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Abstract  Image processing is used in many fields of knowledge; because it allows to automate processes to get 
more information about the object being studied. Image processing techniques are many and varied. Wavelet 
analysis is one of such techniques. Among various methods and approaches of wavelet processing we distinguish the 
ideology of multiresolution wavelet analysis. The essence of this ideology is to perform wavelet decomposition on 
test data and the subsequent analysis of the relevant factors of this decomposition (the wavelet coefficients). An 
important aspect is the consideration of the properties of the wavelet coefficients. Based on this, we have examined 
the feasibility of using the properties of detailing wavelet coefficients to study and compare different images. We 
have introduced additional characteristics of images on the basis of sets of detailing wavelet coefficients 
decomposition. These characteristics reflect the dynamics of change in mean and variance for the detailing of the 
coefficients of the wavelet decomposition. We have shown that the dynamic changes in mean and variance of 
detailing coefficients of wavelet decomposition can be used to analyze and compare different images. 
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1. Introduction 
Image analysis is a powerful tool in various fields of 

knowledge; because of significant part of information that 
can be received. At the same time, various methods of 
processing and interpretation of images are form the basis 
of some of artificial intelligent systems. If we take into 
consideration the possibility of applying various methods 
of image analysis and processing in a combined form with 
an interconnected methodology, this inevitably will play 
an important role to solve practical problems. 

On the other hand, if we take into consideration the 
possibility of applying various methods of image analysis 
and processing in a separate form, this will allow us to: (1) 
choose the most comprehensive methods of image 
analysis and processing, (2) to optimize the structure of 
artificial intelligent systems which are based on the 
analysis of images and (3) to increase the productivity and 
the overall performance of data analysis. Usually, images 
of the real world are presented in a two dimensional form, 
which allows the use of separate methods of image 
analysis and processing. These methods can be classified 
into three category: (1) Methods of preliminary image 
processing (noise suppression, contrast increase, 
localization of separate sites of the image) [1,2], (2) 
Methods of preliminary analysis (segmentation, contour 
allocation) [3,4], (3) Cognitive recognition methods 
[5,6,7]. 

The mentioned methods use different mathematical 
apparatus: group theory, linear algebra, graph theory. 
Currently, the image processing technique is widely use 
wavelet analysis [8,9,10]. This is due to the fact that the 
use of wavelet analysis procedure yields: the possibility of 
processing for various aspects of the studied images from 
the point of view of their method of presentation and the 
ability to use different approaches to highlight any aspects 
presentation of visual images during subsequent 
processing. These reasons determines the basis of our 
research idea. 

2. Materials and Methods 

2.1. Wavelet Analysis as a Tool for Image 
Processing 

The main idea of wavelet transform is a time-and-
frequency signal notation [11]. Wavelet transform is a 
decomposition with the use of functions, each of which is 
a shifted and scaled copy of one function – mother 
wavelet [11,12]. Wavelet in this case is a function rapidly 
decreasing to infinity with average value equals to zero. If 
the signal is discontinuous, only those wavelets will have 
high amplitudes, where the maximum value will appear 
near the discontinuity point. At the same time, 
discontinuity point is a sharp intermittent transition during 
some process. Quantitatively, it can be estimated by the 
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value of the first derivative of such process, taking into 
consideration that the first derivative of intermittent 
transitions is very high [10,12]. The real processes in 
reality cannot have perfect discontinuity points. In fact, 
the measured fractal transitions are characterized by the 
finite value of the derivative. The sharper the transition, 

the higher the derivative value is. Smooth transitions will 
have small derivative values. This allows us to determine 
the presence of special characteristics of the analyzed 
image, as well as the point where these characteristics may 
arise [10,12]. At the same time we can present two-
dimensional image as a vector (Figure 1). 

 
Figure 1. Two-dimensional image as a vector 

Then, for the image analysis, we can use the so-called 
multiresolution analysis method, on the basis of the theory 
of wavelet transformations [13,14,15]. A multiresolution 
wavelet-analysis transforms time series to hierarchical 
structure by means of the wavelet transformations which 
results to the set of wavelet coefficients. On each new 
level of wavelet-expansion there is a division of an 
approximating signal of the previous level of detail 
(presented by some time series) on its high-frequency 
component and on more smoothed approximating signal 
[13, 15]. According to discrete wavelet-transformation 
time series ( )X t , ( 1 2, ,...t t t= , 1 11( ) ,X t a=  2 12( ) ,X t a=  

3 13( ) ,..., ( )mn mnX t a X t a= = ) consists of a set of 
coefficients – detailing and approximating [16]: 

 , ,
1 1 1

( ) ( , ) ( ) det( , ) ( )
NN jNa

N k j k
k j k

X t apr N k t j k tφ ψ
= = =

= +∑ ∑∑  (1) 

Where ( , )apr N k  – Approximating wavelet-coefficients 
of level N ; 
det( , )j k – Detailing wavelet-coefficients of level j ; 
N – Chosen maximum level of expansion; 

jN  – Quantity of detailing coefficients at j  level of 
expansion; 

aN  – Quantity of approximating coefficients at level N  
( )tψ  – Mother wavelet-function 
( )tφ  – Corresponding scaling-function. 
At set the mother wavelet and ( )tψ corresponding scaling-

function approximating ( )tφ  coefficients and ( , )Xa j k
detailing coefficients of ( , )Xd j k DWT (discrete wavelet 
transformation) for the process ( )X t can be defined as 
follows [16]: 

 .( , ) ( ) ( )X j ka j k X t t dtφ
+∞

−∞

= ∫  (2) 

 .( , ) ( ) ( )X j kd j k X t t dtψ
+∞

−∞

= ∫  (3) 

In particular, on each level of discrete wavelet 
transformation detailing coefficients represent features, 
detail of the investigated signal, arising at transition from 
one scale to another and are equal [16]: 

 ,( , ) , ,X j kd j k X ψ=  (4) 

Where  
( , )Xd j k  – Detailing wavelet-coefficients 1, jk N=  on 

level j , 

,, j kX ψ  – Scalar product of investigated sequence of 

data in the form of time series ( )X t and a mother wavelet
ψ on corresponding level of expansion j . 

Thus, the main tool for the research of studied 
processes is processing of the wavelet-coefficients which 
have been received on different scales. First of all it 
concerns detailing wavelet-coefficients, which emphasize 
the characteristics of the time series. 

2.2. Basic Properties of Wavelet Coefficients 
of Self-similar Time Series 

1. Detailing coefficients of DWS on each level of 
expansion j  have normal distribution with a 
zero average (0, )N σ . 
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2. On each level of expansion j  detailing wavelet-

coefficients ( , )Xd j k , 1, jk N=  are self-similar 
[16]: 

 1( )
2

( ( ,0), ( ,1),..., ( , 1))

2 ( (0,0), (0,1),..., (0, 1))

X X X j

j H
X X X j

d j d j d j N

d d d N
+

−

≅ −
 (5) 

3. The wavelet-coefficients received as a result of 
expansion of process with stationary increments 
are stationary on each scale 2 j . 

4. If there are moments of p  order then for the 
wavelet-coefficients which were received as a 
result of expansion of process ( )X t , the 
following equality is carried out [16]: 

 
1( )
2( , ) (0, ) 2

jp Hp p
X XM d j k M d k

+   =      
 (6) 

Where [ ]...M  – expectation value of the process, which is 
studied. 

The above listed properties of wavelet-expansion can 
be used for the analysis of various images in practice. For 
this we look at the various images and the analysis 
detailing wavelet-coefficients. 

2.3. Data for Analysis 
For the analysis, we use a variety of images (these 

images are in public internet access): Figure 2: 
Cytological preparation. Mammary gland puncture (image 
size 1328x996 pixels) and Figure 3: Image for eye fundus 
(image size 933x937 pixels). 

 
Figure 2. Cytological preparation. Mammary gland puncture 

 
Figure 3. Image for eye fundus 

The image size determines the length of the time series 
and the number of levels of wavelet decomposition. 

3. Results and Discussion 
First of all, we transform the two-dimensional original 

image (Figure 2 and Figure 3) in the one-dimensional 
series in accordance with Figure 1. The converted original 
image (Figure 2 and Figure 3) are shown in Figure 4 and 
Figure 5, respectively. 

 
Figure 4. One-dimensional series of image in Figure 2 

 
Figure 5. One-dimensional series of image in Figure 3 

It is noticeable that the transformed series (Figure 4 and 
Figure 5) and the original image (Figure 2 and Figure 3) 
are different, which may allow us to make general 
conclusions about the possibility of using the wavelet 
expansion coefficients for image analysis.  

In accordance with the size of the original images 
(Figure 2 and Figure 3) we will make the expansion of 
one-dimensional series (Figure 4 and Figure 5) into 10 
levels with the help of different wavelets (db1, db2 and 
db4). We will also calculate basic statistical parameters 
for detailing the coefficients of the wavelet decomposition 
(expectation value, dispersion, intervals for the parameter 
that estimates the standard deviation). Thus, for each of 
source image, we will obtain a specific set of statistical 
characteristics at each level of decomposition. Table 1 
presents the basic statistical characteristics for detailing 
wavelet coefficients of image in Figure 2, which is 
represented as a one-dimensional series in Figure 4. Table 2 
presents the basic statistical characteristics for detailing 
wavelet coefficients of image in Figure 3, which is 
represented as a one-dimensional series in Figure 5. 
Analysis of Table 1 and Table 2, as well as the detailing 
wavelet coefficients show that detailing wavelet 
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coefficients of the series, which represent the images at 
Figure 2 and Figure 3 is the first property of the Wavelet 
coefficients decomposition. 

Table 1. Basic statistical characteristics for detailing wavelet 
coefficients of image in Figure 2 

Decomposition 
Level 

Expected 
Value Dispersion 

Intervals For the 
Parameter Estimates 

the Standard Deviation 
(significance level 

0.05) 
wavelet db1 

1 0,01 41,70 6,45 6,47 
2 0,03 278,12 16,64 16,72 
3 0,06 1436,82 37,78 38,04 
4 0,63 5391,36 73,07 73,78 
5 -0,01 16779,40 128,66 130,43 
6 0,03 39701,97 197,36 201,20 
7 -0,07 75568,27 271,21 278,71 
8 0,57 106487,89 320,18 332,77 
9 0,48 120980,58 338,66 357,64 

10 -0,97 127273,47 339,87 366,33 
wavelet db2 

1 0,01 12,53 3,53 3,55 
2 -0,02 157,48 12,52 12,58 
3 -0,03 1111,62 33,23 33,46 
4 0,16 4772,90 68,76 69,42 
5 0,00 16291,09 126,77 128,51 
6 -0,02 40859,19 200,21 204,11 
7 0,11 82835,04 283,95 291,80 
8 0,39 117056,77 335,70 348,90 
9 0,59 132558,98 354,50 374,36 

10 -0,82 135207,52 354,20 382,60 
wavelet db4 

1 0,01 8,16 2,85 2,86 
2 0,00 105,97 10,27 10,32 
3 0,04 1008,34 31,65 31,86 
4 -0,30 4459,41 66,46 67,10 
5 0,01 16153,79 126,24 127,97 
6 -0,02 41077,21 200,75 204,65 
7 0,00 86204,75 289,67 297,68 
8 -0,37 119885,34 339,73 353,08 
9 0,52 134238,39 356,74 376,72 

10 0,31 150581,51 373,82 403,74 
In Table 1 and Table 2, we see that the expectation 

value in most cases is zero. Consequently, for detailing the 
coefficients of wavelet decomposition we have a normal 
distribution with zero average ),0( σN  at each level of 
decomposition. This allows us to use other properties of 
detailing the coefficients of wavelet decomposition. Given 
the previously mentioned properties 2 through 4, it is 
possible to say that each image is characterized by its own 
set of detailing coefficients at each level of decomposition. 
Then as individual characteristics of the image can be 
considered indicators as follows: 

Given the properties of 2-4 can say that each image is 
characterized by its own set of detailing coefficients at 
each level of decomposition. Then, as individual 
characteristics of the image the following indicators can 
be considered: 
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Where 
[ ](0, )XM d k  – Expected value of detailing wavelet 

coefficients at the first level, 
[ ]( , )XM d j k  – Expected value of detailing wavelet 

coefficients at j  level ( 1, 1j N= − ), 

[ ](0, )XD d k  – Dispersion of detailing wavelet 
coefficients at the first level, 
[ ]( , )XD d j k  – Dispersion of detailing wavelet 

coefficients at j  level ( 1, 1j N= − ), 
, 1j j +  – Previous and subsequent levels of wavelet 

decomposition. 

Table 2. Basic statistical characteristics for detailing wavelet 
coefficients of image in Figure 3 

Decomposition 
level 

expected 
value dispersion 

intervals for the 
parameter estimates the 

standard deviation 
(significance level 0.05) 

wavelet db1 
1 0,00 1,81 1,34 1,35 
2 0,00 8,25 2,86 2,88 
3 0,00 33,46 5,76 5,81 
4 0,01 134,47 11,53 11,67 
5 0,02 545,09 23,15 23,55 
6 -0,01 2153,37 45,86 46,96 
7 -0,01 9629,12 96,52 99,81 
8 0,05 46604,30 210,91 221,16 
9 -0,10 194742,78 427,10 456,75 

10 -0,26 267206,82 493,80 542,99 
wavelet db2 

1 0,00 0,99 0,99 1,00 
2 0,00 5,55 2,35 2,36 
3 0,00 23,06 4,78 4,82 
4 -0,01 95,11 9,70 9,81 
5 0,02 381,27 19,36 19,69 
6 0,02 1338,37 36,16 37,02 
7 -0,01 5445,80 72,58 75,06 
8 -0,01 32360,72 175,75 184,29 
9 -0,12 241884,95 476,01 509,03 

10 -0,04 291812,82 516,07 567,41 
wavelet db4 

1 0,00 0,75 0,86 0,86 
2 0,00 4,97 2,22 2,24 
3 0,00 20,90 4,55 4,59 
4 0,01 86,01 9,22 9,33 
5 -0,02 362,09 18,87 19,19 
6 0,00 1218,40 34,50 35,33 
7 0,02 4428,70 65,46 67,69 
8 0,00 22108,85 145,27 152,32 
9 0,01 277289,20 509,68 544,99 

10 -0,10 271643,19 497,96 547,38 
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In Figure 6 and Figure 7 presented dynamic indicators 
0pM  and 1pM  for image in Figure 2 taking into 

consideration that the decomposition is in different 
wavelet functions (allocated colors). 

 
Figure 6. Dynamic indicator 0pM for Figure 2 

 
Figure 7. Dynamic indicator 1pM for Figure 2 

In Figure 8 and Figure 9 presented dynamic indicators 
0pM  and 1pM  for image in Figure 3 taking into 

consideration that the decomposition is in different 
wavelet functions (allocated colors). 

 
Figure 8. Dynamic indicator 0pM for Figure 3 

Analysis of Figure 6, Figure 7, Figure 8 and Figure 9 
shows that changes in dynamic indicators 0pM  and  
 

1pM  for wavelet decomposition at different wavelet 
functions (db1, db2 and db4) is approximately the same 
for the same image, and different for different images. At 
the same time we can say that the indicators 0pM  and 

1pM reflect the various manifestations and features of 
detailing wavelet coefficients at decomposition at different 
levels depending on the wavelet function (db1, db2 and 
db4), which was used to decompose (see Figure 10 
through Figure 13). 

 
Figure 9. Dynamic indicator 1pM for Figure 3 

 

Figure 10. Dynamic percentage 0pM for Figure 6 

 
Figure 11. Dynamic percentage 1pM for Figure 7 
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In Figure 10 and Figure 11 presented dynamic 
indicators 0pD  and 1pD  for image in Figure 2 taking 
into consideration that the decomposition is in different 
wavelet functions (allocated colors). 

 
Figure 12. Dynamic percentage 0pM for Figure 8 

 
Figure 13. Dynamic percentage 1pM for Figure 9 

In Figure 12 and Figure 13 presented dynamic 
indicators 0pD  and 1pD  for image in Figure 3 taking 
into consideration that the decomposition is in different 
wavelet functions (allocated colors). 

 
Figure 14. Dynamic indicator 0pD for Figure 2 

 
Figure 15. Dynamic indicator 1pD for Figure 2 

 
Figure 16. Dynamic indicator 0pD for Figure 3 

 
Figure 17. Dynamic indicator 1pD for Figure 3 

Analysis of Figure 14, Figure 15, Figure 16 and Figure 17 
shows that changes in dynamic indicators 0pM  and 

1pM  for wavelet decomposition at different wavelet 
functions (db1, db2 and db4) is approximately the same 
for the same image, and different for different images. 
Therefore, the indicators 0pM , 1pM , 0pD  and 1pD  
can be used to compare the images with each other, 
identifying the distinguishing features between them based 
on the levels of wavelet decomposition, which is used for 
image analysis (see Figure 18 through Figure 21). 
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Figure 18. Dynamic percentage 0pD for Figure 14 

 
Figure 19. Dynamic percentage 1pD for Figure 15 

 
Figure 20. Dynamic percentage 0pD for Figure 16 

 
Figure 21. Dynamic percentage 1pD for Figure 17 

4. Conclusions 
We have considered the possibility of using the 

properties of wavelet coefficients decomposition as a 
comparative analysis for image analysis and processing. 
For this task we convert two-dimensional images into one-
dimensional data sets using multiresolution wavelet 
analysis, then we find the detailing wavelet coefficients at 
each level of decomposition for each data set, after that, 
we build new features that reflect the dynamic change in 
mean and variance for the detailing wavelet coefficients 
decomposition at each level of decomposition.  

The transformation of the image into new 
characteristics based on the properties of the wavelet 
coefficients of decomposition takes into consideration the 
following: 

- Unique representation of the original image as a 
set of detailing coefficients, 

- The presence of the self-similarity of the wavelet 
coefficients for detailing the various levels of 
decomposition, 

- Conformity of detailing wavelet coefficients to 
the law of normal distribution at each level of 
decomposition for all data set. 

We also investigated the dynamics of change in mean 
and variance for the detailing wavelet coefficients 
decomposition for different wavelet functions. We have 
also shown that the dynamics are identical to the same 
images and different for different images, which is allow 
to build comparison and analysis procedures of how to 
identify images and compare individual parts. In general, 
the results have shown the feasibility of using the 
properties of wavelet coefficients decomposition as a 
comparative analysis of images. 
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