
Tool Demonstration: An IDE for
Programming and Proving in Idris

Hannes Mehnert
IT University of Copenhagen

hame@itu.dk

David Christiansen
IT University of Copenhagen

drc@itu.dk

Abstract
Dependently typed programming languages have a rich type sys-
tem, which enables developers to combine proofs with programs,
sometimes even eroding the boundary between the activities of
proving and programming. This introduces new challenges for in-
tegrated development environments that must support this bound-
ary. Instead of reimplementing large parts of a compiler, such as
a type checker and a totality checker, we extended the Idris com-
piler with a structured, machine-readable protocol for interacting
with other programs. Furthermore, we developed an IDE for Idris
in Emacs, which uses this structured input and output mode, that
attempts to combine features from both proof assistant interfaces
and rich programming environments such as SLIME. The Idris ex-
tension turned out to be generally useful, and has been used in ap-
plications such as an IRC bot, an interactive website for trying out
Idris, and support for other editors.

1. Introduction
Dependently typed programming unites the previously disparate
practices of software development and theorem proving. However,
tool support for programming with dependent types typically takes
one of these activities to be primary. Additionally, dependently
typed programming has unique difficulties, such as the need to de-
fine total functions and the need to keep in mind type-level compu-
tation when defining terms. Thus, we should expect that good in-
tegrated development environments (IDEs) will be at least as valu-
able for dependent types as they are in traditional programming
paradigms. An IDE relies on large parts of a full compiler for a
language, such as a parser for highlighting and navigating code,
a type checker to report type errors quickly, an interactive proof
mode to discharge proof obligations, and so forth. Instead of im-
plementing these parts from scratch and having to maintain these
separately, we extended the Idris compiler with a structured input
and output mode. This article describes an Idris IDE for Emacs1,
affectionately referred to as idris-mode. idris-mode is imple-
mented using a high-level communications protocol, which we call
Idris’s ideslave extension. We demonstrate that ideslave can

1 https://github.com/idris-hackers/idris-mode

[Copyright notice will appear here once ’preprint’ option is removed.]

support a rich, interactive IDE, but also that it is sufficiently gen-
eral to support a variety of other tools and interaction models. In our
presentation, we will describe both the features of the IDE that we
have found useful and the implementation strategy that has allowed
the work to be more generally useful.

2. Description
The goal of the Idris language project is to produce a general-
purpose programming language with dependent types, in which
it is possible to write reliable programs with predictable, fast per-
formance. Idris supports the traditional semantic features of strict
functional programming, such as tail-call elimination. Functions
and datatypes can be defined similarly to other languages. Addi-
tionally, because Idris has full dependent types, the total subset of
the language can be used freely in the type system, and pattern-
matching recursive definitions can be used to construct proofs in
the style of Agda. However, this style of proving is not always the
most convenient. Thus, Idris also supports Coq-style tactic proof
scripts.

In daily use, Idris requires users to shift their perspective from
proofs to programs and back again, repeatedly. Thus, an Idris IDE
should support both perspectives concurrently. The Idris IDE for
Emacs draws from three primary sources of inspiration:

• The Common Lisp development environment SLIME2, for
writing functional programs in a rich interactive environment;

• Proof General (Aspinall 2000) and Coq IDE, for stepping
through tactic scripts;

• and Agda’s Emacs mode, for interactive theorem proving with
pattern matching.

However, the developers of a compiler are not necessarily in a
position to understand what users intend to do with their program-
ming language, and users have their own tool preferences that are
separate from compiler writers’ taste in editors. Thus, rather than
implementing a tightly coupled environment in the style of modern
IDEs, we have instead modified the Idris interactive shell to include
a machine-readable protocol, similar to that done provided by re-
cent versions of Coq (since 8.4) and by the interaction between
SLIME and its connected Lisp compiler.

The queries that are supported by Idris’s ideslave mode in-
clude queries about the state of the compiler, such as e.g. requesting
the type of a top-level identifier, requesting the built-in documenta-
tion associate with a name, or determining which definitions refer
to a particular name or are referred to by its definition. Addition-
ally, the Idris read-eval-print loop (REPL) has a number of com-
mands that are intended to be used to implement interactive edit-
ing features, such as case-splitting a pattern variable, adding miss-

2 https://github.com/slime/slime/

1 2014/5/2

https://github.com/idris-hackers/idris-mode
https://github.com/slime/slime/


ing pattern-match clauses to a function definition, and generating
with-blocks. These features are also supported by the ideslave
protocol.

Output from the Idris REPL at the command line is semantically
colored, helping users to distinguish between defined constants,
type constructors, data constructors, and bound variables. The
output from ideslave extends this, providing semantic informa-
tion such as documentation summaries, types, and fully-qualified
names. In Emacs, this information is shown in tooltips. Addition-
ally, these annotations are used to make every machine-rendered
Idris term into a collection of hyperlinks to documentation and
type information, and terms occurring inside the documentation
are no exception.

While ideslave makes no assumptions about the interaction
mode of a theorem proving interface, it is straightforward enough
to allow for preliminary support for a style of interaction similar
to Proof General, where buffers are shown containing the current
proof goal and the tactics that have been executed thus far. Users
can then step forwards and backwards through the tactic script,
in an experience somewhat reminiscent of debugging imperative
programs. Stepping through a tactic proof is sometimes the only
way to understand why it works, especially if it has not been
carefully designed for maintainability.

Perhaps unusually for dependently-typed languages, idris-mode
supports compiling and executing programs from within the IDE.
Users need only select a menu item, and the executing program
is attached to an Emacs process buffer. Additionally, idris-mode
supports expected features such as hopping from an error message
to its origin in an Idris source buffer.

The ideslave interaction feature was intended to allow mul-
tiple text editors to support Idris well with the minimum possible
effort. Presently, it is used for an Idris plugin for the Atom text ed-
itor3. However, it has also proven to be useful for other tools, such
as an IRC bot4 that can normalize terms and look up documentation
in Idris’s IRC channel and a Web page that allows users to interact
with an Idris compiler through their browsers5. While we did not
design the ideslave protocol with these applications in mind, it
turned out to be general and flexible enough to be reused by the
developers of the mentioned applications.

3. Related Systems
Proof General (Aspinall 2000) is a widely-used interface to a va-
riety of proof assistants. Proof General’s interaction model is one
of stepping through a proof script, one statement at a time, with
the intermediate proof states shown at each step. In many ways, it
resembles debuggers for imperative languages. While this model is
quite pleasant for working with tactic-based systems such as Coq,
it does not provide strong support for defining new functions. Func-
tion definitions must typically be typed in as a single unit, and then
they are sent to the underlying proof assistant as a whole unit.

Agda mode for Emacs takes a different approach, reflecting that
an Agda file is not an imperative script for constructing terms, but
instead it is a collection of terms and definitions. In Agda mode,
the entire buffer should be type-correct at all times, rather than
accepting definitions one at a time. Strong support is provided for
working with definitions. The right-hand sides of definitions are
allowed to contain holes, the contents of which are exempted from
type checking. The editor’s interactive tools allow users to type-
check the contents of a hole and insert them, case-split a pattern

3 https://github.com/fangel/atom-language-idris
4 https://github.com/idris-hackers/idris-ircslave
5 http://www.tryidris.org/console, source https://github.
com/puffnfresh/tryidris

variable, attempt to automatically fill a hole, and view the type of a
hole’s contents and the expected type.

Isabelle/jEdit (Wenzel 2012) supports many of the features that
we intend to have in idris-mode, such as type-directed comple-
tion of names that takes the context into the account, code nav-
igation, and interaction with a tactic-based theorem prover. Un-
like Proof General, Isabelle/jEdit allows the modification of tac-
tic proofs at any point, rather than “locking” the region that the
prover has accepted. This style of interaction represents an alter-
native, superior approach to writing tactic-based proofs. However,
the implementation complexity is far higher than a system in the
style of Proof General, and tactic proofs are a small enough part of
the daily practice of Idris development that it seems unlikely to be
worth the investment of effort.

4. Conclusion and Future Work
We designed and implemented an ideslave extension for the Idris
compiler (Brady 2013) that provides a machine-readable protocol
for interacting with the REPL. Additionally we develop an interac-
tive development environment for the editor Emacs which is used
by at least a dozen developers. Furthermore, the ideslave exten-
sion is used to provide an interactive REPL in the Idris IRC chan-
nel, a plugin for the Atom editor, and a web-based Idris editor.

In the future we plan to provide more features such as source
code navigation, including cross references and jumping to the
definition of a function; semantic highlighting à la Agda in which
source files are decorated in the same manner as compiler output.
Furthermore, we want to incrementally parse and elaborate source
files so that the interactive features work on buffers that do not yet
type check, but are under development.

References
D. Aspinall. Proof General: A generic tool for proof development. In

S. Graf and M. I. Schwartzbach, editors, TACAS, volume 1785 of Lecture
Notes in Computer Science, pages 38–42. Springer, 2000. ISBN 3-540-
67282-6.

E. Brady. Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation. Journal of Functional Program-
ming, 23(5):552–593, 2013.

M. Wenzel. Isabelle/jEdit — a Prover IDE within the PIDE framework.
arXiv:1207.3441, 2012.

2 2014/5/2

https://github.com/fangel/atom-language-idris
https://github.com/idris-hackers/idris-ircslave
http://www.tryidris.org/console
https://github.com/puffnfresh/tryidris
https://github.com/puffnfresh/tryidris

	Introduction
	Description
	Related Systems
	Conclusion and Future Work

