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Abstract—Wireless sensor networks will play a critical role in 

space and planet exploration, allowing remote monitoring of non-
easily accessible areas in preparation of human or robotic 
missions. Sensors, however, are fragile and can fail, reporting 
erroneous measurements, for example. Decisions derived from 
flawed sensor measurements can adversely impact the correctness 
of the overall sensor network findings and may jeopardize the 
success of the mission. Unfortunately, failed sensors in space 
cannot be easily diagnosed and replaced. To improve the 
reliability of decisions and minimize the impact of faulty sensor 
measurements, the preferred approach is to exploit data 
redundancy. In this paper, we present Confidence Weighted 
Voting (CWV), a distributed technique that can greatly improve 
the data reliability and fault tolerance of sensor network 
applications. We evaluate CWV against traditional approaches 
(e.g., Majority Voting (MV) and Distance Weighted Voting 
(DWV)), in the presence of flawed sensors. The results show that 
CWV consistently outperforms the other schemes by providing as 
much as 49% more resiliency. 
 

Index Terms—Reliable decision from Sensor Network, data 
redundancy, distributed voting, space and planet exploration 
 

I. INTRODUCTION 

HE advent of Wireless Sensor Networks (WSNs) will play 
a critical role in space and planet exploration. With its 

ability to remotely monitor non-easily accessible areas, 
wireless sensor networks can be used to ensure the soundness 
and the safety of actual human or robotic missions. However, 
sensor are fragile and can fail, for sensor deployed in 
inhospitable conditions, decision derived from damaged 
sensors can adversely affect the correctness of the overall 
sensor network finding and may jeopardize the success of the 
mission. Since failed sensors cannot be easily diagnosed and 
replaced in space, it is important to provide the most reliable 
sensor network findings to the mission planners as well as to 
the crews executing the mission. 

Particularly, this applies to exploratory missions that are to 
be executed on hostile and alien terrain (i.e. a potentially 
volcanic area). With mission crews and wireless sensor 
network deployed around the mission site, it is vital to reliably 
notify the mission crews at the earliest hint of possible danger 
(e.g. potential volcanic eruption, excess corrosive vapor in the 

air, etc). Furthermore, this notification task must be 
accomplished in the possible presence of flawed sensors. 

Realizing that multiple sensors monitoring the same location 
at the same time can ensure higher monitoring quality  [4]  [15], 
and the fact that data from neighboring nodes can be used to 
distinguish the correctness of local data. It’s clear that 
redundant information can be utilized to improve the 
underlying reliability of local data. These highly localized 
results can be aggregated by methods such as  [2] [14] to 
provide higher data reliability to requesting applications such 
as event/target detection  [1]- [3] [9].  

Minimizing the impact of faulty sensor measurements is 
related to the Byzantine problem  [8]. Previous research used 
classification techniques such as neutral networks or Bayesian 
classifier  [9] to accomplish better results. Other solutions such 
as  [1] [2] rely on higher level data collaboration schemes that 
aimed to accomplish better reliability without using redundant 
information from the network.  However, these solutions often 
require excessive amount of states, memory, message 
overhead, or computational cost, and are consider unfitting for 
sensor network purposes.  

Since reliability is of the outermost concern for space 
related missions. It is a priority for space systems to 
encompass great resiliency against possible mishaps, 
accidents, and compensate for the risk of equipment failures. 
In this paper, we present Confidence Weighted Voting 
(CWV), a simple distributed technique that improves the 
reliability of underlying data by exploiting redundant 
information. Since CWV uses neighboring data to discern the 
correctness of local data, it is capable of improving the 
baseline reliability of many applications such as  [2]  [9] [12]. 
We examined CWV against the classical Majority Voting 
(MV)  [7] and Distance Weighted Voting (DWV)  [7] 
techniques, and contrasted the level of data reliability of each 
approach in the prevalent presence of flawed sensors. We 
simulated the basic behaviors of CWV on top of k-cover 
deployment strategy (which guarantee redundancy when k>2), 
we also used an analytical model to prove the effectiveness of 
CWV over the other two schemes. Finally, we showed that 
CWV can outperform the other distributed voting schemes by 
providing as much as 49% more resiliency to sensor errors.  

The rest of this paper is organized as follows. In section 2, 
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we present the system model, the metrics used to evaluate our 
algorithms, and the k-coverage placement strategies used in 
our experiments. Section 3 elaborates on the details of 
Confidence Weighted Voting algorithm, and briefly describes 
the baselines algorithms to which we compare our work. 
Section 4 present simulation results and related analysis. We 
conclude the paper in Section 5 

 

II. SYSTEM MODEL 

In this section, we introduce the model of sensor network 
used in section 2.1. We then discuss the metrics used to 
evaluate the system performance in section 2.2. Lastly, we 
described the k-coverage placement strategy used in our 
experiments in section 2.3. 

A. Sensor Network Model 

First, we assume that the sensor node knows its own 
location  [5] and nodes are stationary. The nodes can also 
obtain their own location through location process described in 
 [13]. For simplicity, we refer to the sensing area of a node as a 
circle with a nominal radius r centered at the location of the 
node itself. With a set of sensors deployed in a region 
instructed to provide reliable discrete data, we are also 
assuming that an event can be detected by multiple sensors 
nodes due to our k-coverage sensor placement scheme 
described in section 2.3. The sensor reports event once the 
physical phenomenon exceeds pre-established thresholds. We 
deploy the sensor nodes in a two-dimensional Euclidean plane. 
However, the technique can be extended to a three-
dimensional space without much difficulty. Lastly, we assume 
that the nodes can directly communication with the 
neighboring nodes within a radius larger than 2r (r is nominal 
sensing radius). All the above are common assumptions for 
many sensor network applications. 

B. Performance Metrics 

The performance of the algorithms can be measured in terms 
of data reliability against varying level of faulty sensors. Each 
node is given a failure probability, which defines how likely 
the sensor will report an incorrect value. The behavior of these 
faulty sensors is assumed to be arbitrary. Error occurrences are 
assumed to be uniformly distributed. Reliability of the network 
is then measured by how likely we can achieve the correct 
representation of the environment given our deployment 
strategy, algorithm, and sensor failure rate. We used an 
event/target scenario to test our algorithm  [2]. Since sensors 
need to combine their sensed values to reach a representative 
decision for the region in question, and results computed based 
on these incorrect measurements can radically impact the 
correctness of sensor network findings. The network will likely 
contain some faulty sensors, while we need to arrive at a 
correct decision regardless of the distortion from the flawed 
sensors.  

C. K-coverage Placement Strategy 

Several coverage models  [6] [10] [11] have been proposed 

for different application scenarios. In this paper, we assume 
that a point p is monitored if their Euclidian distance to a 
sensor is less than the sensing range of r. The coverage 
configuration problem bares close resemblance to the Art 
Gallery Problem, which deals with determining the number of 
observers necessary to cover an art gallery room such that 
every point in the art gallery in monitored by at least one 
observer. This problem is optimally solved in a 2D plane, but 
in shown to be NP-hard when extended to a 3D space. Based 
on the coverage model, an area is having a coverage degree of 
k (i.e., being k-covered) if every location inside A is covered 
by at least k nodes. Practically speaking, a network with higher 
degree of coverage can achieve higher sensing accuracy and be 
more robust against sensing failures.  

 

 
Fig. 1. Number of Required Sensors as a function of area 

 

In this paper, we used a close approximation of the k-
coverage scheme. The details of our implementation are 
summarized in Table 1. Fig. 1 shows the number of sensors 
required to achieve the various k-coverage schemes as a 
function of both sensors’ sensing radius and the deployment 
area. Since random deployment and k>3 scenarios can be 
roughly approximately by a combination of basic k-coverage 
cases, we only used three basic k-coverage cases to reveal the 
fundamental properties of our algorithms. 

III. DISTRIBUTED VOTING ALGORITHMS 

In this section, we present the algorithm for MV in section 
3.1, DWV in section 3.2, and CWV in section 3.3. All three 
distributed algorithms shares the same characteristics in their 
simplicity, speed, scalability, and low message overhead. 

 

 
 

Fig. 2. Venn diagram of sensor coverage 

A. Majority Voting Algorithm 

To realize a distributed Majority Voting (MV) scheme, 
sensor readings are first gather from neighboring sensor nodes, 
and local decisions are achieved based on the majority opinion 
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of the collected data.  For instance, the decision for area A in 
Fig. 2 is reached through majority voting on result gathered 
from sensor 1, 2, and 3 (Since A is covered by 3 sensors). 
Similarly, the decision reached in area B came from majority 
voting on result reported by sensor 1 and 3. Whenever a tied 
for majority occurs, the final decision is randomly chosen.  

Suppose the number of deployed sensors in the 
investigating area is m and the possible report value of each 
sensor is an integer from 1 to n, the Majority Voting scheme 
can be formulized by the following equations: 
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B. Distance Weighted Voting Algorithm 

Distance Weighted Voting (DWV) is a weighted variant of 
MV.  DWV is motivated by the assumption that the sensor 
nearest to the point in question has the most accurate data. 
Therefore, data closes to the point in question bares more 
weight in terms of decision making. Suppose dj,(x,y) is the 
distance from point (x,y) to sensor j, the number of deployed 
sensors is m, and the possible report value from each sensor is 
an integer from 1 to n. DWV can be formulized by the 
following equation: 
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where δij and Cj,(x,y) shares the same definition as in MV. 

C. Confidence Weighted Voting Algorithm 

Like DWV, Confidence Weighted Voting (CWV) is another 
weighted variant of MV. Yet, instead of granting the nearest 
sensors higher weights, CWV gives higher weights to those 
sensors that are more likely to be correct (i.e. with higher 
confidence of correctness). The confidence value of each 
sensor can be determined in a distributed manner by 
comparing its sensing results with its sensing neighbors that 
share overlapping coverage area. The confidence value of 
sensor i, conf(i) is then defined as: 
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and CWV is then formulized as: 
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where δij and Cj,(x,y) shares  the same definition as in MV. 
 

IV. SIMULATION RESULTS 

In this section, we evaluated the reliability of the three 
distributed voting algorithms described in section 3 according 
to the metrics presented in section 2.2.  The robustness of the 
algorithms is assessed against varying degree of sensor failure 
rate and k-cover strategy. We used Monte Carlo simulations in 
section 4.1 to contrast the reliability of the three schemes, and 
we used an analytical model to prove the effectiveness of 
CWV against MV in section 4.2. 

A. Reliability of Different Voting Algorithms 
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Fig. 3. Reliabilities of different voting algorithms  

using (a) k=1 (b) k=2 (c) k=3 

Fig. 3 illustrates the reliabilities of different distributed 
voting algorithms under different degree of coverage and 
sensor error rate. The reliability of the three schemes clearly 
decreases as the sensor error rate increases, and reliability 
increases as the degree of sensor coverage increases. It is 
obvious that reliability increases with data redundancy. In 
particularly, when the sensor error rate is at 40%, MV 
improved 7% in reliability when degree of coverage increased 
from 1 to 2, additionally, when the degree of coverage 
increased from 2 to 3, MV experience another 17% in 
improvement. For CWV, it gained 33% in improvement in 
reliability when degree of coverage increased from 1 to 2, it 
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also experience another 10% in improvement when degree of 
coverage increase from 2 to 3. This indicates that CWV can 
better utilize the added redundancy and achieved higher 
reliability. On the other hand, DWV scheme improves very 
little from the increase in degree of coverage. This is partly 
due to the fact that DWV rely heavily on the nearest 
neighbor’s result; therefore it is more likely to be biased when 
its nearest neighbor‘s data is incorrect. 

In general, regardless of the degree of coverage and the 
sensor error rate, CWV can consistently outperform MV, and 
MV outperforms DWV. In particular, when error rate is at 
40%, CWV outperforms MV by 7%, 34%, and 28% when the 
degree of coverage is 1, 2, and 3 respectively.  

From the simulation results, it is clear that higher degree of 
coverage can achieve better data reliability. However, since 
high degree of coverage usually requires more sensor nodes 
and deployment cost. The design tradeoff between reliability 
and degree of coverage should be considered when deploying 
such a technique. From a communication overhead 
perspective, CWV algorithm incurs roughly twice the amount 
of overhead as would MV; therefore, reliability trade-off with 
communication overhead should also be considered when a 
distributed voting algorithm is to be used. 

Notice that when majority of the sensors are reporting 
incorrect values (sensor error rate greater than 0.5), none of 
the schemes are expected to provide acceptable reliability in 
those scenarios.  Therefore, discussion on those cases is not 
very meaningful. 

B. Analysis 

In this section, we present an analytical mode for the 
Majority Voting scheme, and used the modeling result to 
discuss the reliability issue associated with different degrees of 
coverage and sensor error rates. For simplicity, we use a 1-
cover placement strategy discussed in section 2.3, and the 
knowledge that k-cover can be roughly achieved by 
overlapping k 1-cover placements on the investigating 
rectangle area. 

 
Fig. 4. Analysis of 1-coverage placement 

The analytical model of 1-cover placement can be derived 
by dividing the investigating rectangular area into several 
smaller equilateral triangles with side length equals to r, which 
is the same r as the a sensor’s sensing radius, this is also 
illustrated in Fig. 4. Furthermore, in each equilateral triangle, 
the gray-color area is covered by exactly one sensor, and the 
white-color area is covered by two sensors. The overall system 
reliability can then be approximated by modeling the reliability 
of one equilateral triangle area; this is assuming that the width 

and length of the investigating area is much greater than 
sensors’ sensing range. 

Suppose that 1-covered area within the equilateral triangle 
(gray-color area) is A1, the 2-covered area within the 
equilateral triangle (white-color area) is A2, and let the sensor 
error rate to be e. The system reliability R1 (reliability of 1-
covered area) can be modeled as:  
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In order to model k=n, n 1-covered placements are 
overlapped on the same investigating rectangle area. Error is 
reported in this model when either 1) the majority of the 
covered sensors are erroneous, or 2) half of the sensors are 
faulty and the random decision outputs the incorrect 
information. Therefore, the overall system reliability can be 
modeled with two cases: 
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( )∑




=

−×−







=

n

n
i

ini
n RR

i

n
-R

2

11)1(1
. 

Case 2: when n is even 

( ) ( )2/
1

2/
1

2
1

11 )1(
2/

)1(1 nn
n

n
i

ini
n RR

n

n
RR

i

n
-R ×−








−×−








= ∑





+=

−  

Based the analytical model above, Fig. 5 depicts the 
relation of reliability against different sensor error rates. From 
the graph, we observed decreasing marginal gain in reliability 
as degree of sensor coverage increases. This is further 
evidence that placement strategy and reliability requirement is 
a design tradeoff that need to be considered before 
deployment. 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6

R
el

ia
bi

lity

Sensor Error Rate

Majority Voting
k=1
k=3
k=5
k=7

 
Fig. 5. Reliability of MV with different coverage degrees 

Note that the analytical mode in this section is based on the 
simplified assumption that allows modeling k-cover placement 
by overlapping k 1-covered placements. If a better placement 
technique is used (e.g. through combination of 2-cover and 3-
cover placement method discussed in section 2.3), it is 
possible to obtain better reliabilities than our analytical model, 
although the difference between the real reliability and the 
modeling one should be moderately small. 
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          Fig. 6 illustrates the relationship between of system 
reliability and different degree of coverage at 0.3 and 0.4 
sensor error rate respectively. To achieve a 90% reliability 
with 0.3 sensor error rate, the degree of coverage must be at 
least 9 using MV; whereas to provide 80% reliability with 0.4 
sensor error rate, the coverage degree must be larger than 17 if 
MV is used. From this figure, it is obvious that sensor 
deployment cost can easily reach unacceptable level if MV 
scheme is used. 

However, recalling the simulation results depicted in Fig. 2, 
CWV can easily achieve 95% reliability with 3-covered 
placement at 0.4 sensor error rates. It is evident that although 
redundancy in coverage can improve data reliability for MV 
scheme, a well-designed voting strategy (e.g. CWV) can 
achieve even better reliability at a much lower cost. As a 
result, CWV indeed outperforms MV in terms of effectiveness.  
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          Fig. 6: Reliability of MV with different coverage                           

degree when sensor error rate is fixed 

V. CONCLUSION 

Wireless sensor networks will play a pivotal role in space 
and planet explorations. With mission crews and wireless 
sensor network deployed around a hazardous mission site, it is 
vital for the sensor network to reliably notify the mission crews 
at the earliest hint of danger. Furthermore, this notification 
task must be done in the possible presence of flawed sensors. 
In this paper, we present Confidence Weighted Voting 
(CWV), a simple distributed technique that improves the 
reliability of underlying data by exploiting redundant 
information. Since CWV uses neighboring data to discern the 
correctness of local data, it is capable of improving the 
baseline reliability of many mission critical applications. We 
examined CWV against the MV and DWV techniques, and 
contrasted the level of data reliability of each approach in the 
prevalent presence of flawed sensors. We simulated the basic 
behaviors of CWV via Monte Carlo simulations, and created 
an analytical model to prove the effectiveness of CWV over 
the other two schemes. Our results showed that CWV can 
consistently outperform the other distributed voting schemes 
by providing as much as 49% more resiliency to sensor errors. 
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