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Abstract 

A prerequisite for systems biology is the integration and analysis of heterogeneous 
experimental data stored in hundreds of life-science databases and millions of scientific 
publications. Several standardised formats for the exchange of specific kinds of biological 
information exist. Such exchange languages facilitate the integration process; however 
they are not designed to transport integrated datasets. A format for exchanging integrated 
datasets needs to i) cover data from a broad range of application domains, ii) be flexible 
and extensible to combine many different complex data structures, iii) include metadata 
and semantic definitions, iv) include inferred information, v) identify the original data 
source for integrated entities and vi) transport large integrated datasets. Unfortunately, 
none of the exchange formats from the biological domain (e.g. BioPAX, MAGE-ML, 
PSI-MI, SBML) or the generic approaches (RDF, OWL) fulfil these requirements in a 
systematic way. 
We present OXL, a format for the exchange of integrated data sets, and detail how the 
aforementioned requirements are met within the OXL format. OXL is the native format 
within the data integration and text mining system ONDEX. Although OXL was 
developed with the ONDEX system in mind, it also has the potential to be used in several 
other biological and non-biological applications described in this paper. 
Availability: The OXL format is an integral part of the ONDEX system which is freely 
available under the GPL at http://ondex.sourceforge.net/. Sample files can be found at 
http://prdownloads.sourceforge.net/ondex/ and the XML Schema at 
http://ondex.svn.sf.net/viewvc/*checkout*/ondex/trunk/backend/data/xml/ondex.xsd. 

1 Introduction 

The importance of database integration for all Life Sciences is generally recognised. 
Especially in the Pharmaceutical Industry [1; 2] data integration is a crucial technology for the 
drug discovery process [3; 4]. Although many different approaches to data integration exist, 
and have been reviewed by [5], there are no standard formats, specifically designed for the 
exchange of integrated datasets. Thus, users of database integration systems have to rely on 
the proprietary interfaces and exchange formats from the different data integration platforms. 
Although the use of XML, RDF and OWL simplifies the exchange of integrated datasets, 
none of the existing XML, RDF and OWL based formats is suitable as a generic format for 
the exchange of integrated datasets. 

Data integration has to deal with a broad range of heterogeneous data sources. Traditionally, 
databases were distributed using proprietary flatfile formats or tab delimited database dumps. 
It is a popular myth that the appearance of XML has made these formats obsolete, however 
our experience shows that still only about 5% of all databases provide an XML based format 
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[6]. Several databases are still exclusively distributed in proprietary flatfile formats or as 
database dumps. A high percentage of these databases provide no exchange format and can 
only be accessed through HTML based web-pages. Standardised exchange formats have great 
potential in improving and simplifying database integration, as generic tools and interfaces 
can be (re-)used. Widespread adoption of an exchange format leads to improved data 
documentation and will inevitably improve the exchange formats as formal agreements on 
data content and level of detail are reached between data providers. 

We begin by introducing the requirements for the exchange of integrated data sets and 
proceed to discuss and compare existing biological data formats like BioPAX, MAGE-ML, 
PSI-MI and SBML. We conclude that none of the outlined exchange formats sufficiently meet 
the needs of data integration. We describe how our requirements form the specification for the 
OXL exchange format, which we developed specifically for the exchange of integrated 
datasets. We demonstrate its usability for data exchange within the different components of 
the database integration framework ONDEX [7; 8] and external applications. Finally we 
discuss the various applications of OXL, and give an outlook on the extension of the format 
and our plans to improve OXL’s supporting tools. 

2 Requirements for exchanging integrated data sets 

Several XML-based exchange formats have been developed for representing data and models 
in specific biological areas, including the “Biological Pathway Exchange” (BioPAX) format 
[9], CellML markup language for describing mathematical models [10], “Chemical Markup 
Language” (CML) [11], “Microarray Gene Expression Language” (MAGE-ML) [12], 
“Protein Markup Language” (ProML) [13], “Proteomics Standards Initiative’s Molecular 
Interaction” (PSI-MI) format [14] and “Systems Biology Markup Language” (SBML) [15]. 

Some of these exchange formats cover a broader biological area than others. SBML, for 
example, is a language for describing models common to research in many areas of 
computational biology, including cell signalling pathways, metabolic pathways, gene 
regulation, and others [16]. SBML has become a de facto standard for representing formal 
quantitative and qualitative models at the level of biochemical reactions and regulatory 
networks [15]. BioPAX enables the integration of diverse pathway resources by defining an 
open file format specification for the exchange of biological pathway data. BioPAX includes 
representations for metabolic pathways, molecular interaction and promises future support for 
signalling pathways. It adopts some of the mechanism used in the PSI-MI format [9].  

Several bioinformatics tools such as Cellerator (SBML) [17], Cytoscape (BioPAX) [18], E-
Cell (SBML) [19], Gepasi (SBML) [20], Pathway Tools (BioPAX) [21] and VisANT 
(BioPAX) [22] use these formats for the importing/exporting of domain specific data. 
However, these formats are not normally used for exchanging a broad range of integrated 
data, which involves several data integration specific requirements. These requirements are 
listed in Table 1. 

In biology, exchange languages are normally designed for a very specific application domain, 
such as the exchange of protein interactions (PSI-MI), description of microarray experiments 
(MAGE-ML), representation of formal quantitative and qualitative models (SBML) or 
exchanging pathway information (BioPAX); thus they do not satisfy the first requirement 
specified in Table 1.  

Many of the above mentioned formats have only a limited functionality to incorporate new 
complex data structures (see second requirement in Table 1). Structural representation of 
complex data is predefined by the given format, for example the use of MathML [23] within 
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the PSI-MI format to model equations. Adding complex data outside the defined 
representations therefore requires a change to the underlying schema of the format.  

In defined ontology formats like BioPAX, which is represented in OWL-DL, all entity classes 
are predefined (may oppose third requirement in Table 1). For example if one likes to 
describe H+ as an inorganic substance (as subclass of physicalEntity) and not as an instance 
of the smallMolecule subclass of BioPAX, this requires the modification of the BioPAX 
schema to enable document validation by OWL reasoners.  

Some formats, like MAGE-ML or PSI-MI are able to include metadata about the information 
sources and methods that were used to generate the contained information. But not all of the 
above mentioned formats are completely able to satisfy the fourth and fifth requirement of 
Table 1. The last requirement in Table 1 is also not always satisfied, often because 
sophisticated document validation is involved. For some formats, especially OWL-DL based 
formats this is a demanding computational task with high inherent time and space complexity; 
from our experience this is the limiting factor for existing tools. Therefore, none of the 
existing formats satisfy all of the aforementioned requirements for exchanging integrated 
biological data. 

 
Motivation Requirement Example 
Data integration needs to 
include all kinds of 
biological data, e.g. pathway 
data, gene expression data, 
biochemical reactions etc. 

i) Cover data from a 
broad range of 
application domains. 

Combined analysis of 
microarray and metabolomic 
data in the context of 
integrated pathway data. 

Biological research 
progresses and new 
understanding may emerge 
that result in novel complex 
data structures. 

ii) Be extensible to 
combine many different 
complex data structures. 

The current transition from a 
gene-centric to network-based 
representation of molecular 
biology. [Mewes, NAR, 2006] 

Biological ontologies are 
subject to frequent changes.  

iii) Be flexible with meta 
data and semantical 
information from other 
sources. 

During the evolution of the 
PSI-MI format to the current 
release (version 2.5), major 
changes have occurred. 

Not all relationships between 
biological entities are present 
in the data sources. 

iv) In addition to 
integrated data also 
include inferred 
information.  

New relationships between 
biological entities may be 
identified by data integration 
and analysis methods. 

Integrated data may originate 
from several different data 
sources or be inferred 
computationally.   

v) Identify the original 
data source for integrated 
entities. 

Integrating several pathway 
databases, like KEGG and 
BioCyc at once. 

Biological knowledge is 
steadily growing, as is the 
data contained in biological 
databases. 

vi) Transport large 
amounts of integrated 
data. 

The KEGG database in its flat 
file representation is already 
more than 4GByte large. 

Table 1 Requirements for exchanging integrated data 
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3 The OXL format 

This section describes the OXL exchange format and why we choose XML Schema to 
implement it. OXL was originally developed to exchange integrated data sets between 
different components of the ONDEX system [7], and with external applications. However, we 
believe that OXL also has several potential applications independent of ONDEX. 

3.1 A brief history of OXL 

The design of the OXL format is closely coupled with how data is represented in the ontology 
based data structure of the ONDEX system. Integrated data in ONDEX is modelled as a 
graph, where the nodes are termed concepts and the edges relations. Concepts correspond to 
biological entities, e.g. a gene, a protein, an enzyme or a pathway. Relations describe how 
these biological entities interact or relate to each other, e.g. a protein is encoded by a gene; an 
enzyme can take part in a pathway. Whether a particular concept is a gene, a protein or a 
pathway is determined by the concept class metadata of this concept. The nature of the 
relation that connects two concepts is specified by the relation type metadata for each relation. 
The use of metadata enables us to cover data from a broad range of application domains (see 
first requirement in Table 1) and to be flexible with changes in metadata and semantic 
information from other sources (see third requirement in Table 1). Each concept and relation 
is marked with the data source from which (controlled vocabulary) it originates, and the 
method that was used to create it in ONDEX (evidence): to keep track of provenance in the 
process of data integration (see fourth and fifth requirement in Table 1). 

Before we had started to develop the OXL format, we carefully investigated existing formats 
such as SBML and BioPAX. Using one of these formats for the ONDEX system would have 
had several advantages such as good tool support through, e.g. libSMBL (see 
http://www.sbml.org/software/libsbml/), the Jena API (see http://jena.sourceforge.net), and 
improved compatibility with other bioinformatics tools. Unfortunately, as we have reported in 
the previous section, despite SBML and BioPAX being well developed and successful 
exchange languages, they are not suitable as a generic exchange language to describe 
integrated data from multiple sources, or to exchange data between the different components 
of the ONDEX system. Given the obvious strengths of these data formats we include import 
and export functionality from ONDEX to a range of different formats, including certain 
aspects in SBML. 

The overriding priority when selecting the OXL technical structure was a well-defined and 
widely adopted software-readable format (see last requirement in Table 1). We chose XML, 
the eXtensible Markup Language [24], because of its portability and increasingly widespread 
acceptance as the standard data language for bioinformatics [25]. There are, however, 
different approaches to data representation in XML and we also considered the RDF and 
OWL XML Schema.  

Modelling the ontology based data structure of ONDEX in OWL would have restricted us to 
predefined metadata for concepts and relations (e.g. concept class and relation type): defined 
as OWL classes and sub classes. This would have limited us to a static set of metadata at 
runtime. Although this is attractive in terms of the required programmatic complexity and 
computational reasoning; we decided to look for a different way, which would not require 
changing the OWL schema file every time we introduce new metadata for concepts or 
relations. Also special tool support in the form of reasoners is required to make full use of the 
expressiveness of OWL-DL. Validation of documents in OWL-DL has a inherently high time 
and space complexity. This tool support was missing and we experienced the same problems 
with OWL-DL as described by [26].  
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Tool support for the RDF format is better than for OWL, because in comparison the 
complexity of document validation is reduced. The preferred way of representing 
relationships in RDF is in the form of subject – predicate – object. Here subject and object 
correspond to ontology concepts and predicate to the relation between concepts. RDF does 
not allow the direct association of complex metadata (complex relation types, evidence types 
etc.) with the predicate. One workaround is to model a relation from our ontology based data 
structure as an object; references are added between the first participant in the relation to the 
object and the second participant in the relation. However, this reduces compatibility with 
existing tools, as this kind of modelling is not within the scope of standard RDF design. 
Representing ternary relationships in RDF is difficult and not an explicit part of the syntax 
elements. However, there exists several model variants for n-ary relations mentioned in (see 
http://www.w3.org/TR/swbp-n-aryRelations/). For cross system compatibility, we have 
developed an RDF based export for our ontology based data structure. However, due to the 
aforementioned problems and other minor issues encountered, some information loss in the 
conversion to RDF is unavoidable. 

3.2 OXL as XML Schema  

Our final conclusion was in favour of XML Schema because of its already widespread 
adoption and abundance of tools. XML Schema gave us the most flexibility in modelling our 
ontology based data structure. The principles used are reflected in the XML Schema of OXL 
as shown in Figure 1. The start data element ondexdata includes either the ondexmetadata or 
the ondexdataseq element. This facilitate the use of one XML Schema for both, describing 
metadata (ondexmetadata) in terms of a controlled vocabulary and defined evidences, and a 
complete graph structural representation for concepts and relations (ondexdataseq). An OXL 
file containing only metadata is required to initialize the ONDEX data integration framework 
with a common set of agreed metadata. 

The ondexmetadata element consists of an OndexMetaDataSeqType, containing a list of all 
possible kinds of metadata used in the ontology based data structure (see third requirement in 
Table 1). Each metadata element is represented by a set of values containing: a unique 
identifier (id), name (fullname) and free text description (description) to represent human 
readable information. These identifying values are common to all metadata elements, which 
are detailed in the following. The cvs element contains a list of databases, called controlled 
vocabulary (cv). The units of properties assigned to concepts and relations are grouped 
together in the units element. Types of evidence for concepts and relations are contained 
within the evidences element. A unit can also be part of an attribute name (attrname) 
contained in the attrnames element. An attribute name is the first participant in a name-value 
pair, which together is termed a generalised data structure (GDS) [8] element; this can be 
assigned to any concept or relation. An attrname element beside the common identifier set 
also contains a datatype element and a specialisationOf element. The datatype element 
usually specifies the JAVA (see http://java.sun.com) class of the GDS value, but is not limited 
to JAVA classes in general. This allows for representing complex data structures such as 
protein structure, or Position Weight Matrices (PWM), which describes the DNA binding 
motifs of transcription factors (see second requirement in Table 1). The datatype element 
intentionally avoids the use of predefined data types in XML Schema and thus enables 
addition of new data types without having to modify the XML Schema of OXL. The 
specialisationOf element contains another attrname element, and represents the model 
hierarchy within attribute names. The same principle for modelling hierarchy within the 
metadata in OXL is implemented in both concept classes (cc) which are wrapped in the 
conceptclasses element, and relation types (relation_type) which are contained within the 
relationtypes element. A relation_type element has additional attributes that characterise the 
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properties of the relation according to the OBO Relation Ontology [27]. Relation types can be 
grouped together in the rtset element of a relation type set (relationtypeset) in the list of 
relation type sets (relationtypesets). This provides the most flexible way of specifying the 
type of a relation, where the data source requires that relation types are a conglomerate of 
several relation types, e.g. MeSH use the same relation type to represent is-a and part-of 
relationships. A relation can have: a set of one or more relation types without a given 
hierarchy, a set of one or more relation types in a full defined hierarchy, or a mixture of both. 

The ondexdataseq element is an OndexDataSeqType containing lists of concepts (concepts) 
and relations (relations). Each concept is identified by a unique id element (an integer). 
Textual information about a concept is contained in annotation and description. Additionally 
concept contains a pid element. This can be an alternative textual identifier for the concept 
which is more understandable. The elementOf element defines the controlled vocabulary (cv) 
from which the concept originates. The ofType tag represents the concept class (cc) for the 
concept. The types of evidences (evidence) for the concept are collected within the evidences 
element. A concept can have synonyms which are expressed as concept names (conames), 
references to other data sources termed concept accessions (coaccessions), and arbitrary 
name-value pairs, encompassed by the generalised data structure (cogds). A relation is 
identified by the unique combination of fromConcept, toConcept, an optional qualifier 
concept, and a relation type set (ofTypeSet). The addition of the qualifier concept enables 
OXL to represent ternary relationships. A relation is assigned evidence types (evidences) and 
arbitrary name-value pairs (relgds), which are handled in an equivalent way to concepts. 

Except the reuse of unique concept IDs for fromConcept, toConcept and qualifier elements in 
a relation, no other cross document references are made: all elements are always fully 
expanded, in a similar way to that used by the expanded form of the PSI-MI format [14]. Thus 
these elements always contain a full copy of a possible already existing other element that is 
associated as a property of the current element. This facilitates the merging of several OXL 
documents and enables easy transformation of the OXL format into streamlined formats like 
HTML using XSLT stylesheets. However, this introduces redundancy in the file format and 
thus increases the average size of OXL documents. However, due to the higher redundancy 
when compressed these files are only marginally bigger than the equivalent non-redundant 
file format. 

We plan to introduce a versioning system for future releases of OXL to keep track of the 
changes within the document versions and provide scripts for upgrading existing data stored 
in OXL to the newest version. The format described here is the first official release of the 
OXL format. 

3.3 Support for data integration and text mining 

The OXL format was designed to support the task of data integration and text mining in 
ONDEX. Metadata plays an important role in the course of integrating data in a semantically 
consistent way. Equivalent entities in different data sources, which represent the same 
biological object, e.g. genes imported from KEGG [28] and genes imported from BioCyc 
[29], and thus share a common semantic definition, will also share a common metadata 
association (see third requirement in Table 1). Therefore, all data in OXL uses the same set of 
metadata compiled for the corresponding application domain (see first requirement in Table 
1). 

Sets of metadata include concept classes, relation types and attribute names. Concept classes, 
relation types and attribute names can be part of a hierarchical structure in the form of a 
taxonomy. For concept classes the top level root element is Thing. All other concept classes 
like Gene, Protein or Pathway are inherited from the root element. An example of a hierarchy 
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of attribute names is given by the biological sequence types: cDNA is a specialisation of 
DNA, and mRNA is a specialisation of RNA. The OXL Relation types are based primarily on 
the OBO Relation Ontology [27]. Figure 2 shows an excerpt for the OBO relation type 
preceded_by (pr_by) emphasizing on the fully expanded specialisationOf element containing 
the more general is_related_to (r) relation type. 

Provenance of data is tracked using controlled vocabulary (CV) and evidence types (see fifth 
requirement in Table 1). The controlled vocabulary marks the data source the data was 
imported from: e.g. KEGG [28], Transfac [30], Transpath [31]. Instead of technically merging 
equivalent concepts and relations from different data sources, these concepts and relations are 
only aligned to each other using the special relation type equivalent (equ). This makes it 
possible to disentangle integrated data sets (see fourth requirement in Table 1). Evidence 
codes are used for keeping track of how data was integrated in ONDEX. This facilitates the 
extraction or filtering of relations generated by a specified data analysis method.  Evidence 
codes can also be applied to inferred (generated) concepts and relations (see fourth 
requirement in Table 1). 
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Figure 2 OXL metadata excerpt for pr_by relation type 

4 Tool support and applications of OXL 

OXL was developed as part of the ONDEX data integration framework. Thus it has a close 
relationship to the core data structure. There are three possible technical approaches for 
generating an OXL document. Firstly, a combination of a document objects model (DOM) 
and an XML writer/reader to handle OXL. This is an appropriate approach for the conversion 
of small custom data models into OXL. Secondly, stream based XML parsing/writing 
approaches such as SAX (see http://www.saxproject.org/) or StAX (see 
http://www.jcp.org/en/jsr/detail?id=173) which can be used to directly read or write XML 
documents in the syntax of OXL. These techniques use the smallest memory footprint and are 
the only viable approach for large data sets. We use StAX based parsing within ONDEX. 
Thirdly, for very large data models, we recommended the use of the ONDEX core API 
(“core”). This API includes methods for the efficient construction and manipulation of very 
large graphs and OXL exports and imports. As ONDEX stores all data on disk in its own 
persistency layer and keeps only a cached subset of data in memory the handling of very large 
data sets is possible. Furthermore, the “core” can be used as a persistent management system 
for custom data integration applications in JAVA. The current ONDEX system which is 
available at http://ondex.sourceforge.net includes support tools for reading and writing of data 
in the OXL format. 

Editing metadata within the “core” is enabled through the Metadata Editor, which provides a 
graphical hierarchical-tree based representation of the metadata. We encourage 
users/developers to submit their own metadata additions and modifications to the central OXL 
document located in the Subversion repository of ONDEX, or to suggest such changes 
through the developer mailing list. 

To demonstrate that OXL can be used to exchange complete databases without information 
loss, we implemented an OXL export for the Pathogen Host Interaction database (PHI-base) 
[32]. This functionality is currently only provided in the beta version of PHI-base and will 
appear as part of the next release. It is possible to download the complete database or selected 
query results in the OXL format; for example a search for the entry “PHI:441” yields the 
result table depictured in part A of Figure 3. Part B of Figure 3 shows an excerpt from the 
generated OXL file and part C of Figure 3 shows a screenshot of the ONDEX Visualisation 
Tool Kit (OVTK), with the loaded OXL file showing an organic layout of the data. 

Journal of Integrative Bioinformatics, 4(3):62, 2007 9



Journal of Integrative Bioinformatics 2007                                                    http://journal.imbio.de/ 

 

 
 
 
 

Fi
gu

re
 3

 P
ar

t A
: R

es
ul

t t
ab

le
 fo

r 
PH

I-
ba

se
 e

nt
ry

 P
H

I:
44

1;
 P

ar
t B

: E
xc

er
pt

 o
f O

X
L

 e
xp

or
te

d 
fr

om
 P

H
I-

ba
se

; P
ar

t C
: S

cr
ee

ns
ho

t o
f O

V
T

K
 w

ith
 lo

ad
ed

 d
at

a 
fr

om
 O

X
L

 d
is

pl
ay

in
g 

re
la

tio
ns

hi
ps

 o
f P

H
I:

44
1.

 T
he

 a
ct

ua
l g

ra
ph

 o
f r

el
at

io
ns

hi
ps

 is
 d

is
pl

ay
ed

 in
 th

e 
up

pe
r 

V
is

ua
liz

at
io

n 
fr

am
e,

 w
he

re
as

 a
n 

ov
er

vi
ew

 o
f t

he
 

in
vo

lv
ed

 m
et

ad
at

a 
(c

on
ce

pt
 c

la
ss

es
 li

ke
 G

en
e,

 D
is

ea
se

, a
nd

 r
el

at
io

n 
ty

pe
s b

et
w

ee
n 

m
em

be
rs

 o
f t

he
se

 c
on

ce
pt

 c
la

ss
es

 li
ke

 p
re

ce
de

d_
by

, i
nt

er
ac

tin
g_

w
ith

) i
s 

gi
ve

n 
in

 th
e 

M
et

ag
ra

ph
 V

ie
w

er
. O

n 
th

e 
ri

gh
t s

id
e 

a 
bi

rd
s-

ey
e 

ov
er

vi
ew

 is
 p

re
se

nt
ed

 a
nd

 th
e 

di
ff

er
en

t r
el

at
io

ns
 ty

pe
 c

ol
ou

rs
 a

nd
 c

on
ce

pt
 c

la
ss

 sy
m

bo
ls

 a
re

 
de

pi
ct

ed
 in

 th
e 

lo
w

er
 p

ar
t. 

Journal of Integrative Bioinformatics, 4(3):62, 2007 10



Journal of Integrative Bioinformatics 2007                                                    http://journal.imbio.de/ 

 

5 The role of OXL in the ONDEX data integration framework 

Data AnalysisData Integration

Exchange 
formats

XGMML, RDF, 
OBO, PSI MI, 
SBML, FASTA

OXL
Databases with 

OXL support
PHI-base

Flatfile databases
KEGG, TF, TP, 
BioCyc, Drastic, 

MeSH, Medline...

ONDEX data integration framework
C

on
si

st
en

cy
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he
ck

s

ONDEX core API

ONDEX Metadata in 
OXL

Query API

Exporter

Webservices

JSP 
webinterface

Ontology based graph 
structure

Data alignment 
methods

ONDEX Visualisation and 
Analysis Tool Kit (OVTK)

Taverna

Webinterface frontend

OXL

XGMML

SBML

ONDEX 
Metadata Editor

OXL

Data Input

RDFFASTA
Graph 

ML, 
GML

 
Figure 4 shows the different components of ONDEX and how ONDEX makes use of OXL as well 
as other standard exchange formats. Integration runs in ONDEX can be divided into three steps: 
input of data from different data sources, the integration process in the ONDEX core API, and 
data analysis using different tools and interfaces. 

The data integration framework consists of three parts. First data is loaded or parsed from 
different data sources into the ONDEX core API (“core”), passing several consistency 
checks. The “core” uses ONDEX Metadata and data alignment methods to perform the data 
integration step from the original data into the ontology based graph structure which is hold in 
its own persistency layer. The data can be retrieved using the Query API and associated web 
services or by the JSP based web interface. We also provide several exporters, which work 
directly with the “core”. Once the data has been retrieved, it can finally be applied to data 
analysis. The ONDEX Visualisation Tool Kit (OVTK) is one such data analysis tool that can 
be applied to data retrieved from the ONDEX system. The OVTK uses the same “core” and 
provides additional graph-based visualisation and analysis methods. 

OXL is also used for data transfer between different components of the system and the storage 
of integrated datasets. Besides the OXL format, ONDEX makes use of a range of different 
exchange formats and data sources. Data from several data sources are imported using 
database specific parsers or generalised importers for supported exchange formats. An up-to-
date list of these exchange formats and databases can be found on the webpage (see 
http://ondex.sourceforge.net/feats.php). By using the OBO format for example, it is possible 
to import about 50 different ontologies (see http://obofoundry.org/), and the PSI-MI interface 
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of ONDEX provides access to 8 protein interaction databases (see 
http://www.psidev.info/index.php?q=node/60#data), supporting this format. There are also 
importers for XGMML (see http://www.cs.rpi.edu/~puninj/XGMML/draft-xgmml.html) and 
SBML. In addition, ONDEX provides parser for KEGG [28], Transfac [30], Transpath [31], 
Drastic [33], EC [34], BioCyc [29], MeSH [35] and Medline [36]. The flatfiles of these 
databases are stored locally and are read directly by the parsers. Therefore, it is not required 
that these databases are installed or that a permanent internet connection is present. Besides 
the currently supported exchange formats and data sources, several other data import parsers 
are underway and will be added in the near future. 

Metadata for the data integration core is provided using OXL and can be easily edited using 
the Metadata Editor. New relationships between imported concepts can be identified by data 
alignment methods: e.g. concept accessions matching, biological sequence similarity or text 
mining. After the data integration run has finished, the integrated data can be accessed 
through web services or exported directly into several exchange formats, including OXL, 
XGMML and SBML. The web services are used by the ONDEX Visualisation Tool Kit 
(OVTK) and Taverna [37]. A web interface is currently under development. Other application 
can utilise one of the exchange formats provided by ONDEX to load data, e.g. XGMML can 
be used to load exported data into Cytoscape [18]. 

6 Discussion 

The decision to create our own exchange format for integrated data sets is based on two main 
factors. The first is that none of the existing bio-specific exchange languages are capable of 
satisfying all the requirements mentioned in Table 1 and that generic exchange formats like 
RDF and OWL would have imposed overly rigid restrictions on the ontology based data 
structure. Our second motivation for creating OXL was to closely couple it with our ontology 
based data structure; so that an understanding of the ONDEX ontology based data structure 
confers understanding of OXL.  

In addition to our native format OXL, we provide a model of our ontology based data 
structure in RDF, in order to utilize existing RDF tools. This model involves workarounds 
detailed earlier in this paper. However, this format is less intuitive and requires more time and 
effort for others to use. Existing RDF tools such as Jena normally use an in-memory model, 
and as such users of the RDF format who need to process large amounts of data can not 
benefit from the existing RDF tool support.  

OXL satisfies all requirements listed in Table 1. The use of flexible metadata assignment to 
concepts and relations enables OXL to cope with broad range application domains (first 
requirement). Arbitrary complex data structures (second requirement) can be included using 
special name-value pairs, called generalized data structure (GDS). Metadata and references to 
information from other sources (third requirement) can easily be modified without changing 
the schema definitions. Inferred information (fourth requirement) and tracking of provenance 
(fifth requirement) is realized through special relation types and evidence types for concepts 
and relations. By using a StAX parsing approach, XML Schema validation and optional file 
compression it is possible to transport very large datasets in OXL (last requirement). 

As shown in the example of PHI-base, exporting databases into the OXL format is less work 
than developing a flatfile parser for the ONDEX system to import the data. Because OXL is 
almost fully expanded, with the exception of references to unique concepts IDs as used in a 
relation, it is possible to create XSLT stylesheets to transform OXL into other streamlined 
formats like HTML. This principle is utilized by the ONDEX web interface, which is 
currently under development. Applications that want to make the most of integrated datasets 
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created by ONDEX should use the OXL format. Other exchange formats like RDF, SBML or 
XGMML are also provided by the ONDEX system, but have inherent limitations as to how 
data can be represented and therefore may not contain all the information that would 
otherwise be contained within OXL. 

The generation and exchange of integrated data from several sources also involves a legal 
aspect. Licensing models for data may differ between imported data sources, which makes it 
important to track provenance: from where the integrated datasets originate [6]. OXL includes 
such a provenance tracking mechanism. Concepts and relations from different data sources 
are only aligned to each other: concepts from two databases that are equivalent remain as 
separate concepts within ONDEX, connected by an equivalence relation. It is therefore 
possible to limit the scope of information that is exchanged and thus satisfy license 
agreements. 

6.1 Outlook 

We will release the ONDEX core API (“core”) as a standalone JAVA module that can be 
reused by custom applications. This API includes support for reading and writing OXL files. 
The “core” also provides fast and efficient indexing and search functionality for OXL data. 
Also in the near future we will introduce a versioning system for the OXL format and 
standardized curation for OXL metadata. This we hope will encourage other database 
providers to support the format. The ONDEX core will soon include a configurable importer 
for OXL, which downloads directly from the SOAP based web service run by databases 
supporting OXL. 
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