the R-DR and RSA-DR waveforms. To combine

the information from the two respiratory waveforms, a single-layer neural network is also

trained that uses a feature vector of 14 elements; this feature vector is formed by concate-

nating the two ����� order vectors corresponding to the R-DR and RSA-DR.

7.9.2 Results of classification of Computers in Cardiology database

Table 7.4 shows the performance accuracy of the single-layer neural networks, using reflec-

tion coefficients as features, for classification of the Computers in Cardiology database. The

networks that use features from a single derived respiratory waveform give accuracies of 73%

(R-DR) and 70% (RSA-DR). Combining information at feature level results in an accuracy of

78%.
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Table 7.4: Results of single-layer network using reflection coefficients from two ECG derived
respiratory waveforms. The misclassification error is over the whole test set of 17268 epochs.
It can be seen that combining information from the two waveforms at a feature level results
in an accuracy of 78%. This is an improvement of 5% from using the features from the best
single respiratory waveform.

Waveforms used No. of inputs % Accuracy
R-DR 7 73
RSA-DR 7 70
RSA+R-DR 14 78

7.10 Discussion and comparison of results

Discussion of results obtained for classification of epochs of the Polysomnography

database

It is seen that when using features from only a single derived respiratory waveform, the PP-

DR gives the best results (an accuracy of 66%). An improvement in accuracy of 7% can be

obtained by fusing the features of all three derived respiratory waveforms (R-DR, RSA-DR

and PP-DR). However when fusing just the features from the RSA-DR and PP-DR waveforms

an improvement of 6% is still seen. Decision fusion, using the outputs from two single-layer

neural networks that use features from the RSA-DR and PP-DR waveforms, results in an

accuracy of 70%, not quite as an improvement as that seen when using fusion at a feature

level.

Comparison of results of the proposed classification system on the two databases

Only classification methods that use features from the ECG can be compared (as the Com-

puters in Cardiology database only comprises a single channel of ECG). It can be seen from

Tables 7.2, 7.3 and 7.4 the classifiers that use features from only one ECG derived respiratory

waveform (either R-DR or RSA-DR) give accuracies that are at least 10% better on the Com-

puters in Cardiology data set. The classifier that uses features from both of the ECG-derived

respiratory waveforms gives an accuracy of 78% on the Computers in Cardiology database

compared with 65% on the Polysomnography database. The reasons for this are thought to

be two-fold:

� the Computers in Cardiology training set contains approximately 7 times more training
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data than the Polysomngraphy training set.

� the Computers in Cardiology database classifies 60-second epochs (in comparison with

30-second epochs in the Polysomnography database).

It is well known that the more training data available to train a statistical learning classifier,

the better the likely performance of the system. Secondly the 60-second epochs are more

likely to contain the whole apnoeic event, whereas in 30-second labelling the apnoeic event

may span across consecutive epochs.

Comparison of results of classification of Computers in Cardiology database with

those in the literature

The performance of the proposed classification method and the performance of methods

described in the literature can be compared directly using the Computers in Cardiology

database. It is seen that a single-layer network classifier using reflection coefficients of two

ECG-derived respiratory waveforms as input features gives an accuracy (78%), comparable

to those methods that give the best performance in the Computers in Cardiology competition

(the referenced works give a range of accuracies from 63% to 85%).

7.11 Conclusion

It can be first concluded that the classification system proposed in this chapter gives com-

parable performance to those reported in the literature. This classification system uses a

reflection coefficient parameterisation of derived respiratory waveforms as a set of features

for input to a linear classifier (a single-layer neural network). The method results in an accu-

racy of 78%, while classification accuracies of up to 85% are reported ([69],[93]) for methods

which use a combination of features from the time and frequency-domains. It is suggested

that the addition of time-domain features to the reflection coefficients features could improve

performance. A formal feature selection process 2, could be carried out to optimise a final set

of features.

It may also be concluded that fusing information from the ECG and blood pressure signals

2Numerous feature selection processes exist, a review may be found in Chapter 8 of Webb [112]
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leads to improved classification performance. Combining the information at feature level

gives slightly better results than combining at a soft decision level. This can be expected as

feature level fusion leads to more information being used to make the classification decision.



Chapter 8

Conclusions

The aim of the work described in this thesis is to investigate the feasibility of performing

reliable respiratory monitoring from non-invasive biomedical signals that do not measure

airflow directly. There are two main objectives, the first being to estimate the breathing rates

from the signals, the second being to detect the occurrence of apnoeas. Section 8.1 gives an

overview of the research and draws conclusions from the results. Section 8.2 suggests some

areas for further work.

8.1 Overview and conclusions

Methods for obtaining an accurate measure of breathing rate from non-invasive signals are

described in Chapters 4 and 5. Various methods for deriving respiratory waveforms from the

ECG, blood pressure, PPG and IP signals are presented in Chapter 4. An objective evaluation

procedure for comparing and evaluating these methods is proposed and implemented.

One of the main aims is to establish whether a method using one of these signals alone can

provide reliable breath-by-breath information. Results from evaluations on two separate

databases show that no method, based on the analysis of a single non-invasive signal, con-

sistently out-performs the others in terms of sensitivity and positive predictivity. In light of

these results a new method is developed for combining breathing rate measurements using

information from the three non-invasive signals. This fusion method is based on weighting

the estimates from each derived respiratory waveform according to the innovation from a
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Kalman filter model applied to each waveform separately.

The fused estimates give a higher overall correlation with respect to the reference breathing

rate values than any of the breathing estimates derived from a single waveform. The best

performing single signal, the IP signal gives a correlation coefficient of 0.64, while a fused

estimate using three of the signals gives a correlation of 0.80.

The fusion method is assessed over a range of breathing rates. The mean percentage error

and the corresponding 95% confidence interval are calculated for 10 breathing rate ranges.

The method achieves a percentage error of 16% or less at all breathing rates above 9 breaths

per minute.

It may be concluded that:

� none of the methods proposed for deriving breath-by-breath respiration are considered

sufficiently accurate to use alone.

� a fusion algorithm that fuses breathing rate estimates from the ECG, PPG and IP

according to the innovations from Kalman filter models gives a significant improvement

in the accuracy of the estimated breathing rates.

� the best fused estimates are obtained when the subject is breathing at a rate above

9 breaths per minute. None of the proposed methods for detecting breath-by-breath

respiration perform well at lower rates; this is reflected in the fused estimates.

The problem of detecting apnoeas from the signals is addressed in Chapters 6 and 7. In

Chapter 6 methods for detecting central apnoeas are investigated. Current monitors, that

analyse non-invasive respiratory signals such as the IP, tend to have a very high false alarm

rate, for example Weese-Mayer et al. [114] report a positive predictivity of less than 8%.

When analysing the IP signal for apnoea detection, two approaches are taken. The first

is a time-domain, threshold-based technique based upon published work on central apnoea

detection. The second is a frequency-domain approach that uses an AR model estimation

of the windowed IP signal. The magnitude of poles in a physiologically plausible breathing

frequency range are used to indicate the presence or absence of breathing. Both approaches

result in very high sensitivities (greater than 98%), with the frequency-domain approach

giving a higher positive predictivity (55%), and hence a lower false alarm rate, than the

time domain approach (positive predictivity of 43%). Fusing information from the time and
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frequency-domains at the decision level results in a further 10% improvement in positive

predictivity without compromising the sensitivity. When evaluating the two methods using

respiratory waveforms derived from the ECG and PPG, very low positive predictivites are

seen (typically less than 15%). Therefore these signals are not considered for use when

detecting central apnoeas.

Chapter 7 describes investigated methods for classifying obstructive sleep apnoea from the

ECG and blood pressure signals. A classification system is proposed and tested on two

databases, the first being the Polysomnography database [113]. The second, referred to as

the Computers in Cardiology database [50], has been used extensively for investigating the

detection of obstructive sleep apnoea from the ECG; using the latter database allows a direct

comparison with published results.

It is clear that obstructive sleep apnoea provokes changes in the frequency spectra of derived

respiratory waveforms. Therefore a feature set is required that gives a compact representa-

tion of short sections of the frequency spectra of these waveforms. A feature set comprising

reflection coefficients is investigated. These features are used as the input to a single-layer

neural network, after concluding that the optimal decision boundary in the feature space is

linear.

The classification system is tested on the Computers in Cardiology database using informa-

tion from the ECG alone. This classifier gives an accuracy of 78%, comparable to the figures

reported in the literature, which range from 63% to 85%. It is further shown that the classi-

fication accuracy can be improved by combining information from the blood pressure signal

and the ECG. The accuracy of classifiers that use information from either only one signal

or the two signals combined are compared. Feature level fusion, prior to classification is

found to give the best results, with a 10% increase in classification accuracy from the best

performance achieved using only a single signal.

It may be concluded that:

� using the proposed methods for detecting central apnoea from the ECG and PPG results

in very low positive predictivity. The signals are therefore not considered for use in the

detection of central apnoeas.

� when identifying central apnoea events from the IP signal, the detection accuracy can
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be improved if the output of algorithms applied to time and frequency-domain features

are fused.

� when detecting obstructive sleep apnoeas, a reflection coefficient parameterisation of

short sections of derived respiratory waveforms produces a feature set that provides dis-

criminatory information. The optimal decision boundary in the feature space is shown

to be linear.

� fusing information, in the form of a reflection coefficient parameterisation of ECG and

blood pressure derived respiratory waveforms, at a feature level improves the accuracy

of classifying obstructive sleep apnoea.

8.2 Further work

This thesis investigates the feasibility of performing respiratory monitoring from a set of non-

invasive biomedical signals. Although it is shown that data fusion of the signals improves

the accuracy of respiratory information with respect to that obtained using any signal alone,

possible techniques for deriving and fusing this information have not been exhausted.

Two papers published at the time of writing this thesis propose alternative methods for

deriving breath-by-breath respiration. Respiratory signals are used as the direct input to

neural networks. The signals are different to those used in this work, one using the signal

obtained from an invasive nasal airflow thermistor, the second using inductance plethysmog-

raphy. However the analysis methods could be applied to the non-invasive signals used in

this work.

� Varady et al. [109] use windows (16 seconds in length) of both the IP and nasal airflow

respiration signals as the inputs to four separate neural networks. The neural net-

works are trained to classify the time windows into the classes of hypopneas, apnoeas,

normal or unknown. Each network has slightly different inputs. The best performing

network, not surprisingly, uses the nasal airflow signal only. Sensitivities and positive

predictivities of greater than 90% are achieved for both normal breathing and apnoea

detection. This work was carried out on a subset of the Polysomnography database

[113].
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� Sa et al. [90] use a neural network technique to recognise 2-second windows of an in-

ductance plethysmography respiratory signal that contain the onset of inspiration or

expiration. Post-processing of the signal within the detected window is subsequently

carried out to search for minimum and maximum values corresponding to the exact

start of expiration or inspiration. The respiratory signal used is the sum of the signals

obtained from two inductance plethysmography bands (one placed around the ribcage,

the other around the abdomen). The neural networks are tested on a large data set ( �

30,000 breaths), resulting in very high values of sensitivity and positive predictivity ( �
97%) for the detection of the windows. A further study is carried out on a small subset

of the data (162 breaths). The study compares the neural network window detection fol-

lowed by the post-processing search algorithm with two more conventional algorithms

designed to detect the onset of inspiration or expiration from the respiratory signal.

The neural network algorithm performs well on this small dataset, giving values of

96.7% and 93.8% for sensitivity and positive predictivity when detecting expiration. It

is also noted that on this small dataset one of the conventional algorithms (which in-

volved a search for maxima and minima in the signal, similar to that used in this work)

also performed well with a sensitivity of 94.1% and positive predictivity of 94.6%. This

indicates the quality of the respiratory information in the inductance plethysmography

signals.

An AR model is used to estimate frequency-domain information throughout this thesis. AR

model estimation assumes that the signal being parameterised is stationary, or at least that

it can be segmented into windows within which it can be assumed quasi-stationary. The use

of the wavelet transform may be an alternative for extracting respiratory information from

the signals. The basic idea underlying wavelet analysis is that a signal may be expressed as

a linear combination of a particular set of basis functions, obtained by shifting and dilating a

single function sometimes called a mother wavelet [20]. The wider or more dilated the func-

tion the poorer the time location and the lower the frequency component being represented.

High frequency components are represented by narrower mother wavelets with a sharper

time resolution. Wavelets have advantages for signal processing when signals contain dis-

continuities or sharp spikes. One of the aims of this work is to detect apnoeas. Apnoeas, both

central and obstructive introduce abrupt changes in the signals.

Prior to any further research work it would be useful to extend the scope of the data available;
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in size to ensure statistically meaningful results and to also be representative of any targeted

subject groups. Notable additions would include:

� the inclusion of a PPG signal in all databases (in this thesis some of the work, notably

that in Chapter 7, is carried out using the available invasive blood pressure signal for

proof of concept).

� data from a larger cross-section of subjects, the data used in this work is all collected

from adult male subjects. A particular subject group of interest are neonates who are

known to suffer respiratory difficulties.

� including more data at lower breathing rates, as it is shown that the methods presented

in this work give less accurate results at lower breathing rates.

When collecting the data it is recommended that a human observer is present. The labelling

of the data may then be carried out with knowledge of breathing and subject conditions

during the data collection period. The data in the Polysomnography database is labelled by

a retrospective visual examination of the data, with no such prior knowledge. This leads to

uncertainties in the labelling. It is also noted that the positioning of sensors on the body, in

particular ECG electrodes has an effect on the quality of the respiratory information.
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The Controlled-Breathing

database data collection

protocol

Table A.1: Protocol of data collection for Controlled-Breathing database

Duration (minutes) Description

15 Normal relaxed breathing

0.5 Isometric handgrip

1.5 Relaxation

0.5 Isometric handgrip

1.5 Relaxation

5 6rpm, 300ml volume, no resistance

� 0.5 Breath hold

1 Rest

5 6rpm, 500ml volume, no resistance

� 0.5 Breath hold

1 Rest

5 6 rpm, 1000ml volume, no resistance
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continued from previous page

Duration (minutes) Description

� 0.5 Breath hold

5 Rest

5 10rpm, 300ml volume, no resistance

� 0.5 Breath hold

1 Rest

5 10rpm, 500ml volume, no resistance

� 0.5 Breath hold

1 Rest

5 10rpm, 1000ml volume, no resistance

� 0.5 Breath hold

1 Rest

5 20 rpm, 300ml volume, no resistance

� 0.5 Breath hold

1 Rest

5 20 rpm, 500ml volume, no resistance

� 0.5 Breath hold

1 Rest

5 20 rpm, 1000ml volume, no resistance

� 0.5 Breath hold

1 Rest

1 Breath 60 rpm

2 Rest- ’normal’ breathing

1 Breath 120rpm

2 Breathing normally

10 Mimic central apnoeas, 60-second cycle time, apnoeic

period 15 seconds -apnoea 22.5 � 37.5 every min

2 Rest

2 ’Normal’ rate, resistance: 20mmHg �
� �

1 Rest
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continued from previous page

Duration (minutes) Description

2 ’Normal’ rate, resistance: 50mmHg �
� �

2 Rest

5 Cycling

5 Rest
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MMSE combination of estimates

[105]

Given n estimates of the value �� :

� � � �� � � � (B.1)

where
�
� 
	� � � � . And � � is drawn from a Gaussian distribution of mean 0, variance �

�
� and

covariances � � � :

� � � � � � � (B.2)
��� �

�
��� � �

�
� (B.3)

� � � � � � � � � � � (B.4)

Note that � � � � �
�
� . Let ��� be an the ’optimum’ estimate of �� using a linear combination of

the other estimates:
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To minimise the error in this, use equation B.1:

�� � � � �
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�
�� � ��� �

�� � (B.9)

� �
�� ��
� ��� � � � �

��
� ��� � � � ���� (B.10)

� �
�� ��
� ���

��
� ��� � � � � � � � � �� (B.11)

�

��
� ���

��
� ��� � � � � � � � � � � � (B.12)

�

��
� ���

��
� ��� � � � � � � � (B.13)

From equation B.6, a Lagrange multiplier can be defined:

��� ��
� ��� � � � 

	 � � (B.14)

which is added to equation B.13:
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To optimise the values of each � this equation is then differentiated with respect to each � 	

(where
�

is between 1 and
�

inclusive) and the differential is set to zero:

� �
��

�
� 	

� �
��
� ��� � � � � 	 � � � � (B.16)� � � � �
��
� ��� � � � � 	 (B.17)

From this it follows that � can be determined by differentiating with respect to any � 	 and

that differentiating against, say, � 	 and � � will give the same result for � at the optimum

point. Therefore:

��
� ��� � � � � 	 �

��
����� � � � � � (B.18)

If it is assumed that the sources are independant, ie � � ��� ���� � � � , then, recalling equation B.4,

this equation reduces to:

� 	 �
�
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�
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�
�
	
�
�
�

� 	 (B.20)

Combining this equation with equation B.6 gives:
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Appendix C

Glossary and Abbreviations

Apnoea — A temporary cessation in breathing.

Arousal — A change in sleep state from the current state to a lighter state or wakeful-

ness.

Atrial Fibrillation — The extremely rapid and disorganised pattern of the depolari-

sation of the atria, leading to a rapid and disorganised heart rate.

Bradycardia — An abnormal heart rate of 60 or fewer bpm.

Finapres — Finapres is the acronym for FINger Arterial PRESsure, the quantity that

is measured continuously by the instrument. This is a non-invasive measure of blood

pressure.

Heart-rate — The number of beats per unit time; usually measured as beats per

minute.

Heart rate variability (HRV) — The normal variability of the heart rate.

Hypopnea — Abnormally slow and shallow breathing.

Hypoxemia — Deficiency of oxygen in the blood.

Pulsus Paradoxus — Inspiratory fall in systolic arterial blood pressure.

QRS wave — Also the QRS complex; the signal on the electrocardiogram that repsre-

sents the ventricular depolarisation and atrial repolarisation of the heart.
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Respiratory Sinus Arrhythmia (RSA) — RSA is the variation in heart rate that is

seen during inspiration and expiration. Heart rate tends to increase during inspiration

and decrease during expiration.

Tachycardia — A rapid heart rate; often used to classify heart rates of above 100 bpm.

EDR — ECG-derived respiratory waveform.

IP — impedance plethysmography.

PP-DR — respiratory waveform derived from pulsus paradoxus measurements of the

blood pressure.

R-DR — respiratory waveform derived from R amplitude measurements of the ECG.

RSA-DR — respiratory waveform derived from RSA (R-R interval or heart rate) mea-

surements of the ECG.



Bibliography

[1] ANSI/AAMI EC38:1998 Ambulatory Electrocardiographs.
[2] ANSI/AAMI EC57:1998 Testing and Reporting Performance Results of Cardiac

Rhythm and ST Segment Measurement Algorithms.
[3] The MIT-BIH Polysomnography Database CD-Rom. Harvard-MIT Division of Health

Sciences and Technology, Cambridge, MA, USA, August 1992.
[4] Lecture Notes on Human Physiology. Blackwell Science Ltd, 1994.
[5] Oxford English Reference Dictionary. Oxford University Press, 1995.
[6] M Abidi and R Gonzalez, editors. Data Fusion in Robotics and Machine Intelligence.

Academic Press Inc., 1992.
[7] C W Anderson, E A Stolz, and S Shamsunder. Multivariate Autoregressive Models for

Classification of Spontaneous Electroencephalographic Signals During Mental Tasks.
IEEE Transactions on Biomedical Engineering, 45(3), March 1998.

[8] S T Anderson, W G Downs &A P Lander, D M Mirvis, C Rizo-Patron, R L Burr, C Jacob-
son, G A Massumi, and J C Perry. Advanced Electrocardiography. SpaceLabs Medical
Inc., 1995.

[9] P Berghuis, N Cohen, M Decker, A Gettinger, K Myrabo, J Nilsestuen, K Strohi, and
J Yount. Respiration. SpaceLabs Medical Inc., 1994.

[10] C. M. Bishop. Neural networks for pattern recognition. Oxford University Press, 1995.
[11] M Bland. An introduction to medical statistics. Oxford University Press, 2000.
[12] Y Brans and W Hay, editors. Physiological monitoring and instrument diagnosis in

perinatal and neonatal medicine. Cambridge University Press, 1995.
[13] P M T Broersen. Facts and Fiction in Spectral Analysis. IEEE Transactions on Instru-

mentation and Measurement, 49(4):766–772, August 2000.
[14] P M T Broersen. Automatic Spectral Analysis with Time Series Models. IEEE Trans-

actions on Instrumentation and Measurement, 51(2):211–216, April 2002.
[15] R T Brouillette, A S Morrow, D E Weese-Mayer, and C E Hunt. Comparison of respira-

tory inductive plethysmography and thoracic impedance for apnea monitoring. Jour-
nal of Pediatrics, 111:377–83, 1987.

[16] R G Brown. Introduction to Random Signal Analysis and Kalman Filtering. Wiley,
1983.

[17] E G Caiani, A Porta, M Terrani, S Guzzetti, A Malliani, and S Cerutti. Minimal Adap-
tive Notch Filter for Respiratory Frequency Tracking. In Computers in Cardiology
Proceedings, volume 25, pages 511–514, 1999.



BIBLIOGRAPHY 158

[18] F Caswell. Success in Statistics. John Murray Ltd, 1995.
[19] S Cerutti, L T Mainardi, A Porta, and A M Bianchi. Analysis of the Dynamics of

RR Interval Series for the Detection of Atrial Fibrillation Episodes. In Computers in
Cardiology Proceedings, pages 77–80, 1997.

[20] S Conforto, T D’Alessio, and S Pignatelli. Optimal rejection of movement artefacts
from myoelectric signals by means of a wavelet filtering procedure. Journal of Elec-
tromyography and Kinesiology, pages 47–57, 1999.

[21] I Constant, D Laude, I Murat, and J L A D Elghozi. Pulse rate variability is not a
surrogate for heart rate variability. Clinical Science, 97(4):391–7, October 1999.

[22] F Cremer, K Schutte, J G M Schavemaker, and E den Breejen. A comparison of
decision-level sensor-fusion methods for anti-personnel landmine detection. Informa-
tion Fusion, 2:187–208, 2001.

[23] E. Curran, P. Sykacek, M. Stokes, S. Roberts, W. Penny, I. Johnsrude, and A. Owen.
Cognitive Tasks for driving a Brain Computer Interfacing System: a pilot study. Tech-
nical Report PARG-01-06, March 2001. Submitted to IEEE Transactions on Rehabili-
tation Engineering.

[24] R J O Davies. Cardiovascular aspects of obstructive sleep apnoea and their relevance
to the assessment of the efficacy of nasal continuous poitive airway pressure therapy.
Thorax, 53:416–418, 1998.

[25] R J O Davies, K Vardi-Visy, M Clarke, and J R Stradling. Identification of sleep disrup-
tion and sleep disordered breathing from the systolic blood pressure profile. Thorax,
48:1242–1247, 1993.

[26] R W DeBoer, J M Karemaker, and J Strackee. Comparing Spectra of a series of point
events particularly for heart rate variability data. IEEE Trans. Biomed. Eng, 31:384–
387, 1984.

[27] M J Drinnan, J Allen, P Langley, and A Murray. Detection of Sleep Apnoea from Fre-
quency Analysis of Heart Rate Variability. In Computers in Cardiology Proceedings,
pages 259–262, 2000.

[28] B Duc, E Bigun, J Bigun, G Maitre, and S Fischer. Fusion of audio and video informa-
tion for multi-modal person authentication. Pattern Recognition Letters, 18:835–843,
1997.

[29] R Duda and P Hart. Pattern Classification and Scene Analysis, 1973.
[30] S R Dumpala, S N Reddy, and S K Sarna. An algorithm for the detection of peaks in

biological signals. Computer Programs in Biomedicine, 14(3):249–256, June 1982.
[31] M H Ebrahim, J M Feldman, and I Bar-Kana. A Robust Sensor Fusion Method for

Heart Rate Estimation. The Journal of Clinical Monitoring, 13(6):385–393, November
1997.

[32] W Einthoven, G Fahr, and A de Waart. On the direction and manifest size of the
variations of the potential in the human heart on the from of the electrocardiogram.
Pfluger’s Arch. f. d. ges. Physiol., 50:275–315,1913., English Translation by H. E. Hoff
and P. Sekelj, Amer. Heart J., vol. 40 pp.163-193 1950.

[33] W A H Engelese and C Zeelenberg. A single scan algorithm for QRS-detection and
feature extraction. Computers in Cardiology, 6:37–42, 1979.

[34] J Felblinger and C Boesch. Amplitude demodulation of the electrocardiogram signal
(ECG) for respiration monitoring and compensation during MR examinations. Magn-
Reson-Med, 38(1):129–36, July 1997.



BIBLIOGRAPHY 159

[35] J M Feldman, M H Ebrahim, and I Bar-Kana. Robust Sensor Fusion Improves Heart
Rate Estimation: Clinical Evaluation. The Journal of Clinical Monitoring, 13(6):385–
393, November 1997.

[36] B Frey and W Butt. Pulse Oximetry for assessment of pulsus paradoxus: a clinical
study in children. Intensive Care Med, 24:242–246, 1998.

[37] Q Gan and C J Harris. Comparison of Two Measurement Fusion Methods for Kalman-
Filter-Based Multisensor Data Fusion. IEEE Transactions on Aerospace and Electronic
Systems, 37(1):273–280, January 2001.

[38] A Gelb. Applied Optimal Estimation. The MIT Press, 1996.
[39] A L Goldberger, L A N Amaral, L Glass, J M Hausdorff, P Ch Ivanov, R G Mark RG,

J E Mietus, G B Moody, C K Peng, and H E Stanley. PhysioBank, PhysioToolkit, and
Physionet: Components of a New Research Resource for Complex Physiologic Signals.
Circulation, 101(23), June 2000.

[40] M S Grewal, L R Weill, and A P Andrews. Global Positioning Systems, Inertial Navi-
gation and Integration. Wiley, 2001.

[41] P F Griner, R J Mayewski, A Mushlin, and P Greenland. Selection and interpretation
of diagnostic tests and procedures. Principles and applications. Annals of Internal
Medicine, 94(4):557–600, 1981.

[42] C Guilleminault, S J Connolly, and R A Winkle. Cyclical variation of the heart rate in
sleep apnoea syndrome. Lancet, 1:126–131, 1984.

[43] A H Gunatilaka and B A Baertlein. Feature-Level and Decision-Level Fusion of Non-
coincidently Sampled Sensors for Land Mine Detection. IEEE Transactions on Pattern
Analysis and Machine Intellegence, 23(6):577–589, June 2001.

[44] D E Gustafson, A S Willsky, J Wang, M C Lancaster, and J H Triebwasser. ECG/VCG
Rhythm Diagnosis Using Statistical Signal Analysis - I. Identification of Persistent
Rhythms. IEEE Transactions on Biomedical Engineering, 25(4), July 1978.

[45] T V Hartert, A P Wheeler, and J R Sheller. Use of Pulse Oximetry to Recognize Severity
of Airflow Obstruction in Obstructive Airway Disease. Chest, 115:475–481, 1999.

[46] M J Hayes, P R Smith, and D M Barnett. Quantitative Investigation of Artefact in
Photoplethysmography and Pulse Oximetry for Respiratory Exercise Testing. In Pro-
ceedings of the 7th International Symposium on Computer-aided Noninvasive Vascular
Diagnostics, 1997.

[47] M Hellebrandt and R Mathar. Location Tracking of Mobiles in Cellular Radio Net-
works. IEEE Transaction on Vehicular Technology, 48(5), September 1999.

[48] R Hermes and G Oliver. Use of the American Heart Association database. Amulatory
Electrocardiographic Recording, pages 165–181, 1980.

[49] A Houghton and D Gray. Making Sense of the ECG. Oxford University Press, 1997.
[50] Computers in Cardiology apnoea competition website. http://www.physionet.org/cinc-

challenge-2000.shtml.
[51] G D Jay, K Onuma, R Davis, M Chen, A Mansell, and D Steele. Analysis of Physi-

cian Ability in the Measurement of Pulsus Paradoxus by Sphygmomanometry. Chest,
118:348–352, 2000.

[52] L O Jimenez, A Morales-Morell, and A Creus. Classification of Hyperdimensional Data
Based on Feature and Decision Fusion Approaches Using Projection Pursuit, Majority



BIBLIOGRAPHY 160

Voting and Neural Networks. IEEE Transactions of Geoscience and Remote Sensing,
37(3):1360–1366, May 1999.

[53] A Johansson and P A Oberg. Estimation of respiratory volumes from the photoplethys-
mographic signal. Part 1:experimental results. Medical Biological Engineering Com-
puting, 37:42–47, 1999.

[54] S J Johnsen and N Andersen. On Power Estimation in Maximum Entropy Spectral
Analysis. Geophysics, 43(4):681–690, June 1978.

[55] R E Kalman. A New Approach to Linear Filtering and Prediction Problems. Transac-
tions of the ASME— Journal of Basic Engineering, pages 35–45, March 1960.

[56] S M Kay and S L Marple. Spectrum Analysis — A modern perspective. In Proceedings
of the IEEE, volume 69, pages 1380–1419, 1981.

[57] J Kittler, M Hatef, R P W Duin, and J Matas. On Combining Classifiers. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 20(3), March 1998.

[58] L G Lindberg, H Ugnell, and P A Oberg. Monitoring of respiratory and heart rates
using a fibre-optic sensor. Medical Biological Engineering Computing, 30:533–537,
1992.

[59] I L MacDonald. Hidden Markov and Other Models for Discrete-Valued Time. CRC
Press, January 1997.

[60] M Malik and A J Camm, editors. Heart Rate Variability. Futura Publishing Company,
1995.

[61] G C W Man and B V Kang. Validation of a Portable Sleep Apnea Monitoring Device.
Chest, 108:388–93, 1995.

[62] R Mark, P Schluter, G Moody, P Devlin, and D Chernoff. An annotated database
for evaluating arrythmia detectors. Frontiers of Engineering in Health Care, Proc 4th
Annual Conf, IEEE Engineering in Medicine and Biology Society, pages 205–210, 1982.

[63] C L Mason and L Tarassenko. Quantitative Assessment of Respiratory Derivation
Algorithms. In Proceedings of the 23rd Annual International Conference of the IEEE
EMBS, volume 2, pages 1998–2001, October 2001.

[64] P S Maybeck. Stochastic Models, Estimation and Control, Volume 1. Academic Press
Inc, 1979.

[65] N McGrogan. Neural Network Detection of Epileptic Seizures in the Electroencephalo-
gram. PhD thesis, University of Oxford.

[66] J N McNames and A M Fraser. Obstructive Sleep Apnea Classification Based on Spec-
trogram Patterns in the Electrocardiogram. In Computers in Cardiology Proceedings,
2000.

[67] W T McNicholas. Sleep apnoea and driving risk, European respiratory society task
force on public health and medicolegal implications of sleep apnoea [editorial]. Euro-
pean Journal of Respiration, 13(6):1225–7, June 1999.

[68] R K Mehra. On the identification of variances and adaptive Kalman filtering. IEEE
Transactions on Automatic Control, AC-15:175–184, 1970.

[69] J E Mietus, C K Peng, P C Ivanov, and A L Goldberger. Detection of Obstructive Sleep
Apnea from Cardiac Interbeat Interval Times Se ries. In Computers in Cardiology
Proceedings, pages 753–756, 2000.



BIBLIOGRAPHY 161

[70] G B Moody, R G Mark, and A L Goldberger. Physionet: A Web-Based Resource for the
Study of Physiologic Signals. IEEE Engineering in Medicine and Biology Magazine,
pages 70–75, May 2001.

[71] G B Moody, R G Mark, A Zoccula, and S Mantero. Derivation of Respiratory Signals
from Multi-Lead ECGs. In Computers in Cardiology Proceedings, volume 12, pages
113–116, 1985.

[72] I Nabney and C Bishop. http://www.ncrg.aston.ac.uk/netlab/. Netlab neural network
software.

[73] I T Nabney. Netlab:Algorithms for Pattern Recognition. Springer, 2001.
[74] K Nakajima, T Tamura, and H Miike. Monitoring of heart and respiratory rates

by photoplethysmography using a digital filtering technique. Medical Engineering
Physics, 18(5):365–372, 1996.

[75] F Ng, I Garcia, P Gomis, A La Cruz, G Passariello, and F Mora. Bayesian Hierarchial
Model with Wavelet Transform Coefficients of the ECG in Obstructive Apnea Screen-
ing. In Computers in Cardiology Proceedings, pages 275–278, 2000.

[76] A Noble. Estimation II - The Kalman Filter. Internal Lecture Notes, Department of
Engineering Science, Oxford University, 1999.

[77] R Pallas-Areny and F Riera Canals. Recovering the Respiratory Rhythm out of the
ECG. Medical Biological Engineering Computing, 23(Supplement, Part1):338–339,
1985.

[78] R Pallas-Areny, J Colominas-Balague, and F J Rosell. The Effect of Respiration-
Induced Heart Movements on the ECG. IEEE Transactions on Biomedical Engineer-
ing, 36(6):585–590, June 1989.

[79] J Pardey, S Roberts, and L Tarassenko. A review of parametric modelling techniques
for EEG analysis. Medical Engineering and Physics, 18:2–11, January 1996.

[80] J Pardey, S J Roberts, L Tarassenko, and J Stradling. A new approach to the analysis of
the human sleep-wakefulness continuum. Journal of Sleep Research, pages 201–210,
1986.

[81] J M Parish and J W Shepard. Cardiovascular Effects of Sleep Disorders. Chest, 95(7),
May 1990.

[82] T Penzel, A Bunde, J Heitmann, J W Kantelhardt, J H Peter, and K Voigt. Sleep
Stage-Dependent Heart Rate Variability in Patients with Obstructive Sleep Apnoea.
In Computers in Cardiology Proceedings, volume 26, 249-252 1999.

[83] D J Pitson, A Sandell, R van-den Hout, and J R Stradling. Use of pulse transit time as
a measure of inspiratory effort in patients with obstructive sleep apnoea. Eur-Respir-J,
8(10):1669–74, October 1995.

[84] D J Pitson and J R Stradling. Autonomic Markings of arousal during sleep in pa-
tients undergoing investigation for obstructive sleep apnoea, their relationship to EEG
arousals,respiratory events amd subjective sleepiness. Journal of Sleep Research,
7:53–59, 1998.

[85] J G Proakis and D G Manolakis. Digital Signal Processing: principles, algorithms and
applications. Prentice Hall, 3rd edition 1996.

[86] R Ramanathan and M J Corwin. Cardiorespiratory Events Recorded on Home Moni-
tors. Journal of the American Medical Association, 285(17):2199–2207, May 2001.



BIBLIOGRAPHY 162

[87] B Raymond, R M Cayton, R A Bates, and M J Chappell. Screening for Sleep Apnoea
Based on the Electrocardiogram - The Computers in Cardiology Challenge. In Com-
puters in Cardiology Proceedings, pages 267–270, 2000.

[88] M D Revow, S J England, and H O’Beirne. Robust computer algorithm for detecting
breaths in noisy ventilatory waveforms from infants. Medical Biological Engineering
Computing, 24(6):609–615, November 1986.

[89] S Roberts, I Rezek, R Everson, H Stone, S Wilson, and C Alford. Automated assess-
ment of vigilance using committees of Radial Basis Function Analysers. In IEE Pro-
ceedings Science, Technology & Measurement, volume 147(6), pages 333–338.

[90] R C Sa and Y Verbandt. Automated Breath Detection on Long-Duration Signals Us-
ing Feedforward Backpropagation Artificial Neural Networks. IEEE Transactions on
Biomedical Engineering, 49(10):1130–1141, October 2002.

[91] C Sanderson and K K Paliwal. Noise compensation in a person verification system
using face and multiple speech features. Pattern Recognition, 36:293–302, 2001.

[92] D Scholkopf and A J Smola. Learning with Kernels: Support Vector Machines, Regu-
larization, Optimization and Beyond. MIT Press, December 2001.

[93] Z Shinar, A Bahrav, and S Askelrod. Obstructive Sleep Apnea Detection based on
Electrocardiogram Analysis. In Computers in Cardiology Proceedings, pages 757–760,
2000.

[94] S E Sittig. Transitional Technology from NICU to Home. American Association for
Respiratiory Care Times, September 2000.

[95] R J Stanley, P D Gader, and K C Ho. Feature and Decision level sensor fusion of elec-
tromagnetic induction and ground penetrating radar sensors for landmine detection
with hand-held units. Information fusion, 3:215–223, 2002.

[96] A Starr, M Desforges, and J Esteban. Strategies in Data Fusion - A Condition Moni-
toring Approach. ncaf forum,Manchester School of Engineering, July 2000.

[97] D W Steele, R O Wright, C M Lee, and G D Jay. Continuous Noninvasive Determi-
nation of Pulsus Paradoxus: A Pilot Study. Academic Emergency Medicine, 2(10):894–
900, October 1995.

[98] P K Stein and P P Domitrovich. Detecting OSAHS from Patterns seen on Heart-Rate
Tachograms. In Computers in Cardiology Proceedings, pages 271–274, 2000.

[99] N Strobel, S Spors, and R Rabenstein. Joint Audio-Video Object Localization and
Tracking. IEEE Signal Processing Magazine, pages 22–31, January 2001.

[100] L Tarassenko. Lecture Notes for Medical Electronics. Engineering Science Department,
Oxford University, Michaelmas 1995.

[101] L Tarassenko. A Guide to Neural Computing Applications. Arnold, 1998.
[102] L Tarassenko, N Townsend, G Clifford, L Mason, J Burton, and J Price. Medical Signal

Processing using the Software Monitor. In DERA-IEE Workshop, 2001.
[103] J F Thayer, J J Sollers, E Ruiz-Padail, and J Vila. Estimating Respiratory Frequency

from Autoregressive Spectral Analysis of Heart Period. IEEE Engineering in Medicine
and Biology Magazine, pages 41–45, July 2002.

[104] L Thorval, G Carrult, J M Schleich, R Summers, M Van de Velde, and J Diaz. Data
Fusion of Electrophysiological and Haemodynamic Signals for Ventricular Rhythm
Tracking. IEEE Engineering in Medicine and Biology, pages 48–55, November 1997.



BIBLIOGRAPHY 163

[105] N Townsend. Internal Report. Department of Engineering Scince, Oxford University,
2001.

[106] N Townsend. Biomedical Engineering Course Lecture Notes. Oxford University, 2002.
[107] A Travaglini, C Lamberti, J DeBie, and M Ferri. Respiratory Signal Derived from

Eight-lead ECG. In Computers in Cardiology Proceedings, volume 25, pages 65–68,
1998.

[108] J L Tylee. On-line Failure Detection in Nuclear Power Plant Instrumentation. IEEE
Transactions on Automatic Control, AC-23(3):406–415, March 1983.

[109] P Varady, T Micsik, S Benedek, and Z Benyo. A Novel Method for the Detection of
Apnea and Hypopnea Events in Respiration Signals. IEEE Transactions on Biomedical
Engineering, 49(9):936–942, September 2002.

[110] M Vauhkonen, P A Karjalainen, and J P Kaipio. A Kalman Filter Approach to Track
Fast Impedance Changes in Electrical Impedance Tomography. IEEE Transactions on
Biomedical Engineering, 45(4), April 1998.

[111] P Verlinde, G Chollet, and M Acheroy. Multi-modal identity verification using expert
fusion. Information fusion, 1:17–33, November 1999.

[112] Andrew Webb. Statistical Pattern Recognition. Arnold, 1999.
[113] Physionet website. http://www.physionet.org/.
[114] D E Weese-Mayer, R T Brouillette, A S Morrow, L P Conway, L M Klemka-Walden, and

C E Hunt. Assessing validity of infant monitor alarms with event recording. Journal
of Pediatrics, 115(5):702–708, November 1989.

[115] G Welch. SCAAT: Incremental Tracking with Incomplete Information. PhD Thesis,
University of North Carolina, 1996.

[116] A J Wilson, C I Franks, and I L Freeston. Algorithms for the detection of breaths from
respiratory waveform recordings in infants. Medical Biological Engineering Comput-
ing, 20(3):286–292., May 1982.

[117] L Zhao, S Reisman, and T Findley. Derivation of Respiration from Electrocardiogram
during Heart Rate Variability Studies. In Computers in Cardiology Proceedings, pages
53–56, 1994.

[118] C W Zwillich. Sleep apnoea and autonomic function. Thorax, 53(Suppl 3):S20–24,
1998.


