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ABSTRACT

The context-independent deep belief network (DBN) hidden
Markov model (HMM) hybrid architecture has recently achieved
promising results for phone recognition. In this work, we propose
a context-dependent DBN-HMM system that dramatically outper-
forms strong Gaussian mixture model (GMM)-HMM baselines
on a challenging, large vocabulary, spontaneous speech recognition
dataset from the Bing mobile voice search task. Our system achieves
absolute sentence accuracy improvements of 5.8% and 9.2% over
GMM-HMMs trained using the minimum phone error rate (MPE)
and maximum likelihood (ML) criteria, respectively, which translate
to relative error reductions of 16.0% and 23.2%.

Index Terms— Speech recognition, deep belief network,
context-dependent phone, LVCSR, DBN-HMM

1. INTRODUCTION

Despite many years of successful research and advances in discrimi-
native training for hidden Markov models (HMMs), e.g. [1, 2, 3, 4],
the performance of automatic speech recognition (ASR) systems
in real usage conditions remains unsatisfying. Recently, context-
independent (CI) deep belief network (DBN) hidden Markov model
hybrid architectures have shown promising results for phone recog-
nition (see [5, 6, 7]). In this paper, we propose a novel context-
dependent (CD) extension of the previous work on DBN-HMMs.
Using the challenging Bing mobile voice search dataset, we demon-
strate that the context-dependent DBN-HMMs we propose here can
significantly outperform strong discriminatively trained Gaussian
mixture model (GMM)-HMMs on a real-world, large vocabulary,
continuous speech recognition (LVCSR) task.

DBN-HMMs are closely related to the artificial neural network
(ANN)-HMM hybrid architectures that were first explored as an al-
ternative paradigm for ASR in the late 1980s and early 1990s. In
both architectures, each output unit of the neural network is trained
to estimate the posterior probability of a continuous density HMMs’
state given the acoustic observations. Our work differs from earlier
CD-ANN-HMMs [8] in two key respects. First, we used deeper,
more expressive neural network architectures and thus employed
the unsupervised DBN pre-training algorithm to make sure train-
ing would be effective. Second, we used posterior probabilities of
senones [9] as the output of the DBN/ANN, instead of the combina-
tion of context-independent phone and context class used previously.
This second difference also distinguishes our work from earlier uses
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of DBNs to produce distributions over monophone HMM states (CI-
DBN-HMMs) for phone recognition [5, 6, 7].

2. CONTEXT-DEPENDENT DBN-HMMS

An HMM is a generative model in which the observation sequence
is assumed to be generated from a hidden Markov process that tran-
sitions between states S = {s1, · · · , sK}. The parameters of the
HMM are the initial state probability distribution π = {p(q0 = si)},
where qt is the state at time t, the transition probabilities aij =
p(qt = sj |qt−1 = si), and a model to estimate the observation
probabilities p(xt|si). The key difference between DBN-HMMs
and GMM-HMMs is the use of DBNs (instead of GMMs) to esti-
mate the observation probabilities given senones (CI-DBN-HMMs
use CI-phone states instead). We actually use the DBN to model
p(qt|xt), the posterior probability of the senones given the observa-
tion vector xt, which is possible since p(qt) is easy to estimate from
an initial senone-level alignment of the training set.

This idea of using senones as the modeling unit has been pro-
posed in [10] where the posterior probability of senones were es-
timated using deep-structured conditional random fields (CRFs).
Modeling senones using DBNs provides two primary advantages.
First, we can implement a DNN-HMM system with only mini-
mal modifications to an existing GMM-HMM system. Second,
any improvements in modeling units that are incorporated into the
GMM-HMM baseline system, such as cross-word triphone models,
will be accessible to the DNN through the use of the shared training
labels.

In our CD-DBN-HMMs, the decoded word sequence ŵ is
given by: ŵ = argmaxw p(x|w)p(w), where x is the observa-
tion sequence, p(w) is the language model (LM) probability, and

p(x|w) ∼= maxq π(q0)
QT

t=1 aqt−1qt

QT
t=0 p(xt|qt) is the acoustic

model (AM) probability. Note that in the observation probability
p(xt|qt) = p(qt|xt)p(xt)/p(qt), p(xt) is independent of the word
sequence and thus can be ignored during decoding. Note also that
although dividing by the prior probability p(qt) may not give im-
proved recognition accuracy under some conditions, we have found
it to be very important in alleviating the label bias problem, espe-
cially when the training utterances contain long silence segments.

CD-DBN-HMMs can be trained using the embedded Viterbi
algorithm, which involves two main steps. First, we must gener-
ate a senone-level alignment using the Viterbi algorithm, and then
we must train the DBN to predict the senone in each frame. If
DBNs provide better senone predictions at each frame, then CD-
DBN-HMMs can achieve better sentence recognition accuracy than
tri-phone GMM-HMMs.
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3. DEEP BELIEF NETWORKS

Deep belief networks (DBNs) are probabilistic generative models
with multiple layers of stochastic hidden units above a single bottom
layer of observed variables that represent a data vector. There is an
efficient unsupervised algorithm, first described in [11], for learning
the connection weights in a DBN that is equivalent to training each
adjacent pair of layers as a restricted Boltzmann machine (RBM).
There is also a fast, approximate, bottom-up inference algorithm to
infer the states of all hidden units conditioned on a data vector. Af-
ter the unsupervised, or pre-training phase, [11] used the up-down
algorithm to optimize all of the DBN weights jointly using labeled
data.

In what is now a standard abuse of terminology, we will also
refer to feed-forward neural nets whose weights have been initial-
ized with the DBN pre-training algorithm as DBNs. Thus in this
work, we train deep, but otherwise standard, neural networks by first
using the unsupervised DBN pre-training algorithm to initialize the
weights and then simply using standard backpropagation to fine-tune
the network weights.

Insufficiently deep architectures can require an exponential
blow-up in the number of computational elements needed to repre-
sent certain functions satisfactorily. Thus one primary motivation
for using deep models, such as DBNs, is that they are generally
much more representationally efficient than shallower models like
GMMs. Furthermore, GMMs as used in ASR typically have a large
number of highly localized Gaussians. Since GMMs in ASR depend
on local generalization, their generalization ability is likely to be
limited when modeling rapidly varying distributions. One of our
hopes in this work is to demonstrate that replacing GMMs with
more powerful models can reduce recognition error in a difficult
LVCSR task.

Restricted Boltzmann Machines (RBMs) are the building blocks
of DBNs, and are undirected graphical models with a layer of ob-
served, or visible, variables and a layer of hidden variables, with
each layer forming one part of a bipartite graph. For the purposes of
this work, the hidden units will always be binary and the visible units
will either be Bernoulli or Gaussian distributed, conditional on the
hidden units. An RBM assigns an energy to every configuration of
visible and hidden state vectors, denoted v and h respectively. For
binary visible units, the RBM energy function is:

E(v,h) = −bTv − cTh − vTWh, (1)

where W is the matrix of visible/hidden connection weights, b is a
visible unit bias, and c is a hidden unit bias. For any type of RBM,
the probability of any particular setting of the visible and hidden
units is given in terms of the energy of that configuration by:

P (v,h) =
e−E(v,h)

Z
, (2)

where the normalization factor Z =
P

v,h e−E(v,h) is known as the
partition function. To deal with real-valued speech input, we use an
RBM with Gaussian visible units (GRBM) whose energy function is
given by:

E(v,h) =
1

2
(v − b)T(v − b) − cTh − vTWh. (3)

Note that equation 3 implicitly assumes that the visible units have a
diagonal covariance Gaussian noise model with a variance of 1 on
each dimension given the hidden units.

We train all the RBMs with one-step contrastive divergence, ex-
actly as done in the recent work described in [5, 6, 7, 12].

4. EXPERIMENTS

We evaluated our CD-DBN-HMM system by conducting a series
of experiments on the data collected from the Bing mobile voice
search (BMVS) application (formerly known as Live Search for mo-
bile [14]) – a real-world, large-vocabulary, spontaneous, continuous
speech recognition task.

4.1. Description of Dataset and GMM-HMM Baselines

The Bing mobile voice search application allows users to do US-
wide location and business lookup from their mobile phones via
voice. This is a challenging task since the dataset contains all kinds
of variations: noise, music, side-speech, accents, sloppy pronunci-
ation, hesitation, repetition, interruption, and different audio chan-
nels. The dataset was split into a 24-hour (32,057 utterance) mini
training set, which was a subset of the full 2100-hour (3M utter-
ance) training set, a 6.5-hour (8,777 utterance) development set, and
a 9.5-hour (12,758 utterance) test set. We ran all experiments on the
mini training set in this study. To facilitate performance comparisons
with the work in [13], which uses the same dataset and task, we used
the public lexicon from Carnegie Mellon University. The language
model (LM) used in the evaluation contains a 65K word vocabulary,
3.2 million word bi-grams, and 1.5 million word tri-grams. Perfor-
mance on this task was evaluated using sentence accuracy (SA) in-
stead of word accuracy for a variety of reasons. First, in order to
compare our results with [13], we would need to compute sentence
accuracy. Second, the average sentence length is 2.1 tokens, so sen-
tence accuracy is highly correlated with the word accuracy. Third,
the users care most about whether they can find the business or loca-
tion they seek in the fewest attempts. They typically will repeat the
whole sentence if one of the words is mis-recognized. Fourth, there
is significant inconsistency in spelling that makes using sentence ac-
curacy more convenient.

To compare our proposed DBN-HMM model with the standard
state-of-the-art systems, we have trained clustered cross-word tri-
phone GMM-HMMs with the maximum likelihood (ML), maximum
mutual information (MMI), and minimum phone error (MPE) cri-
teria using the mini training set. The 39-dim features used in the
experiments include the 13-dim static Mel-frequency cepstral coeffi-
cient (MFCC) (with C0 replaced with energy) and its first and second
derivatives. The features were pre-processed with the cepstral mean
normalization (CMN) algorithm. We also standardized the frames
so that each dimension would have mean zero and unit variance over
the entire training set.

The performance of the best GMM-HMM configurations is sum-
marized at the bottom of table 1. The systems trained using the mini
training set have 53K logical and 2K physical tri-phones with 761
shared states (senones), each of which is a 24-mixture GMM. The
system trained using the full training set has 11K physical triphones
with 2.8K 96-mixture senones. Note that the accuracy of the sys-
tem trained using the full training set was quoted from [13] and is
only 2.5% better than the system trained with the mini training set
when both systems were trained using the ML criterion, which in-
dicates that the baselines we trained on the mini training set are not
weak. However, while the entire mini training set was manually
transcribed, only 130 hours of the full training set were manually
transcribed. The rest of the full training set used the user’s implicit
confirmation as supervision, a procedure which yields a correct tran-
scription 90% of the time.
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Model Type Depth Alignment Labels Tuned Trans. Dev Acc. Test Acc.
DBN-HMM 1 from ML GMM-HMM Monophone States no 59.3% -
DBN-HMM 3 from ML GMM-HMM Monophone States no 64.2% -
ANN-HMM 1 from ML GMM-HMM Triphone Senones no 68.0% -
ANN-HMM 2 from ML GMM-HMM Triphone Senones no 68.2% -
DBN-HMM 1 from ML GMM-HMM Triphone Senones no 68.1% -
DBN-HMM 2 from ML GMM-HMM Triphone Senones no 69.5% -
DBN-HMM 3 from ML GMM-HMM Triphone Senones no 69.6% -
DBN-HMM 4 from ML GMM-HMM Triphone Senones no 70.2% -
DBN-HMM 5 from ML GMM-HMM Triphone Senones no 70.3% 68.4%
DBN-HMM 5 from MPE GMM-HMM Triphone Senones no 70.7% 68.8%
DBN-HMM 5 from MPE GMM-HMM Triphone Senones yes 71.0% 69.0%
DBN-HMM 5 from DBN-HMM Triphone Senones no 71.7% 69.6%
DBN-HMM 5 from DBN-HMM Triphone Senones yes 71.8% 69.6%

ML GMM-HMM baseline 62.9% 60.4%
MMI GMM-HMM baseline 65.1% 62.8%
MPE GMM-HMM baseline 65.5% 63.8%

ML GMM-HMM baseline 2100 hours of training data (transcription is 90% accurate) - 62.9% [13]

Table 1. Experimental results

4.2. DBN-HMM Results and Analysis

Our experimental results, summarized in table 1, show the effect
on recognition accuracy of a few of the important choices one must
make when training DBN-HMMs. In all DBN-HMM experiments
presented in the table, we used 2048 units in each hidden layer and
11 (5-1-5), 39-dimensional frames of MFCCs as the input to the net-
work. During pre-training we used a learning rate of 0.004 and a
momentum of 0.9 for all layers. For fine-tuning, we used a learning
rate of 0.08 for the first 6 epochs and a learning rate of 0.002 for the
last 6 epochs, also always with momentum of 0.9. In all our experi-
ments, gradients were averaged over minibatches of 256 cases.

Using triphone senones as the DBN outputs provides a large gain
over monophone state DBN outputs, or in other words CD-DBN-
HMMs significantly outperform CI-DBN-HMMs on this task. Note
that once we use senones as the network outputs, even with only a
single hidden-layer and no pre-training, we obtain a dev set accuracy
of 68.0%, which is already 2.5% higher than the best GMM-HMM
baseline. We believe this perhaps unusually strong single layer re-
sult indicates that using senones for the neural network outputs is
quite beneficial and that the dataset we use has substantial acoustic
variability, giving an advantage to a model that does not make strong
assumptions about the data distribution. As can be seen from the 3
hidden-layer results in table 1, the gain from using triphone senones
persists even with a deeper architecture. DBN pre-training is not
necessary for single hidden-layer models (68.1% vs 68.0% on the
dev set), but it is very important for deeper architectures (although
all our experiments in this work with three or more hidden layers
were performed with pre-training). In general, we expect that when
deeper models are used, the pre-training step in the DBN-HMM will
become even more important.

In all our experiments, adding DBN hidden layers improved
recognition accuracy, but with more layers these improvements di-
minished. Overall, using models with five hidden layers provides us
with a 2.2% accuracy improvement over a single hidden-layer sys-
tem when the same alignment is used. Since training a five-layer
model is already quite expensive, we did not explore architectures
with more than five hidden layers, so we cannot rule out additional
gains from using more layers.

In order to demonstrate the efficiency of parameterization en-

joyed by deeper neural networks, we have also trained a single
hidden-layer neural network with 16K hidden units, a number cho-
sen to guarantee that the weights required somewhat more space to
store than the weights for our 5 hidden-layer models. We were able
to obtain an accuracy of 68.6% on the development set, which is
slightly more than the 2K hidden unit single layer result of 68.1% in
figure 1, but well below even the two layer result of 69.5% (let alone
the five layer result of 70.3%).

In addition to the importance of using DBN pre-training and
training the DBN to produce a distribution over senones, we found
that the higher the accuracy of the model producing the forced align-
ment used to generate frame-level labels for DBN training, the better
the performance of the trained DBN. Thus training a five hidden-
layer DBN on the alignment from the MPE trained GMM-HMM
produced a superior result (70.7% dev set accuracy) to the same
DBN trained on labels derived from the ML GMM-HMM alignment
(70.3% dev set accuracy). We also found that re-tuning the HMM
transition probabilities using maximum likelihood training also pro-
vided a slight improvement in accuracy. After tuning the transition
probabilities for the five hidden-layer DBN-HMM trained on labels
derived from the MPE GMM-HMM alignment, we used the DBN-
HMM to produce another forced alignment and generated new train-
ing labels for the frames. After fine-tuning the DBN on these labels
and re-tuning the transition probabilities, we were able to achieve
our best result of 71.8% accuracy on the dev set and 69.6% accuracy
on the test set.

Overall, our proposed CD-DBN-HMMs obtained 69.6% accu-
racy on the test set, which is 5.8% (or 9.2%) higher than those ob-
tained using the MPE (or ML)-trained GMM-HMMs. This improve-
ment translates into a 16.0% (or 23.2%) relative error rate reduction
over the MPE (or ML)-trained GMM-HMMs.

4.3. Training and Decoding Time

DBN-HMMs significantly outperform GMM-HMMs in terms of
recognition accuracy on our task and although DBN training is
asymptotically quite scalable, training can be quite time consuming
in practice. All timing results reported here are based on a trainer
written in Python running on a workstation with a 2.66GHz Intel
Xeon 5600 series processor and an NVIDIA Tesla C1060 general
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purpose graphical processing unit. We used the CUDAMat library
[15] to perform matrix operations on the GPU from our Python
code.

We used 50 epochs of pretraining for the first hidden layer, 20
epochs for each layer thereafter, and 12 epochs of backpropagation.
For larger datasets, reasonable results might be possible with fewer
epochs of training than what we used here. Pre-training a five-layer
DBN-HMM took about 62 hours and fine-tuning took about 16.8
hours. To achieve the best result reported in this paper, we had to
run two passes of fine-tuning, one with the MPE GMM-HMM align-
ment, and one with the DBN-HMM alignment. The total fine-tuning
time is thus 33.6 hours. The total time spent to train the system from
scratch is about four days. Note that we have observed that using
a GPU speeds up training by about a factor of 30 compared to just
using the CPU in our setup.

While training is considerably more expensive than for GMM-
HMM systems, decoding is still very efficient. We can decode in
real time even using a five hidden-layer DBN-HMM with 2K units
per layer, both with and without using GPUs.

5. CONCLUSION AND FUTURE WORK

We have described a novel context-dependent version of DBN-
HMMs for LVCSR that achieves substantially better results on
the challenging BMVS dataset than strong discriminatively trained
GMM-HMMs. Although our experiments show that DBN-HMMs
provide dramatic improvements in recognition accuracy, training
DBN-HMMs is quite expensive compared with training GMM-
HMMs, primarily because training the former is not easy to par-
allelize across computers and needs to be carried out on a single
GPU machine. However, decoding in DBN-HMMs is very efficient
so test time is not an issue in real-world applications. We believe
our work on context-dependent DBN-HMMs is only the first step
towards a more powerful acoustic model for LVCSR; many issues
remain to be resolved. We hope that the encouraging results we
presented in this work will inspire other researchers to investigate
related approaches to acoustic modeling in LVCSR, to tackle some
of the numerous research challenges deeper acoustic models present,
and to provide possible solutions to some of the grand challenges in
speech recognition and understanding [16].
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