
Report SYCON-88-02

SOME REMARKS ON THE BACKPROPOGATION ALGORITHM
FOR NEURAL NET LEARNING

Eduardo D. Sontag
Department of Mathematics

Rutgers University
New Brunswick, NJ 08903

(201)932-3072
sontag@fermat.rutgers.edu

ABSTRACT

This report contains some remarks about the backpropagation method for neural net
learning. We concentrate in particular in the study of local minima of error functions
and the growth of weights during learning.

Rutgers Center for Systems and Control, 1988

1 Introduction

Backpropagation is probably the most popular method currently being used for neural
net learning. It was introduced in the neural literature by Rumelhart and Hinton in the
seminal work [PDP]. See for instance [Hi87] for an introduction and references to current
work. It can be understood as an iterative gradient technique for nonlinear least squares
fitting, the cost function corresponding to a clustering problem to be solved. Its study
gives rise to many open mathematical problems. This note makes some remarks about
factors affecting the ultimate performance of backprop and its variants.

A basic issue that must be understood when applying a gradient technique is that
of the structure of the set of local minima of the error function. (Under “local minima”
one must include limiting values when some of the weights tend to infinity, of course.)
We believe that the local minima structure may be fairly complicated, and we propose a
rigorous study of this issue, which has puzzled many practitioners. The state of knowledge
about this problem is rather limited. The following quote, from the excellent book [Ar86],
is typical (the emphasis is ours):

“Although no formal proof is available, simulation shows that the scheme
avoids many of the false minima that bedeviled other methods. Rumelhart et
al. found the algorithm to be rather robust when tested on several hundred
problems. In a few cases, local minima were found, but they were easy to
escape from. If there are enough units, the method can attain E = 0; if not,
the weights can be trained to minimize E, a result that is optimal in the sense
of least squares.”

Just as Arbib, we do not know of any serious analysis of the problem. However, we feel
on the basis of our experience that local minima are much more ubiquitous than usually
thought. Further, it is not clear why they should be easy to escape from. It is possible
that the particular practical problems in which the method has been tested exhibit some
structure which makes them better behaved. If this is the case, it is by far one of the
most important issues to be understood regarding backpropagation. Conversely, if local
minima do tend to appear, as our general mathematical analysis suggests, then this will
have to be taken into account in learning algorithms. For instance, it is then reasonable to
include stochastic relaxation techniques such as simulated annealing (see e.g. [KGV83],
[SS85])..

To understand the problem, we shall look here at the simplest possible version of
backprop, that of networks with no hidden neurons and just one output neuron, with m
input neurons. This is the classical perceptron, for which the full power of backprop is
not really needed. Since we wish mainly to illustrate pathologies, we prefer to start with
this simple case. It may be reasonably be expected that those difficulties that arise here
will of course also show up in more complicated networks. Further, it seems to be the
case experimentally that in the general case, quoting [KH88], section 2.2:

1

“When the weight values are close to the desired values, the lower layer
weights are changing very slowly and can be assumed to be almost fixed...”

That is, the problem then becomes one of learning with no hidden units just as considered
here.

2 The minimization problem

Mathematically the input/output behavior of the systems considered here can be de-
scribed as follows. Given a vector input

u = (u1, . . . , um)′ ∈ IRm,

(prime indicates transpose) the corresponding output is

y = θ(
m∑
j=1

ujxj) ∈ IR,

where the xi’s are certain fixed real numbers, the weights associated to the different input
channels. The function θ is of sigmoid-type, in the sense to be described later.

This is a purely static situation, in contrast to other techniques such as Boltzmann
machines or Hopfield nets in which outputs are only considered to be obtained after a
certain amount of settling of the system. In these other situations, there is typically feed-
back between input, output, and/or intermediate neurons, and only equilibria solutions
of the corresponding dynamical systems are of interest.

A typical “learning” problem is specified by providing a set of desired input/output
pairs

(u1, y1), . . . , (un, yn), (∗)
the goal being that of finding weights xi’s such that the total square error

E =
n∑
i=1

θ(m∑
j=1

uijxj)− yi
2

(∗∗)

is minimized, where uij denotes the j-th component of the vector ui. The backpropagation
algorithm is an iterative gradient method for minimizing this error. Typically the integer
m, the number of weights to be found, is much smaller than n, the total number of
learning runs.

In the case treated here, in which there are just 2 layers, the perceptron learning theo-
rem insures that any linearly separable relation can be learned in finite time thorugh the
classical perceptron learning procedure. However, the problem of minimizing the above

2

square error for arbitrary input/output pairs, via a gradient system, is mathematically
entirely different.

Usually, the output values yi are binary, corresponding to classification problems.
The ultimate objective is in that case that of obtaining a neural net –i.e., a function of
the type f(x) = θ(

∑m
j=1 ujxj),– which classifies the given vectors u1, . . . , un as belonging

to one of two classes (“examples” and “counterexamples”). One then introduces the
corresponding pairs (ui, yi) with yi = +1 if ui is in the first class, and yi = −1 otherwise.

As a starting point, we wish to show the falsity of the “folk fact”, often repeated, that
there is in the case of no hidden neurons a unique local minimum to which a gradient
procedure will globally converge. This is far from true, even in the most simple case in
which there is only one neuron, one input, and two experiments (in the above notation,
n = 2, m = 1). In order to present our remarks we first recast the problem in slightly
different terms. This will allow us to see the problem in a form which is mathematically
more convenient.

Given a set of input/output pairs (*), we let A denote the n×m matrix whose (i, j)-th
entry is uij, and y the vector whose coordinates are the yi’s. We assume that the entries
of y are all equal to +1 or −1. (Alternatively one could use {0, 1}-valued y, but the
analysis is somewhat easier with our convention.) The (fixed) function θ is assumed to
be a smooth strictly increasing and odd mapping

θ : IR→ (−1, 1)

with
lim
z→∞

θ(z) = 1, lim
z→−∞

θ(z) = −1,

such as tanh(·) or (2/π) tan−1(·). Finally, we let T be the mapping corresponding to
applying θ to each coordinate,

T : IRn → IRn : z 7→ (θ(z1), . . . , θ(zn))′.

We wish to understand the behavior of the gradient system corresponding to

‖y − TAx‖2,

seen as a function of x ∈ IRm. The first step is then that of studying the local min-
ima of this function, including the limiting values where some coordinates of x become
unbounded. The latter values correspond, when using a gradient method, to diverging
solutions. (In practice, learning algorithms typically impose a priori bounds on possible
weights, and diverging solutions are stopped when these bounds are achieved. We shall
have some remarks about this later.)

Let V be the image of the linear operator A. Since T is a diffeomorphism of IRn with
the open subset (−1, 1)m ⊆ IRn, TV is an embedded submanifold of IRn. So the problem
is closely related to that of studying the points that minimize the distance from the given
point y to the closure of TV ,

dist(y, closTV)2.

3

Once that such minimizing points are found, it is a linear algebra problem for finite
points to obtain the corresponding x’s. If A has rank less than m, there will be an affine
subspace of such x’s corresponding to each minimizing point; this “subspace singularity”
is observed in experiments with backpropagation but is totally uninteresting from a
theoretical viewpoint. The real interest here is in the points in closTV . (In the classical
least squares problem, which would correspond to having no mapping θ, the pseudoinverse
solution then picks the x of minimum norm that maps into a minimizing point.)

Since θ was assumed to be odd, the problem can be reduced to the one where y is
the special vector

e = (1, . . . , 1)′.

If y 6= e, it is only necessary to change the signs of suitable entries of the matrix A
(equivalently, modify V ,) to reduce to this case. Thus, our problem is finally that of
minimizing (locally and globally)

dist(e, closTV)

where V is an m-dimensional subspace of IRn. Note that closTV is compact, being a
closed subset of [−1, 1]n, so there is at least one global minimum. The first interesting
case is that of n = 2,m = 1. We now show that already in this case, more than one local
minimum may exist. The subspace V may be classified into one of three types:

1. the span of a vector of the form
(

0
a

)
,

2. the span of a vector
(

1
a

)
with a ≥ 0, or

3. the span of a vector
(

1
−a

)
with a > 0.

In the first case
closTV = {0} × [−1, 1],

so the distance is 1 and is achieved at the unique point
(

0
1

)
, and there are no other local

minima. In the second case, if a = 0 there is again a unique minimizing point,
(

1
0

)
,

while if a 6= 0 the point e is itself in closTV , since

lim
z→∞

(
θ(z)
θ(za)

)
=
(

1
1

)
,

so the distance is 0 and is achieved only at e. There are no local minima: parameterizing
the squared distance function as

E(x) = (θ(x)− 1)2 + (θ(ax)− 1)2

4

we have that its derivative

E ′(x) = 2(θ(x)− 1)θ′(x) + 2(θ(ax)− 1)2θ′(ax)a

is always negative because the first term is negative and the second is nonpositive.

The last case is much more interesting. We shall show that for a subspace V spanned

by the vector of the form
(

1
−a

)
with large a, at least two local minima may appear.

Actually, we show that in this case there is a local maximum for E as a function of x
(with finite x), from which the conclusion will follow. Since both(

1
−1

)
and

(−1
1

)
are in closTV , the minimum distance is at most 2. Note also that

dist(e, T
(

1
−a

)
) > 2

for large a. Indeed, the square of this distance is

(θ(1)− 1)2 + (θ(a) + 1)2;

as a→ +∞ the second term approaches 4 while the first is a positive constant.

Thus for x = 1 the cost in (**) is larger than 4, while as x→ ±∞ this cost approaches
4. It follows that there is a finite maximum and that there is at least one local minimum
(possibly infinite) on each side of x = 1. In fact, further analysis shows that there is one
local (actually, global,) minimum in the interior (x finite) and one at x = +∞.

Figures 1 and 2 show respectively a typical graph of the squared distance function
E, for cases 2 and 3 (with large −a). These graphs can be understood better when
seen in conjunction with the plots of the images TV for those two cases, figures 3 and 4
respectively. (The function θ = tanh was used here.)

3 Diverging weights

Experimenters with backprop typically make the algorithm stop learning when perfor-
mance in new problems is adequate, for instance, when correct classification is attained
for a set of consecutive inputs. It is our opinion that this stopping criterion may not be
adequate if the ultimate objective is to generalize from examples. For such an objective,
it may be important to force weights (the “x’s” in the previous section) approach their
optimal values. Looking at networks that have “learnt” a certain classification problem
may otherwise not provide any clues as to what precisely the network has learnt.

During application of the backprop algorithm, it often appears that weights have
converged (to finite values). For instance, the difference between consecutive iterates

5

becomes less than any given tolerance. What is perhaps not so well-known is that weights
may very well be diverging, but at a logarithmic (or qualitatively similar) rate, which
implies in particular that the differences between iterates will indeed go to zero, even if
the actual values aren’t.

To see why a logarithmic growth may be possible, consider the easiest example of the
above setup, namely the gradient minimization of

(θ(x)− 1)2,

where θ(x) = tanh(x). (In more realistic examples, if one of the coordinates xi dominates,
one might expect a behavior for xi that is close to the one for this equation.) Here the
associated gradient system is

ẋ = α(1− θ(x))(1− θ(x)2),

where α > 0 is the “learning rate”. Rescaling time, we may assume that α = 1. The
right hand side is always positive, so solutions go to +∞, as they should since the only
local (and hence global) minimum is there. We make the substitution y := θ(x). Then y
satisfies the differential equation

ẏ = (1− y2)2(1− y) = (1 + y)2(1− y)3,

which for y ' 1 (i.e. x large) is approximated by

ẏ = 4(1− y)3.

The solution of this latter equation is up to a constant equal to

1− 1√
8t+ 1

.

It follows that

x(t) = tanh−1(y(t)) = log

(
1 + y(t)

1− y(t)

)
has asymptotically the form a+ b log t, as claimed.

Of course the above argument is not a rigorous proof, and in any case the general
situation (many inputs and outputs, hidden neurons) is much more complicated. But we
tried nonetheless some experiments in which we measured the rate of change of weights
w(t) during backprop. If log growth occurs, the expression

t[w(t+ 1)− w(t)]

which approximates t.ẇ(t), would have to become eventually constant. Figure 5 shows
typical results (in this case, on the “XOR” problem,) that seem to confirm the above
heuristic argument. (This graph was obtained by Hasanat Dewan, from the Rutgers
Computer Science Department, who tested the hypothesis numerically.) We plan much
more experimentation along these lines in the future.

6

If the “log rule” turns out to have wide applicability, it may be used eventually
to speed learning. Once that diverging weights are in logarithmic growth mode, it is
possible to extrapolate their limiting values, or more importantly for implementations,
one may increase these values while preserving whatever proportions are needed, in order
to improve network performance.

We close with an observation which shows that, under many circumstances, some
weights will indeed diverge. (A more general result, for multilayer nets and corresponding
recognizable sets, should also be possible.)

Lemma. With the notations of the previous section, assume that the rows of the
matrix A are all contained in a half space and are linearly independent (classical “linear
separability” condition). Then the gradient system

ẋ = −α(∇E)′(x)

where
E(x) = ‖e− TAx‖2,

has no bounded solutions.

Proof. Let ν 6= 0 be so that each coordinate of Aν is nonnegative and at least is
strictly positive. Then

∇E(x).ν = −2
∑
i

(1− θ(
∑
j

aijxj))θ
′(
∑
j

aijxj))Aiν

(Ai denotes the i-th row of A) is negative for all x, since at least one of the summands
is strictly positive. Thus ∇E is always nonzero, so E decreases strictly along every
trajectory. The rest is a standard Lyapunov-type argument. Indeed, assume that x(·) is
a trajectory that stays in a compact, and let ρ > 0 be the infimum of the values E(x(t))
along this trajectory. There is a sequence of times ti so that

E(x(ti))→ ρ

and we may assume without loss that the sequence {xi}, xi := x(ti), converges to some
(finite) ξ. Thus by continuity E(ξ) = ρ. But a trajectory starting at ξ will have smaller
E, so

E(x(ti + ε)) < ρ

for any ε > 0 and i large enough, contradicting the choice of ρ.

4 Conclusions

We have shown that even in the simplest possible case it is possible to have a nontrivial
local minima structure, and we have made some remarks about the rate of growth of
diverging coefficients. As suggestions for further work, we wish to state the following:

7

• Study the local minima structure for more realistic examples. How many local
minima may appear? For instance, can there be a number exponential on the
number of neurons?

• Are there special characteristics of backprop problems corresponding to “practical”,
–for instance geometric,– tasks that make the local minima structure simpler in
those cases?

• Is it really worth using relaxation methods?

• Is the log rule verified in large scale examples? If so, can it be usefully employed
to extrapolate from limited learning?

5 References

[Ar87] Arbib, M.A., Brains, Machines, and Mathematics, Second Edition, Springer, 1987.

[Hi87] Hinton, G.E., “Connectionist learning procedures,” Technical Report CMU-CS-
87-115, Comp.Sci. Dept., Carnegie-Mellon University, June 1987.

[KGV83] Kirkpatrick,S., C.D.Gelatt, and M.P.Vecchi, “Optimization by simulated an-
nealing,” Science 220(1983): 671-680.

[KH88] Kung, S.Y. and J.N.Hwang, “An algebraic projection analysis for optimal hidden
units size and learning rates in backpropagation learning,” in Proceedings of the IEEE
Int’l Conf.on Neural Networks, San Diego, 1988.

[PDP] Rumelhart, D.E., and J.L. McClelland, Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, MIT Press, 1986, volume 1.

[SS85] Sontag, E.D., and H.J. Sussmann, “Image restoration and the annealing algo-
rithm”, Proc. IEEE Conf. Dec. and Control, 1985, pp.768-773.

8

