

Barehands:

Implement-Free Interaction with a Wall-Mounted Display

Meredith Ringel
Computer Science Department

Brown University
Providence, RI 02912

mringel@cs.brown.edu

Henry Berg, Yuhui Jin, Terry Winograd
Computer Science Department

Stanford University
Stanford, CA 94305-9035

{hgberg, yhjin, winograd}@cs.stanford.edu

ABSTRACT
We describe Barehands, a free-handed interaction
technique, in which the user can control the invocation of
system commands and tools on a touch screen by touching
it with distinct hand postures. Using behind-screen
infrared (IR) illumination and a video camera with an IR
filter, we enable a back-projected SMARTBoard (a
commercially available, 61 �’’ x 47’’ touch -sensing
display) to identify and respond to several distinct hand
postures. Barehands provides a natural, quick, implement-
free method of interacting with large, wall-mounted
interactive surfaces.

Keywords
Interaction technique, user interface, hand posture,
infrared, image processing, region growing,
SMARTBoard, Interactive Workspaces, touch interaction,
interaction tool.

INTRODUCTION
As part of our project to develop a pervasive computing
environment [6], we have created an interactive workspace
which integrates a variety of devices, including laptops,
PDAs, and large displays, both vertical (wall-mounted) and
horizontal (tabletop). Our research focus is on providing
integration at both the system and user-interaction levels,
so that information and interfaces can be associated with a
user and task rather than with a particular device or
surface.

Barehands addresses the issue of effective interaction with
large touch-sensitive surfaces by employing hand-posture
recognition techniques.

The Overface
A key design criterion for our environment is to provide
support on a variety of devices for existing modes of

interaction with applications and standard GUI interfaces
(e.g., Windows, PalmOS). We cannot expect real
applications to be developed if they require special re-
coding for use in our environment. At the same time, we
want to support additional interactions that are not in
current systems. These include:
• device augmentation (such as providing the equivalent

of keyboard shortcuts for a non-keyboard touch
screen)

• multi-device actions (such as bringing up a web page
or application on a screen other than the one on which
the interaction occurs, or using a pointing device on a
laptop to control the cursor on a wall-screen)

• meta-screen actions (such as marking up the desktop
display)

• space-global interactions (such as a global copy and
paste, which allows objects to be moved from any
device to any other).

• environment-control actions (such as turning
projectors on and off and re-mapping their input
sources),

The challenge is to add these in a consistent and uniform
way that does not create confusion. Our approach is to
create an overface, which provides affordances for these
actions while also allowing the user to interact normally
with the underlying interfaces.

In order to intermix overface and underlying interface
actions, we need to distinguish the kind of action the user
intends. This can be done with temporal modes (the user
switches back and forth from overface to interface mode),
with spatial modes (some areas of the display support
overface actions while others support interface actions), or
with physical modes (e.g., holding down a button, or using
a mode-specific physical tool).

The problems created by temporal modes have been widely
discussed in the HCI literature and are exacerbated in our
mu lti-device multi-user setting. Keeping track of which
surface is in which mode is a source of confusion and

error. Spatial modes work well when the activity can be
separated (for example our controller for the lights and
projectors, appears as a separate area on the screen), but do
not work for actions that require being located on an
application area (e.g., freehand markup or global copy and
paste). Physical modes are used extensively in standard
GUI environments, using devices such as the mouse, with
its multiple buttons and keyboard modifiers (SHIFT,
CTRL, etc.). Physical modes avoid the confusion of
temporal modes because the user is directly aware of
which mode is in effect, based on what is being pressed or
held.

Bare hand touch screen interaction
A key component of our space is a wall with three adjacent
back-projected SMARTBoards [8]: commercially
available, wall-mounted, touch-sensitive displays. Users
integrate work on individual devices (PDAs and laptops
connected by a wireless LAN) with work by multiple
people standing at the SMARTBoards. We normally
display a standard Windows 2000 desktop on each of these
boards or one combined desktop covering all three. Users
are able to run any Windows applications that are desirable
for their tasks.

In our experience over a year of using the boards, we
recognized the strong appeal of direct hands-on
manipulation without implements. Although the
SMARTBoard provides a set of whiteboard tools (see
Discussion below), users gravitated toward performing
simple interactions by touching a finger to the board. In
fact, they often tried fruitlessly to do the same on the
adjacent front-projected wall, which had no touch sensors.
We therefore decided to explore the possibilities for bare-
hands mechanisms that could provide appropriate
interaction for both interface and overface, and that did not
require the user to hold separate implements.

Any touch on the SMARTBoard touch screen is interpreted
by the standard software as a left mouse click.
Simultaneous touch at multiple points is interpreted as a
single mouse click with coordinates corresponding roughly
to the center of the contact points. To achieve the
affordances of ordinary workstations, and to add a limited
form of overface, the SMARTBoard designers added both
temporal and physical modes. Right-button click is
implemented with a temporal mode that requires the user
to press a physical button on a tray at the bottom, right-
hand edge of the SMARTBoard. The next touch is then
interpreted as a right mouse clic k. There is no way to
indicate a position without a button click (as is used for
affordances such as rollover tool-tips).

In addition to standard GUI functionality, the
SMARTBoard and its accompanying software provide
electronic whiteboard capabilities (freehand and

geometrical figure markup on the display surface) using
separate physical devices modeled after conventional
whiteboard marker pens and erasers. There are a number
of problems with these tools, and we wanted to see what
could be done using a tool-free hands-only mechanism.

Although the touch screen hardware only identifies a single
center-of-gravity point of contact, users can easily produce
different hand postures, such as touching with a single
finger, with multiple fingers, or with the side or palm of
the hand. Barehands uses these postures as physical
modes, allowing the touch to trigger actions depending on
posture. A dynamic mapping allows any posture to be
mapped to any of the available actions, including a basic
OS interaction (left-button, right-button, etc.) or an
overface interaction (markup, global actions, etc).

In our current stage of experimentation, we have not yet
established the optimal mappings. To facilitate
experimentation, we have developed a mapping interface
that allows any posture to be mapped to any of the
available actions, including whiteboard tools, Windows
events (e.g. left or right mouse-click), and Windows
commands (e.g. cut, copy, or paste). We can also extend
the set of distinguishable actions further by mapping a
posture to invoke Sensiva [7], a commercial gesture-
recognition system, which allows an arbitrary number of
different on-screen (2-dimensional) gestures to be mapped
to desired actions.

Our research goal is to explore the space of hand postures
and gestures to identify which ones are best suited to the
different aspects of overface and interface.

PREVIOUS WORK
HoloWall [2], developed at the Sony Computer Science
Laboratory in Tokyo, allows for object recognition from
behind a translucent wall surface. IR illumination and a
camera behind the wall are used to detect hands or
inanimate objects touching the surface. Holding an object
against the wall may trigger an associated system response
(e.g. projecting a video onto the wall in response to
touching it with a videocassette box). The HoloWall was a
special-purpose device, not integrated with standard
displays or interaction modes.

We have extended the visual object-tracking technique of
the HoloWall not only to detect when and where a hand
has touched the display, but to classify that touch into one
of several categories. Currently, our system accurately
identifies five distinct postures: one finger, two fingers, a
vertical edge, a horizontal edge, and an entire palm. Users
may map those five hand configurations to Windows
commands (e.g. left mouse button, right mouse button, cut,
copy, paste, etc.) or to the SMARTBoard’s “whiteboard”

FIGURE 1: Projection, camera, and lighting setup, side
view. The Infrared LED arrays are pulsed in coordination
with the camera shutter to illuminate the rear of the board,
including objects that reflect light by being near to its front
side. The camera records the image for analysis.

tools (e.g. pen, eraser, highlighter, rectangle tool, ellipse
tool, line tool.) by invoking a selection tool, which is
available in the Windows taskbar, at any time.

A two-fingered touch, for example, can be mapped to send
a right mouse click This right-click message is then
handled by the application within whose window the touch
occurred. Similarly, by mapping Ctrl + C to one of the
hand postures and Ctrl + V to another, a user can copy and
paste an item simply by touching the screen twice (first
with the copy posture, then with the paste posture).

Barehands allows us to easily integrate Sensiva [7], a
freeware gesture-recognition tool, into our system.
Sensiva provides functionality for recognizing and
responding to different shapes drawn when the right mouse
button is held down. Using Barehands to map a posture
(two fingers, for example) to mean “right mouse button”
allows us to quickly and intuitively augment the interaction
space.

An alternative method for sensing hands on a display is the
use of laser rangefinders. The recognition system
produced by Stricken and Paradiso [5] was able to use
hand position as a way of controlling audio output, but
there was no attempt to use hand postures to distinguish
actions, and the sensing method makes it difficult to
distinguish postures.

FIGURE 2: Front view of the setup as seen from rear of
projection screen. Two side-displaced arrays are used to
spread the lighting and to avoid a direct reflection off of
the screen into the camera. Projector back-reflection is
minimal since it is vertically displaced and the projector
has an IR cutoff filter.

Rehg and Kanade[3] used a camera in front of the display
surface to analyze the 3-dimensional configuration of a
hand. They used kinematic modeling techniques to model
multiple degrees of freedom in hand configuration, which
they used to control a 3-dimensional 6DOF mouse.
Although the technique is much more general, its
efficiency and accuracy are not in the range that would
make it practical for our application.

Some issues related to working with large display surfaces
have been addressed by the German National Research
Center for Information Technology’s (GMD) DynaWall
[4] project, a part of their i-LAND endeavor. Their system
takes advantage of the touch-sensitive nature of the
SMARTBoard by translating certain pen motions into
“shuffle” or “throw” messages, which move windows to a
remote area of the display. Adopting a spatial mode
mechanism, these motions must be made in a special
“handle” portion of the icons displayed by the BEACH
software framework [4], developed specifically for the i-
LAND project. Touching a handle on the BEACH
system’s icons can also trigger a “take it” action, a hands-
only version of a traditional cut and paste. Unlike
DynaWall, whose underlying infrastructure is the specially
tailored BEACH system, Barehands is built on top of a
standard Windows 2000 operating platform.

BAREHANDS IMPLEMENTATION
In order to obtain images of a user’s hand as it touches the
display, we illuminate the rear of the screen with a pair of
IR LED arrays, approximately 1.5m behind the board, each

FIGURE 3: A user touches the SMARTBoard with a
“vertical edge” posture. The current recognized postures
are one finger, two fingers, a vertical edge, a horizontal
edge, and a palm.

containing twelve rows of eight 16mw/str SLI-0308CP
LEDs, pulsed at 200mA. Centered between the light
sources approx 3m from the board, is a Marshall V-1070
video camera (resolution 811 x 510 pixels) with an IR
filter, and an 8-80 mm motorized lens, specially adjusted to
focus with IR light (Figures 1 and 2). A standard video
digitizing card is used to capture the image from the
camera.

IR light from the LED arrays is reflected off the rear of the
screen and picked up by the camera. When a hand touches
the front of the display, it reflects additional IR light, and is
perceived by the camera as a region of increased intensity,
as illustrated in Figures 3 and 4.

We initially constructed the LED arrays to provide
continuous illumination and disabled the camera’s shutter.
This meant that the maximum continuous current allowed
through the LEDs limited the amount of light. There was
also no protection from ambient IR light. To solve these
problems we modified the arrays to use an adjustable high-
current pulse. We built a lighting control box that analyzes
the video signal from the camera and extracts the shutter
timing information necessary to synchronize the flash of
light with the camera’s electronic shutter. While we
presently flash both arrays simultaneously, we designed the
control box to allow independent field-by-field control of
each array to support future work.

Image Processing
When the user touches the display, we first identify which
pixels in the video image correspond to his or her hand by

FIGURE 4: Camera image of the user’s hand on the rear of
the board. After threshholding, the image is processed to
produce characteristics of the area, such as vertical-to-
horizontal ratio and perimeter-to-area ratio, which are used
in posture recognition.

examining the pixels’ grayscale intensity, and filtering out
random noise (Figure 4).

We take advantage of the touch sensing of the
SMARTBoard to reduce image-processing overhead.
Although we receive a continual input from the video
camera, we only analyze the frames of the video that occur
immediately after we receive a “contact down” event from
the SMARTBoard driver. This contact event is intercepted
before it can be sent to Windows as a left mouse click
event (the SMARTBoard software’s default response to
touch).

We are able to avoid processing the entire image by using
the x- and y-coordinates associated with the contact-down
event as a seed for region growing. Pixels within a fixed
radius of the seed are examined and those with a grayscale
intensity similar to that of the seed are included in the
region. This process is repeated by exploring a fixed
radius around each new pixel found to be in or near the
region of contact. This allows for the detection of contact
regions with or without discontinuities (a two-fingered
contact, with the fingers spaced slightly apart, would result
in a discontinuous region). Isolated pixels are eliminated,
even if their intensity is above threshold.

Region characteristics such as height-to-width ratio, ratio
of a region’s area to the area of its bounding box, ratio of
perimeter to area, and the presence or absence of gaps in
the region are used to classify the image as either one
finger, two fingers, a vertical edge, a horizontal edge, a
palm, or unknown. Future research will investigate other

possible postures and recognition features, and we have
experimented with using machine-learning systems for
recognition, as well.

Action Mappings
Once the activated region has been classified as a
particular hand posture, an appropriate action is produced,
based on the mapping currently associated with that
posture. If the posture is mapped to a whiteboard tool, we
send messages to the SMARTBoard driver to change the
current tool. If the posture is mapped to a Windows
command, we send an appropriate combination of
keyboard and/or mouse events.

An icon displayed in the Windows taskbar can be selected
at any time to bring up a dialog box that allows the user to
change any or all of the posture-to-action mappings. This
dialog als o allows the user to select whether a particular
mapping is activated immediately after posture detection,
or on the following touch.

In our initial experiments, we began with a purely physical
mode, in which the hand posture at the beginning of a
touch determined the interpretation of the motion
throughout that touch. For example, if a two-finger touch
mapped to the gesture recognizer, the user would touch
down with two fingers and continue by drawing the gesture
with them. We observed that for some mappings, this was
awkward. For example, if a vertical-side-of-hand touch
activates a drawing tool, such as a pen or highlighter, it is
not convenient to then do the drawing with the hand held
in that position. We have added a temporal mode, in which
the posture of the initial touch determines the mapping that
will be applied to the immediately following touch. So, for
example, the user might touch with the side of the hand to
indicate a drawing tool, and then use a single finger on the
next touch to do the drawing. Because the two touches are
immediately correlated and a change of cursor indicates the
action that will be taken by the next touch, we have not
found that this creates mode confusion.

EVALUATION
Informal initial observations of Barehands use affirm that
our system provides a means of interacting with a large
display that avoids the inconvenience of walking to a
different area of the device to push a button or of grasping
a physical interaction tool. By mapping gestures to
commands such as copy and paste the user saves time and
motions traditionally required for selecting those
commands from menus.

System response time is conducive to real-time interaction:
image-processing time averaged 13.37 ms for a mixed-
posture set of 120 touches. Average posture-classification
accuracy rates are above 90%; we expect that more
uniform IR illumination in our remodeled configuration

will allow for improved accuracy. Since there is immediate
visual feedback on the posture that was recognized and
opportunity for correction, the system should be useable
with well below 100% accuracy, but it will take further
experimentation to determine the best tradeoff between
accuracy and the number of different postures recognized.

Systematic user studies are planned for the future, but
could not be performed by the time of submission due to a
remodeling of the Interactive Room, which required
dismantling our lighting and camera setup soon after the
initial experiments. Further evaluation of the effectiveness
of the Barehands interaction technique will be carried out
after remodeling is completed later this autumn.

DISCUSSION
The key assumption underlying Barehands is that for a
significant class of users and interactions (in particular, the
overface interactions), bare-handed interaction is better
than using physical tools to determine the mapping from
touch to action. An alternative approach is exemplified by
the tools that come with the SMARTBoard, based on
traditional colored marker pens and erasers. In order to
annotate the screen with a colored mark, the user picks up
the corresponding colored marker and draws with its tip
(which is just a plastic cone). To erase, she picks up the
eraser and uses it in the conventional way.

There are advantages to a tool-based and a tool-free
approach:

• When there are obvious tools for the interactions,
the mapping is natural. Picking up a red pen is an
obvious way to draw a red mark.

• Tools can be shaped to be better suited to the task.
Drawing with a pointed pen-tip is more accurate
than drawing with a fingertip.

• Appropriate use of tools can avoid the need to
augment the physical mode with temporal ones
(our two-touch mode).

And there are complementary advantages for a tool-free
approach

• Bare hands (unlike tools) can never be misplaced,
are always available, and do not need to be
handed off from user to user in a multi-user
environment

• It is not necessary to invent a tool for actions that
do not naturally suggest one (e.g., making an on-
screen gesture).

• Specialized hardware is required for tool
recognition and activation (of course there is also
hardware for bare hands visual recognition).

In regard to the last point, the actual SMARTBoard tools
are highly unsatisfactory for the kind of use we envision.
They are housed in a tray equipped with detectors to sense
the presence or absence of each tool. When a tool is

removed from the board’s tray, all subsequent touches to
the board (by any device, including bare fingers) are
interpreted in a mode associated with the tool that was last
picked up, until the tool is replaced in its tray or another
one is picked up.

This pseudo-physical mode (it has the intended physical
mapping when the user picks up only one tool at a time and
then replaces it) works relatively well for the single-
whiteboard-replacement applications that are the primary
target for the device. However, confusion often results, for
example due to picking up both a pen and the eraser (after
which touches by either are interpreted according to
whichever was the last picked up). In our environment,
further confusion results both from the multiple-device
context (each of the three boards has its own tray of
implements and associated sensors but people pick up tool
on one board and then use it on another), and the mixing of
whiteboard actions (such as sketching) with application
interaction modes that are not part of simple pen-on-
whiteboard activity.

These flaws could be corrected by using some different
mechanism for tool sensing, and one of our long-term
research questions is understanding the criteria that make
tool-based and bare-hand interaction appropriate for
different kinds of situations and actions.

Future Work
Lighting arrangements have been the greatest technical
challenge in the implementation of Barehands. The setup
shown in Figures 1 and 2, employing two arrays of IR
LEDs, provides non-uniform lighting, as the light from
each LED spreads out over a 30 degree arc. The central
regions of the board are well lit, but the outer edges remain
dark. We have tried unsuccessfully to solve this problem
with various conventional lenses and filters. The uneven
light results in lower recognition accuracy for hand
postures outside of the display’s central area.

When we set up our lighting again, after the Interactive
Room remodeling is complete, we plan to experiment with
new arrangements of IR light sources to achieve more
uniform illumination. Since each source is composed of
many LEDs, they can be arranged into other geometries,
such as linear strings rather than concentrated arrays. We
will also experiment with using alternating lighting
directions to improve recognition. We are planning to
experiment with lighting schemes where successive frames
of video are lit in different ways and from different
directions, enabling more sophisticated image analysis.

More uniform lighting will facilitate more accurate image
processing, which will enable us to expand our current set
of five recognized postures. Although the space of
recognizable postures is large, many of the theoretically

possible ones will be awkward or uncomfortable. In our
user experiments we will look for postures that are
ergonomically appropriate and that have natural mappings
to actions (e..g., using the side of the hand as an eraser).

In addition to recognizing static hand postures, we plan to
extend the system to recognize postural motions (such as
"plucking" an item from the board), which will extend the
space of potentially meaningful actions. We also can
easily extend the visual recognition algorithms to identify
objects other than hands. A physical object of a known
shape can be touched to the board and manipulated to
achieve a desired tool-specific interaction. Although our
general approach has emphasized implement-free
interaction, there may be places where specialized tools are
appropriate in combination with the Barehands interaction.

ACKNOWLEDGEMENTS
We are indebted to all of the people in our research group
who have worked to create the interactive workspace
environment. Winfield Hill at the Rowland Institute for
Science provided invaluable assistance in the design of the
pulsed lighting system. Doug Hill at SMART Technologies
provided valuable information and assistance. Special
thanks to Dan Morris and François Guimbretière for
improvements to this paper.

REFERENCES
1. Geißler, Jörg. Shuffle, throw or take it! Working
Efficiently with an Interactive Wall. CHI ’98 Summary,
ACM Press, 265-266.

2. Matsushita, Nobuyuki, and Jun Rekimoto. HoloWall:
Designing a Finger, Hand, Body, and Object Sensitive
Wall. CHI ’97 (Banff, Canada, October 1997), ACM
Press, 209-210.

3. Rehg, J. and T. Kanade, Digiteyes: Viesion-Based Hand
Tracking for Human-Computer Interaction. Proc. Of the
Workshop on Motion of Non-rigid and Articulated
Objects, Austin Texas, November 1994, IEEE Computer
Society Press, pages 16-22.

4. Streitz, Norbert A., et. al. i-LAND: An Interactive
Landscape for Creativity and Innovation. CHI ’99
(Pittsburgh, PA, May 1999), ACM Press, 120-127.

5. Stricken, Joshua, and Joseph Paradiso, Tracking Hands
Above Large Interactive Aurfaces with a Low-Cost
Scanning Laser Rangefinder, CHI98 Summary, 231-232.

6. See http://graphics.stanford.edu/projects/iwork

7. See http://www.sensiva.com

8. See http://www.smarttech.com

