
1 

Volumetric Assessment of Hepatocellular Carcinoma Response to Treatment Using a Random 

Forest-Based Automated Segmentation Protocol 

 

Kareem Ahmed, MD1 

David Fuentes, PhD1 

J.S. Lin, PhD1 

Reham Ali, MD2 

Ahmed O. Kaseb, MD2 

Manal Hassan, MD, PhD 

Janio Szklaruk, MD, PhD 

John D. Hazle, MD1 

Aliya Qayyum, MD4 

Khaled M. Elsayes, MD4 

 

Departments of 1Imaging Physics, 2Gastrointestinal Oncology, 3Biostatistics, and 4Diagnostic Radiology, 

The University of Texas MD Anderson Cancer Center,  

Houston, TX 77030, USA 

 

Corresponding author: Khaled M. Elsayes, MD, Professor, Department of Radiology, The 

University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030; 

phone: 713-745-3025; fax: 713-794-4379; email: kmelsayes@mdanderson.org. 



2 

K. Ahmed,1 D. Fuentes,1 J.S. Lin,1 R. Ali,2 A.O. Kaseb,2 W. Wei,3 J.D. Hazle,1 A. Qayyum,4 

K.M. Elsayes4 

 

Abstract 

Purpose: To determine whether machine learning based 3D volumetric quantification of contrast 

enhancing and non-enhancing portions of hepatocellular carcinomas (HCC) can be used as an imaging 

biomarker to predict the response to treatment by Sorafenib or TACE.  

Methods: A training database of manually defined background liver, enhancing tumor, and non-

enhancing tumor tissue was established using pre- and the first post-therapy multiphasic CT images from 

30 patients. For each patient, intensity- and geometry-based feature images were generated from 

registered pre-contrast and tri-phasic CT datasets and used as the input for the Random Forest (RF)-

based classifier. Leave-one-out cross validation was applied to every permutation of the training data 

subset to quantify the classifier accuracy. Volume changes of enhancing and non-enhancing tumor 

portions (Volumetric RECIST [vRECIST]) was calculated and used to classify patients as responders 

and non-responders using the volume formula of a sphere. Kaplan-Meier survival analysis with log-rank 

test was performed to quantitatively compare the stratification of responders and non-responders 

calculated with both manual and automated methods.  A Cox proportional hazard ratio model was used 

to confirm survival results. 

Results: The manual vRECIST of enhancing (hazard ratio, 0.16; 95% CI: 0.28, 0.93; P = 0.042) and 

non-enhancing (hazard ratio, 0.057; 95% CI: 0.004, 0.678; P = 0.023) portions of HCC tumor lesions 

showed significant difference in TTP of target lesions between responders and non-responders. We 

observed an overall classification accuracy of median Dice similarity coefficient (DSC) of 0.81 prior to 

and 0.66 after therapy for the enhancing tumor labels and 0.66 prior to and 0.82 after therapy for the 

non-enhancing tumor label.  
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Conclusion: In this study, we determined that automated 3D volumetric analysis was a reliable and 

reproducible method of monitoring HCC response to treatment with Sorafenib or TACE. With respect to 

TTP and clinical outcome, the information extracted using automated methods of quantitative liver 

lesion volumetrics was statistically equivalent to labor-intensive manually define volumes.   

Keywords 

 Image Segmentation  HCC  Random Forest  TACE  Sorafenib  

1 Introduction 

More than 748,000 new cases of hepatocellular carcinoma (HCC) are diagnosed globally per year.  HCC 

is ranked third among the leading causes of cancer-related death worldwide [1]. Multiple treatment 

options are available for unresectable HCC; Sorafenib is an oral multikinase inhibitor that interferes with 

tumor cell signaling pathways resulting in reduction of tumor neoangiogenesis and stimulation of 

apoptosis.[2, 3] Macroscopically, it reduces tumor vascularity and induces intra-lesion necrosis. [4] 

Transcatheter arterial chemoembolization (TACE) is a local-regional treatment that selectively delivers 

high-concentration Doxorubicin to targeted tumor lesions. 

Tumor response assessment is crucial for the evaluation of HCC therapy. Current guidelines established 

by The European Association for the Study of the Liver (EASL) and The American Association for the 

Study of Liver Diseases (AASLD) criteria, also known as modified-RECIST (mRECIST) criteria, adopt 

the uni- and bidimensional measurements of enhancing portions of target tumor lesions in single 

representative axial cut to assess therapeutic effect. (Enhancing tumor is defined as “uptake of contrast 

agent in the arterial phase of dynamic contrast CT or MRI”, while non-enhancing tumor is defined as 

“regions of no enhancement within HCC on arterial phase images”) [5-7]. Multiple studies have 

highlighted the limitation of this method compared to volumetric analysis when applied to HCC because 

the treatment-induced changes are inhomogeneous; thus, not only is single slice selection less 

representative of the actual tumor burden, it is subject to intra-observer and inter-observer variability; 
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meanwhile, volumetric analysis can overcome such limitations and provide reliable and reproducible 

alternative, with excellent intra-observer and inter-observer agreement[8-11]. Manual and semi-

automated volumetric analysis is time consuming and remains observer dependent. Therefore, 

unsupervised (user independent) HCC segmentation can be a reproducible and time efficient alternative. 

Since the HU values of the liver within CT images are typically very similar to those of the surrounding 

tissue, unsupervised identification of the unpredictable appearance of the tumor is one of the most 

challenging tasks in medical image analysis[12]. For this reason, tissue segmentation based on HU 

intensity values alone is not feasible, and numerous approaches have incorporated various levels of prior 

information based on geometrical and anatomical considerations [13-15]. In this study, we evaluate the 

role of 3D volumetric quantification of enhancing and non-enhancing portions of HCC as an imaging 

biomarker to predict the response to treatment by Sorafenib or TACE. Additionally, we compare an 

automated RF-based volumetric quantification method to the labor-intensive, operator-dependent manual 

approach. 

Crowdsourcing-based algorithmic challenges in medical image segmentation [12, 16], combined with 

software reproducibility efforts [17, 18], motivated the technical aspects of the present study. Machine 

learning techniques based on random forest classification algorithms are adapted to quantify viable and 

non-viable tumor volumes in HCC patient populations for this application.  Quantitative image features 

used in the analysis are derived from both geometrical and intensity models of the imaging. 

2 Materials and Methods 

2.1 Study Cohort 

This IRB approved retrospective, single-institution study included 30 patients diagnosed with HCC, 

including  23 men (mean age, 70.5; range, 55-86) and 7 women (mean age, 74.5; range, 56-93). Patients 

received Sorafenib (13 patients) or TACE (17 patients) as the first line of treatment at our institution 

between 8/2008 and 4/2014. The inclusion criteria were: 
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Unresectable HCC, Child-Pugh score A or B, Sorafenib or TACE as the first line of treatment, and 

multiphasic contrast-enhanced CT at baseline and a minimum of 4 weeks after treatment.  

The baseline CT was performed at mean time interval of 1 week before the first dose of Sorafenib and 2 

weeks before the first session of TACE. The first follow-up CT was at mean time of 9 weeks and 10 

weeks after the start of Sorafenib or the first TACE procedure, respectively. Patients treated with 

Sorafenib received a standard dose of 400 mg twice daily. Treatment interruption or dose reduction was 

allowed in cases of adverse drug reactions. Patients treated with TACE received Doxorubicin in LC 

beads. The study endpoint was time to progression (TTP) of the target lesion. Table 1 shows patients’ 

demographic data and clinical profiles.  

2.2 CT Imaging Technique 

All patients underwent multiphasic contrast-enhanced CT of the abdomen (4-,16-, or 64-MDCT Light-

Speed, GE Healthcare). The liver protocol was used in all studies (scanning was performed during the 

arterial phase (bolus tracking) 17 seconds after peak enhancement of the aorta after contrast injection, 

the porto-venous phase at 60 seconds, and the delayed phase approximately 3-5 minutes). The injection 

rate was 3-5 mL/s, image reconstruction thickness was 2.5 and 5-mm. A total of 240 CT image series (60 

CT studies, each with pre-contrast, arterial, porto-venous, and delayed phases) from 30 patients were 

examined. An example image set from a single study is shown in Figure 1.  

2.3 Data Curation and Training Data 

Manual segmentations were performed using semi-automatic segmentation tools available in AMIRA 1 

to delineate the (1) liver, (2) enhancing tumor, and (3) non-enhancing tumor on the porto-venous phase 

images from the 30 patients. A radiology resident and a professor with 20 years of experience in 

abdominal imaging performed the manual segmentation. This resulted in 3 tissue labels: label 1 for the 

background liver parenchyma, 2 for the enhancing tumor region, and 3 for the non-enhancing tumor 

                                                             
1FEI TM, http://www.fei.com/software/amira-3d-for-life-sciences/ 
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region, before and after treatment. For a given patient study, pre-contrast, arterial, and delayed contrast 

phase images were registered to the porto-venous contrast phase images. This allowed the manual labels 

to be applied to all images in the set. The 30 training sets provided the gold standard reference for the 

classifier prediction. All DICOM images were converted to NifTi format to preserve the orientation 

information for data processing. 

2.4 Image Features 

Prior to image feature extraction, the registered and masked tri-phasic and pre-contrast CT datasets, 

shown in Figure 1, were processed with a total variation denoising filter to denoise the image while 

preserving the image boundaries [19]. A comprehensive list of the image features considered is shown in 

Table 2.  A set of 105 total images features was extracted and consisted of the statistical summary of the 

HU intensity values within a pixel neighborhood (mean, standard deviation, and Skewness) for pixel 

radius of 1, 3, and 5. Mixture model probabilities and geometrical descriptors of each label were 

included as image features [20]. The geometrical descriptors include the distance to the tumor core, 

elongation, eccentricity, volume, and surface-to-volume ratio of the mixture model segmentation label.  

The distance to the liver mask was also considered. Distance features were computed using the Maurer 

distance transformation [21].  

2.5 Random Forest (RF) Decision Trees 

In this application, we focused on the use of random forest-based methods for the classification of 

diseased and background liver tissue. Subsequent volumetrics provide response criteria to evaluate 

response to HCC treatment [17]. The input for our random forest classification method was the set of 

image features shown in Table 2, that were derived from (1) pre-contrast and tri-phasic contrast 

enhanced-CT of the abdomen in the (2) arterial phase, (3) washout in the porto-venous, and (4) the 

delayed phases. During ‘training’, the classifier is constructed as a collection of decision trees that are 

calibrated to a random subset of the manually labeled training data [22]. A key principle of random 
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forest methods is that random features selection testing as well as training on random subsets of data, 

decrease the correlation between outputs of different decision trees while simultaneously improving the 

overall performance of the decision forest [22, 23]. Specifically, in this application, the number of trees 

was set to 500; for each tree, 2000 voxel samples were used from each label, representing the enhancing 

tumor, non-enhancing tumor, and background liver within the training data. 

Given a calibrated or trained model, as shown in Figure 2, model prediction involves pixel-wise 

processing of image features by each decision tree. These features are processed by performing a series 

of binary tests along each internal node from the root to a leaf. Decision thresholds at each binary test are 

identified as the quantitative feature image value that best separates the collection of training dataset 

values with respect to the Gini impurity[24]. Each decision tree is used to determine the tissue 

classification, based on the classification (normal liver, enhancing tumor, or non-enhancing tumor) 

assigned to the leaf during the training stage. The classification probability is estimated as the fraction of 

classification from all trees. The final classification is used as the maximum probability.  

2.6 Cross Validation 

Leave-one-out cross validation was performed to quantify the prediction accuracy of the model. As the 

name implies, training algorithms are applied to available subsets of the patient cohort. This process 

closely simulates the clinical scenario in which all datasets are included to calibrate the model. Datasets 

that are not included in the calibration provide an independent test case for the quantitative evaluation of 

prediction accuracy. Dice similarity coefficient (DSC) was used as the quantifying overlap of the manual 

label and was used to predict classification. The overlap percentage defined as the intersection between 

the 2 contours divided by the union of the 2 contours, is calculated for each lesion. A model is 

considered accurate if the overlap percentage was .70 or higher [25].  
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2.7 Statistical Analysis 

Therapy response was estimated as percent change in volume of each of enhancing and non-enhancing 

tumor portions between baseline and follow up CT. Results from manual and RF-based automated 

segmentation were compared. Time-to-progression (TTP) was calculated from the date of first dose of 

Sorafenib or first session of TACE till the date of progression of the target lesions according to the 

mRECIST and EASL guidelines currently used in our institution. 

Kaplan-Meier survival analysis was conducted between responders and non-responders according to 

enhancing and according to non-enhancing tumor changes. Patients were censored at the time they 

switched to different treatment modality, were lost to follow up, or had liver transplantation . Results 

were analyzed with the log-rank test. Multivariate Cox regression was used to assess the effect of 

volume change on suvival.  

Patients were stratified for Kaplan-Meier analysis according to change in volume of enhancing and non-

enhancing tumor portions and according to the method of volumetric assessment, manual or automated. 

Four groups were established, change in enhancing tumor measured by manual segmentation, change in 

enhancing tumor calculated by the RF-automated method, change in non-enhancing tumor measured 

manually, and change in non-enhancing tumor calculated by the RF-automated method.  In each group, 

patients were classified as responders and nonresponders based on the percent of volume change. A 

change in volume for enhancing (65%  decrease) [11]and non-enhancing (35% increase) tumor was 

considered as responders. To our knowledge, there are no available guidelines for non-enhancing tumor 

portions. We propose the complementary of 65% which is 35% increase in volume of necrosis as cut off 

value for response. Thus, patients that showed more than 35% increase in volume of non-enhancing 

portion of the tumor were considered responders. Statistical analysis was performed using SPSS 

software (IBM SPSS Statistics, version 23). 
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3 Results 

3.1 Prediction Accuracy 

Representative image segmentations and feature images are shown in Figure 3. Manual segmentations 

are shown as “Truth” and serve as both (i) the gold standard reference for training the random forest 

model and (ii) an independent reference for evaluating prediction accuracy. The “RF Model” represents 

tissue classification using the random forest model, which was trained independently from the reference 

dataset within the cross validation analysis.  

The mean, median, standard deviation summary statistics of the computed DSCs are provided in Table 3. 

The overall median prediction accuracy in classifying non-enhancing tissue was DSC=.662 and 

DSC=.817 before and after treatment, respectively. Similarly, the accuracy in classifying enhancing 

tumor was DSC=.809 and DSC=.664 before and after treatment; respectively. Figure 4 provides a 

comprehensive overview of the prediction accuracy for each patient and treatment modality in the 

cohort. Prediction accuracy is presented in terms of the DSC on the right axis. For reference, the 

corresponding volumes are plotted on the left axis. 

3.2 Volumetric Analysis  

Volumetric analysis by manual segmentation showed that the volume of enhancing tumor regions ranged 

from 3080.25 to 1,802,340 mm  (mean, 262,930.5) and from 0 to 3,487,530 mm  (mean, 309,293.3) at 

baseline and follow up, respectively. The volume of intratumoral necrosis ranged from 0 to 143,503 mm

 (mean, 20,369.8) and from 0 to 874,461 mm  (mean,  67,926.3) at baseline and follow up, respectively. 

9 patients showed more than 65% decrease in volume of enhancing tumor on follow up CT and are 

considered responders according to enhancing tumor change with treatment. On the other hand, 15 

patients showed more than 35% increase in volume of non-enhancing tumor on follow up CT and are 

considered responders according to non-enhancing tumor change with treatment.  
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3.3 Survival Analysis 

During the observational period, the target lesions of 22 (73.3%) patients progressed, 8 patients (26.7%) 

were censored because of intolerance to Sorafenib (n=1), switched to radiofrequency ablation (n=1) or to 

Sorafenib (n=3) after one or more TACE sessions, lost to follow up (n=2) or underwent liver 

transplantation (n=1). TTP of responders and nonresponders according to volume change of enhancing 

and non-enhancing tumor by manual and automated segmentation was compared using Kaplan-Meier 

survival curves shown in (Figures 5,6). Log-rank test revealed that the volume change of both enhancing 

and non-enhancing tumor can significantly classify responding and nonresponding lesions with accurate 

correlation with their time to progression; P value = 0.001 and 0.0001 for manually segemented 

enhancing and non-enhancing tumor, respectively, and is 0.02 and 0.66 for automatically segmented 

enhancing and non-enhancing tumor, respectively. Multivariate cox-regression analysis confirmed 

volume change of enhancing and non-enhancing portion of HCC lesion as predictors of survival (Table 

4). 

4 Discussion and Conclusion 

The main outcome of this study is that 3D volumetric quantification of enhancing and non-enhancing 

tumor portions of HCC can be used as an imaging biomarker to predict the response to treatment. 

Additionally, our proposed RF-based automated method is statistically equivalent to labor-intensive 

manually labeled data with the advantage of elimination of inter- and intraobserver variability. 

Investigators have highlighted the superiority of volumetric analysis over the 1D and 2D measurement in 

single slice approach adopted by EASL and mRECIST guidelines. Galizia et al showed that 3D 

volumetric analysis was more reproducible than the corresponding 2D approach in a study in 29 patients 

with HCC treated with Y90 radioembilization therapy[8]. Good inter- and intra-observer reproducibility 

of semi-automated segmentation of liver tumor lesions has also been demonstrated by Monsky et al in 29 

patients with HCC or liver metastasis[9]. Feasibility of volumetric approach was shown by Lin et al in a 
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study on 17 patient with HCC undergoing TACE[10]. Tacher et al pointed out that 3D tumor assessment 

methods (vRECIST and qEASL) are more accurate than EASL and mRECIST when predict HCC 

patient survival after the first TACE[11]. These results agree with the expected response of HCC to 

treatment modalities which target the tumor blood supply, such as Sorafenib and TACE. This results in 

shrinkage of the enhancing tumor and expansion of non-enhancing regions. This mechanism of action is 

reflected on the clinical outcomes in the form of longer TTP of the target lesion. 

A Kruskal-Wallis test revealed that mixture model intensity classifications were the most significant for 

automated tumor segmentation by the RF model. Such findings agree with the radiologists’ intuition, 

which depends almost entirely on discrepancies in intensity between the tumor and background liver 

throughout different contrast phases of the multiphasic CT protocol. This explains why the RF model 

better classified enhancing tumor in pre-therapy images while necrosis prediction was more accurate in 

post-therapy images. Since Sorafenib and TACE interfere with tumor blood supply, tumor is expected to 

be more enhancing in baseline images compared to post-therapy images, which is translated into more 

discrepancy in HU units between enhancing tumor, non-enhancing tumor and background liver and in 

turn, better delineation of the enhancing tumor. On the other hand, post-therapy images show areas of 

decreased enhancement and larger areas of no enhancement, consequently more discrepancy in HU 

between non-enhancing areas and background liver and in turn better delineation. 

Enhancing Errors between manual and automated segmentation approaches were noticed mostly at the 

periphery of the tumor lesion; particularly in small lesions. This can be because intensity values at the 

periphery were close to that of the surrounding liver. In addition, registration accuracy may account for 

errors at the periphery of the tumor lesion as well. Decoupling and quantifying the effect of registration 

techniques on the resulting segmentation accuracy is the topic of ongoing studies.  

The limitations of this study included small sample size due to our strict inclusion criteria. One other 

limitation is that the liver had to be manually masked during the preprocessing pipeline; this step has 

rendered the entire process semi-automated rather than fully automated. We aim to implement software 
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with automated liver segmentation capabilities in future studies to achieve a fully automated protocol for 

HCC volumetric analysis. 

In conclusion, automated 3D volumetric analysis was a reliable and reproducible method of monitoring 

HCC response to treatment with Sorafenib or TACE. With respect to TTP and clinical outcome, the 

information extracted using automated methods of quantitative liver lesion volumetrics was statistically 

equivalent to labor-intensive manually labeled data. 
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Table 1: Patient Population. 

Baseline Patient Characteristics 

Patient Characteristic (n=30) Finding 

Age 

Mean 68 

<60 y 7 

>60 y 23 

Sex 

Male 23 

Female 7 

Cirrhosis 

Present 23 

Absent 7 

Child-Pugh stage 

A 29 

B 1 
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C 0 

BCLC stage 

A 4 

B 4 

C or D 22 

Alpha-Fetoprotein level 

Mean (ng/mL) 2226.963 

<=400 ng/mL 23 

>400 ng/mL 7 

Tumor Nodularity 

Uninodular 11 

Multinodular 19 

Dose 

Sorafenib (mg) (Mean) 37953.8 

Doxorubicin (mg) (Mean) 56.14 

 

 

Table 2: Feature images used to construct the random forest model.   
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Intensity modeling and connected component geometry 
Feature Number Motivation 
Pr (Background liver) 1 per modality Background liver intensity 
Pr (Enhancing tumor) 1 per modality Enhancing tumor intensity 
Pr (Necrotic tumor) 1 per modality Necrotic tumor intensity 
Elongation 1 per modality Anisotropic components 
Eccentricity 1 per modality Anisotropic components 
Volume 1 per modality Small, isolated components 
Distance to tumor core 1 per modality Proximity to tumor core 
Volume/surface area 1 per modality Anisotropic components 
   

Neighborhood first-order statistics 
Feature Number Motivation 
Mean (radius=1,3.5) 1 per modality Liver & tumor intensity 
Std. dcv. (radius=1.3,5) 1 per modality Liver & tumor intensity 
Skewness (radius=1,3,5) 1 per modality Liver & tumor intensity 
Intensity gradient 1 Liver & tumor intensity 
Pre,Art difference 1 Isolated tumor tissue 
Art,Pori-venous difference 1 Isolated tumor tissue 
Port-venous,Del difference 1 Isolated tumor tissue 
Liver mask coordinate system   

Liver mask coordinate system 
Feature Number Motivation 
Subject distance 1 Peripheral Vs Central 
 

Table 3: Stat Summary of Error measurements.   

Median/Mean (Std) Overall enhancing Overall non-enhancing 

Prior 0.809/0.709 (0.035) 0.662/0.652 (0.041) 

After 0.664/0.644 (0.045) 0.817/0.783 (0.040) 
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Table 4: Cox hazard regression model for the effect of change in volume enhancing and non-enhancing 

tumor on survival  

Response Hazard Ratio P-value 95% Confidence Interval 
Change in volume of 

enhancing tumor 
0.163 0.042 0.028 0.937 

Change in volume of 
non-enhancing 

tumor 

0.057 0.023 0.005 0.678 
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Figure 1: Original Images. Each study consists of 0.images from the pre-contrast, arterial, porto-venous, 

delayed phase shown. 

  

 

Figure 2:  Workflow of the automated segmentation protocol. Each imaging set is registered to the 

respective porto-venous phase image and masked for processing. During training, quantitative image 
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features thresholds are identified that discriminate the manually labeled (i) normal tissue, (ii) enhancing 

tumor, and (iii) non-enhancing tissue data. These image features are used to create a random forest 

decision model.  The random forest decision model is then used in the prediction to identify tissue types 

and volumetric calculations. 

 

 

Figure 3:  Representative images. Manual segmentation of background liver (red), enhancing tumor 

(green), and non-enhancing tumor (blue) regions by an experienced radiologist is seen in ‘Truth’. The 

corresponding automated segmentation using random forest model is also provided in ‘RF Model’. 

Representative feature images with the greatest p-values with respect to a Kruskal-Wallis test are also 

shown. These image features provide the highest discrimination in tissue types with respect to the 

manually labeled data.  
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Figure 4:  A comprehensive overview of the accuracy of the random forest predictions is present. DSC 

calculations are aligned vertically with the respective patient. DSC overlap is shown between the non-

enhancing tissue and enhancing tumor (a) at baseline and (b) at follow up. Median, mean, and standard 

deviation summary statistics of the dice similarity coefficients are also grouped by treatment modality 

and shown.  

 
Figure 5: Kaplan-Meier survival curves of responders and nonresponders according to volume change of 

enhancing tumor estimated by manual segmentation (right) and RF-based automated segmentation (left). 

Log-rank test showed that both methods have significant ability to classify responders and non-

responders with accurate prediction of TTP. 
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Figure 6: Kaplan-Meier survival curves of responders and nonresponders according to volume change of 

non-enhancing tumor estimated by manual segmentation (right) and RF-based automated segmentation 

(left). Log-rank test showed that both methods have significant ability to classify responders and non-

responders with accurate prediction of TTP. 
  
 


