
Bulletin of Mathematical Biology (2010) 72: 973–1005
DOI 10.1007/s11538-009-9479-6

O R I G I NA L A RT I C L E

The Long-Time Dynamics of Two
Hydrodynamically-Coupled Swimming Cells

Sébastien Michelin∗, Eric Lauga

Department of Mechanical and Aerospace Engineering, University of California San Diego,
9500 Gilman Drive, La Jolla, CA 92093-0411, USA

Received: 30 March 2009 / Accepted: 27 October 2009 / Published online: 16 December 2009
© The Author(s) 2009. This article is published with open access at Springerlink.com

Abstract Swimming microorganisms such as bacteria or spermatozoa are typically found
in dense suspensions, and exhibit collective modes of locomotion qualitatively different
from that displayed by isolated cells. In the dilute limit where fluid-mediated interactions
can be treated rigorously, the long-time hydrodynamics of a collection of cells result from
interactions with many other cells, and as such typically eludes an analytical approach.
Here, we consider the only case where such problem can be treated rigorously analyti-
cally, namely when the cells have spatially confined trajectories, such as the spermatozoa
of some marine invertebrates. We consider two spherical cells swimming, when isolated,
with arbitrary circular trajectories, and derive the long-time kinematics of their relative
locomotion. We show that in the dilute limit where the cells are much further away than
their size, and the size of their circular motion, a separation of time scale occurs between
a fast (intrinsic) swimming time, and a slow time where hydrodynamic interactions lead
to change in the relative position and orientation of the swimmers. We perform a multiple-
scale analysis and derive the effective dynamical system—of dimension two—describing
the long-time behavior of the pair of cells. We show that the system displays one type of
equilibrium, and two types of rotational equilibrium, all of which are found to be unsta-
ble. A detailed mathematical analysis of the dynamical systems further allows us to show
that only two cell-cell behaviors are possible in the limit of t →∞, either the cells are
attracted to each other (possibly monotonically), or they are repelled (possibly monotoni-
cally as well), which we confirm with numerical computations. Our analysis shows there-
fore that, even in the dilute limit, hydrodynamic interactions lead to new modes of cell-cell
locomotion.
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1. Introduction

Microorganisms such as bacteria and simple eukaryotes are found in nature in a variety of
environments, from large water masses (ocean, lakes, rivers) to the fluid components of
plants and animals. In all, they represent half of the world’s biomass, and have therefore
major biological consequences on the health and survival of most other organisms.

When a microorganism has the ability to swim in a viscous fluid, then its motion is
the complicated result of the local transport by the moving fluid it resides in, and of
its intrinsic swimming. Given the small size, !, of these microorganisms (typically ! ≈
1–10 µm) and the small swimming velocities, V (typically V ≈ 10 − 100 µm/s), the
Reynolds number, Re = V !/ν, is much smaller than 1 (here ν is the kinematic viscosity
of the fluid). For such swimmers, the interactions with the surrounding fluid are therefore
dominated by viscous stresses, and inertial effects are negligible (Lighthill, 1975). As
a result, the velocity and pressure fields around the swimmer satisfy Stokes’ equations
(Happel and Brenner, 1965; Kim and Karilla, 1991).

Most classical work on the dynamics of swimming cells considered the mechan-
ics and physics of individual organisms (Lighthill, 1976; Brennen and Winet, 1977;
Blum and Hines, 1979; Childress, 1981; Lauga and Powers, 2009; Bray, 2000). However,
cells are typically found in large dense suspensions, and display collective modes of loco-
motion which are qualitatively different from that of individual cells. For example, sper-
matozoa populations can be as large as millions, and in some species display aggregation
and cooperative locomotion. Such is the case for wood mouse spermatozoa (Moore et al.,
2002), as well as opossum (Moore and Taggart, 1995), and fishfly (Hayashi, 1998). Con-
centrated bacterial suspensions display large-scale coherent and intermittent collective
swimming, with length and velocity scales much larger than that of a single cell (Mendel-
son et al., 1999; Dombrowski et al., 2004; Sokolov et al., 2007; Cisneros et al., 2007),
and resulting in an enhanced diffusion of suspended particles (Wu and Libchaber, 2000;
Kim and Breuer, 2004).

Significant work has been devoted to the theoretical modeling of collective effects in
cell locomotion. Building on early work showing that dipole-dipole hydrodynamic in-
teractions between swimming cells lead to aggregation (Guell et al., 1988), two distinct
approaches have been considered. On one hand, continuum studies have been proposed
in the dilute limit. Classical work on bioconvection neglected the presence of swimming
cells altogether (Childress et al., 1975; Pedley and Kessler, 1992; Hill and Pedley, 2005).
When the swimmer size is small compared to the typical interswimmer distance, the first
effect of a self-propelled microorganism is to modify the local stresses in the flow by creat-
ing a local dipolar (or stresslet) forcing on the surrounding fluid (Batchelor, 1970). Within
this framework, studies have discovered long-wavelength hydrodynamic instabilities oc-
curring in suspensions of self-propelled bodies (Simha and Ramaswamy, 2002; Saintillan
and Shelley, 2008). The resulting nonlinear state, sometimes referred to as “bacterial tur-
bulence” has also been reproduced using continuum simulations (Aranson et al., 2007;
Wolgemuth, 2008). On the other hand, a number of studies have focused on the discrete
nature of the “N-swimming body” problem, and solved numerically for the dynamics of
each self-propelled body. Models of increasing complexity have represented the swimmer
as a point-dipole (Hernandez-Ortiz et al., 2005; Underhill et al., 2008), a line distribution
of surface stress (Saintillan and Shelley, 2007), or a surface distribution of tangential
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velocity (Ishikawa and Pedley, 2007a, 2007b, 2008), and have reproduced some of the in-
stabilities, diffusive behavior, and nonlinear dynamics observed experimentally (see also
Mehandia and Nott, 2008). The subtle role of hydrodynamic interactions in allowing for
new modes of locomotion was also recently pointed out (Alexander and Yeomans, 2008;
Lauga and Bartolo, 2008). In parallel, work in the physics community has discovered
phase-transitions to collective motion in kinematics models of large populations of self-
propelled bodies without the need for hydrodynamic interactions (Vicsek et al., 1995;
Czirok et al., 1997; Gregoire and Chate, 2004).

From a theoretical standpoint, collective locomotion is a difficult problem. To be
treated satisfactorily, the motion of N & 1 identical swimmers should be integrated in
time. In the dense limit, no simple model is available to correctly describe the inter-
play between hydrodynamic and steric (excluded-volume) interactions. One simplifica-
tion is to consider the dilute limit, in which hydrodynamic interactions can be described
by dipole-dipole interactions, and steric interactions can be neglected. However in this
limit, hydrodynamic interactions are weak, and an order-one change in the trajectory of
a straight-swimming body can only result from a large number of successive interactions
with different swimmers. In other words, even in the dilute limit, one needs in general to
study N & 1 cells to quantitatively capture their coupled dynamics.

In this paper, we consider the only situation in which the case of N = 2 swimmers can
give rise to order-one changes in the long-time limit of their positions and orientations
even in the dilute limit, namely when the individual swimmers have spatially confined
intrinsic trajectories. In that case, even small hydrodynamic interaction can accumulate
over times long compared to an intrinsic swimming time, and lead to nontrivial nonlinear
dynamics of the coupled system. By studying in the long-time limit one of these proto-
typical situations, we hope to obtain important physical and mathematical insight on the
general behavior of larger populations.

We focus our study on the particular situation where the intrinsic motion of the micro-
organisms is circular. This is the case, for example, for sea urchin spermatozoa (Riedel
et al., 2005), or other marine invertebrates (Goldstein, 1977). We consider two identical
but arbitrary model cells, and assume they are widely separated. This assumption allows
us to propose a simple general representation of cell-cell hydrodynamic interactions in
Section 2. We then show that a separation of time scales occurs, with a short time repre-
senting the intrinsic swimming time for each cell, and the long time being the time one has
to wait for repeated hydrodynamic interactions to lead to order-one changes in the swim-
mers trajectories. This separation of time scales allows us to perform a multiple-scale
analysis of the coupled dynamics in Section 3. The equilibrium configurations of the two
cells, as well as their stability, are studied in Section 4. The time-averaged equations are
reduced to a two-dimensional dynamical system whose behavior is analyzed in detail. In
particular, we show that only two long-time behaviors can arise, as determined solely by
the initial relative orientations of the swimmers: Either hydrodynamic interactions have
a net repulsive effect and the swimmers eventually swim infinitely far away from each
other, or they have a net attractive effect, and lead to collisions (or aggregation) of the two
swimmers. Any relative equilibrium or limit cycle is found to be unstable, and we there-
fore do not observe any organization of the swimmers’ motion through hydrodynamic
interactions. Our modeling assumptions, some possible extensions, and the relevance to
biological locomotion are discussed in Section 5.
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2. Equations of motion of two Stokesian swimmers

2.1. Intrinsic motion

We first consider an isolated swimmer, whose intrinsic motion is the superposition of a
translation, U0e, and a rotation, Ω0e′, where e and e′ are two directions rigidly attached
to the swimmer. We neglect here the shape changes of the swimmer, assuming the swim-
ming motion is generated by surface displacements that are small compared to the general
dimensions of the swimmer. This is the case, for example, for a so-called squirmer with
tangential displacements for which the shape is at all time a sphere of constant radius
(Ishikawa et al., 2006; Ishikawa and Pedley, 2007a, 2007b, 2008). The two directions e
and e′ are fixed in the frame attached to the swimmer and their relative orientation is in-
dependent of time. In the absence of Brownian motion, the resulting equations of motion
for the model cell are given by

dr
dt

= U0e,
de
dt

=Ω0e′ × e,
de′

dt
= 0. (1)

Considering only the nontrivial case where U0 )= 0, three situations can be considered:

– Ω0 = 0: If isolated, the swimmer keeps a fixed orientation and swims along a straight
line at constant speed.

– Ω0 )= 0 and e · e′ = 0: The isolated swimmer has a periodic motion along a circular
trajectory of radius U0/Ω0 normal to e′ and the period of the motion is 2π/Ω0.

– General case: When Ω0 )= 0 and e · e′ )= 0, the swimmer trajectory is an helix (right-
handed if e · e′ > 0, left-handed otherwise). The pitch of the helix is (2πU0/Ω0)e · e′;
the radius of the circular projection is U0/Ω0

√
1− (e · e′)2.

In this paper, we consider the case of swimmers with circular trajectory, so that e · e′ = 0
(see illustration in Fig. 1).

2.2. Far-field velocity and vorticity field created by a general swimmer

In this work, we propose a study of hydrodynamic interactions in the far-field limit, con-
sidering only the dominant contribution to the velocity field setup by the self-propelled

Fig. 1 Isolated rotating swimmer in a circular trajectory. The intrinsic velocity of the swimmer is the
superposition of a translation parallel to e and a rotation along e′ . Here, it is assumed that e · e′ = 0 which
leads to a circular trajectory of radius ρ = U0/Ω0. The local basis (e, e′, e× e′) moves rigidly with the
swimmer.
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bodies. The advantage of such an approach is to avoid having to focus on one particular
geometry and gait of the swimmer considered. More detailed studies of hydrodynamic
interactions can be obtained by considering the full flow field created by a biologically
realistic self-propelled cell (Ishikawa et al., 2006, 2007; Ishikawa and Hota, 2006) or for
simplified swimmer models (Pooley et al., 2007; Gyrya et al., 2009). In the former case,
the flow field must in general be solved for numerically, while in the latter, the simplifica-
tion of the geometry and swimming stroke allows for analytical treatment.

In general, a self-propelled cell creates its intrinsic swimming velocity, U, and angular
velocity, !, by imposing a displacement of its surface. This is the case for all well-studied
motile cells, including spermatozoa, bacteria, ciliates, and algae. We denote the swimmer
surface S. This stroke velocity field is noted uS(s) with s the position vector as measured
from a point within or in the vicinity of the body position, and fixed in the absolute
reference frame. The absolute velocity at the boundary of the swimmer can therefore
be written

u(s) = U + !× s + uS(s), for s ∈ S. (2)

Let u(x) be the velocity field resulting from this swimming pattern and σ the associated
stress field, so that f = σ ·n is the force per unit area applied by the fluid on the swimmer’s
boundary with n the normal unit vector pointing into the fluid domain. The fluid velocity
field u at a point x outside the swimmer can be expressed using the single-layer and
double-layer potentials (Pozrikidis, 1997)

uj (x) =− 1
8πµ

∫

S
fi(s)Gij (x, s)dS(s)− 1

8π

∫

S
uS

i (s)Tijk(x, s)nk(s)dS(s), (3)

where Gij (x, s) is the Green’s function corresponding to the flow field at x generated by
a unit point force located in s, and Tijk(x, s) is the corresponding stress tensor, and where
we have used Einstein’s summation notation in Eq. (3). The tensors Gij and Tijk are the
Green’s function and corresponding stress tensor for the free flow case,

Gij (x, s) = δij

r
+ rirj

r3
, Tijk(s,x) =−6rirj rk

r5
, with r = x− s. (4)

In the far-field approximation, |x|& |s|, and expanding Eq. (3) in Taylor series, the flow
field is obtained as

uj (x) = −Gij (x,0)

8πµ

∫

S
fi(s)dS(s)− 1

8πµ

∂Gij

∂sk

(x,0)

∫

S
fi(s)sk dS(s)

− Tijk(x,0)

8π

∫

S
uS

i (s)nk(s)dS(s) + O

(
a3

r3

)
, (5)

with a the typical size of the swimmer. From Eq. (4), we get

∂Gij

∂sk

=−∂Gij

∂rk

= δij rk − δikrj − δjkri

r3
+ 3rirj rk

r5
· (6)
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When Re = 0, the inertia of the swimmer is negligible and the total force and torque
applied by the fluid on the swimmer must vanish; therefore,

∫

S
fi(s)dS(s) = 0, (7)

and
∫

S fi(s)sk dS(s) must be a symmetric tensor. Consequently, the first term in Eq. (5)
vanishes, and only the symmetric part in i and k of ∂Gij/∂sk , obtained in Eq. (6), must
be retained in Eq. (5). The second and third terms in Eq. (5) behave like 1/r2 far from
the swimmer: The dominant velocity field far from the swimming body is dipolar, and
dominated by a so-called stresslet (Batchelor, 1970)

ui(r) =− 3
8πµ

[
rj rkSjk

r5

]
ri + O

(
a3

r3

)
, (8)

with the stresslet tensor S given by

Sij =
∫

S
sifj (s)ds− δij

3

∫

S
skfk(s)ds−µ

∫

S

[
uS

i (s)nj (s) + uS
j (s)ni(s)

]
dS(s). (9)

Note that the definition of the stresslet obtained using the single and double layer poten-
tials is the same as the one obtained by Batchelor (1970). In the following, we will refer to
two different kinds of swimmers, pushers and pullers, by analogy to a simple case where
the swimmer can be replaced by a drag-generating center and a thrust-generating center.
In that case, all the components of pij =

∫
S sifj dS are zero except p11. For a pusher,

the thrust generating center (e.g., flagellum) is located behind the drag-generating center
(e.g., head) and p11 < 0. A puller has the opposite configuration and p11 > 0 (Lauga and
Powers, 2009) (note that f was defined as the force density from the fluid acting on the
swimmer, so a pusher acts with a force distribution on the surrounding fluid as directed
away from its body along the swimming direction, whereas a puller acts on the fluid with
a force distribution directed toward the body along the swimming direction). Finally, by
taking the curl of Eq. (8), it is straightforward to get that the vorticity field created by the
swimmer is

ωi (r) =−3εijk

4πµ

rkrnSjn

r5
+ O

(
a4

r4

)
. (10)

In this work, we will keep the stresslet tensor S general, to model arbitrary swimming
modes. Its only constraints are: (1) ST = S in order to enforce torque-free motion, and
(2) tr(S) = 0, to ensure the conservation of mass through any closed surfaced enclosing
the swimmer. In general, S depends on the orientation of the swimmer. In the following,
we assume that in a frame geometrically attached to the swimmer, the stresslet is time-
independent in intensity (eigenvalues of the tensor) and direction (eigenvectors) so that
S = RT #R where # is the intrinsic (traceless) stresslet in the set of axes B = (e, e′, e×e′)
and RT is the matrix whose columns are the coordinates of B in the absolute reference
frame B0. As the swimmer moves, R(t) depends on time but # remains constant. Since R
is unitary and corresponds to a rotation in three-dimensional space, it corresponds to only
three degrees of freedom.
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In vector notations, Eqs. (8)–(10) become at leading order

u(r) = − 3
8πµ

[
rT · S · r

r5

]
r, ω =− 3

4πµ

(S · r)× r
r5

,

ST = S, tr(S) = 0.

(11)

2.3. Coupled motion of two swimmers

We now consider two identical rotating swimmers, characterized by their position rj and
their orientation defined by the two orthogonal vectors ej and e′j (j = 1,2). The corre-
sponding rotation matrices Rj are defined as above. The problem is nondimensionalized
using the radius ρ = U0/Ω0 of the swimmers’ circular trajectory and their intrinsic ve-
locity U0. The tensors Sj are scaled using a particular norm Λ of Sj (for example, the
magnitude of its largest eigenvalue)—Λ is an intrinsic property of # and is therefore
identical for both swimmers.

In the far-field approximation, the velocity and rotation of swimmer 1 induced by
swimmer 2 are respectively equal to the velocity and rotation rate (i.e., half the vorticity)
induced by the motion of swimmer 2 alone at the position of swimmer 1. We neglect
any higher-order term arising from the finite size of the swimmers (Kim and Karilla,
1991). Such higher order corrections correspond to a modification by the presence of
swimmer 1 of the velocity field created by swimmer 2. The nondimensional distance r

between the two swimmers must therefore satisfy r & a/ρ. To restrict ourselves to the
simpler case, we also implicitly assumed that the swimmers are spherical. In the case of
a nonspherical swimmer, a correction must be added to the rotation rate even in the far-
field approximation, which physically arises from the alignment of an elongated body in
a straining (irrotational) flow (Pedley and Kessler, 1992; Lauga and Powers, 2009). The
different limitations introduced by these approximations are discussed in Section 5.2.

Using the results of the previous sections, and under the assumptions presented above,
the dimensionless equations of motion of the coupled swimmers become

dr1

dt
= e1 − γ

[
(r1 − r2)

T · S2 · (r1 − r2)

|r1 − r2|5
]
(r1 − r2), (12a)

dr2

dt
= e2 − γ

[
(r2 − r1)

T · S1 · (r2 − r1)

|r2 − r1|5
]
(r2 − r1), (12b)

de1

dt
=

{
e′1 + γ (r1 − r2)× [S2 · (r1 − r2)]

|r1 − r2|5
}
× e1, (12c)

de′1
dt

=
{
γ (r1 − r2)× [S2 · (r1 − r2)]

|r1 − r2|5
}
× e′1, (12d)

de2

dt
=

{
e′2 + γ (r2 − r1)× [S1 · (r2 − r1)]

|r2 − r1|5
}
× e2, (12e)

de′2
dt

=
{
γ (r2 − r1)× [S1 · (r2 − r1)]

|r2 − r1|5
}
× e′2, (12f)
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where γ = 3Λ/(8πµρ2U0). Defining r = r2 − r1, the relative position of the swimmer,
and r = |r|, their relative distance, these equations can be rewritten for the relative motion
of the two coupled swimmers as

dr
dt

= e2 − e1 − γ

[
rT · (S2 + S1) · r

r5

]
r, (13a)

de1

dt
=

[
e′1 + γ r× (S2 · r)

r5

]
× e1,

de2

dt
=

[
e′2 + γ r× (S1 · r)

r5

]
× e2, (13b)

de′1
dt

=
[
γ r× (S2 · r)

r5

]
× e′1,

de′2
dt

=
[
γ r× (S1 · r)

r5

]
× e′2. (13c)

Defining r0 = (r1 + r2)/2, the position of the midpoint between the two swimmers, the
global motion of the pair of swimmers is given by

2
dr0

dt
= e2 + e1 −

[
γ rT · (S1 − S2) · r

r5

]
r. (14)

Equation (13) is a system of five vector equations for r, ej , and e′j (j = 1,2), which
is closed because the knowledge of ej and e′j entirely determines Rj and, therefore, Sj .
Moreover, the equalities ej ·e′j = 0 and ej ·ej = e′j ·e′j = 1 for j = 1,2 mean that, a priori,
Eqs. (13)–(14) correspond to a twelve-dimensional dynamical system. Equation (13) can
be solved first for the relative motion since it does not involve r0, and one can then obtain
the absolute displacement r0 from Eq. (14).

3. Far-field interaction of two rotating swimmers

We are interested in this section in the behavior of Eq. (13) when the swimmers are far
from each other, namely, when their relative distance is much greater than the radius of
their trajectory (r& 1). We can focus our attention to the relative motion of the swimmers
defined by r as their absolute mean displacement r0 does not influence Eq. (13).

Rescaling the distance between the swimmers as r = r∗/ε with ε+ 1 and r∗ = O(1),
the equations for the relative motion are obtained from Eq. (13) as (dropping the star
superscripts for clarity):

dr
dt

= ε(e2 − e1) + ε3F(r, e1, e′1, e2, e′2), (15a)

de1

dt
= e′1 × e1 + ε3G1(r, e2, e′2)× e1,

de′1
dt

= ε3G1(r, e2, e′2)× e′1, (15b)

de2

dt
= e′2 × e2 + ε3G2(r, e1, e′1)× e2,

de′2
dt

= ε3G2(r, e1, e′1)× e′2, (15c)

with

F(r, e1, e′1, e2, e′2) = −γ
[

rT · (S1 + S2) · r
r5

]
r, (16a)

G1(r, e2, e′2) = γ r× (S2 · r)
r5

, (16b)
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G2(r, e1, e′1) = γ r× (S1 · r)
r5

, (16c)

which are at most O(1). In addition, differentiating the equations for ei in Eqs. (15b–c)
with respect to time leads to

d2ei

dt2
+ei = de′i

dt
×ei +ε3

[
dGi

dt
×ei + (Gi ·ei )e′i−2(e′i ·Gi )ei

]
+ε6Gi× (Gi×ei ),

(17)

since ei · e′i = 0.

3.1. Multiple-scale analysis

The equations for ei in Eq. (15) suggest that in the limit of small ε there are two different
time scales: The short time-scale is O(1) and corresponds to the intrinsic circular motion
of the swimmers, whereas the long time scale is O(ε−3) and corresponds to the motion
induced on one swimmer by the other. Using the formalism of multiple-scale analysis
(Bender and Orszag, 1978) with the assumption of scale separation arising from the far-
field approximation (ε+ 1), we now formally consider all the fields as functions of two
variables t and τ = ε3t . The time derivative operator d/dt must then be replaced by ∂/∂t +
ε3∂/∂τ , and the different vector fields are obtained as regular perturbations series in ε

r = r(0) + εr(1) + ε2r(2) + · · · , (18a)

ei = e(0)
i + εe(1)

i + ε2e(2)
i + · · · , (18b)

e′i = e′(0)
i + εe′(1)

i + ε2e′(2)
i + · · · , (18c)

and the functions F, Gi can also be expanded as power series in ε, each term being com-
puted from the expansion of ei and r. Introducing this expansion in Eq. (15), we obtain
the dynamical system at successive orders, which we now solve.

At order O(1), we have

∂r(0)

∂t
= 0,

∂e′(0)
i

∂t
= 0,

∂e(0)
i

∂t
= e′(0)

i × e(0)
i , (19)

at order O(ε)

∂r(1)

∂t
= e(0)

2 − e(0)
1 ,

∂e′(1)
i

∂t
= 0,

∂e(1)
i

∂t
= e′(0)

i × e(1)
i + e′(1)

i × e(0)
i , (20)

at order O(ε2)

∂r(2)

∂t
= e(1)

2 −e(1)
1 ,

∂e′(2)
i

∂t
= 0,

∂e(2)
i

∂t
= e′(0)

i ×e(2)
i +e′(1)

i ×e(1)
i +e′(2)

i ×e(0)
i ,

(21)
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and at order O(ε3)

∂r(0)

∂τ
+ ∂r(3)

∂t
= e(2)

2 − e(2)
1 + F

(
r(0), e(0)

1 , e′(0)
1 , e(0)

2 , e′(0)
2

)
,

∂e′(0)
i

∂τ
+ ∂e′(3)

i

∂t
= Gi

(
r(0), e(0)

j , e′(0)
j

)
,

∂e(0)
i

∂τ
+ ∂e(3)

i

∂t
= · · · .

(22)

Note that we are only interested in the leading order behavior of each function. Equa-
tion (19) gives that the leading behavior of r and e′i only varies with the long time scale τ .
However, it is necessary to go up to the terms of order O(ε3) to obtain the τ dependence
of these functions. This results from the ratio between the two time scales being O(ε3)

while the first correction to r is O(ε). We note from the structure of Eqs. (20)–(22) that the
t -dependence of the O(εj ) term in r is determined by the previous order in the expansion
of ei . We also note that the relation between r(j) and e(j−1)

i is linear.
If we now introduce the expansion from Eq. (18) into Eq. (17), we obtain

∂2e(j)
i

∂t2
+ e(j)

i = 0, 0≤ j ≤ 2. (23)

This equation can be integrated in t as

e(j)
i (t, τ ) = a(j)

i (τ ) cos(t) + b(j)
i (τ ) sin(t). (24)

If we note 〈.〉 the t -averaging operator between t and t + 2π , we therefore obtain
〈
e(j)
i

〉
(t, τ ) = 0, 0≤ j ≤ 2, (25)

and, therefore, 〈r(1)〉 and 〈r(2)〉 are functions of τ only. We can now take the average of
the first equation in Eq. (22) remembering that r(0) is a function of τ only

dr(0)

dτ
−

〈
F
(
r(0), e(0)

1 , e′(0)
1 , e(0)

2 , e′(0)
2

)〉
= r(3)(t, τ )− r(3)(t + 2π, τ ). (26)

From Eqs. (19)–(21), e′(j)
i is independent of t for 0≤ j ≤ 2. Therefore, we have

e(j)
i × e′(j)

i = ã(j)
i (τ ) cos(t) + b̃(j)

i (τ ) sin(t). (27)

From the definition of F and Eqs. (24)–(27), we can write

F
(
r(0), e(0)

1 , e′(0)
1 , e(0)

2 , e′(0)
2

)
= A(τ ) cos(2t) + B(τ ) sin(2t)

+ C(τ ) cos(t) + D(τ ) sin(t) + E(τ ), (28)

and the left-hand side of Eq. (26) is a function α(τ ) of τ only. Then we have r(3)(t +
2nπ, τ ) = r(3)(t, τ )− nα(τ ). For the perturbation expansion assumption to remain valid,
α must be equal to zero. Therefore,

dr(0)

dτ
=

〈
F
(
r(0), e(0)

1 , e′(0)
1 , e(0)

2 , e′(0)
2

)〉
. (29)
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The same procedure applied to the second equation in Eq. (22) gives

e′(3)
i (t + 2π, τ )− e′(3)

i (t, τ ) =−de′(0)
i

dτ
+

〈
Gi

(
r(0), e(0)

j , e′(0)
j

)〉
. (30)

From the definition of Gi , Gi (r(0), e(0)
j ) can be written in a similar form as F(r(0), e(0)

1 , e′(0)
1 ,

e(0)
2 , e′(0)

2 ) in Eq. (28). The right-hand side of Eq. (30) is therefore a function of τ only and
to avoid secular terms, both sides of the equation must be zero and

de′(0)
i

dτ
=

〈
Gi

(
r(0), e(0)

j , e′(0)
j

)〉
. (31)

At leading order, the system behaves therefore as

r = r(0)(τ ) + O(ε), ei = e(0)
i (t, τ ) + O(ε), e′i = e′(0)

i (τ ) + O(ε), (32)

with

dr(0)

dτ
=

〈
F
(
r(0), e(0)

1 , e′(0)
1 , e(0)

2 , e′(0)
2

)〉
,

de′(0)
i

dτ
=

〈
Gi

(
r(0), e(0)

j , e′(0)
j

)〉
× e′(0)

i ,

(33a)

∂e(0)
i

∂t
= e′(0)

i (τ )× e(0)
i ,

∂r(1)

∂t
= e(0)

2 − e(0)
1 . (33b)

The different notations are summarized on Fig. 2, where the superscript (0) was
dropped for clarity. We note that to achieve our final result, the hypothesis ei · e′i = 0
was crucial: It is only because the intrinsic motion produces no net displacement over a
period that the separation of scales is possible. If it is not the case but the dot product of
these vectors is small, the intrinsic trajectory would be an helix but the net displacement
h over one period would still be small. We expect that the analysis remain valid provided
h+ r , but this should be confirmed with a perturbation expansion in the helix step, which
gives a new small parameter.

Fig. 2 Multiple-scale analysis for the motion of the two swimming cells: The leading order motion is
characterized by the distance between the mean positions of the two swimmers r and the orientation of their
rotation vectors e′1 and e′2. These three vectors evolve with the slow time scale τ , while the instantaneous
position of each swimmer is the superposition of their mean and relative motion on the slow time scale τ
and the circular motion on the fast time scale t .
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Fig. 3 Notations for the computation of the average quantities 〈F(r, e1, e′1, e2, e′2)〉 and 〈Gi (r, ej , e′j )〉
over a period of the short time scale t corresponding to one period of the circular motion of swimmer 1.
The vectors in black are constant over this time-scale (they depend on τ ) and the grey vector e1 evolves as
Eq. (34).

3.2. Computation of the average quantities

In this section, we compute quantities such as 〈F(r(0), e(0)
1 , e′(0)

1 , e(0)
2 , e′(0)

2 )〉 and
〈Gi (r(0), e(0)

j , e′(0)
j )〉 with the average taken over one period of the short time-scale t . For

clarity of notations, we drop the (0) exponents with the understanding that we are only
considering vector fields of that order. Over this period, r and e′j are constant vectors.
Defining a unit vector i orthogonal to e′i and r, the basis Bp = (i, e′i × i, e′i ) is orthonormal
(Fig. 3). The instantaneous intrinsic directions corresponding to the intrinsic translation
and rotation velocities vary as

ei = cos t i + sin te′i × i, e′i × ei =− sin t i + cos te′i × i (34)

with no loss of generality since we can redefine the origin of time so that ei is orthogonal
to r at t = 0 (r · i = 0). The vector r can also be decomposed in Bp

r = r1e′i + r2e′i × i with r2
1 + r2

2 = r2. (35)

Then we easily obtain

R · r =




ei · r
e′i · r

(ei × e′i ) · r



 =




r2 sin t

r1

−r2 cos t



 , (36)

and

〈
(ei · r)2〉 = r2

2

2
,

〈
(e′i · r)2〉 = r2

1 ,
〈(
(e′i × ei ) · r

)2〉 = r2
2

2
,
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〈
(ei · r)(e′i · r)

〉
=

〈
(ei · r)

[
(e′i × ei ) · r

]〉
=

〈[
(e′i × ei ) · r

]
(e′i · r)

〉
= 0,

and, therefore,

〈
rT · Si · r

〉
=

〈
(R · r)T · # · (R · r)

〉

= r2
2

2
(Σ11 +Σ33) + r2

1Σ22

= [r2 − (ei · r)2] tr(#)

2
+Σ22

(
3
2
(e′i · r)2 − r2

2

)
. (37)

Finally, since tr(#) = 0,

〈
F
(
r(0), e(0)

1 , e′(0)
1 , e(0)

2 , e′(0)
2

)〉
= γΣ22

2

[
2r2 − 3[(e′1 · r)2 + (e′2 · r)2]

r5

]
r. (38)

Similarly,

Si · r = [Σ11r2 sin t +Σ12r1 −Σ13r2 cos t]ei

+ [Σ21r2 sin t +Σ22r1 −Σ23r2 cos t]e′i
+ [Σ31r2 sin t +Σ32r1 −Σ33r2 cos t](ei × e′i ), (39)

and

ei × r = r1 sin t i− r1 cos t (e′i × i) + r2 cos te′i , (40)

e′i × r = −r2i, (41)

(ei × e′i )× r = −r1 cos t i− r1 sin t (e′i × i) + r2 sin te′i (42)

from which we obtain after time-averaging,

〈
(Si · r)× r

〉
= r1r2

2
(Σ11 − 2Σ22 +Σ33)i + (Σ31 −Σ13)

[
r2

2

2
e′i −

r1r2

2
e′i × i

]
. (43)

The last term in the previous equation is equal to zero as # is symmetric, and identifying
r1 = e′i · r and r2i = r× e′i , the previous equation becomes:

〈
(Si · r)× r

〉
=−3Σ22

2
(e′i · r)(r× e′i ). (44)

Therefore,

〈
G1

(
r(0), e(0)

2 , e′(0)
2

)〉
= 3γΣ22(e′2 · r)(r× e′2)

2r5
,

〈
G2

(
r(0), e(0)

1 , e′(0)
1

)〉
= 3γΣ22(e′1 · r)(r× e′1)

2r5
.

(45)
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Finally, the relative equations of motion for the slow varying fields r, e′1, and e′2 become
with µ = γΣ22

dr
dτ

= µ

[
2r2 − 3[(e′1 · r)2 + (e′2 · r)2]

2r5

]
r, (46a)

de′1
dτ

= 3µ(e′2 · r)[(r× e′2)× e′1]
2r5

, (46b)

de′2
dτ

= 3µ(e′1 · r)[(r× e′1)× e′2]
2r5

. (46c)

The absolute motion of the swimmers can be determined on the long time scale τ by
averaging (14) over the short-time scale and obtain

d〈r0〉
dτ

= 3µ

4

[
(e′2 · r)2 − (e′1 · r)2] r

r3
. (47)

A comparison of the dynamical systems given by Eq. (46) and Eq. (13) shows that the
averaged equations, Eq. (46), correspond to the interaction of two stresslets of equal in-
tensity 3µ/2(e′1e′1 − I/3) and 3µ/2(e′2e′2 − I/3) respectively located at the mean position
of swimmers 1 and 2 with no intrinsic velocity. This suggests that a single swimmer cre-
ates an average far-field in the form of a stresslet whose intensity is 3µ/2 and whose ori-
entation is entirely determined by its intrinsic rotation vector e′i . This statement is proven
rigorously in Section 3.3. The intensity of the averaged stresslet is equal to 3Σ22/2, where
Σ22 is the diagonal component of the instantaneous stresslet along the direction e′i . We
observe that all the other components of # disappear in the averaging process.

By analogy with the case where the instantaneous stresslet is equal to a force dipole,
resulting from the superposition of a drag force and a thrust force, we will consider in the
following two kinds of swimmers:

• Pushers with µ > 0: In this case, the thrust generating center is located behind the drag
generating center; γΣ11 < 0 and γΣ22 = γΣ33 > 0 with all other components equal to
zero [see Eq. (9)]. This is, for example, the case of a swimmer with a flagellum located
behind its drag-generating head, such as spermatozoa, or most flagellated bacteria.

• Pullers with µ < 0: In that case, the thrust is generated in front of the drag-generating
center; γΣ11 > 0 and γΣ22 = γΣ33 < 0 [see Eq. (9)]. This is, for example, the case
for swimmers using their flagella in a breaststroke pattern to pull their bodies, such as
the alga Chlamydomonas.

It is important to point out here that we manage to obtain a system of equations for
e′1, e′2, and r only, but that the position of each swimmer on its instantaneous circular tra-
jectory is not important—in particular the relative phase of these instantaneous motions.
Two conditions are necessary for this simplification to occur. First, the average flow field
created by an isolated rotating swimmer is independent of time and also independent of
the direction of motion on the circular trajectory (see the following section). This is a
consequence of the fact that the instantaneous flow field created by the swimmer does not
have any azimuthal component. The second condition is that the swimmers are spheri-
cal, and the averaged velocity induced on swimmer 2 by swimmer 1 only depends on the
properties of the averaged flow field induced by swimmer 1 and not the orientation of
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swimmer 2. This would not be the case if the swimmers were nonspherical: then the in-
duced velocity and rotation created by swimmer 1 on swimmer 2 would not only depend
on the position and trajectory of swimmer 1, but also on the orientation of swimmer 2 with
respect to the principal axes of strain of the local flow (see the discussion in Section 5.2).
For nonspherical swimmers, the averaging process is more subtle and the phase of the in-
stantaneous motions of the two swimmers does not disappear in the averaged equations;
it remains, however, a constant parameter of the problem since both swimmers have the
same intrinsic translation and rotation velocities.

3.3. Far-field averaged velocity field created by a rotating swimmer

The results of the previous section suggest that, on average, a rotating swimmer behaves
like a stresslet in the far-field. We explore this result in more detail in this section. The
behavior of the far-field velocity is of interest to characterize the rheological properties
of a suspension of such swimmers (Batchelor, 1970). In this section only, we consider
an isolated swimmer, and compute the time-averaged flow in the far field. The swimmer
trajectory is a circle oriented by its rotation vector e′ parallel to the vertical axis and we
choose the origin of the reference axes as the average position of this swimmer. Let us
denote by ε(t) the instantaneous position of the swimmer (|ε(t)| = 1 by our choice of
scaling) and e its velocity vector. If i is an arbitrary constant unit vector orthogonal to e′,
we can define the origin of time such that

ε(t) = cos t i + sin te′ × i, e =− sin t i + cos te′ × i. (48)

We are interested in the velocity field created by this swimmer at a position x far from the
origin (x& 1). The instantaneous velocity field at x is given from Eq. (11) by

u(x) =−γ
[

(R · r)T · # · (R · r)
r5

]
r, with r = x− ε, (49)

and

P = R · r =




e · r
e′ · r

(e× e′) · r



 =




e · x
e′ · x

(e× e′) · x



−




e · ε
e′ · ε

(e× e′) · ε





=




e · x
e′ · x

(e× e′) · x



−




0
0
1



 . (50)

Therefore, from Eq. (48), noting once again 〈.〉 the averaging operator over a 2π -period,
we have

〈
P 2

1

〉
= 1

2

[(
x · (e′ × i)

)2 + (i · x)2] = 1
2

[
x2 − (x · e′)2], (51a)

〈
P 2

2

〉
= (x · e′)2, (51b)

〈
P 2

3

〉
= 1 + 1

2

[
x2 − (x · e′)2], (51c)
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〈P2P3〉 = −x · e′, (51d)

〈P1P2〉 = 〈P1P3〉= 0. (51e)

Keeping only the dominant terms, we have on average

〈
rT · S · r

〉
= Σ11 +Σ33

2

[
x2 − (x · e′)2] +Σ22(x · e′)2 = Σ22

2

[
3(x · e′)2 − x2]. (52)

We also have

1
rn

= 1
xn

(
1 + n

ε · x
x2

+ o

(
1
x

))
. (53)

Since we are interested only in the dominant term in the far-field averaged behavior, we
write

〈
(R · r)T · # · (R · r)

r5

〉
∼ 〈(R · r)T · # · (R · r)〉

x5
, (54)

as all the corrections to this expression are of higher order in 1/x. Grouping all terms, we
finally obtain the far-field averaged flow

〈u〉(x) =−γΣ22

2
[xT · (3e′e′ − I) · x]x

x3
· (55)

We recognize here the velocity field created by a steady stresslet 3µ/2(e′e′ − I/3) consis-
tently with the results of the previous section. Physically, the results of Eq. (55) indicate
that, for cells which behave instantaneously as pushers (pullers), the averaged flow is that
of a puller (pusher) along the axis of rotation of the circular motion.

We observe in Eq. (55) that the average flow remains identical by changing e′ into−e′:
the average flow is therefore not modified by a reversal of the circular motion (along the
same trajectory).

4. Analysis of the far-field interaction

4.1. Reduced forms of the equations

We now return to the coupled equations derived using the multiple-scale analysis. Defin-
ing the unit vector ez of the direction between swimmer 1 and swimmer 2, ez = r/|r| and
by differentiation in time, we obtain

dez

dτ
= 1

|r|
dr
dτ
−

(
r

|r|3 · dr
dτ

)
r. (56)

But from Eq. (46), we note that dr/dτ = Rr, with R a scalar function of r and e′j . Using
this result in (56), we obtain that ez = r/|r| is a time-independent unit vector set by the ini-
tial conditions. The mean distance between the two swimmers maintain a fixed direction.
In the following, ez denotes the fixed direction between the two swimmers’ positions. The
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vectors e′i are defined from ez by their polar and azimuthal angle θi and φi . Choosing two
constant unit vectors ex and ey so that (ex ,ey ,ez) is orthonormal, then

e′i = sin θi cosφiex + sin θi sinφiey + cos θiez. (57)

Note here, that the definition of φi depends on the definition of ex and ey which can be
rotated arbitrarily in the plane orthogonal to ez. Therefore, only the intrinsic ξ = φ2 − φ1

has a physical meaning. Then in the frame (ex ,ey ,ez) we have

(e′1 · r)[r× e′1]× e′2 = r2




cos θ1 cos θ2 sin θ1 cosφ1

cos θ1 cos θ2 sin θ1 sinφ1

− cos θ1 sin θ1 sin θ2 cos(φ2 − φ1)



 , (58)

and

de2

dτ
= dθ2

dτ




cos θ2 cosφ2

cos θ2 sinφ2

− sin θ2



 + dφ2

dτ




− sin θ2 sinφ2

sin θ2 cosφ2

0



 . (59)

By identification, the system given by Eq. (46) can then be rewritten as a four-dimensional
dynamical system

dr

dτ
= µ

2r2

[
2− 3

(
cos2 θ1 + cos2 θ2

)]
, (60a)

dθ1

dτ
= 3µ

2r3
cos θ2 sin θ2 cos ξ, (60b)

dθ2

dτ
= 3µ

2r3
cos θ1 sin θ1 cos ξ, (60c)

sin θ1 sin θ2
dξ
dτ

= − 3µ

2r3
cos θ1 cos θ2

(
sin2 θ1 + sin2 θ2

)
sin ξ, (60d)

where we have used ξ = φ2 − φ1. The notations for Eq. (60) are summarized on Fig. 4.
Note that Eq. (60) can be simplified even further by defining α = 2r3/3µ, xi = cos θi and
y = sin θ1 sin θ2 cos ξ , and we obtain

dα
dτ

= 2− 3
(
x2

1 + x2
2

)
, (61a)

α
dx1

dτ
= −x2y, (61b)

α
dx2

dτ
= −x1y, (61c)

α
dy

dτ
= x1x2

(
2− x2

1 − x2
2

)
. (61d)

Physically, α is proportional to the third power of the distance between the swimmers. It
is negative for µ < 0 (pullers) and positive for µ > 0 (pushers). From the original physical
problem, we also have the following three mathematical constraints:
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Fig. 4 Definitions of the various variables for the average motion (see text for details).

• The variable α is either positive or negative. A change of sign of α requires a cancel-
lation of r at a finite time and a collision of the swimmers. Such a collision obviously
violates the far-field approximation, and the present theory is not valid when α gets
small. In the following, we will refer as “collisions” to regimes where the present the-
ory predicts a decrease of the relative distance to an arbitrary small number, at which
point additional modeling is required. We will therefore focus on solutions for which
the sign of α is fixed.

• The variables x1 and x2 are cosines, therefore, −1≤ {x1, x2}≤ 1.
• From the definition of y, 0≤ y2 ≤ (1− x2

1 )(1− x2
2 ).

4.2. Relative equilibria and stability

We focus here on relative equilibrium positions, for which on the long time scale, the
swimmers do not move relatively to each other. There can be, however, a mutual motion
of the swimmers (d〈r0〉/dτ )= 0).

4.2.1. Equilibrium points
From (61), there is only one type of equilibrium points obtained for (α, x1, x2, y) =
(α0,±

√
2/3,0,0), or symmetrically (α, x1, x2, y) = (α0,0,±√2/3,0) for any value α0

of α.
Physically, the distance between the swimmers can take an arbitrary value but the

orientations of the rotation vectors must correspond to a very specific configuration. One
swimmer’s rotation axis makes an angle cos−1√2/3≈ 35◦ with the distance between the
swimmers. The second swimmer’s rotation axis is orthogonal to the first swimmer’s and
their relative distance (so e′j is orthogonal to the plane defined by e′i and ez, with j )= i).

The linearized system about one such equilibrium is obtained as

d
dt





α− α0

x1 −
√

2
3

x2

y




=





0 −
√

6 0 0
0 0 0 0

0 0 0 − 1
α0

√
2
3

0 0 4
3α0

√
2
3 0




.





α − α0

x1 −
√

2
3

x2

y




. (62)
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The eigenvalues of the above matrix are λ = ±i2
√

2/3α0, and λ = 0 with multiplic-
ity 2. The dimension of the subspace associated with λ = 0 is however equal to 1. It
is therefore not possible to conclude from the linearized system on the stability of the
equilibrium of the non-linear system as one of the eigenvalue of the linearized system is
identically zero (neutral stability) (Sastry, 1999). We will show rigorously in Section 4.4
that this equilibrium is unstable.

4.2.2. Rotational equilibria
Another situation of interest is the case where the direction of the circular motions, e′i
remains fixed relatively to ez. Only α (or equivalently the distance between the two swim-
mers) depends on time. This occurs for two different configurations.

Swimmers with same axis of rotation: x1 = ±1 and x2 = ±1 The two swimmers have
quasi-circular trajectories in two parallel planes and e′i are both aligned with ez. As a direct
consequence of the definitions of xi and y, y must be zero at all time. From Eq. (61a), the
evolution of α in that configuration can be computed

α = ᾱ = α0 − 4τ, and r = r̄ =
(
r3

0 − 6µτ
)1/3

. (63)

The overbar denotes the reference configuration (rotational equilibrium) we are consider-
ing. Therefore, x̄1 = ±1 and x̄2 = ±1. Swimmers with µ < 0 (pullers) tend to repel each
other while swimmers with µ > 0 (pushers) attract each other, until the scale-separation
assumptions of the multiple-scale analysis break down. We observe that the collision time
scales like r3

0 /µ∼R3/ρal with R the dimensional distance between the swimmers, ρ the
radius of their circular trajectory and l and a the length and head radius of the swimmer,
respectively.

The stability of this time-varying configuration is now investigated by decomposing
each variable f (with f = α, x1, x2, y) as f = f̄ + f ′ and f ′ is a small perturbation. At
leading order, Eq. (61) can be rewritten

dα′

dτ
= −6(x̄1x

′
1 + x̄2x

′
2), (64a)

ᾱ
dx ′1
dτ

= −x̄2y
′, ᾱ

dx ′2
dτ

=−x̄1y
′, (64b)

ᾱ
dy ′

dτ
= −2x̄1x̄2(x̄1x

′
1 − x̄2x

′
2) (64c)

or equivalently

dα′

dτ
=−6(x̄1x

′
1 + x̄2x

′
2), ᾱ

d
dt




x ′1
x ′2
y ′



 =




0 0 −x̄2

0 0 −x̄1

−2x̄2 −2x̄1 0



 ·




x ′1
x ′2
y ′



 (65)

where the bar quantities correspond to the relative equilibrium (ᾱ = α0 − 4τ and x̄2
i = 1)

and the prime quantities are perturbations.
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The last system can be solved exactly if diagonalized. Defining



z1

z2

z3



 =




x̄2 −x̄1 x̄1

x̄1 −x̄2 x̄2

0 2 2



 ·




x ′1
x ′2
y ′



 ,




x ′1
x ′2
y ′



 = 1
4




2x̄2 −2x̄1 0
x̄1 x̄2 1
−x̄1 −x̄2 1



 ·




z1

z2

z3



 ,

(66)

it decomposes into

dz1

dτ
= 0,

dz2

dτ
=− 2z2

α0 − 4τ
,

dz3

dτ
= 2z3

α0 − 4τ
(67)

which can be integrated easily into

z1 = z1,0, z2 = z2,0

(
1− 4τ

α0

)1/2

, z3 = z3,0

(
1− 4τ

α0

)−1/2

. (68)

The original variables are obtained by linear combinations of these solutions, and we
observe that the configuration is unstable with algebraically growing perturbations.

Figure 5 illustrates this situation and compares the prediction of the far-field model for
the averaged motion (Eq. 61) to the full set of equations (Eq. 13). Considering two pushers
(µ > 0) that have initially almost the same axis of rotation (θ1, θ2+ 1), the hydrodynamic
interactions create a mutual attraction of the swimmers following the approximate law
(Eq. 63). This rotational equilibrium is unstable and as they get closer from each other,
the planes of the trajectories of the two swimmers undergo a quick rotation, bringing the
two swimmers from a coaxial to a coplanar configuration (see next section) in which the
interaction of the two pushers have now a repulsive effect. Figure 5 also allows to show
the agreement between the simplified model (Eq. 61) and the full equations of the system.

Two-dimensional configuration: x1 = x2 = 0 and y = ±1 For θi = π/2 and ξ = 0
(y = 1) for corotating and ξ = π (y = −1) for counter-rotating swimmers, both swim-
mers are in the same plane with their rotation axes orthogonal to the plane of motion.
Note that the two-dimensional configurations are actually only particular cases of orien-
tational equilibria: xi = 0 and −1 ≤ y ≤ 1. As above, this configuration is a rotational
equilibrium only, as the distance between the swimmers varies in time according to

α = α0 + 2τ, r =
(
r3

0 + 3µτ
)1/3

. (69)

This time, swimmers with µ < 0 (pullers) attract each other while swimmers with µ > 0
(pushers) repel each other. Here again, a stability analysis can be performed, and the
linearized dynamics becomes

dα′

dτ
=−3

(
x
′2
1 + x

′2
2

)
, ᾱ

d
dt




x ′1
x ′2
y ′



 =




0 −ȳ 0
−ȳ 0 0
0 0 0



 ·




x ′1
x ′2
y ′



 , (70)
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Fig. 5 Interaction of two pushers (µ = 1) with circular motions that are initially almost coaxial
(θ1 = θ2 = 0.22, ξ = 0.68) and an initial distance equal to r = 11.4. (a) Trajectories of the two swimmers:
the initially coaxial pushers attract each other until hydrodynamic interactions modify the orientation of
their circular trajectories and they become coplanar, leading to a repulsive interaction. (b) Evolution of the
distance between the swimmers and (c) evolution of the parameter α. In both (b) and (c), the light grey
curve corresponds to the full equations (Eq. 13) for which the circular motion of each swimmer is resolved,
and the black curve corresponds to the simplified model for the averaged motion (Eq. 61). Note that the
two curves agree with each other until the swimmers get close to each other.

which can be integrated exactly as

y ′ = y ′0,
x ′1 + x ′2

2
=

(
x ′1 + x ′2

2

)(
1 + 2τ

α0

)−ȳ/2

,

x ′1 − x ′2
2

=
(

x ′1 − x ′2
2

)(
1 + 2τ

α0

)ȳ/2

,

(71)

once again leading to the instability of these configurations with algebraically growing
perturbations.

4.3. Reduction to a two-dimensional problem

4.3.1. Conserved quantities
The system given by Eq. (61) can be simplified even further by observing that

A = x2
1 − x2

2 = cos2 θ1 − cos2 θ2 (72)

is a conserved quantity. Without any loss of generality, we can assume A to be positive
(the equations are symmetric with respect to a switch between x1 and x2). In the (x1, x2)-
plane, the system moves along a hyperbola, and we can define the parametric coordinate



994 Michelin and Lauga

σ such that

x1 =
√

A coshσ, x2 =
√

A sinhσ. (73)

To be rigorous, x1 should be equal to ±
√

A coshσ . However, one can change (x1, x2, y)

into (−x1,−x2, y) by changing the definition of ez to −ez (or equivalently, switching the
indices of the swimmers), and we therefore restrict ourselves to x1 ≥ 0 by redefining σ

appropriately. Introducing this change of variables into Eq. (61c) leads to

y =−ασ̇ . (74)

Using this relation in Eq. (61d), we obtain

−α(α̇σ̇ + ασ̈ ) = A

2
sinh 2σ (2−A cosh 2σ ), (75)

and multiplying by σ̇ and integrating with respect to time, we obtain

α2σ̇ 2 =−A cosh 2σ + A2

2
cosh2 2σ + C, (76)

where C is a constant of integration. Noting from Eq. (73) that A cosh 2σ = x2
1 + x2

2 , we
have therefore proven that

A = x2
1 − x2

2 and C = y2 +
(
x2

1 + x2
2

)(
1− x2

1 + x2
2

4

)
(77)

are two conserved quantities in this problem. Finally, defining the new variable X = x2
1 +

x2
2 = A cosh 2σ , the system given by Eq. (61) is equivalent to

αẊ = ε

√(
X2 −A2

)(
4C − 4X + X2

)
, (78a)

α̇ = 2− 3X (78b)

with ε = ±1. We have therefore transformed the four-dimensional system, Eq. (61), into
a two-dimensional system, Eq. (78). The values of the constants A and C, as well as the
initial values of X and α can be obtained from the initial conditions of the four variables
(α, θ1, θ2, ξ). The choice of the sign of ε is discussed in Section 4.3.3.

4.3.2. Bounds on the different variables
From the constraints detailed at the end of Section 4.1 and the definitions of the variable
X, and the constants A and C, we have the following four constraints.

• 0≤ {x2
1 , x

2
2 }≤ 1, therefore,

0 ≤ A≤ 1, (79a)

A ≤ X ≤ 2−A. (79b)
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• From Eq. (77), C = y2 + X − X2/4. Using the previous bounds on X as well as the
inequality y2 ≤ (1− x2

1 )(1− x2
2 ), we obtain that

C ≤ 1− A2

4
· (80)

• From Eq. (77), we have y2 = C −X + X2/4 and, therefore,

X ≤ 2
(
1−
√

1−C
)
. (81)

Because of Eq. (80), we have

2−A≥ 2
(
1−
√

1−C
)
, (82)

and Eq. (81) is actually a tighter upper bound than Eq. (79b).
• Finally, Eq. (81) and X ≥A implies that C ≥A−A2/4.

In summary, the following inequalities must be satisfied

0≤A≤ 1, A− A2

4
≤ C ≤ 1− A2

4
, A≤X ≤ 2

(
1−
√

1−C
)
. (83)

4.3.3. Choosing the sign of ε
For given values of A and C, and given initial conditions on X and α, there are two
possible solutions corresponding to ε = ±1 initially. In Eq. (78a), the square-root of the
right-hand side is positive and ε has therefore the sign of αẊ =−4x1x2y. Differentiating
with respect to time and using Eq. (61), we obtain

d
dt

(αẊ) = 4X

α

(
C −X + X2

4

)
+ (X2 −A2)(X− 2)

α
, (84)

and Ẋ and Ẍ are continuous functions of time.
From the constraints of Section 4.1, we are only interested in solutions where the sign

of α is fixed. Therefore, we are not interested in the solutions of Eq. (78) past a zero of α.
The left-hand side of Eq. (78a) vanishes only for vanishing Ẋ or for collisions. We prove
here that if at t = t0, αẊ = 0, then ε must change of sign at t = t0 if α(t0) )= 0. Such a
cancellation of the left-hand sign of Eq. (78a) happens only in two configurations

1. X = A = Xmin or equivalently x2 = 0 (one swimmer’s rotation axis is orthogonal to
the distance between the two swimmers). For X to reach a minimum at t = t0, Ẋ < 0
for t < t0 and ε(t−0 ) = ε− = −sgn(α(t0)). For small |t − t0|, we obtain using Taylor
expansion and Eq. (84),

αẊ ∼
[

4A

α

(
C −A + A2

4

)]
(t − t0), (85)

which is positive for t > t0, therefore, ε(t+0 ) = ε+ = sgn(α(t0)) =−ε−.
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2. X = 2(1−
√

1−C) = Xmax or equivalently y = 0. For t < t0, we therefore have ε− =
sgn(α(t0)). For small |t − t0|, we obtain

αẊ ∼−
[

2
√

1−C(4(1−
√

1−C)2 −A2)

α

]
(t − t0), (86)

and ε+ =−sgn(α(t0)) =−ε−.

With the analysis above, we see that for given values of A and C the system can be
represented solely in the (X,α) plane. However, if one wants to look at maps of the flow,
two maps should be superimposed ε = 1 and ε = −1, one for trajectories of decreasing
X and the other for trajectories of increasing X.

4.4. Possible regimes in the far-field interaction of two rotating swimmers

4.4.1. Monotonic variations of α
From Eq. (78b), we see that α is an increasing (decreasing) function of time if X ≤ 2/3
(X ≥ 2/3). If 2/3 is out of the bounds imposed on X by Eq. (83), α and the distance
between the swimmers are monotonic functions of time. Two such cases can occur.

1. If A > 2/3, then α̇ < 2− 3A < 0, and

• if α0 < 0, α→−∞ and the swimmers get further and further away from each other,
• if instead α0 > 0, α→ 0 and a collision occur at a finite time (since the time deriv-

ative of α is negative and has a nonzero negative upper bound).

2. If C < 5/9, then α̇ > 2− 6(1−
√

1−C) > 0 and

• if α0 < 0, α→ 0 and a collision occurs at finite time (since the time derivative of α
is positive and has a nonzero positive lower bound),

• if instead α0 > 0, α→∞ and the distance between the swimmers is unbounded.

4.4.2. General case: Theory
If A < 2/3 and C > 5/9, then we can prove that X oscillates from its lower bound Xmin =
A to its upper bound Xmax = 2(1−

√
1−C). This statement could be proven rigorously

from the equations for X and α. We only provide here a qualitative argument for clarity.
Since Ẋ only vanishes at these bounds, X varies monotonically from one to the other. If
X does not reach the next bound (even as t→∞), then it would have a finite limit and Ẋ

must go to zero as t→∞ while αẊ remains finite; this combination can only occur if α
is unbounded. Therefore, X oscillates between its bounds unless |α|→∞.

Then let tn be the successive times at which X reaches either Xmin or Xmax and the cor-
responding values αn. We are interested in the gain Gn = |αn+1/αn| and the time interval
τn = tn+1 − tn between two sign reversals of Ẋ. From Eq. (78), we obtain that, over an
interval where Ẋ has a given sign, we have

F (X;A,C,X0) =
∫ X

X0

(2− 3X)dX
√

(X2 −A2)(4C − 4X + X2)
= ε log

∣∣∣∣
α

α0

∣∣∣∣· (87)

F is well defined for Xmin ≤X ≤Xmax as the singularities at the end points are integrable.
Using Eq. (87) between tn and tn+1, we obtain the following.
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• If α0 > 0 (therefore, α > 0 at all times at least until collision), then when X varies from
Xmin to Xmax, ε is positive, and

logGn = G(A,C), with G(A,C) =
∫ Xmax

Xmin

(2− 3X)dX
√

(X2 −A2)(4C − 4X + X2)
·

(88)

• If α0 < 0 (therefore α < 0), then when X varies from Xmin to Xmax, ε is negative and

logGn =−G(A,C). (89)

We note here that Gn is a function of A and C only and, therefore, not a function of n

or αn. We can therefore summarize these results for all initial choice of (α, x1, x2, y) or
equivalently (α0,X0,A,C):

1. If α0 < 0 (puller) and G(A,C) > 0, α→ 0 and there is a collision between the swim-
mers.

2. If α0 < 0 (puller) and G(A,C) < 0, α→−∞ and the swimmers move away from
each other.

3. If α0 > 0 (pusher) and G(A,C) > 0, α→∞ and the swimmers move away from each
other.

4. If α0 > 0 (pusher) and G(A,C) < 0, α→ 0 and there is a collision between the swim-
mers.

Note that the particular cases discussed in the previous section (A > 2/3 and C < 5/9)
are also included in this analysis: the integrand in G has then a fixed sign.

It is important to point out that G determines the regime (divergence or collision) of
the two swimmers and is a function of A and C only. The regime is therefore entirely
determined by these two quantities, which are only functions of the relative orientation of
the rotation vectors of the swimmers and independent of their initial separation distance.
The maps of the regimes obtained for pushers (µ > 0) and pullers (µ < 0) are displayed
on Fig. 6. Note that at the boundary between the collision and divergence domains, we
have G = 0: The distance between the swimmers remains unchanged between tn and tn+2

and the motion is periodic. This corresponds to a limit cycle. The boundary between the
regimes shown on Fig. 6 (solid line between the divergence and collision regions) can be
obtained numerically by finding the values of A and C for which G(A,C) = 0. The other
two solid boundaries correspond to C = 1−A2/4 and C = A−A2/4 [see the constraints
on C in (83)].

4.4.3. General case: Numerical simulations
As a followup to our theoretical analysis, we illustrate here the four different possible
regimes obtained in Section 4.4.2. These results are displayed in Fig. 7. If A > 2/3 or
C < 5/9, the variation of α with time is monotonic, and can either be divergent (Fig. 7a)
or convergent (Fig. 7b). If A < 2/3 and C > 5/9, then the variation of α over half an os-
cillation is not monotonic: α̇ changes of sign when X = 2/3 corresponding to a minimum
or maximum distance between the swimmers. This leads to a spiral shape of the trajectory
in the plane (X,α), and nonmonotonic divergence (Fig. 7c) or convergence (Fig. 7d) of
the relative position between the swimmers.
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Fig. 6 Maps of the general regime in the (A,C)-plane for the long-time relative behavior of two swim-
mers with positive µ (left, pushers) or negative µ (right, pullers). Note that one can be deduced from
the other by symmetry, i.e., by changing collision (divergence) by divergence (collision). On the left map
(pushers), the position of the four examples (a)–(d) of Fig. 7 are indicated.

4.4.4. Finite time of collision
We show here that in cases (1) and (4) discussed at the end of Section 4.4.2, the collision
between the two swimmers occurs in a finite time. We consider case (4) for example. The
time interval between two zeros of Ẋ is given by

τn = tn+1 − tn =
∫ Xmax

Xmin

α(X)dX
√

(X2 −A2)(4C − 4X + X2)
≤ αnT (A,C), (90)

with

T (A,C) =
∫ Xmax

Xmin

dX
√

(X2 −A2)(4C − 4X + X2)
· (91)

Then we have

tn =
n∑

k=0

τk ≤ T
1− e(n+1)G

1− eG → T
1− eG , (92)

as n→∞ and the collision αn = 0 happens at a finite time since G is negative. A bound
on the finite collision time can be obtained in the same way for case (1).

4.4.5. Analysis of the system equilibrium
Finally, we know from Section 4.2 that the system has only one type of possible equi-
librium. Using the notation from the current section, it corresponds to A = X = 2/3 and
C = 5/9, α being arbitrary. This point is on the boundary between the collision and diver-
gence domains on Fig. 6, as well as on the boundary C = A−A2/4. One sees easily from
Fig. 6, that for all values of α and for any value of the perturbation that does not leave A

and C both unchanged, the system will move away from its equilibrium. This equilibrium
is therefore nonlinearly unstable.
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Fig. 7 Illustration of the four possible trajectories in the phase plane (X,α) (left), evolution of X (center)
and evolution of α for four different configurations: (a) monotonic divergence, (b) monotonic convergence,
(c) nonmonotonic divergence and (d) nonmonotonic convergence of the swimmers.

4.4.6. Absolute displacement of the swimmers through hydrodynamic interactions
In the previous sections, we have focused mostly on the relative motion of the two swim-
mers. The absolute motion is characterized by the evolution of r0, defined as the middle
point between the two swimmers. In the far-field approximation, we have computed the
average velocity of this middle point as v0 in (47). Using the notations defined in Sec-
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tions 4.1 and 4.2, v0 becomes

v0 =−3µA

4r2
ez,

where ez is a constant unit vector giving the direction of the relative distance between
the swimmers. A = cos2 θ2 − cos2 θ1 was shown to be a conserved quantity. The absolute
motion of the swimmers therefore occurs along the same direction as the relative motion,
and v0 does not change sign. In Section 4.3.1, we relabeled the swimmers so that A is
a positive quantity. With this relabeling, the net motion of the swimmers occurs along
ez in the direction of swimmer 1 for pushers (µ > 0) and in the direction of swimmer 2
for pullers (µ < 0). The net displacement velocity |v0| scales like 1/r2, as expected from
dipolar hydrodynamic interactions.

5. Discussion

5.1. Summary of results and biological relevance

The work in this paper focuses on the hydrodynamic interaction of N = 2 swimmers with
circular trajectories, such as the spermatozoa of some marine invertebrates (Goldstein,
1977; Riedel et al., 2005). This particular situation represents the simplest configuration
in which the effects of hydrodynamic interactions can be studied without considering the
full N -body problem with a large number of organisms. Indeed, the confinement of the
individual trajectories allows the two swimming organisms to interact on a much longer
time-scale than if they were swimming along straight lines. The two cells are assumed
here to be spherical and identical, but the description of their swimming stroke is general,
and the far-field interaction analysis is valid for an arbitrary stresslet tensor (i.e., an arbi-
trary force distribution at the swimmer surface). In general, the relative dynamics of the
two cells is described by a dynamical system with nine degrees of freedom.

In the far-field assumption, a separation of time scales occurs between the period of
the intrinsic circular motion of the swimmers and the time over which hydrodynamic in-
teractions have an order-one effect on their trajectories. As a result, the dynamical system
is investigated using a multiple-scale analysis. In particular, the average motion resulting
from the instantaneous interaction of the two swimmers is found to be strictly equivalent
to the interaction of two modified stresslets, obtained as the stresslet for each swimmer av-
eraged over a period of its intrinsic motion (in other words, the time-averaged interaction
between the swimmers is equal to the interactions between the time-averaged swimmers).
Furthermore, the direction of the relative distance between the two swimmers is found
to be independent of time, and the average problem was reduced to a four-dimensional
dynamical system for the distance between the swimmers and the relative orientations of
their rotation vectors.

We then proceed to a detailed mathematical analysis of the dynamical system. We show
the existence of one type of equilibrium, which is linearly neutrally stable but nonlinearly
unstable, and two types of rotational equilibria, which are both linearly unstable with al-
gebraic growth. We then show the existence of two conserved quantities, thereby allowing
a reduction to a two-dimensional dynamical system. We proceed to identify geometrical



The Long-Time Dynamics of Two Hydrodynamically-Coupled 1001

bounds on the dynamics, and we show that only two general long-time behaviors are pos-
sible: Either the swimming cells swim away from each other, or they get closer from each
other (until the far-field assumption breaks down). In these divergence and collision sce-
narios, the relative distance can either vary monotonically or can display oscillations, and
the boundary between the two regimes is an unstable limit cycle.

The implication of our results for the dynamics of biological organisms is twofold.
First, we show that there are no stable equilibria (in position or orientation) between
the cells, a result which is true arbitrarily of the sign of the far-field flow field each
cell is generating (pushers or pullers). As a result, populations of cells are expected
to always dynamically evolve, as is observed in experiments (Mendelson et al., 1999;
Wu and Libchaber, 2000; Dombrowski et al., 2004; Kim and Breuer, 2004; Sokolov
et al., 2007; Cisneros et al., 2007) and modeling (Simha and Ramaswamy, 2002;
Hernandez-Ortiz et al., 2005; Aranson et al., 2007; Saintillan and Shelley, 2007, 2008;
Ishikawa and Pedley, 2007a, 2007b, 2008; Wolgemuth, 2008; Underhill et al., 2008;
Mehandia and Nott, 2008) of cell populations, with an intermittence at the origin of
the expression “bacterial turbulence.” The model system studied in this paper allows us
in particular to quantify rigorously the rate at which the cells are being effectively re-
pelled from, or attracted to each other, and to obtain all types of possible swimming
kinematics at t →∞. In addition, what this paper shows, is that hydrodynamic inter-
actions leads to “new” modes of swimming, meaning that the motion of each swimmer
contains a component due to the presence of another cell which, over long times, inte-
grates to an order one change in its swimming kinematics. This is reminiscent of recent
work showing that hydrodynamic interactions can impart motility to otherwise nonswim-
ming active bodies (Alexander and Yeomans, 2008; Lauga and Bartolo, 2008), and is rel-
evant to the experimental observation that dense cell populations display different length,
time and velocity scales than that of individual micro-organisms (Mendelson et al., 1999;
Dombrowski et al., 2004; Sokolov et al., 2007; Cisneros et al., 2007).

5.2. Modeling assumptions and possible extensions

The results in this paper were obtained under a number of simplifying assumptions, which
we now discuss.

5.2.1. Nonspherical swimmers
We have first assumed that the two swimmers are spherical, so that the rotation rate in-
duced by the hydrodynamic interaction is equal to half the vorticity field created by the
other swimmer. A corrective term of the same order however appears as soon as the swim-
mer shape is not purely spherical. Analytic solutions have been obtained for ellipsoids
(Jeffery, 1922; Kim and Karilla, 1991). In this paper, we focus on the spherical case as it
provides the simplest system, and because it is a first good approximation of the shape of
spherical organisms using cilia or flagella whose effect on the induced rotation rate can
be neglected if their size is small compared to the body of the swimmer. If the organism
is not spherical, a corrective term to the system, Eq. (13) must be added to account for
the effect of anisotropy and local strain rate. In the case of an ellipsoidal swimmer, the
induced rotation rate on swimmer 2 is given by (Pedley and Kessler, 1992)

!1→2 = 1
2
ω(1)(r) + β0p2 ×

(
E(1)(r) · p2

)
, (93)
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with r = r2 − r1, ω(1) and E(1) the vorticity field and strain rate tensor created by the
motion of swimmer 1, p2 the unit vector associated to the direction of the major axis of
the ellipsoidal swimmer 2 and β0 = (c2 − 1)/(c2 + 1) with c the ratio of major axis to
minor axis of the ellipsoid, and measures the departure from the spherical case (p2 moves
rigidly with the swimmer). A reasonable approximation is to consider that p2 = e2, i.e.,
the intrinsic swimming motion occurs in the direction of the major axis of the ellipsoid.
The strain rate tensor is obtained from Eq. (8), and after substitution in Eq. (93), the
induced rotation rate becomes

!1→2 = γ r× (S(1) · r)
r5

+ γβ0

[
5(r · S(1) · r)(e2 · r)(e2 × r)

r7

− (e2 · S(1) · r)(e2 × r)
r5

− (e2 · r)(e2 × (S(1) · r))
r5

]
. (94)

As pointed out above, the rotation rate now depends not only on the orientation of
swimmer 1 (through S(1)) but also on the orientation of swimmer 2. In the limit of far-
field interactions, the multiple-scale analysis of Section 3.1 is still valid and we can study
the average motion of the swimmers as represented by their mean distance r and the
orientation of their intrinsic rotation vectors e′i . However, the relative phase between the
circular motion of the swimmers (value between 0 and 2π ) does not disappear in the
averaged equations and acts as an additional arbitrary parameter.

5.2.2. Validity of the far-field approximation and regularization
When the two swimmers are not far enough from each other, two of our assumptions
successively break down. Firstly, the separation of time scales is no longer valid when
the time-scale associated with the intrinsic rotation of each swimmer is no longer much
smaller than the time scale associated with the hydrodynamic interaction. In that case, the
multiple scale analysis of Section 3 breaks down, and one needs instead to consider the
full coupled equations, Eq. (13).

Secondly, when the swimmers get close to each other, the description of hydrody-
namic interactions as being dominated by their far-field limit is no longer valid, and the
following three terms need to be considered: (a) Higher-order corrections in the velocity
and vorticity field created by a swimmer in Eq. (11) (flows with r−3 decay such as force-
quadrupoles, source-dipoles; flows with r−4 decay, etc.). (b) Higher-order corrections in
the induced velocity on a swimmer whose size is no longer negligible compared to the
characteristic length-scale of the local flow. For a sphere, the exact correction is given
by Fàxen’s law. Generalized exact formulae can be obtained for ellipsoids (Jeffery, 1922;
Lamb, 1932). For arbitrary shape, general frameworks have been studied allowing the
computation of the successive corrective terms (Brenner, 1964; Liron and Barta, 1992);
(c) Higher-order corrections due to the two-way coupling: Swimmer 1 creates a flow field
that influences swimmer 2. But the presence of swimmer 2, modifies this flow field (even
if swimmer 2 was not swimming) which also induces a correction on the velocity of
swimmer 1.

These three contributions are negligible for large distances but can become dominant
at intermediate distance or in near-field interactions. In particular, we observed previously
that the far-field behavior can lead to collisions between the swimmers (when α or r go
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to zero) as the hydrodynamic interaction terms in Eq. (13) are attractive for particular rel-
ative orientations of the swimmers, regardless of their relative distance. Moreover, these
attractive interactions also have a diverging amplitude as r→ 0. Obviously, the far-field
approximation is violated when the distance becomes small, and the higher order cor-
rections discussed above must be included to account for regularizing forces that arise
at intermediate or short distances. In an effort to remain general, one could attempt to
introduce some empirical short distance corrections to reduce the attractive terms in the
near-field (in the form of exponential or power-laws regularization at small r, for exam-
ple), but these are not based on physical principles. For distances between the swimmers
much smaller than the typical size of each swimmer, lubrication theory can be used but, in
the intermediate distance range numerical simulation is necessary (Ishikawa et al., 2006).

In general, if one is interested in intermediate or short range interactions, a knowl-
edge of the detailed swimmer geometry and propulsion method is necessary, as is the
case for spherical squirmers (Ishikawa et al., 2006; Ishikawa and Pedley, 2007a, 2007b)
or dumbbell-like model organisms (Hernandez-Ortiz et al., 2005; Gyrya et al., 2009).
Squirmers maintain a spherical shape at all time and generate motion by tangential dis-
placement of their surfaces. They are generally thought as a good approximation for
spherical swimmer using ciliary propulsive schemes; the spherical shape of the swim-
mer corresponding to the envelope of the cilia in that case. The squirmer formulation has
the advantage that an analytic solution exists for the velocity field created. Using Fàxen’s
law, an exact system for spherical swimmers can then be obtained. Analytic solution of
the multi-body problem is however not possible in general and such a system must be
solved numerically. Both squirmers and dumbbell-like organisms are simple approxima-
tions of real swimmers, and considerations of the detailed geometry of the swimmer often
lead to a trade-off between accuracy in the biophysical description of real organisms and
simplified representations to allow an easier mathematical or numerical treatment.
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