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CYCLIC STRUCTURES IN ALGEBRAIC
(CO)HOMOLOGY THEORIES

NIELS KOWALZIG and ULRICH KRÄHMER

(communicated by Jean-Louis Loday)

Abstract
This note discusses the cyclic cohomology of a left Hopf alge-

broid (×A-Hopf algebra) with coefficients in a right module-left
comodule, defined using a straightforward generalisation of the
original operators given by Connes and Moscovici for Hopf alge-
bras. Lie-Rinehart homology is a special case of this theory. A
generalisation of cyclic duality that makes sense for arbitrary
para-cyclic objects yields a dual homology theory. The twisted
cyclic homology of an associative algebra provides an example
of this dual theory that uses coefficients that are not necessarily
stable anti Yetter-Drinfel’d modules.

1. Introduction

1.1. Topic
A left Hopf algebroid (×A-Hopf algebra) U is, roughly speaking, a Hopf alge-

bra whose ground ring is not a field k but a possibly noncommutative k-algebra
A [B2, Sch2]. The concept provides, in particular, a natural framework for unify-
ing and extending classical constructions in homological algebra. Group, Lie algebra,
Hochschild, and Poisson homology are all special cases of Hopf algebroid homology

H•(U,M) := TorU• (M,A), M ∈ Uop-Mod,

since the rings U over which these theories can be expressed as derived functors are
all left Hopf algebroids. This allows one, for example, to study cup and cap products
as well as the phenomenon of Poincaré duality in a uniform way [KoKr].

Similarly, we describe here how the additional structure of a left U -comodule on
M induces a para-cyclic structure (cf. Section 2.7) on the canonical chain complex
C•(U,M) that computes H•(U,M) assuming U is flat over A. This defines, in partic-
ular, an analogue of the Connes-Rinehart-Tsygan differential

B : H•(U,M) → H•+1(U,M).

Assuming a suitable compatibility between the U -action and the U -coaction (namely
that M is a stable anti Yetter-Drinfel’d module), the para-cyclic k-module C•(U,M)
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is, in fact, cyclic and hence turned by B into a mixed complex. However, we will also
discuss concrete examples which demonstrate the necessity to go beyond this setting.

1.2. Background
The operator B has been defined by Rinehart on the Hochschild homology of a

commutative k-algebra A (with M = A and U = Ae = A⊗k A
op) in order to define

the de Rham cohomology of an arbitrary affine scheme over k [Ri]. Connes and
Tsygan independently rediscovered it around 1980 as a central ingredient in their
definition of cyclic homology which extends Rinehart’s theory to noncommutative
algebras [C, FTs].

Connes and Moscovici, and Crainic initiated the study of the case of a Hopf algebra
U over A = k with one-dimensional coefficients M [CM2, Cr]. The class of admissi-
ble coefficient modules M was subsequently enlarged to stable anti Yetter-Drinfel’d
modules [HKhRS1, HKhRS2], and Kaygun finally obtained the construction for
Hopf algebras with arbitrary modules-comodules as coefficients [Ka1, Ka2].

Noncommutative base rings appeared for the first time in the particular example of
the “extended” Hopf algebra governing the transversal geometry of foliations [CM1].
The general theory has then been further developed in [BŞ1, BŞ2, HasR, KhR,
Ko, KoP, Ma].

1.3. Results
Our first aim here is to give explicit formulas for the most straightforward general-

isation of the original operators defined by Connes and Moscovici in [CM1] towards
Hopf algebroids and completely general coefficients. We copy the result here; see the
main text for the details and, in particular, for the notation used:

Theorem 1.1. Let U be a left Hopf algebroid over a k-algebra A and M be a right
U -module and left U -comodule with compatible induced left A-module structures. Then
C•(U,M) := U⊗A• ⊗A M carries a canonical para-cocyclic k-module structure with
codegeneracies and cofaces

δi(z ⊗A m) =

1⊗A u
1 ⊗A · · · ⊗A u

n ⊗A m
u1 ⊗A · · · ⊗A ∆(ui)⊗A · · · ⊗A u

n ⊗A m
u1 ⊗A · · · ⊗A u

n ⊗A m(−1) ⊗A m(0)

if i = 0,
if 1 6 i 6 n,
if i = n+ 1,

δj(m) =

{
1⊗A m
m(−1) ⊗A m(0)

if j = 0,
if j = 1,

σi(z ⊗A m) = u1 ⊗A · · · ⊗A ε(u
i+1)⊗A · · · ⊗A u

n ⊗A m 0 6 i 6 n− 1,

where z = u1 ⊗A · · · ⊗A u
n, and with cocyclic operator

τn(z ⊗A m) = u1−(1)u
2 ⊗A · · · ⊗A u

1
−(n−1)u

n ⊗A u
1
−(n)m(−1) ⊗A m(0)u

1
+.

The proof closely follows the literature cited above, which contains similar con-
structions of para-cyclic and para-cocyclic modules assigned to Hopf algebroids (com-
pare especially [BŞ2, Prop. 2.19]). However, there seems no reference for the exact
setting we consider here. In particular, Kaygun’s pivotal observation that Theorem 1.1
is true for arbitrary modules-comodules over k-bialgebras has to our knowledge not
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been extended to noncommutative base rings so far. Last but not least, the above
also answers the question of how the Hopf-cyclic (co)homologies in [Ko, KoP] can
be extended to general coefficients.

Also, it has been pointed out by several authors that the standard operation of
cyclic duality, which canonically identifies cyclic and cocyclic objects, does not lift
to para-(co)cyclic objects; see, e.g., [BŞ1]. However, in Section 4 we show that a
different choice of anti-autoequivalence of the cyclic category leads to a form of cyclic
duality that does lift. This allows us to construct in full generality a cyclic dual
(C•(U,M), d•, s•, t•) from the para-cocyclic module from Theorem 1.1. We provide an
isomorphism of this with the para-cyclic moduleM ⊗Aop (IU� )⊗Aop• whose structure
maps are given by

di(m⊗Aop x)=

m⊗Aop u1 ⊗Aop · · · ⊗Aop ε(un) Iun−1

m⊗Aop · · · ⊗Aop un−iun−i+1 ⊗Aop · · ·
mu1 ⊗Aop u2 ⊗Aop · · · ⊗Aop un

if i=0,
if 16 i6n− 1,
if i=n,

si(m⊗Aop x)=

m⊗Aop u1 ⊗Aop · · · ⊗Aop un ⊗Aop 1
m⊗Aop · · · ⊗Aop un−i ⊗Aop 1⊗Aop un−i+1 ⊗Aop · · ·
m⊗Aop 1⊗Aop u1 ⊗Aop · · · ⊗Aop un

if i=0,
if 16 i6n− 1,
if i=n,

tn(m⊗Aop x)=m(0)u
1
+ ⊗Aop u2+ ⊗Aop · · · ⊗Aop un+ ⊗Aop un− · · ·u1−m(−1),

where we abbreviate x := u1 ⊗Aop · · · ⊗Aop un.
It is precisely this variation of Hopf-cyclic theory that has the ordinary Hopf alge-

broid homology as the underlying simplicial homology, and, in particular, the one
which reduces to the original cyclic homology of an associative algebra when one
applies it to the Hopf algebroid U = Ae. Now the freedom to consider arbitrary coef-
ficients becomes crucial since it allows one, for example, to incorporate the twisted
cyclic homology of Kustermans, Murphy and Tuset [KuMuTu]. This paper has been
the first one to generalise the Connes-Rinehart-Tsygan operator B on the Hochschild
homology of an associative algebra to coefficients in (A,A)-bimodules other than A
itself, namely those where one of the two actions of A on itself is twisted by an
algebra automorphism σ. In the last section we will explain how this example fits
into the above Hopf-cyclic homology theory, and, in particular, we will observe that
these coefficients are not SaYD modules. As an important classical case of the Hopf-
cyclic cohomology theory from Theorem 1.1, we will also consider the example of
Lie-Rinehart homology.

2. Preliminaries

2.1. Some conventions
Throughout this note, “ring” means “unital and associative ring”, and we fix a

commutative ring k. All other algebras, modules etc., will each have an underlying
structure of a k-module. We also fix a k-algebra A, i.e., a ring with a ring homo-
morphism ηA : k → Z(A) to its centre. We denote by A-Mod the category of left
A-modules, by Aop the opposite and by Ae := A⊗k A

op the enveloping algebra of A.
An A-ring is a monoid in the monoidal category (Ae-Mod,⊗A, A) of A

e-modules (i.e.,
(A,A)-bimodules with symmetric action of k), fulfilling associativity and unitality.
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Likewise, an A-coring is a comonoid in (Ae-Mod,⊗A, A), fulfilling coassociativity
and counitality.

Our main object is an Ae-ring U (a monoid in (Ae ⊗k A
e)-Mod). Explicitly, such

an Ae-ring is given by a k-algebra homomorphism η = ηU : Ae → U whose restrictions

s := η(−⊗k 1) : A→ U and t := η(1⊗k −) : Aop → U

will be called the source and target map, respectively. Left and right multiplication in
U give rise to an (Ae, Ae)-bimodule structure on U , that is, four commuting actions
of A that we denote by

a �u � b := s(a)t(b)u, a Iu J b := us(b)t(a), a, b ∈ A, u ∈ U.

If not stated otherwise, we view U as an (A,A)-bimodule using the actions � , � .
In particular, we define the tensor product U ⊗A U with respect to this bimodule
structure. Using the actions I , J , then permits one to define the Takeuchi product

U ×A U := {
∑

i ui ⊗A vi ∈ U ⊗A U |
∑

i a Iui ⊗A vi =
∑

i u⊗A vi J a, ∀a ∈ A}. (1)

This is an Ae-ring via factorwise multiplication. Similarly, Endk(A) is an Ae-ring
with ring structure given by composition and (A,A)-bimodule structure (aϕb)(c) :=
ϕ(bca), ϕ ∈ Endk(A), a, b, c ∈ A.

2.2. Bialgebroids [T]
Bialgebroids are a generalisation of bialgebras. An important subtlety is that the

algebra and coalgebra structure are defined in different monoidal categories.

Definition 2.1. Let A be a k-algebra. A left bialgebroid over A (or A-bialgebroid or
×A-bialgebra) is an A

e-ring U together with two homomorphisms of Ae-rings

∆: U → U ×A U, ε̂ : U → Endk(A),

which turn U into an A-coring with coproduct ∆ (viewed as a map U → U ⊗A U)
and counit ε : U → A, u 7→ (ε̂(u))(1).

Note that this means, for example, that ε satisfies for all u, v ∈ U

ε(uv) = ε(u J ε(v)) = ε(ε(v) Iu).

Analogously one defines right bialgebroids where the roles of � , � and I , J are
exchanged. We shall not write out the details, but rather refer to [KSz, B2].

2.3. Left Hopf algebroids [Sch2]
Left Hopf algebroids have been introduced by Schauenburg under the name ×A-

Hopf algebras and generalise Hopf algebras towards left bialgebroids. For a left bial-
gebroid U over A, one defines the (Hopf-)Galois map

β : IU ⊗Aop U� → U� ⊗A �U, u⊗Aop v 7→ u(1) ⊗A u(2)v, (2)

where

IU ⊗Aop U� = U ⊗k U/span{a Iu⊗k v − u⊗k v � a | u, v ∈ U, a ∈ A}. (3)

Definition 2.2 ([Sch2]). A left A-bialgebroid U is called a left Hopf algebroid (or
×A-Hopf algebra) if β is a bijection.
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In a similar manner, one defines right Hopf algebroids (cf. [BSz, Prop. 4.2]). Fol-
lowing [Sch2], we adopt a Sweedler-type notation

u+ ⊗Aop u− := β−1(u⊗A 1)

for the so-called translation map β−1(−⊗A 1) : U → IU ⊗Aop U� . Useful for our
subsequent calculations, one has for all u, v ∈ U , a ∈ A [Sch2, Prop. 3.7]:

u+(1) ⊗A u+(2)u− = u⊗A 1 ∈ U� ⊗A �U, (4)

u(1)+ ⊗Aop u(1)−u(2) = u⊗Aop 1 ∈ IU ⊗Aop U� , (5)

u+ ⊗Aop u− ∈ U ×Aop U, (6)

u+(1) ⊗A u+(2) ⊗Aop u− = u(1) ⊗A u(2)+ ⊗Aop u(2)−, (7)

u+ ⊗Aop u−(1) ⊗A u−(2) = u++ ⊗Aop u− ⊗A u+−, (8)

(uv)+ ⊗Aop (uv)− = u+v+ ⊗Aop v−u−, (9)

u+u− = s(ε(u)), (10)

u+t(ε(u−)) = u,

(s(a)t(b))+ ⊗Aop (s(a)t(b))− = s(a)⊗Aop s(b), (11)

where in (6) we mean the Takeuchi product

U ×Aop U := {
∑

i ui ⊗Aop vi ∈ IU ⊗Aop U� |
∑

i ui � a⊗Aop vi =
∑

i ui ⊗Aop a I vi} ,

which is an algebra by factorwise multiplication, but with opposite multiplication on
the second factor. Note that in (8) the tensor product over Aop links the first and
third tensor component. By (4) and (6) one can write

β−1(u⊗A v) = u+ ⊗Aop u−v,

which is easily checked to be well-defined over A with (9) and (11).

Remark 2.3. Observe that there is no notion of antipode for a left Hopf algebroid.
Böhm and Szlachányi have introduced the concept of a (full or two-sided) Hopf alge-
broid [B2], which is, roughly speaking, an algebra equipped with a left and a right
bialgebroid structure over anti-isomorphic base algebras A and B, together with an
antipode mapping from the left bialgebroid to the right. However, it is proved in [BSz,
Prop. 4.2] that a full Hopf algebroid with invertible antipode can be equivalently
described as an algebra with both a left and a right Hopf algebroid structure sub-
ject to compatibility conditions, which motivates one to speak of left Hopf algebroids
rather than ×A-Hopf algebras.

2.4. U-modules
Let U be a left bialgebroid with structure maps as before. Left and right U -modules

are defined as modules over the ring U , with respective actions denoted by juxtaposi-
tion or, at times, by a dot for the sake of clarity. We denote the respective categories
by U -Mod and Uop-Mod; while U -Mod is a monoidal category, Uop-Mod is, in
general, not [Sch1]. One has a forgetful functor U -Mod → Ae-Mod using which we
consider every left U -module N also as an (A,A)-bimodule with actions

anb := a �n � b := s(a)t(b)n, a, b ∈ A,n ∈ N. (12)

Similarly, every right U -module M is also an (A,A)-bimodule via
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amb := a Im J b := ms(b)t(a), a, b ∈ A,m ∈M, (13)

and in both cases we usually prefer to express these actions just by juxtaposition if
no ambiguity is to be expected.

2.5. U-comodules
Similarly as for coalgebras, one may define comodules over bialgebroids, but the

underlying A-module structures need some extra attention. For the following defini-
tion see, e.g., [Sch1, B1, BrzWi].

Definition 2.4. A left U -comodule for a left bialgebroid U over A is a left comodule
of the underlying A-coring (U,∆, ε), i.e., a left A-moduleM with action LA : (a,m) 7→
am and a left A-module map

∆M : M → U� ⊗A M, m 7→ m(−1) ⊗A m(0)

satisfying the usual coassociativity and counitality axioms

(∆⊗ id) ◦∆M = (id⊗∆M) ◦∆M and LA ◦ (ε⊗ id) ◦∆M = id.

We denote the category of left U -comodules by U -Comod.

Analogously, one defines right U -comodules and comodules for right bialgebroids.
On any left U -comodule one can additionally define a right A-action

ma := ε
(
m(−1)s(a)

)
m(0). (14)

This is the unique action that turns M into an Ae-module in such a way that the
coaction is an Ae-module morphism

∆M : M → U ×A M,

where U ×A M is the Takeuchi product

U ×A M :=
{∑

i ui ⊗A mi ∈ U ⊗A M |
∑

i uit(a)⊗A mi =
∑

i ui ⊗A mia,∀a ∈ A
}
.

As a result, ∆M satisfies the identities

∆M(amb) = s(a)m(−1)s(b)⊗A m(0), (15)

m(−1) ⊗A m(0)a = m(−1)t(a)⊗A m(0). (16)

This is compatible with (14) since one has ε(us(a)) = ε(ut(a)) for all u ∈ U, a ∈ A.
One can then prove (see [B2, Thm. 3.18] and [Sch1, Prop. 5.6]) that U -Comod

has a monoidal structure such that the forgetful functor U -Comod → Ae-Mod is
monoidal: for any two comodulesM,M ′ ∈ U -Comod, their tensor productM ⊗A M

′

is a left U -comodule by means of the coaction

∆M⊗AM′ : M ⊗A M
′ → U ⊗A (M ⊗A M

′),

m⊗A m
′ 7→ m(−1)m

′
(−1) ⊗A m(0) ⊗A m

′
(0).

The map ∆M⊗AM′ is easily checked to be well-defined.

Remark 2.5. If σ ∈ U is a grouplike element in a (left) bialgebroid, then the formulas

A∆(a) := t(a)σ and ∆A(a) := s(a)σ, a ∈ A,

define right and left U -comodule structures on A, which we shall refer to as induced
by σ. In particular, the base algebra A carries for any bialgebroid both canonical right
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and left coactions induced by σ = 1, contrasting the fact that A carries in general
only a canonical left U -module structure induced by ε, but no right one.

Remark 2.6. A special feature for bialgebroids U over commutative base algebras A
with s = t is that every left A-module M can be made, for example, into a left U -
comodule by means of the trivial coaction m 7→ 1⊗A m (it follows from (15) that this
is not possible in general).

2.6. Stable anti Yetter-Drinfel’d modules
The following definition is the left bialgebroid right module and left comodule

version of the corresponding notion in [BŞ2]. For Hopf algebras, the concept goes
back to [HKhRS1].

Definition 2.7. Let U be a left Hopf algebroid with structure maps as before, and
let M simultaneously be a left U -comodule with coaction denoted as above and a
right U -module with action denoted by (m,u) 7→ mu for u ∈ U , m ∈M . We call M
an anti Yetter-Drinfel’d (aYD) module provided the following holds:

1. The Ae-module structure onM originating from its nature as U -comodule coin-
cides with the Ae-module structure induced by the right U -action on M , i.e.,
for all a, b ∈ A and m ∈M we have

amb = a Im J b, (17)

where the right A-module structure on the left-hand side is given by (14).

2. For u ∈ U and m ∈M , one has

∆M(mu) = u−m(−1)u+(1) ⊗A m(0)u+(2). (18)

The anti Yetter-Drinfel’d module M is called stable (SaYD) if for all m ∈M one has

m(0)m(−1) = m.

Remark 2.8. Observe that it is not obvious that the expression on the right-hand side
of (18) makes sense, but this follows from (1), (6), and (16).

2.7. Cyclic (co)homology
We recall that para-(co)cyclic k-modules generalise (co)cyclic k-modules by drop-

ping the condition that the cyclic operator implements an action of Z/(n+ 1)Z on
the degree n part. Thus a para-cyclic k-module is a simplicial k-module (C•, d•, s•),
and a para-cocyclic k-module is a cosimplicial k-module (C•, δ•, σ•) together with
k-linear maps tn : Cn → Cn and τn : C

n → Cn satisfying, respectively

di ◦ tn =

{
tn−1 ◦ di−1 if 1 6 i 6 n,

dn if i = 0,
τn ◦ δi =

{
δi−1 ◦ τn−1 if 1 6 i 6 n,

δn if i = 0,

si ◦ tn =

{
tn+1 ◦ si−1 if 1 6 i 6 n,

t2n+1 ◦ sn if i = 0,
τn ◦ σi =

{
σi−1 ◦ τn+1 if 1 6 i 6 n,

σn ◦ τ2n+1 if i = 0.

(19)

It follows from these relations that tn+1
n , respectively τn+1

n , commutes with all the
(co)faces and (co)degeneracies. Hence any para-(co)cyclic k-module defines a (co)cyc-
lic one formed by the cokernels of idCn − tn+1

n , respectively the kernels of idCn − τn+1
n .
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The cyclic (co)homology of a para-(co)cyclic k-module is defined as the cyclic (co)ho-
mology of this associated (co)cyclic k-module.

Just like (co)cyclic k-modules, para-(co)cyclic ones can be viewed more conceptu-
ally as functors Λop → k-Mod, respectively Λ → k-Mod, where Λ is the appropriate
covering of Connes’ cyclic category Λ1. Hence, as Connes’ category, Λ has objects
{[n]}n∈N, and the set of morphisms has generators obeying the same relations except
for τn+1

n = id[n]. The localisation of this category at the set of all τn has been stud-
ied already by Fĕıgin and Tsygan in [FTs] where it is denoted by Λ∞. A general
framework for such extensions of the simplicial category is provided by the concept
of crossed simplicial groups due to Fiedorowicz and Loday [FiL]. However, we stress
that in the present article τn is not assumed to be an isomorphism, so Λ does not
exactly arise from a crossed simplicial group but rather from a crossed simplicial
semigroup. We will call Λ the para-cyclic category.

3. Hopf-cyclic cohomology with coefficients

3.1. Para-cocyclic structures on corings
Following [Cr, BŞ2], in this section we first define an auxiliary para-cocyclic

k-module that is relatively easy to construct. For this, U just needs to be a left
bialgebroid and M needs to be a left U -comodule. Define then

B•(U,M) := U⊗A•+1 ⊗Ae M,

where U is considered with the usual (A,A)-bimodule structure given by � , � . So
B•(U,M) is �U�

⊗A•+1 ⊗k M modulo the span of elements{
u0 ⊗A · · · ⊗A u

n ⊗Ae amb− b �u0 ⊗A · · · ⊗A u
n

� a⊗Ae m | a, b ∈ A
}
.

Now define the following operators, where we abbreviate w := u0 ⊗A · · · ⊗A u
n:

δ′i(w ⊗Ae m)=

{
u0 ⊗A · · · ⊗A ∆(ui)⊗A · · · ⊗A u

n ⊗Ae m
u0(2) ⊗A u

1 ⊗A · · · ⊗A m(−1)u
0
(1) ⊗Ae m(0)

if 0 6 i 6 n,
if i = n+ 1,

σ′
i(w ⊗Ae m)=u0 ⊗A · · · ⊗A t(ε(u

i+1))ui ⊗A · · · ⊗A u
n ⊗Ae m 0 6 i 6 n− 1,

τ ′n(w ⊗Ae m)=u1 ⊗A · · · ⊗A u
n ⊗A m(−1)u

0 ⊗Ae m(0),

(20)

which are shown to be well-defined using the Takeuchi condition for ∆M . The following
is checked in a straightforward manner:

Lemma 3.1. The operators (δ′•, σ
′
•, τ

′
•) turn B

•(U,M) into a para-cocyclic k-module.

3.2. The quotient B•(U,M) → C•(U,M)
The para-cocyclic k-module that defines Hopf-cyclic cohomology is the quotient

U⊗A•+1 ⊗Uop M

of B•(U,M) = U⊗A•+1 ⊗Ae M defined above. This quotient makes sense wheneverM
also carries a right U -module structure that induces the same Ae-module structure as
the left U -coaction; see (17). In the next section we will discuss that the para-cocyclic
structure of B•(U,M) descends to this quotient. However, for the applications in
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noncommutative geometry, one rewrites the resulting para-cocyclic k-module so that
the object (but not the cocyclic operator) takes an easier form, and in the present
section we construct the involved isomorphism.

Recall (e.g., from [KoKr, Lem. 3]) that if U is a left Hopf algebroid, then the
tensor product N ⊗A M ofM ∈ Uop-Mod, N ∈ U -Mod (considered with the (A,A)-
bimodule structures (12) and (13)) carries a right U -module structure with action

(n⊗A m)u := u−n⊗A mu+,

and hence using (12) and (13) becomes an (A,A)-bimodule by

a I (n⊗A m) J b :=
(
n⊗m

)
t(a)s(b) = s(a)n⊗A ms(b) = a �n⊗A m J b,

where in the second equation (11) was used.

Now observe that on a right U -module of this form, the coinvariant functor

−⊗U A : Uop-Mod → k-Mod

takes a particularly simple form:

Lemma 3.2. If U is a left Hopf algebroid, then for all M ∈ Uop-Mod, N ∈ U -Mod
there is a natural isomorphism (N ⊗A M)⊗U A ' N ⊗Uop M .

Proof. First write A⊗Uop (N ⊗A M) rather than (N ⊗A M)⊗U A, and then apply
the natural k-module isomorphism

P ⊗Uop (N ⊗A M) ' (P ⊗A N)⊗Uop M

from [KoKr, Lem. 3] with P = A.

Note that [KoKr, Lem. 3] applied with P = A,M = Aop yields the coinvariants in
the form used in [KoP] where they were considered as a functor U -Mod → k-Mod.

Applying Lemma 3.2 with N = U⊗A•+1 will lead to the simpler form of the para-
cocyclic k-module we are going to consider. To get there, we first remark:

Lemma 3.3. Let M ∈ Uop-Mod and N,P ∈ U -Mod. Then one has

(un⊗A p)⊗Uop m = (n⊗A u−p)⊗Uop mu+

for all m ∈M , n ∈ N , and p ∈ P .

Proof. One has

(un⊗A p)⊗Uop m

= (u+(1)n⊗A u+(2)u−p)⊗Uop m by (4),

= u+(n⊗A u−p)⊗Uop m by the monoidal structure in U -Mod,

= (n⊗A u−p)⊗Uop mu+.

The well-definedness of the first operation follows from (11) using (12) and (13).

Using this we now obtain:
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Proposition 3.4. For M ∈ Uop-Mod and N ∈ U -Mod, there is a canonical iso-
morphism of k-modules

φ : (U ⊗A N)⊗Uop M
'−→ N ⊗A M, (21)

given by

(u⊗A n)⊗Uop m 7→ u−n⊗A mu+. (22)

Proof. The map n⊗A m 7→ (1⊗A n)⊗Uop m is obviously a right inverse to (22), and
by the preceding lemma it is also a left inverse.

In particular, this yields an isomorphism

φ : U⊗A•+1 ⊗Uop M → U⊗A• ⊗A M =: C•(U,M), (23)

and the latter will be the ultimate object of study.

3.3. Cyclic cohomology with coefficients for left Hopf algebroids
Now we ask whether the para-cocyclic structure ofB•(U,M) descends to C•(U,M).

This is answered by a left Hopf algebroid left comodule and right module version
of [BŞ2, Prop. 2.19], which generalises Proposition 5.2.1 in [Ko]:

Proposition 3.5. If M is an anti Yetter-Drinfel’d module as in Definition 2.7, then
the operators (δ′•, σ

′
•, τ

′
•) on B

•(U,M) from (20) descend to well-defined operators on
U⊗A•+1 ⊗Uop M .

Proof. One needs to prove that the operators (δ′•, σ
′
•, τ

′
•) are U

op-balanced, i.e., that
one has, for example,

τ ′n(u
0 ⊗A · · · ⊗A u

n ⊗Uop mv) = τ ′n(v(1)u
0 ⊗A · · · ⊗A v(n+1)u

n ⊗Uop m)

for any v ∈ U . This is shown by expressing the right-hand side as

v(2)u
1 ⊗A · · · ⊗A v(n+1)u

n ⊗A m(−1)v(1)u
0 ⊗Uop m(0)

= v(2)u
1 ⊗A · · · ⊗A v(n+1)u

n ⊗A sε(v(n+2))m(−1)v(1)u
0 ⊗Uop m(0)

= v(2)u
1 ⊗A · · · ⊗A v(n+1)u

n ⊗A v(n+2)+v(n+2)−m(−1)v(1)u
0 ⊗Uop m(0)

= v+(2)u
1 ⊗A · · · ⊗A v+(n+1)u

n ⊗A v+(n+2)v−m(−1)v+(1)u
0 ⊗Uop m(0)

= u1 ⊗A · · · ⊗A u
n ⊗A v−m(−1)v+(1)u

0 ⊗Uop m(0)v+(2)

= u1 ⊗A · · · ⊗A u
n ⊗A (mv)(−1)u

0 ⊗Uop (mv)(0),

which is the left-hand side. Here we used the counital identities of the left coproduct in
the second line, (10) in the third line, (7) combined with (higher) coassociativity in the
fourth line, and finally the anti Yetter-Drinfel’d condition (18). Similar calculations
can be made for the cofaces and codegeneracies.

We denote the resulting para-cocyclic structure on C•(U,M) by

δi := φ ◦ δ̄′i ◦ φ−1,

σi := φ ◦ σ̄′
i ◦ φ−1,

τi := φ ◦ τ̄ ′i ◦ φ−1,

where φ is as in (23), and δ̄′i, σ̄
′
j , τ̄

′
n are the para-cocyclic operators on U⊗A•+1 ⊗Uop M

that descend from B•(U,M).
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A short computation yields the explicit expressions given in Theorem 1.1:

δi(z ⊗A m) =

1⊗A u
1 ⊗A · · · ⊗A u

n ⊗A m
u1 ⊗A · · · ⊗A ∆(ui)⊗A · · · ⊗A u

n ⊗A m
u1 ⊗A · · · ⊗A u

n ⊗A m(−1) ⊗A m(0)

if i = 0,
if 1 6 i 6 n,
if i = n+ 1,

δj(m) =

{
1⊗A m
m(−1) ⊗A m(0)

if j = 0,
if j = 1,

σi(z ⊗A m) = u1 ⊗A · · · ⊗A ε(u
i+1)⊗A · · · ⊗A u

n ⊗A m 0 6 i 6 n− 1,

τn(z ⊗A m) = u1−(1)u
2 ⊗A · · · ⊗A u

1
−(n−1)u

n ⊗A u
1
−(n)m(−1) ⊗A m(0)u

1
+,

(24)

where we abbreviate z := u1 ⊗A · · · ⊗A u
n.

In this form, the well-definedness and the well-definedness over the Sweedler pre-
sentations of these operators can be seen directly (using (11) as well as the Takeuchi
properties of ∆ and ∆M). Observe, however, that the condition ma = ms(a) from
(17) is not needed to make the operators (24) well-defined and well-defined over the
Sweedler presentation, but only to give a sense to the above quotienting process.

It is less obvious that the stability condition on M implies cyclicity. This is, how-
ever, immediate from the presentation of C•(U,M) as a quotient of B•(U,M):

Theorem 3.6. If U is a left Hopf algebroid and M is a stable anti Yetter-Drinfel’d
module, then (C•(U,M), δ•, σ•, τ•) is a cocyclic k-module.

Proof. By its construction, (C•(U,M), δ•, σ•, τ•) is a para-cocyclic object and as such
is isomorphic to (U⊗A•+1 ⊗Uop M, δ̄′•, σ̄

′
•, τ̄

′
•) obtained in Proposition 3.5. It remains

to show that this quotient of B•(U,M) is cocyclic if M is stable:

(τ̄ ′n)
n+1(u0 ⊗A · · · ⊗A u

n ⊗Uop m) = m(−n−1)u
0 ⊗A · · · ⊗A m(−1)u

n ⊗Uop m(0)

= m(−1) ·
(
u0 ⊗A · · · ⊗A u

n
)
⊗Uop m(0)

= u0 ⊗A · · · ⊗A u
n ⊗Uop m(0)m(−1),

where · denotes the diagonal left U -action via the left coproduct.

By the last line in the proof of the preceding theorem, one may be tempted to think
that an aYD module defines a para-cocyclic module which is cocyclic if M is stable.
The observation we add here is that for defining a para-cocyclic module the aYD
property (18), i.e., compatibility between U -action and U -coaction, is not required:

Theorem 3.7. Let U be a left Hopf algebroid and M a right U -module and left
U -comodule, and let the respective left A-actions be compatible in the following sense:

am = a Im, m ∈M, a ∈ A. (25)

Then (C•(U,M), δ•, σ•, τ•) is a para-cocyclic k-module.

Proof. We need to check the relations in the right column in (19). Since we do not
assume that M is aYD here, i.e., compatibility between action and coaction, the only
relations that need to be checked are those that have the U -action on M followed by
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an operation involving the U -coaction on M . Here, this is only τn ◦ σ0 = σn ◦ τ2n+1,
which is proven as follows: first compute

σn
(
τn+1(u

1 ⊗A · · · ⊗A u
n+1 ⊗A m)

)
= σn

(
u1−(1)u

2 ⊗A · · · ⊗A u
1
−(n)u

n+1 ⊗A u
1
−(n+1)m(−1) ⊗A m(0)u

1
+

)
= u1−(1)u

2 ⊗A · · · ⊗A t
(
ε(u1−(n+1)m(−1))

)
u1−(n)u

n+1 ⊗A m(0)u
1
+

= u1−(1)u
2 ⊗A · · · ⊗A u

1
−(n)u

n+1 ⊗A m(0)t(ε(m(−1)))u
1
+

= u1−(1)u
2 ⊗A · · · ⊗A u

1
−(n)u

n+1 ⊗A mu
1
+,

where we used the Takeuchi property (6) in the fourth line and (25) together with
the comodule properties in the fifth, so that terms involving the coaction disappear.
Hence

σnτ
2
n+1(u

1 ⊗A · · · ⊗A u
n+1 ⊗A m)

= σnτn+1

(
u1−(1)u

2 ⊗A · · · ⊗A u
1
−(n)u

n+1 ⊗A u
1
−(n+1)m(−1) ⊗A m(0)u

1
+

)
= (u1−(1)u

2)−(1)u
1
−(2)u

3 ⊗A · · · ⊗A (u1−(1)u
2)−(n)u

1
−(n+1)m(−1) ⊗A m(0)u

1
+(u

1
−(1)u

2)+

= u2−(1)

(
(u1−)(1)−(u

1
−)(2)

)
(1)
u3 ⊗A · · ·

⊗A u
2
−(n)

(
(u1−)(1)−(u

1
−)(2)

)
(n)
m(−1) ⊗A m(0)u

1
+(u

1
−)(1)+u

2
+

= u2−(1)u
3 ⊗A · · · ⊗A u

2
(n−1)u

n+1 ⊗A u
2
−(n)m(−1) ⊗A m(0)s(ε(u

1))u2+,

where in the fifth line (5) was used and (10) in the sixth. By (11) this is now easily
seen to be equal to τnσ0(u

1 ⊗A · · · ⊗A u
n+1 ⊗A m).

Definition 3.8. For a right U -module left U -comodule M with compatible induced
left A-actions over a left Hopf algebroid U , we denote by H•(U,M) and HC•(U,M)
the simplicial and cyclic cohomology groups of C•(U,M). We refer to HC•(U,M) as
to the Hopf-cyclic cohomology of U with coefficients in M .

Note that the simplicial cohomology is the ordinary Cotor over U :

Proposition 3.9 ([Ko, KoP]). If U� is flat as a right A-module, then one has

H•(U,M) ' Cotor•U (A,M).

Remark 3.10. If U is a (full) Hopf algebroid over base algebras A and B ' Aop, it is
easy to check that B fulfills the properties of an anti Yetter-Drinfel’d module with
respect to the right U -action given by the right counit of the underlying right bial-
gebroid. This module is stable if the antipode of the Hopf algebroid is an involution.
The operators (24) reduce here to the well-known Hopf-cyclic operators for Hopf
algebroids, cf. [CM1, KhR, Ko, KoP]. For example, the cyclic operator reduces in
such a case to

τn(h
1 ⊗A · · · ⊗A h

n) = (S(h1))(1)h
2 ⊗A · · · ⊗A (S(h1))(n−1)h

n ⊗A (S(h1))(n).

4. Hopf-cyclic homology with coefficients

4.1. Cyclic homology with coefficients for left Hopf algebroids
Let U be a left Hopf algebroid over A with structure maps as before, and letM be a

left U -comodule with left coaction denoted ∆M : m 7→ m(−1) ⊗A m(0) with underlying
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left A-action (a,m) 7→ am, and simultaneously a right U -module with right action
denoted (m,u) 7→ mu, subject to the compatibility condition (17) with respect the
two induced Ae-module structures.

Now define

C•(U,M) :=M ⊗Aop (IU� )⊗Aop•,

where the tensor product is formed as in (3). On C•(U,M), define the following
operators, abbreviating x := u1 ⊗Aop · · · ⊗Aop un:

di(m⊗Aop x)=

m⊗Aop u1 ⊗Aop · · · ⊗Aop ε(un) Iun−1

m⊗Aop · · · ⊗Aop un−iun−i+1 ⊗Aop · · ·
mu1 ⊗Aop u2 ⊗Aop · · · ⊗Aop un

if i=0,
if 16 i6n− 1,
if i=n,

si(m⊗Aop x)=

m⊗Aop u1 ⊗Aop · · · ⊗Aop un ⊗Aop 1
m⊗Aop · · · ⊗Aop un−i ⊗Aop 1⊗Aop un−i+1 ⊗Aop · · ·
m⊗Aop 1⊗Aop u1 ⊗Aop · · · ⊗Aop un

if i=0,
if 16 i6n− 1,
if i=n,

tn(m⊗Aop x)=m(0)u
1
+ ⊗Aop u2+ ⊗Aop · · · ⊗Aop un+ ⊗Aop un− · · ·u1−m(−1).

(26)
Elements of degree zero (i.e., of M) are mapped to zero by the face maps, d0(m)
= 0 for all m ∈M . Well-definedness and well-definedness over the various Sweedler
presentations follow from (6), (11), (15) and (16). Similarly, as in the cohomology
case, these operators still make sense if one drops the condition ma = ms(a) from the
axiom (17) as well as the aYD condition (18).

As one might expect, we will obtain dually to Theorems 3.6 and 3.7:

Theorem 4.1. Let U be a left Hopf algebroid.

1. If M is a right U -module and left U -comodule with respective left A-actions
compatible as in (25), then (C•(U,M), d•, s•, t•) is a para-cyclic k-module.

2. If M is even a stable anti Yetter-Drinfel’d module, then (C•(U,M), d•, s•, t•) is
a cyclic k-module.

We will prove this below by presenting C•(U,M) as a cyclic dual of C•(U,M).

Definition 4.2. For a right U -module left U -comodule M with compatible induced
left A-actions over a left Hopf algebroid U , we denote by H•(U,M) and HC•(U,M)
the simplicial and cyclic homology groups of C•(U,M). We refer to HC•(U,M) as to
the Hopf-cyclic homology of U with coefficients in M .

Dually to Proposition 3.9, one has:

Proposition 4.3 ([Ko, KoP]). If IU is projective as a left A-module, then one has

H•(U,M) ' TorU• (M,A).

Remark 4.4. As in Remark 3.10, in a full Hopf algebroid H the base algebra B of the
underlying right bialgebroid is an anti Yetter-Drinfel’d module which is stable if the
antipode is an involution. The cyclic operator assumes the form

tn(u1 ⊗Aop · · · ⊗Aop un) = u
(1)
2 ⊗Aop · · · ⊗Aop u(1)n ⊗Aop S(u1u

(2)
2 · · ·u(2)n ),

where the Sweedler superscripts refer to the right coproduct. This is the same expres-
sion as the inverse of the cyclic operator from [Ko, KoP]; see our explanations below.
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4.2. Cyclic duality [C, E, FTs, L]
Recall that the cyclic category is self-dual, that is, we have Λ1 ' Λop

1 , and therefore
cocyclic k-modules and cyclic k-modules can be canonically identified. However, there
are even infinitely many such canonical identifications since the cyclic category has
many autoequivalences (see e.g., [L, 6.1.14 and E.6.1.5], but note that the very last
line of [L, 6.1.14] should read τn 7→ τ−1

n ).
Fĕıgin and Tsygan have generalised the duality to their category Λ∞, that is, to

para-(co)cyclic k-modules whose cyclic operators are isomorphisms (see [FTs, §A7]).
Unfortunately, they use the most common choice of equivalence Λ∞ ' Λop

∞ which does
not extend to general para-(co)cyclic objects.

However, a different equivalence Λ∞ ' Λop
∞ does lift to a functor Λop → Λ, so

that one can assign a para-cyclic module to any para-cocyclic module even with
not necessarily invertible τn; one only has to bear in mind that this process is in
general not invertible. Still, it can be applied in full generality to the para-cocyclic
object C•(U,M), even when M is not SaYD, and hence Theorem 4.1 follows from
the results of the previous section.

Explicitly, we use the following convention for this functor. We decided to stick to
the term “cyclic dual” although it is no longer a true duality in general:

Definition 4.5. The cyclic dual of a para-cocyclic k-module C• = (C•, δ•, σ•, τ•) is
the cyclic k-module C• := (C•, d•, s•, t•), where Cn := Cn, and

di := σn−(i+1) : Cn → Cn−1, 0 6 i < n,

dn := σn−1 ◦ τn : Cn → Cn−1,

si := δn−(i+1) : Cn−1 → Cn, 0 6 i < n,

tn := τn : Cn → Cn.

For the convenience of the reader we verify at least some of the relations:

Lemma 4.6. The cyclic dual of any para-cocyclic k-module is a para-cyclic k-module.

Proof. We need to check the para-cyclic relations by using the para-cocyclic ones,
which is straightforward. For example, let i < j and j < n; then n− (i+ 2) > n−
(j + 1), and

di ◦ dj = σ(n−1)−(i+1) ◦ σn−(j+1) = σ(n−1)−j ◦ σn−(i+1) = dj−1 ◦ di.

For j = n (in which case i 6 n− 2),

di ◦ dn = σ(n−1)−(i+1) ◦ σn−1 ◦ τn
= σn−2 ◦ σ(n−1)−(i+1) ◦ τn
= σn−2 ◦ τn−1 ◦ σn−(i+1) = dn−1 ◦ di.

Likewise,

di ◦ si = σn−(i+1) ◦ δn−(i+1) = id = σn−j−2 ◦ δn−j−1 = dj+1 ◦ sj .

Also,

di ◦ tn = σn−(i+1) ◦ τn = σn−i−1 ◦ τn = τn−1 ◦ σn−i = tn−1 ◦ di−1

for 1 6 i 6 n− 1, and for i = n the identity d0 ◦ tn = dn is trivially fulfilled. Finally,

s0 ◦ tn = δn−1 ◦ τn = τn+1 ◦ δn = τn+1 ◦ τn+1δ0 = t2n+1 ◦ sn.
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The rest of the simplicial and cyclic identities are left to the reader.

Remark 4.7. Note that the last coface map δn : C
n−1 → Cn is not used in the con-

struction of the cyclic dual: there is one less degeneracy si : Cn−1 → Cn than there
are cofaces δi : C

n−1 → Cn. Conversely, there are not enough codegeneracies to derive
all the face maps: the last face map dn uses the extra codegeneracy σn−1 ◦ τn that
arises from the (para-)cocyclic operator.

Remark 4.8. Observe that the cyclic homology of the cyclic dual of a given cocyclic
k-module is independent of the choice of the self-duality of the cyclic category Λ1. This
follows from the description of cyclic homology as TorΛ

op
1

• (k,C) (cf. [L, Thm. 6.2.8])
in combination with the fact that all autoequivalences of Λ1 leave the trivial cyclic
k-module k invariant.

Remark 4.9. Two relatively straightforward cases in which the cyclic operator is not
invertible are that of a Hopf algebra U (over A = k) whose antipode is not bijective,
taking the coefficients to beM = k with trivial action 1 · u = ε(u) and trivial coaction
∆M(1) = 1⊗ 1, or that of U = Ae, M = Aσ, discussed in Section 5.2 below, when σ
is not bijective.

However, it seems worthwhile to remark that τ is invertible if U is a full Hopf
algebroid with invertible antipode S and M has yet some additional structure: recall
first [B1] that the two constituting bialgebroids (i.e., left and right) in a full Hopf
algebroid have different underlying corings (over anti-isomorphic base algebras) that
have a priori different categories of comodules. A Hopf algebroid (say, left) comodule
is then, roughly speaking, both a left and a right bialgebroid (left) comodule, the
two structures being compatible with each other. If M is a left comodule over the
full Hopf algebroid U and aYD, in the sense of Definition 2.7 with respect to the
underlying left bialgebroid, one verifies by a tedious but straightforward induction on
n that

τ−1
n (w ⊗A m)

:=
(
S−2(un−)m

(−1)
(1)

)
·
(
1⊗A u

1 ⊗A · · · ⊗A u
n−1

)
⊗A m

(0)S−1(m(−1)
(2))S

−2(un+)

yields an inverse for the cocyclic operator τn from (24), where we abbreviated
w := u1 ⊗A · · · ⊗A u

n. Here · denotes the diagonal action via the left coproduct and
Sweedler superscripts the left coaction with respect to the underlying right bialgebroid
in U . In case M = B ' Aop, this reduces to the well-known expression

u1 ⊗A · · · ⊗A u
n 7→ (S−1(un)) ·

(
1⊗A u

1 ⊗A · · · ⊗A u
n−1

)
from [Ko, KoP]. If M is an SaYD so that C•(U,M) is cocyclic, then the inverse of
τn is simply given for any left Hopf algebroid U by

τ−1
n (u1 ⊗A · · · ⊗A u

n ⊗A m) = un−m(−1) ·
(
1⊗A u

1 ⊗A · · · ⊗A u
n−1

)
⊗A m(0)u

n
+.

4.3. The Hopf-Galois map and cyclic duality

The explicit map implementing the isomorphism C•(U,M) ' C•(U,M) is given
by generalising the Hopf-Galois map (2):
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Lemma 4.10. For each n > 0, the k-modules Cn(U,M) and Cn(U,M) are isomor-
phic by means of the Hopf-Galois map ϕn : Cn(U,M) → Cn(U,M) in degree n, defined
by ϕ0 := idM , ϕ1 : m⊗Aop u 7→ u⊗A m, and for n > 2

ϕn(m⊗Aop u1 ⊗Aop · · · ⊗Aop un)

:= u1(1) ⊗A u
1
(2)u

2
(1) ⊗A · · · ⊗A u

1
(n)u

2
(n−1) · · ·u

n−1
(2) u

n ⊗A m,
(27)

with inverse

ψn(u
1 ⊗A · · · ⊗A u

n ⊗A m)

:= m⊗Aop u1+ ⊗Aop u1−u
2
+ ⊗Aop u2−u

3
+ ⊗Aop · · · ⊗Aop un−1

− un.

Proof. Well-definedness and well-definedness over the respective Sweedler presenta-
tions follow from the Takeuchi conditions (1) and (6). The fact that ϕ and ψ are
mutually inverse is verified by induction on n using the properties (4) and (5).

Lemma 4.11. If U is a left Hopf algebroid, then the Hopf-Galois map identifies
C•(U,M) with the cyclic dual of the cocyclic module C•(U,M) of Theorem 3.6.

Proof. We need to show, e.g., for the cyclic operators (24) and (26)

τn ◦ ϕn = ϕn ◦ tn
with respect to the map (27). This is a straightforward verification: one has

τnϕn(m⊗Aop u1 ⊗Aop · · · ⊗Aop un)

= τn(u
1
(1) ⊗A u

1
(2)u

2
(1) ⊗A · · · ⊗A u

1
(n)u

2
(n−1) · · ·u

n−1
(2) u

n ⊗A m)

= u1(1)−(1)u
1
(2)u

2
(1) ⊗A · · · ⊗A u

1
(1)−(n−1)u

1
(n)u

2
(n−1) · · ·u

n−1
(2) u

n

⊗A u
1
(1)−(n)m(−1) ⊗A m(0)u

1
(1)+

= u1(1)−(1)u
1
(2)u

2
(1) ⊗A · · · ⊗A u

1
(1)−(n−1)u

1
(n)u

2
(n−1) · · ·u

n−1
(2) u

n

⊗A u
1
(1)+−m(−1) ⊗A m(0)u

1
(1)++

= u2(1) ⊗A u
2
(2)u

3
(1) ⊗A · · · ⊗A u

2
(n−1) · · ·u

n−1
(2) u

n ⊗A u
1
−m(−1) ⊗A m(0)u

1
+

using (5) and (8), whereas

ϕntn(m⊗Aop u1 ⊗Aop · · · ⊗Aop un)

= ϕn(m(0)u
1
+ ⊗Aop u2+ ⊗Aop · · · ⊗Aop un+ ⊗Aop un− · · ·u1−m(−1))

= u2+(1) ⊗A u
2
+(2)u

3
+(1) ⊗A · · · ⊗A u

2
+(n)u

3
+(n−1) · · ·u

n
+(2)u

n
− · · ·u1−m(−1) ⊗A m(0)u

1
+

= u2(1) ⊗A u
2
(2)u

3
(1) ⊗A · · · ⊗A u

2
(n−1) · · ·u

n−1
(2) u

n ⊗A u
1
−m(−1) ⊗A m(0)u

1
+

by (4) and (7), and the claim follows. The corresponding identities relating (co)faces
to (co)degeneracies are left to the reader.

Proof of Theorem 4.1. This now follows from Theorem 3.6 and Theorem 3.7.

5. Examples

5.1. Lie-Rinehart homology with coefficients
Let (A,L) be a Lie-Rinehart algebra over a commutative k-algebra A and V L be

its universal enveloping algebra (see [Ri]).
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The left Hopf algebroid structure of V L has been described in [KoKr]; as therein,
we denote by the same symbols elements a ∈ A and X ∈ L and the corresponding
generators in V L. The maps s = t are equal to the canonical injection A→ V L. The
coproduct and the counit are given by

∆(X) := X ⊗A 1 + 1⊗A X, ε(X):= 0,

∆(a) := a⊗A 1, ε(a) := a,

whereas the inverse of the Hopf-Galois map is

X+ ⊗Aop X− := X ⊗Aop 1− 1⊗Aop X, a+ ⊗Aop a− := a⊗A 1.

By universality, these maps can be extended to V L.

Recall from [Hue] that a right (A,L)-module M is simultaneously a left A-module
with action (a,m) 7→ am and a right L-module with action (m,X) 7→ mX, subject
to the compatibility conditions

(am)X = a(mX)−X(a)m,
m(aX) = a(mX)−X(a)m,

m ∈M, a ∈ A, X ∈ L.

Right (A,L)-module structures correspond to right V L-module structures and vice
versa. For a right (A,L)-moduleM , we define Lie-Rinehart homology with coefficients
in M as

H•(L,M) := TorV L
• (M,A). (28)

Interestingly enough, every right (A,L)-module is an SaYD module with respect
to the trivial coaction (cf. Remark 2.6):

Lemma 5.1. Let M be a right (A,L)-module and define on M the left V L-coaction
∆M : M → V L⊗A M,m 7→ 1⊗A m. ThenM is a stable anti Yetter-Drinfel’d module.

Proof. Equipped with this coaction,M is obviously stable, and also (17) is immediate
(observe that left and right A-action on M coincide). Hence it remains to show (18).
With the left Hopf algebroid structure maps mentioned above, it is easy to see that
on generators

∆M(mX) = 1⊗A mX = X−X+(1) ⊗A mX+(2) = X−m(−1)X+(1) ⊗A m(0)X+(2)

holds for X ∈ L and trivially on generators a ∈ A. For an element u = aX1 · · ·Xp,
where a ∈ A, Xi ∈ L, one immediately obtains

∆(mu) = 1⊗A mu
′Xp

= (Xp)−(Xp)+(1) ⊗A mu
′(Xp)+(2)

= (Xp)−(mu
′)(−1)(Xp)+(1) ⊗A (mu′)(0)(Xp)+(2)

for u′ = aX1 · · ·Xp−1. Using induction on p and (9) one concludes that as desired we
have ∆(mu) = u−m(−1)u+(1) ⊗A m(0)u+(2).

Recall that there is a canonical complex that computes H•(L,M) whenever L is
A-projective. This is given by the exterior algebra

∧•
A L tensored over A with M ,
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with differential ∂ = ∂n : M ⊗A

∧n
A
L→M ⊗A

∧n−1
A

L defined by

∂(m⊗A X1 ∧ · · · ∧Xn)

:=

n∑
i=1

(−1)i+1mXi ⊗A X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn

+
∑
i<j

(−1)i+jm⊗A [Xi, Xj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn.

The following theorem generalises [KoP, Thm. 3.13] to more general coefficients.

Theorem 5.2. Let (A,L) be a Lie-Rinehart algebra, where L is A-projective andM a
right (A,L)-module which is A-flat, seen also as a left V L-comodule as in Lemma 5.1.
The map

Ξ: m⊗A X1 ∧ · · · ∧Xn 7→ 1

n!

∑
σ∈Sn

(−1)σXσ(1) ⊗A · · · ⊗A Xσ(n) ⊗A m

defines a morphism of mixed complexes

(M ⊗A

∧•
A
L, 0, ∂) → (C•(V L,M), b, B)

which induces natural isomorphisms

H•(V L,M) 'M ⊗A

∧•
A
L,

HC•(V L,M) ' ker ∂• ⊕H•−2(L,M)⊕H•−4(L,M)⊕ · · · .

Proof. The first part of the theorem and the first isomorphism follow immediately
by the form of the cosimplicial operators in (24) for a trivial coaction, combined with
the analogous result for M = A from [KoP] and the flatness assumption on M .

To prove the second isomorphism, we need to show that Ξ intertwines the hori-
zontal differential B with ∂. This will be done by explicitly applying the coinvari-
ants functor and the results in Section 3. Let B̃ : B•(V L,M) → B•−1(V L,M) denote
the horizontal differentials of the mixed complex associated to the cocyclic module
from Lemma 3.1. Hence B̃ = Nσ−1(1− λ), where λ := (−1)nτn, N :=

∑n
i=0 λ

i, and
σ−1 := σn−1τn. Explicitly, we obtain

B̃(u0 ⊗A · · · ⊗A un ⊗A m)

=
n∑

i=0

(
(−1)niε(u0)ui+1 ⊗A · · · ⊗A un ⊗A u1 ⊗A · · · ⊗A ui−1 ⊗A m

− (−1)n(i−1)ε(un)ui+1 ⊗A · · · ⊗A un−1 ⊗A u0 ⊗A · · · ⊗A ui−1 ⊗A m
)
.

Note that Bn(V L,M) ∼= Cn+1(V L,M) as (A,A)-bimodules in this example. From
our general considerations in Section 3, we have B ◦ φ ◦ π = φ ◦ π ◦ B̃, where π is
the canonical projection B•(U,M) → U⊗A•+1 ⊗Uop M and φ : U⊗A•+1 ⊗Uop M →
Cn(V L,M) is the isomorphism (21). Using its right inverse mentioned in the proof
of Proposition 3.4, it is seen that

Ξ(m⊗A X1 ∧ · · · ∧Xn) = φ
(
π
(

1
n!

∑
σ∈Sn

(−1)σ1⊗A Xσ(1) ⊗A · · · ⊗A Xσ(n) ⊗A m
))
.
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Hence, because L ⊂ ker ε we can compute

B
(
Ξ(m⊗A X1 ∧ · · · ∧Xn)

)
= φ

(
π
(
B̃( 1

n!

∑
σ∈Sn

(−1)σ1⊗A Xσ(1) ⊗A · · · ⊗A Xσ(n) ⊗A m)
))

= φ
(
π( 1

(n−1)!

∑
σ∈Sn

(−1)σXσ(1) ⊗A · · · ⊗A Xσ(n) ⊗A m)
)

= 1
(n−1)!

∑
σ∈Sn

(−1)σXσ(1)− ·
(
Xσ(2) ⊗A · · · ⊗A Xσ(n)

)
⊗A mXσ(1)+

,

= 1
(n−1)!

∑
σ∈Sn

(−1)σXσ(2) ⊗A · · · ⊗A Xσ(n) ⊗A mXσ(1)

− 1
(n−1)!

∑n
i=1

∑
σ∈Sn

(−1)σXσ(2) ⊗A · · · ⊗A Xσ(1)Xσ(i) ⊗A · · · ⊗A Xσ(n) ⊗A m

= Ξ
(∑n

i=1(−1)i+1mXi ⊗A X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn

+
∑

i<j(−1)i+jm⊗A [Xi, Xj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn

)
= Ξ

(
∂(m⊗A X1 ∧ · · · ∧Xn)

)
,

where · denotes the diagonal action via the coproduct. This completes the proof.

Remark 5.3. Note that combining the preceding theorem with Proposition 4.3 as well
as (28) relates the Hopf-cyclic cohomology of V L with the Hopf algebroid homology,
that is, the simplicial theory of the dual Hopf-cyclic homology:

HC•(V L,M) ' ker ∂• ⊕H•−2(L,M)⊕H•−4(L,M)⊕ · · ·
' ker ∂• ⊕ TorV L

•−2(M,A)⊕ TorV L
•−4(L,M)⊕ · · ·

' ker ∂• ⊕H•−2(V L,M)⊕H•−4(V L,M)⊕ · · · .

5.2. Twisted cyclic homology

Recall from [Sch2] that U = Ae is for any k-algebra A a left Hopf algebroid over
A with structure maps

s(a) := a⊗k 1, t(b) := 1⊗k b, ∆(a⊗k b) := (a⊗k 1)⊗A (1⊗k b), ε(a⊗k b) := ab.

The inverse of the Hopf-Galois map is given by

(a⊗k b)+ ⊗Aop (a⊗k b)− := (a⊗k 1)⊗Aop (b⊗k 1).

Any algebra endomorphism σ : A→ A defines a right Ae-module Aσ which is A as
a k-module with the right action

x(a⊗k b) := bxσ(a), a, x ∈ A, b ∈ Aop.

Furthermore, define a left Ae-comodule structure on Aσ by

Aσ → Ae ⊗A Aσ, x 7→ (x⊗k 1)⊗A 1,

which reduces to the map Aσ → Ae, x 7→ x⊗k 1. With this Ae-action and Ae-coaction
on Aσ, we have bx = b Ix, but xa is different from x J a unless σ = idA. So if σ is
not the identity, the condition (17) is not fulfilled and Aσ is therefore not an anti
Yetter-Drinfel’d module.
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Under the isomorphism C•(A
e, Aσ) = Aσ ⊗Aop Ae⊗Aopn ' Aσ ⊗k A

⊗kn given by

x⊗Aop (a1 ⊗k b1)⊗Aop · · · ⊗Aop (an ⊗k bn) 7→ bn · · · b1x⊗k a1 ⊗k · · · ⊗k an,

the para-cyclic operators (26) become

di(x⊗k y)=

anx⊗k a1 ⊗k · · · ⊗k an−1

x⊗k · · · ⊗k an−ian−i+1 ⊗k · · ·
xσ(a1)⊗k a2 ⊗k · · · ⊗k an

if i=0,
if 16 i6n− 1,
if i=n,

si(x⊗k y)=

x⊗k a1 ⊗k · · · ⊗k an ⊗k 1
x⊗k · · · ⊗k an−i ⊗k 1⊗k an−i+1 ⊗k · · ·
x⊗k 1⊗k a1 ⊗k · · · ⊗k an

if i=0,
if 16 i6n− 1,
if i=n,

tn(x⊗k y)=σ(a1)⊗k a2 ⊗k · · · ⊗k an ⊗k x,

where we abbreviate y := a1 ⊗k · · · ⊗k an. In particular, one has

tn+1
n = σ ⊗k · · · ⊗k σ,

so C•(A
e, Aσ) is cyclic if and only if σ = id (in which case Aσ is an SaYD module).

However, there are situations in which the canonical projection from C•(A
e, Aσ)

onto its associated cyclic k-module C•(A
e, Aσ)/im(id− t•+1

• ) is a quasi-isomorphism
of the underlying simplicial k-modules; see, e.g., [HaKr, Prop. 2.1], which implies:

Theorem 5.4. If k is a field and σ is a diagonalisable automorphism of A, then

H•(A
e, Aσ) ' H•(A,Aσ).

Here the right-hand side denotes the Hochschild homology of A with coefficients in
the (A,A)-bimodule Aσ. The resulting cyclic homology HCσ

• (A) := HC•(A
e, Aσ) has

been first considered in [KuMuTu] under the name σ-twisted cyclic homology and
has served as yet another guiding example of generalised cyclic homology theories. It
can be also expressed as the Hopf-cyclic homology of the kZ-module algebra A (where
kZ acts via σ), but the above presentation seems more natural and stresses the way it
originates as a deformation of HC•(A). We therefore consider it an important exam-
ple that motivates both the generalisation of Hopf-cyclic (co)homology from Hopf
algebras to Hopf algebroids and the necessity to consider coefficients beyond SaYD
modules. The above shows how to extend the construction of [KuMuTu] to arbitrary
(A,A)-bimodules assuming the existence of an Ae-coaction on the coefficients.
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