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1 Introduction

The primal dual and local ratio schemas for approximation algorithms are two
fundamental algorithm design techniques. The use of the primal dual schema is
pervasive, having been applied to give good approximation algorithms for several
basic NP-hard combinatorial optimization problems including set cover, vertex
cover, numerous network design problems, facility location and k-median, steiner
forest, and many others. The origins of the primal dual schema can be found in
the Bar Yehuda and Even [7] algorithm for the weighted vertex cover problem.
The re-introduction of the enhanced primal dual schema leading to its current
importance is due to the works of Agarwal, Klein and Ravi [1] and Goemans
and Williamson [15].

The list of problems tackled successfully by primal-dual and local-ratio algorithm
is long and impressive. For many of these problems the methods achieve the best
known approximation (see [24, 6] and references therein). But just how far can
these methods go? The goal of this paper is to shed some light on this question.
Our first step in achieving this is to put the two algorithmic schemas under
a larger umbrella – a syntactic computational model capturing both, devoid of
complexity considerations and that is related to the LP formulation via the input
model environment it works over. This model is what we call the stack model and
will be described in detail in Section 2. We then show hardness of approximation
results within this model for a few prominent problems in which the primal-dual
schema was applied before, sometimes achieving the best bound.

For the clarity of our exposition we will use the set-cover problem as a specific
running example. We shall focus our attention on what is considered to be the
common method of the primal-dual schema for covering problems. Let us be more
specific: our abstraction of this method corresponds to what Williamson [24]
calls the “primal dual algorithm with reverse delete step”. The more restricted
version of the method which was the first to appear is called “basic primal-dual
algorithm”, can be simulated by the priority model of [11]. In the priority model,
an algorithm considers each input item once (according to some ordering) and
immediately makes an irrevocable decision (i.e. accept or reject) about each input
item. For the simulation to be possible, the input items are in correspondence
with the 0/1 variables constituting the problem, and the input items contain
information about their cost and about the constraints they appear in. In the
set-cover example, the items are the sets and the natural representation of a
set is its weight and the list of elements it contains, namely the cost and the
constraints of the natural LP relaxation. We elaborate on this somewhat subtle
issue when we discuss the specific applications we deal with. Returning to priority
algorithms, there is some natural restriction on what orderings are permissible
and we shall argue that the primal dual schema always leads to a permissible
ordering. Roughly speaking, the permissible orderings are those that are induced
by any (not necessarily computable) mapping of all possible input items into
R. Also, the ordering in priority algorithms can be established afresh at every
iteration of the algorithm.
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A substantial leap forward in terms of the applicability of the primal-dual ap-
proach was made at the beginning of the nineties, namely the introduction of
the “reverse delete step” [15, 17, 21]. Roughly speaking, this is a phase that guar-
antees that the output of the algorithm is a minimal feasible solution (w.r.t set
inclusion). This property is shown to be crucial in the analyses of problems such
as minimum Steiner tree, the feedback vertex set problem, generalized steiner
forests, and others. As is shown in [24] the analysis may sometime depend not
only on the minimality of the produced solution, but also on the exact process
that ensures this minimality. The analogous leap in the world of abstract mod-
els leads us to the definition of the stack model. Here, instead of irrevocably
rejecting/accepting an item, the algorithm decides whether to reject or to push
an item onto a stack. Then the elements in the stack are popped and removed
when this is possible.

The stack model also captures the local-ratio schema as described in the survey
of Bar-Yehuda et al [6]. This should not be taken as a surprise as Bar-Yehuda
and Rawitz [9] have demonstrated that there is an equivalence between the
primal dual and local-ratio schemas. In fact, in this extended abstract we use
their observation to argue that the stack model simulates regular local-ratio
algorithms, without a concrete description of such a simulation.

In contrast to the extensive use of primal-dual and local-ratio for covering prob-
lems, the only (albeit important) use of the primal dual schema for packing
problems was the approximation of the bandwidth allocation problem in Bar-Noy
et al [5]. As was shown in [5], the local ratio technique can optimally solve the one
machine weighted interval selection problem whereas the negative result in [11]
precludes the possibility of any constant approximation to the problem within
the priority model. This provably shows that it is sometimes necessary to have
a second “clean-up” stage to obtain good approximation bounds.

It is important to note that, while most of the known applications of primal-
dual fall under “primal-dual with reverse delete”, there are several applications
that do not fit within the stack model framework. Of these, one of the most
prominent examples is Jain and Vazirani’s use of primal dual method for the
approximation of metric facility location and k-median problems [16]. Notice that
these problems are not covering or packing problems, and therefore inherently
in need of a more specialized algorithmic paradigm. A more basic example is the
steiner tree algorithm for the special class of quasi-bipartite graphs [18]. Their
method provides a 3/2 + ε approximation by combining local search with primal
dual and using the so called bidirected LP relaxation as a starting point. (This
method utilizes a non-standard input representation by considering each edge as
two directed edges and hence automatically falls outside of our model.) Another
example of a primal-dual/local-ratio algorithm that does not fit our model are
the so called fractional local-ratio/primal-dual algorithms which first solve the
LP, and use the solution as a guide to ordering items [8] and [10].
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2 The Stack Model and its ancestor the Primal-Dual

Consider an integer program for a covering problem, and assume that the vari-
ables to the problem are the natural 0/1 variables of the problem, and that the
constraint matrix A and the cost vector c are nonnegative. In a nutshell, what a
primal dual schema does is to consider an LP relaxation of this IP and the dual
maximization problem and (i) starts with the feasible dual solution y = 0 (ii)
increases y continuously until a dual constraint(s) becomes tight (iii) in this case
the corresponding primal variable(s) enter the solution (iv) continues as long as
the primal solution generated so far is not feasible (v) goes over the primal vari-
ables in the solution in a reverse order and removes them whenever feasibility
is maintained. Notice that we haven’t specified exactly how the dual vector y
is increased, and we choose to stay at this level of generality. Returning to our
set-cover example, the dual variables in the natural LP relaxation are elements
of the ground set. We increase all the dual variables that do not occur in a tight
equation (uncovered elements) uniformly, until a new set (dual constraint) be-
comes tight, in which case this set joins the solution. Step (v), the reverse-delete,
removes a set if it is not needed, while following the reverse order.

We now get to the critical observation that later leads to the abstraction of the
model and to our lower bounds. Notice that the above process induces, at each
iteration, an ordering on the primal variables that has not entered the solution
yet. If at any point an adversary announces that a primal variable that has
not yet become tight has never existed, the algorithm has no way to recognize
such a change as it has no effect on the algorithm’s history. An adversarial
approach can be developed from this limitation of the algorithm and may lead
to inapproximability results.

This sets the stage for the stack model. We consider a two-pass algorithm, in
which the first pass, the push phase, resembles an adaptive priority algorithm,
as defined in [11], and the second pass, the pop phase, is a simple greedy phase
that is not under the control of the algorithm. Here is a precise description.
The algorithm first orders the items by some valid ordering. This is just a total
ordering of all possible input items. In our example, one can imagine ordering
by cardinality of sets, or more generally by any function f1 on the characteristic
0/1 vectors and the weight of the sets. Next, it looks at the first item, and either
pushes it onto the stack or rejects it. It then may decide to change the ordering
using the information of the first item (defining f2 after looking at the first set).
Again, the first (unseen) item in this ordering is either pushed or rejected. This
process continues for at most n iterations, 1 at which point the algorithm enters
the “pop phase” in which items are popped from the stack (last in, first out).
The solution to be produced is a subset of the items on the stack and is defined
as follows. Each popped item will be rejected if the items that were popped
and accepted, together with the items still on the stack constitutes a feasible

1 As we shall see later, the stack algorithm can end the push phase once a feasible
solution exists on the stack, as the items past this point are bound to get deleted
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solution; otherwise it is accepted. It is easy to see that if, at the beginning of the
pop phase, we have a feasible solution, we will have one at the end, and further,
that solution is minimal w.r.t set inclusion.

Having defined the stack model, we are ready to make the central claim of
this section : Every primal dual algorithm under the scheme described above
can be simulated by a stack algorithm. It is here that we insist that the input
representation of an item contains its cost and the objects that correspond to
the constraints that include it. Indeed, regardless of the way y is increased, we
get a primal variable that matches a dual constraint that was just made tight.
The variable(s) made tight is the one (are those) minimizing the expression

f(i) = ci −
∑

j:aij>0

aijyj .

But, since the information about item i includes ci and the positive aij , and
since the algorithm may keep track of y we conclude that f : [n] 7→ R is a valid
ordering function as it is a function on the items. The first item is taken 2 and
the stack algorithm pushes it and continues. The pop phase is clearly a reflection
of step (v) in the primal dual schema.

If the ordering used during the push phase is determined at the beginning and
is not changed during the process, we call this a fixed order stack algorithm.
Without this restriction we say the ordering is adaptive.

We now consider the modifications needed in order to define a stack model for
packing problems. Here too, we have a push phase and a pop phase where the
push phase proceeds like a fixed or adaptive priority algorithm in determining
which items to place on the stack. The pop phase starts with the empty set as
its existing solution, and then adds popped items to the existing solution unless
the addition of the item renders the current solution infeasible. 3

We briefly indicate how we can derive negative results for approximation ratios in
the (adaptive ordering) stack model. An adversary initially presents a large set
of potential input items. As the computation proceeds, the adversary is allowed
to delete input items. We note that the adversary is allowed this license since
the ordering functions depend only on the item and any previously considered
items. Eventually the algorithm will consider all input items that have not been
deleted and that will end the push phase. Then since the pop phase is completely

2 If some items become tight simultaneously this is simulated by taking those items
one after the other

3 The reader may suspect that there should be a way to define a packing stack model
as a “dual” to the covering model, exchanging the role of acceptances and rejections.
This can indeed be done if we take a somewhat more general definition of the model
where during the “push phase” we also allow the algorithm to permanently accept
an item rather than just placing it on the stack as as “candidate for acceptance”.
This additional power does not seem to have been used in known algorithms and for
the purposes of this paper we only allow permanent rejections in the push phase.
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determined, we can calculate the cost/profit of the stack algorithm and compare
it to an optimal solution for the actual set of items (i.e. the input items not
deleted by the adversary and hence considered by the algorithm). For the case
of fixed-order stack algorithms, the adversary can often construct the initial set
of potential items in such a way that some “difficult structure” exists within a
subset of the items no matter how the algorithm chose its order.

The reader may notice that in moving from the primal-dual methodology to the
abstraction we describe, the linear structure of the (relaxed) problem disappears.
One may also ask what role does the integrality gap play in this discussion? As
was observed [24], the ratio guarantee of primal dual algorithms is never better
than the integrality gap for the specific linear program relaxation used by the
algorithm. However, any formulation of the problem as an LP with positive coef-
ficients can lead to a primal dual algorithm, which in turn provides an ordering of
the elements that gives rise to a stack algorithm. In other words the abstraction
helps us to understand the power of primal dual algorithms with respect to ev-
ery LP relaxation with positive coefficients under the (nontrivial) condition that
the variables are the “natural” ones, and that the input representation “knows”
the cost of an item and the constrains involving it. Specifically, to show an in-
approximability result for a suggested LP relaxation we are required to adjust
the input-representation when we give the stack lower bound. In vertex cover,
for example, we may look at the LP relaxation that uses the inequalities that
require variables of the vertices in an odd cycle of size l to sum up to (l + 1)/2
(on top of the regular inequalities). Notice that this type of tightening is a result
of a lift and project method and was discussed in the context of hardness result
in [4]). If we manage to get a lower bound for an input representation in which a
vertex knows all the edges and all the odd cycles containing it, this would imply
a lower bound for PD algorithm applied to this relaxation!

3 The minimum set cover problem

We consider the classical minimum set cover problem. We are given a family of
subsets S1, S2, . . . , Sm of a ground set U of size n. In addition, each set Si is
associated with a cost ci. The goal is to minimize the cost of a collection of the
Si that cover every element in U . The unweighted version of the problem seeks
to minimize the number of subsets chosen.

The well known natural greedy algorithm for set cover selects sets with minimum
cost per size ratio, and continues recursively on the remaining set of uncovered
items with the remaining sets. The natural greedy algorithm yields an H(n)
approximation. Notice that this algorithm is a priority algorithm, and hence a
special case of a stack algorithm.

Raz and Safra [19] showed that if P 6= NP , then for some constant c > 0,
set cover cannot be approximated within a ratio of c log n in polynomial time.
Using a stronger complexity assumption, namely that NP 6⊂ DTIME(nlog logn),
Feige was able to show an almost tight bound (1− ε)H(n). But these hardness
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results do not apply to our model as the stack algorithm is not restricted to run
in polynomial time. Furthermore,, stack algorithms may be nonuniform, in the
sense of allowing a different algorithm for each n, the the number of input items.

As a warmup, we show how to get a (logn + 1)/2 inapproximability for the
weaker priority algorithm model. The following is a reformulation of a similar
result from [2].

Let the ground set be the discrete cube {0, 1}l where l = log n, and let the initial
input be the 2l sets corresponding to the facets of the cube, in other words, all
sets {x ∈ {0, 1}l : xi = b} where i = 1, . . . , l and b ∈ {0, 1}. Notice that this input
consists of n pairs of complementary sets. Assume wlog that the first set chosen
is {x : x1 = 0}. We argue that it must be taken, as otherwise the adversary
may announce that the opposite face, {x : x1 = 1}, is the only remaining set
in the input, which means that while there is a covering, the algorithm would
not produce one. The algorithm therefore accepts {x : x1 = 0}. In response,
the adversary removes the set {x : x1 = 1}. At this point we remain with the
exact same problem, but with l decreased by 1. Since for l = 1 there are 2 sets
that need to be accepted, we get that there are l+ 1 sets that the priority takes
instead of just two. This gives the desired bound.

The above demonstrates the additional power of stack algorithms : if the last two
sets we take are a complementary pair, then the recursive nature of the algorithm
means that all the sets but this pair will be eliminated in the pop phase. The
new set up we define for the lower bound is therefore more involved, but still uses
a succinct algebraic description. We note that a somewhat similar construction
is used [23] to show that the integrality gap of the natural LP relaxation for set
cover is Ω(log n).

As before, the ground set U is the cube {0, 1}logn. The initial input to the
algorithm consists of 2(n− 1) sets, Sbv where v ∈ {0, 1}logn \ {0}, and b ∈ {0, 1}.
Set Sbv contains all points x for which 〈v, x〉 = b where 〈·, ·〉 is the inner product
over GF2. The sets can be viewed as the inverse images of 0 (1) of all the
nontrivial Fourier characters of the boolean cube. We note that for any v, S0

v

and S1
v are a pair of complementary sets.

We require a simple lemma relating the combinatorial properties of sets in our
system to the algebraic properties of the vectors that define them:

Lemma 1. For any set of linearly independent vectors {v1, . . . , vk} and any
choice of b1, . . . , bk, the number of elements of U left uncovered by {Sb1v1

, . . . , Sbkvk}
are selected is exactly n/2k. In particular, any family of sets whose corresponding
vectors are linearly independent does not cover U completely.

Using the set-system above, we will show that no stack algorithm can achieve a
set cover smaller than log(n+1), while the optimal set cover is of size 2. At stage
i of the stack algorithm, the algorithm chooses a set Sbivi to look at next. Recall
that the adversary may remove sets from the input as the algorithm proceeds.
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At each step i, i < log n, suppose the algorithm accepts Sbivi . Then, the adversary
removes all the sets Sbv with v ∈ span{v1, . . . , vi}. Notice that this strategy
ensures that as long as i ≤ log n, the set of vectors defining the sets in the stack
are linearly independent. In particular, for any vector v, S0

v and S1
v cannot both

be on the stack.

In the other case in which the algorithm rejects the set Sbivi , we argue that
the algorithm may fail to generate any set cover. Indeed, as a response the
adversary simply deletes all unseen inputs except for S1−bi

vi . Note that vi 6∈
span{v1, . . . , vi−1} so this is a valid strategy. But even if the algorithm takes
that last set, the stack still contains sets with corresponding linearly independent
vectors {v1, . . . , vi}, which by Lemma 1 does not form a cover. But of course
one exists as the input contains the two complementary sets {Sb0vi , S

b1
vi }. This

argument holds also for i = logn.

Now, assuming that the algorithm continues to accept, after the (log n)-th step,
the algorithm has accepted log n sets whose defining vectors are linearly indepen-
dent, leaving exactly n/2logn = 1 uncovered element. The adversary will delete
all sets except for S0

v∗ and S1
v∗ , where

v∗ =
logn∑
i=1

vi.

(these sets were not removed before as v∗ 6∈ span{v1, . . . , vlogn−1}). At this point
our the “game” is over, and the input to the algorithm is determined. The stack
contains log n linearly independent sets and there are the two remaining sets
that the algorithm must consider. Clearly, the sets S0

v∗ and S1
v∗ constitute a set

cover of size 2. It remains to argue that the algorithm must take logn+ 1 sets.
Since only one element is left uncovered before the two complementary sets are
considered, one of the sets is contained in the union of the sets on the stack. This
means that this set will be rejected in the pop phase and we may as well assume
the algorithm rejects it. The algorithm now has log n+ 1 sets on the stack.

We claim that all of these sets must survive the pop phase. Indeed, by the special
choice of v∗ the vectors v1, . . . vl, v∗ are in general position, that is no log n of
them are linearly dependent. Since, by the independence of v1, . . . vlogn there
may be only one dependency between the log n+ 1 vectors, and since summing
all of them is a dependency, we know that there are no other dependencies,
and so the vectors are indeed in general position. We use the corollary again
to deduce that no strict sub-family of sets may cover the ground set, and in
particular no set can be removed in the pop phase. We have established

Theorem 1. No stack algorithm can achieve an approximation ratio better than
log(n + 1)/2 for the unweighted minimum set cover problem, where n is the
number of elements in the ground set to be covered.
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4 The Steiner Tree Problem

In the Steiner tree problem we are given a weighted graph and a set of distin-
guished terminal vertices T . The goal is to choose a subset of edges that connect
all terminal vertices, so as to minimize the sum of the weights. The primal-dual
algorithm that achieves a 2-approximation uses the natural LP relaxation in
which the IP constraints dictate that every cut separating T is crossed by an
edge. The input representation we consider is with edges as items. The informa-
tion in an item is its weight and the identity of the vertices of the edge. Also, the
names of the vertices is known and whether they are terminals or not. Notice
that this allows us to know all the separating sets an edge crosses. We later
mention that a lower bound under a much richer input representation is possi-
ble, and will discuss the resulting implication. The reverse delete step ensures
that if an edge is not needed it will not be taken. In fact, here this step is easily
seen to be essential, and the analysis depends on the fact that the resulting set is
minimal w.r.t set inclusion. In this section we show that stack algorithms cannot
approximate the problem with better than a 4/3 factor.

What is known about the Steiner tree problem outside of the scope of our stack
model? In [22], it is shown that unless Co-RP = NP , no approximation ra-
tio better than about 1.007 is possible for the Steiner Tree problem. The best
known algorithm to the problem, due to Robins and Zelikovsky [20] achieves ap-
proximation ratio of 1.55 and is not a local-ratio/primal-dual algorithm. For the
class of quasi-bipartite graphs (i.e. graphs not containing edges between Steiner
nodes), their algorithm achieves a ratio of about 1.28, slightly better than our
lower bound of 4/3 for any stack algorithm. We note that our proof applies to
quasi-bipartite graphs. In some sense this shows that the algorithm in [20] is
superior to any primal-dual approach. We now turn to our result.

Theorem 2. No stack algorithm can achieve a worst-case approximation ratio
better than 4/3 for the (unweighted) Steiner tree problem.

Proof. Our proof is motivated by the priority lower bound of Davis and Impagli-
azzo [13]. Initially we consider the complete bipartite graph G =< T∪S,R×S >,
where T = {t1, t2, t3} are the terminals and S = {s1, s2} are the steiner nodes.
The algorithm is given the set of terminals and steiner nodes in advance, but is
not provided with a list of edges. After each stage of the algorithm, the adversary
has the option of deleting any edges that have not yet been seen.

The main ingredient of the proof is the following lemma.

Lemma 2. In the push phase, consider the first time t that the algorithm has
seen two edges connected to some sj assuming it has not rejected any edges
before time t. Call this event D. Then the solution produced by the algorithm
must contain these two edges.

Observe that the stars rooted at s1 and s2 both have cost 3, while the other
steiner trees must use both steiner nodes, and will have cost 4. Note that if an
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edge adjacent to either steiner node is missing (i.e. deleted by the adversary)
then the star rooted at the other steiner node will be the only Steiner tree with
cost 3. Here then is the lower bound strategy. The adversary lets the algorithm
run, and waits until either the algorithm rejects an edge, or event D happens.

Suppose that the algorithm rejects an edge before event D happens, say the one
connected to s1. Then the adversary simply deletes an unseen edge adjacent to
s2. Such an edge must exist, since event D has not occurred yet. This makes the
star rooted at s1 the unique optimal solution, but the algorithm has just rejected
an edge in that star. Hence, in this case the algorithm can achieve a cost of at
best 4, for a ratio of 4/3.

Now, suppose that event D happens first. The algorithm pushes the two edges
connected to, say, s1. At this point the adversary deletes the third edge adja-
cent to s1, leaving the star rooted at s2 as the only optimal solution. But by
Lemma 2, the algorithm cannot return this unique optimal solution , since it is
bound to take both edges connected to s1 in the solution. This again leads to
an approximation lower bound of 4/3.

By a somewhat more involved example and analysis we can prove a 7/6-approximation
lower bound when we allow the algorithm to not only know in advance the nodes
of the graph, but also the edges of the graph. The only thing not known in ad-
vance is the edge costs. This relates quite nicely to the discussion about what
LP relaxations we may consider: when all the information is known but the
cost vector, then any LP relaxation with the natural variables and with positive
constraint coefficients is captured by the model.

5 Packing problems: scheduling

As was mentioned in the introduction, Bar Noy et al [5] provide the only use
to date of local-ratio/primal dual for packing problems. Several problems are
discussed there, the most general one being the NP -hard bandwidth alloca-
tion problem. Here we concentrate on one (polynomial time solvable) special
case, namely weighted interval scheduling on 2 identical machines (WISP2),
and show that 0.913 is an upper bound 4 to the approximation of this problem
by a fixed order (packing) stack algorithm. This should be contrasted with the
optimal local ratio algorithm for one machine interval scheduling (WISP1) and
the 2/3-approximation supplied in [5] for WISP2. We also note that an optimal
algorithm for WISPm can be obtained by a time O(nm) dynamic programming
algorithm or a time O(n2(n−m) min cost max flow based algorithm [3].

For the interval scheduling problem (and the more general bandwidth allocation
problem) the natural input representation is that the input items are intervals
represented by their start times, their finish times and their weights (profits).
This representation is thus good “against” the natural LP formulation in which
4 As this is a maximization problem we will present approximation ratios to be less

or equal to 1 and hence an “upper bound”on the ratio is a negative result.
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the constraints are the bounds on the number of intervals that can be scheduled
at any time instance t.

For our packing results, we are thus far only able to provide bounds for fixed order
stack algorithms. This, however, does capture the one “meta-algorithm” that Bar
Noy et al use to solve various cases of the bandwidth allocation problem. The
fixed order there is determined by non-decreasing finishing times which is also the
order used for the optimal greedy algorithm for unweighted interval scheduling,
and for the one pass algorithms of Erlebach and Spieksma [14]. Obviously our
bound does not require that this is the ordering used by the algorithm.

To provide a bound for a fixed-order model (be it priority algorithm, backtrack-
ing algorithm [12], or a stack algorithm), it is often useful to provide an initial
input set and claim that regardless of the ordering of elements in that set, some
combinatorial property must apply to a subset of the initial set. This is anal-
ogous to the Ramsey phenomena in graphs; i.e. in every colouring we can say
something about one of the colour classes. Restricted to such a (now ordered)
subset, we are able to bound the quality of the algorithm (see [12] Theorem 4.1).

We start by describing forbidden configurations of the input with respect to an
ordering. The first forbidden configuration are intervals I, J,K that appear in
that order and with profits x, y, z respectively, so that I∩J ∩K 6= ∅, and so that
y < x, z. We claim that if there is such a configuration, the best approximation
ratio achievable is

max{x/(x+ y), (x+ y)/(x+ z), (y + z)/(x+ z)}. (1)

To see the claim, consider the action of the algorithm on input that contains
(at most) only I,J and K. If the algorithm decides to reject an interval, that
interval becomes the last interval of the input. This leads to approximation ratios
0, x/(x + y) or (x + y)/(x + z) when rejecting the first, second or third items
respectively. In the more interesting case, all intervals are accepted to the stack,
and in the pop phase I will be rejected as it will be popped when J and K are
already in the solution. Therefore the algorithm achieves y + z while x + z is
possible, and the bound 1 follows.

Another forbidden configuration we consider is the following. There are four
intervals I1, I2, J,K of profits x, x, y, z respectively. I1 and I2 are disjoint, and
Ii ∩ J ∩ K 6= ∅ for i = 1, 2. Also assume that y < 2x, z and that the order is
I1, I2, J,K or K,J, I1, I2. By a slightly more careful yet similar analysis, we show
that this configuration implies a lower bound of

max{1/2, 2x/(2x+ y), (2x+ y)/(2x+ z), z/(y + z), (y + z)/(2x+ z)}. (2)

We now consider a laminar set of intervals, with containment relation depicted
in figure 1 by a rooted tree: an interval of a node is contained in the intervals
of its ancestors, and otherwise two intervals are disjoint. Further, the profits of
the intervals correspond to the level in the tree of the vertex representing the
interval, and is (from top to bottom) a, b, c, d. We will later fix these vales and
we only require here that a > b > c > d and 2d > b. We again can define



How well can Primal-Dual and Local-Ratio algorithms perform? 11

a set of forbidden configurations for such a set of intervals. We will show that
either a d or a c interval appears between two other intervals of greater profit
(configuration I) or a b-interval appears between a-interval and two c-interval or
a c-interval appears between a b-interval and two d-intervals (configuration II).
By appropriately substituting the a, b, c, d values for x, y, z in equations 1 and 2,
and deleting dominated terms (i.e. those that are guaranteed by the inequality
conditions on a, b, c, d not to be the maximum), we obtain the following bound
on the approximation factor achieved by any algorithm that chooses an ordering
containing one of these forbidden configurations:

max {a/(a+ d), (a+ c)/(a+ b), (a+ d)/(a+ c),
(c+ d)/(b+ c), 2c/(2c+ b), (2c+ b)/(2c+ a),
(a+ b)/(2c+ a), 2d/(2d+ c), (2d+ c)/(2d+ b)}

(3)

We now sketch the proof of the inevitability of the forbidden configurations.
Assume configuration I is avoided. In this case the a and b intervals must ap-
pear consecutively in the order. At least two of the c-intervals will then appear
after them or before them; we will delete the other c intervals and its d-interval
children. Another fact implied by the absence of configuration I is that each
d-interval must appear before or after all of its parent intervals. Consider the d
intervals of the c-interval that comes farthest away from a and b in the ordering.
(That is, if the two remaining c-intervals are before a and b in the ordering,
then take the c-interval that is ordered earlier, and if they are after, then take
the c-interval that is ordered later.) Since they must appear before or after their
three parent intervals, two of these d-intervals must appear at the head or tail
of the ordering. We delete the rest of the d-intervals. At this point we know that
there is an ordering of a, b, c, c, d, d intervals in which the pairs a− b , c− c and
d−d are all consecutive. It is easy to see that there are four possible arrangement
that avoid configuration I (left is early in the order) : d − d − c − c − a − b or
d−d− b−a− c− c or c− c−a− b−d−d or b−a− c− c−d−d. It now remains
to notice that all these arrangements contain configuration II : d − d − c − a,
d− d− b− a,a− b− d− d and a− c− d− d respectively. We are left with setting
values to a, b, c, d so as to satisfy the inequalities in the definitions of the for-
bidden configurations, and to minimize the maximum of the approximation over
all possible configurations. We optimize to get (a, b, c, d) = (10, 8, 3

√
30− 10, 5)

which leads to a lower bound of 0.913.

Theorem 3. For interval scheduling on two machines, no fixed ordering stack
algorithm can achieve a constant approximation factor better than .913.

We remark that the above can be extended to any number k of machines, and
leads to a 1−O(1/k) inapproximability result. This is not satisfying as the upper
bound for this case by local ratio [5] is 1

2−1/k for k ≥ 2 which limits to 1/2 as k
gets large.



12 Allan Borodin, David Cashman, and Avner Magen

6 Discussion and Conclusion

We have presented a syntactic model that captures the standard use of primal
dual/local ratio algorithms in the context of covering and packing problems. Our
framework exposes limits of these paradigms and hence hopefully suggests new
ways that modifications of these algorithmic techniques can be applied so as to
obtain better approximation guarantees while still maintaining the syntactic and
computational simplicity of the basic methods.

For example, our analysis of the interval scheduling problem does not preclude
the possibility of close to optimal and efficient (e.g. O(n log n) time) algorithms
for a large but fixed number of processors. For the more general bandwidth
allocation problem, we would like to be able to derive a stack algorithm that
can yield a ratio smaller than 1/2 for small bandwidths. We have also seen the
dependency of these methods on the input representation which corresponds to
the constraints used in an LP relaxation of the problem. For the natural repre-
sentations of set cover, steiner tree and bandwidth allocation/interval allocation
we can derive limitations on the approximation ratio of such algorithms. But our
bounds suggest that further improvements can be made even assuming we stay
within the natural input representation. Our stack framework also suggests some
natural extensions to the known primal-dual/local-ratio paradigm; for example,
allowing the stack algorithm to make irrevocable acceptances during the push
phase. The framework also encourages us to think of other reasonable ways to
order input items.
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7 Appendix

7.1 Proof of Lemma 1

Proof. The elements covered by the above sets are Sb1v1
∪ . . . ∪ Sbkvk , hence the

uncovered ones are
S1−b1
v1

∩ . . . ∩ S1−bk
vk

.
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Therefore, x is uncovered iff it is a solution of the system 〈v1, x〉 = 1−b1, . . . 〈vk, x〉 =
1 − bk. Since the vi are linearly independent, the co-dimension of the solution
space of uncovered elements is k and so it contains |F2|l−k elements and the first
part of the lemma follows. The second part is obvious.

7.2 Proof of Lemma 2

Proof. The lemma is not vacuous : for the graph to have a steiner tree, at least
one of the steiner node must have degree at least 2. These edges must be pushed
since at time t there is no way to preclude the possibility that the graph is a
path of length 4 (this is still consistent with the input so far) and therefore all
edges must be taken, and a reject is impossible.

To show that these two edges must be used in the solution produced by the
algorithm, we should show that there is no edge e in this pair that will be not
rejected in the pop phase. Assume otherwise, then by the definition of the pop
phase, there must be a cycle C containing e, so that e is pushed last among all
edges in C. But since the graph is bipartite, C must contain two edges out of the
other steiner node. This leads to a contradiction, since the later of these edges
to be considered must come after e in the order.

Fig. 1. Initial configuration of input for interval scheduling on two machines


