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ABSTRACT 
We describe Barehands, a free-handed interaction 
technique, in which the user can control the invocation of 
system commands and tools on a touch screen by touching 
it with distinct hand postures.  Using behind-screen 
infrared (IR) illumination and a video camera with an IR 
filter, we enable a back-projected SMARTBoard (a 
commercially available, 61 �’’ x 47’’ touch -sensing 
display) to identify and respond to several distinct hand 
postures.  Barehands provides a natural, quick, implement-
free method of interacting with large, wall-mounted 
interactive surfaces. 
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INTRODUCTION 
As part of our project to develop a pervasive computing 
environment [6], we have created an interactive workspace 
which integrates a variety of devices, including laptops, 
PDAs, and large displays, both vertical (wall-mounted) and 
horizontal (tabletop).  Our research focus is on providing 
integration at both the system and user-interaction levels, 
so that information and interfaces can be associated with a 
user and task rather than with a particular device or 
surface.   
 
Barehands addresses the issue of effective interaction with 
large touch-sensitive surfaces by employing hand-posture 
recognition techniques. 
 
The Overface 
A key design criterion for our environment is to provide 
support on a variety of devices for existing modes of  
 
 
 
 

interaction with applications and standard GUI interfaces 
(e.g., Windows, PalmOS). We cannot expect real 
applications to be developed if they require special re-
coding for use in our environment.  At the same time, we 
want to support additional interactions that are not in 
current systems. These include: 
• device augmentation (such as providing the equivalent 

of keyboard shortcuts for a non-keyboard touch 
screen) 

• multi-device actions (such as bringing up a web page 
or application on a screen other than the one on which 
the interaction occurs, or using a pointing device on a 
laptop to control the cursor on a wall-screen) 

• meta-screen actions (such as marking up the desktop 
display)  

• space-global interactions (such as a global copy and 
paste, which allows objects to be moved from any 
device to any other).   

• environment-control actions (such as turning 
projectors on and off and re-mapping their input 
sources), 

The challenge is to add these in a consistent and uniform 
way that does not create confusion.  Our approach is to  
create an overface, which provides affordances for these 
actions while also allowing the user to interact normally 
with the underlying interfaces.  
 
In order to intermix overface and underlying interface 
actions, we need to distinguish the kind of action the user 
intends.  This can be done with temporal modes (the user 
switches back and forth from overface to interface mode), 
with spatial modes (some areas of the display support 
overface actions while others support interface actions), or 
with physical modes (e.g., holding down a button, or using 
a mode-specific physical  tool). 
 
The problems created by temporal modes have been widely 
discussed in the HCI literature and are exacerbated in our 
mu lti-device multi-user setting.  Keeping track of which 
surface is in which mode is a source of confusion and 



error.  Spatial modes work well when the activity can be 
separated (for example our controller for the lights and 
projectors, appears as a separate area on the screen), but do 
not work for actions that require being located on an 
application area (e.g., freehand markup or global copy and 
paste). Physical modes are used extensively in standard 
GUI environments, using devices such as the mouse, with 
its multiple buttons and keyboard modifiers (SHIFT, 
CTRL, etc.).  Physical modes avoid the confusion of 
temporal modes because the user is directly aware of 
which mode is in effect, based on what is being pressed or 
held. 
 
Bare hand touch screen interaction 
A key component of our space is a wall with three adjacent 
back-projected SMARTBoards [8]: commercially 
available, wall-mounted, touch-sensitive displays.  Users 
integrate work on individual devices (PDAs and laptops 
connected by a wireless LAN) with work by multiple 
people standing at the SMARTBoards.  We normally 
display a standard Windows 2000 desktop on each of these 
boards or one combined desktop covering all three. Users 
are able to run any Windows applications that are desirable  
for their tasks. 
 
In our experience over a year of using the boards, we 
recognized the strong appeal of direct hands-on 
manipulation without implements. Although the 
SMARTBoard provides a set of whiteboard tools (see 
Discussion below), users gravitated toward performing 
simple interactions by touching a finger to the board. In 
fact, they often tried fruitlessly to do the same on the 
adjacent front-projected wall, which had no touch sensors.  
We therefore decided to explore the possibilities for bare-
hands mechanisms that could provide appropriate 
interaction for both interface and overface, and that did not 
require the user to hold separate implements. 
 
Any touch on the SMARTBoard touch screen is interpreted 
by the standard software as a left mouse click.  
Simultaneous touch at multiple points is interpreted as a 
single mouse click with coordinates corresponding roughly 
to the center of the contact points. To achieve the 
affordances of ordinary workstations, and to add a limited 
form of overface, the SMARTBoard designers added both 
temporal and physical modes.  Right-button click is 
implemented with a temporal mode that requires the user 
to press a physical button on a tray at the bottom, right-
hand edge of the SMARTBoard.  The next touch is then 
interpreted as a right mouse clic k.  There is no way to 
indicate a position without a button click (as is used for 
affordances such as rollover tool-tips). 
 
In addition to standard GUI functionality, the 
SMARTBoard and its accompanying software provide 
electronic whiteboard capabilities (freehand and 

geometrical figure markup on the display surface) using 
separate physical devices modeled after conventional 
whiteboard marker pens and erasers.  There are a number 
of problems with these tools, and we wanted to see what 
could be done using a tool-free hands-only mechanism. 
 
Although the touch screen hardware only identifies a single 
center-of-gravity point of contact, users can easily produce 
different hand postures, such as touching with a single 
finger, with multiple fingers, or with the side or palm of 
the hand.  Barehands uses these postures as physical 
modes, allowing the touch to trigger actions depending on 
posture. A dynamic mapping allows any posture to be 
mapped to any of the available actions, including a basic 
OS interaction (left-button, right-button, etc.) or an 
overface interaction (markup, global actions, etc).  
 
In our current stage of experimentation, we have not yet 
established the optimal mappings. To facilitate 
experimentation, we have developed a mapping interface 
that allows any posture to be mapped to any of the 
available actions, including whiteboard tools, Windows 
events (e.g. left or right mouse-click), and Windows 
commands (e.g. cut, copy, or paste).   We can also extend 
the set of distinguishable actions further by mapping a 
posture to invoke Sensiva [7], a commercial gesture-
recognition system, which allows an arbitrary number of 
different on-screen (2-dimensional) gestures to be mapped 
to desired actions. 
 
Our research goal is to explore the space of hand postures 
and gestures to identify which ones are best suited to the 
different aspects of overface and interface.   
 
PREVIOUS WORK 
HoloWall [2], developed at the Sony Computer Science 
Laboratory in Tokyo, allows for object recognition from 
behind a translucent wall surface.  IR illumination and a 
camera behind the wall are used to detect hands or 
inanimate objects touching the surface.  Holding an object 
against the wall may trigger an associated system response 
(e.g. projecting a video onto the wall in response to 
touching it with a videocassette box).  The HoloWall was a 
special-purpose device, not integrated with standard 
displays or interaction modes. 
 
We have extended the visual object-tracking technique of 
the HoloWall not only to detect when and where a hand 
has touched the display, but to classify that touch into one 
of several categories.  Currently, our system accurately 
identifies five distinct postures: one finger, two fingers, a 
vertical edge, a horizontal edge, and an entire palm. Users 
may map those five hand configurations to Windows 
commands (e.g. left mouse button, right mouse button, cut, 
copy, paste, etc.) or to the SMARTBoard’s “whiteboard”  



 
FIGURE 1: Projection, camera, and lighting setup, side 
view.  The Infrared LED arrays are pulsed in coordination 
with the camera shutter to illuminate the rear of the board, 
including objects that reflect light by being near to its front 
side. The camera records the image for analysis.  
 
 
 
tools (e.g. pen, eraser, highlighter, rectangle tool, ellipse 
tool, line tool.) by invoking a selection tool, which is 
available in the Windows taskbar, at any time.   
 
A two-fingered touch, for example, can be mapped to send 
a right mouse click This right-click message is then 
handled by the application within whose window the touch 
occurred.  Similarly, by mapping Ctrl + C to one of the 
hand postures and Ctrl + V to another, a user can copy and 
paste an item simply by touching the screen twice (first 
with the copy posture, then with the paste posture).   
 
Barehands allows us to easily integrate Sensiva [7], a 
freeware gesture-recognition tool, into our system.  
Sensiva provides functionality for recognizing and 
responding to different shapes drawn when the right mouse 
button is held down.  Using Barehands to map a posture 
(two fingers, for example) to mean “right mouse button” 
allows us to quickly and intuitively augment the interaction 
space. 
 
An alternative method for sensing hands on a display is the 
use of laser rangefinders.  The recognition system 
produced by  Stricken and Paradiso [5] was able to use 
hand position as a way of controlling audio output, but 
there was no attempt to use hand postures to distinguish 
actions, and the sensing method makes it difficult to 
distinguish postures. 
 
 
 

 
 
FIGURE 2: Front view of the setup as seen from rear of 
projection screen.  Two side-displaced arrays are used to 
spread the lighting and to avoid a direct reflection off of 
the screen into the camera.  Projector back-reflection is 
minimal since it is vertically displaced and the projector 
has an IR cutoff filter. 
 
 
Rehg and Kanade[3] used a camera in front of the display 
surface to analyze the 3-dimensional configuration of a 
hand.  They used kinematic modeling techniques to model  
multiple degrees of freedom in hand configuration, which 
they used to control a 3-dimensional 6DOF mouse.  
Although the technique is much more general, its 
efficiency and accuracy are not in the range that would 
make it practical for our application. 
 
Some issues related to working with large display surfaces 
have been addressed by the German National Research 
Center for Information Technology’s (GMD) DynaWall 
[4] project, a part of their i-LAND endeavor. Their system 
takes advantage of the touch-sensitive nature of the 
SMARTBoard by translating certain pen motions into 
“shuffle” or “throw” messages, which move windows to a 
remote area of the display.  Adopting a spatial mode 
mechanism, these motions must be made in a special 
“handle” portion of the icons displayed by the BEACH 
software framework [4], developed specifically for the i-
LAND project. Touching a handle on the BEACH 
system’s icons can also trigger a “take it” action, a hands-
only version of a traditional cut and paste. Unlike 
DynaWall, whose underlying infrastructure is the specially 
tailored BEACH system, Barehands is built on top of a 
standard Windows 2000 operating platform.   
 
BAREHANDS IMPLEMENTATION 
In order to obtain images of a user’s hand as it touches the 
display, we illuminate the rear of the screen with a pair of 
IR LED arrays, approximately 1.5m behind the board, each  



 
FIGURE 3: A user touches the SMARTBoard with a 
“vertical edge” posture. The current recognized postures 
are one finger, two fingers, a vertical edge, a horizontal 
edge, and a palm. 
 
 
 
containing twelve rows of eight 16mw/str SLI-0308CP 
LEDs, pulsed at 200mA.  Centered between the light 
sources approx 3m from the board, is a Marshall V-1070 
video camera (resolution 811 x 510 pixels) with an IR 
filter, and an 8-80 mm motorized lens, specially adjusted to 
focus with IR light  (Figures 1 and 2). A standard video 
digitizing card is used to capture the image from the 
camera. 
 
IR light from the LED arrays is reflected off the rear of the 
screen and picked up by the camera.  When a hand touches 
the front of the display, it reflects additional IR light, and is 
perceived by the camera as a region of increased intensity, 
as illustrated in Figures 3 and 4.   
 
We initially constructed the LED arrays to provide 
continuous illumination and disabled the camera’s shutter.  
This meant that the maximum continuous current allowed 
through the LEDs limited the amount of light. There was 
also no protection from ambient IR light.  To solve these 
problems we modified the arrays to use an adjustable high-
current pulse.  We built a lighting control box that analyzes 
the video signal from the camera and extracts the shutter 
timing information necessary to synchronize the flash of 
light with the camera’s electronic shutter.  While we 
presently flash both arrays simultaneously, we designed the 
control box to allow independent field-by-field control of 
each array to support future work. 
 
Image Processing 
When the user touches the display, we first identify which 
pixels in the video image correspond to his or her hand by  

 
 
 
FIGURE 4: Camera image of the user’s hand on the rear of 
the board.  After threshholding, the image is processed to 
produce characteristics of the area, such as vertical-to-
horizontal ratio and perimeter-to-area ratio, which are used 
in posture recognition. 
 
 
examining the pixels’ grayscale intensity, and filtering out 
random noise (Figure 4).   
 
We take advantage of the touch sensing of the 
SMARTBoard to reduce image-processing overhead.  
Although we receive a continual input from the video 
camera, we only analyze the frames of the video that occur 
immediately after we receive a “contact down” event from 
the SMARTBoard driver.  This contact event is intercepted 
before it can be sent to Windows as a left mouse click 
event (the SMARTBoard software’s default response to 
touch).  
 
We are able to avoid processing the entire image by using 
the x- and y-coordinates associated with the contact-down 
event as a seed for region growing.  Pixels within a fixed 
radius of the seed are examined and those with a grayscale 
intensity similar to that of the seed are included in the 
region.  This process is repeated by exploring a fixed 
radius around each new pixel found to be in or near the 
region of contact.  This allows for the detection of contact 
regions with or without discontinuities (a two-fingered 
contact, with the fingers spaced slightly apart, would result 
in a discontinuous region).  Isolated pixels are eliminated, 
even if their intensity is above threshold. 
 
Region characteristics such as height-to-width ratio, ratio 
of a region’s area to the area of its bounding box, ratio of 
perimeter to area, and the presence or absence of gaps in 
the region are used to classify the image as either one 
finger, two fingers, a vertical edge, a horizontal edge, a 
palm, or unknown. Future research will investigate other 



possible postures and recognition features, and we have 
experimented with using machine-learning systems for 
recognition, as well. 
 
Action  Mappings 
Once the activated region has been classified as a 
particular hand posture, an appropriate action is produced, 
based on the mapping currently associated with that 
posture.  If the posture is mapped to a whiteboard tool, we 
send messages to the SMARTBoard driver to change the 
current tool.  If the posture is mapped to a Windows 
command, we send an appropriate combination of 
keyboard and/or mouse events. 
 
An icon displayed in the Windows taskbar can be selected 
at any time to bring up a dialog box that allows the user to 
change any or all of the posture-to-action mappings.  This 
dialog als o allows the user to select whether a particular 
mapping is activated immediately after posture detection, 
or on the following touch. 
 
In our initial experiments, we began with a purely physical 
mode, in which the hand posture at the beginning of a 
touch determined the interpretation of the motion 
throughout that touch.  For example, if a two-finger touch 
mapped to the gesture recognizer, the user would touch 
down with two fingers and continue by drawing the gesture 
with them.  We observed that for some mappings, this was 
awkward. For example, if a vertical-side-of-hand touch 
activates a drawing tool, such as a pen or highlighter, it is 
not convenient to then do the drawing with the hand held 
in that position. We have added a temporal mode, in which 
the posture of the initial touch determines the mapping that 
will be applied to the immediately following touch.  So, for 
example, the user might touch with the side of the hand to 
indicate a drawing tool, and then use a single finger on the 
next touch to do the drawing.  Because the two touches are 
immediately correlated and a change of cursor indicates the 
action that will be taken by the next touch, we have not 
found that this creates mode confusion. 
  
EVALUATION 
Informal initial observations of Barehands use affirm that 
our system provides a means of interacting with a large 
display that avoids the inconvenience of walking to a 
different area of the device to push a button or of grasping 
a physical interaction tool.  By mapping gestures to 
commands such as copy and paste the user saves time and 
motions traditionally required for selecting those 
commands from menus.   
 
System response time is conducive to real-time interaction:  
image-processing time averaged 13.37 ms for a mixed-
posture set of 120 touches.  Average posture-classification 
accuracy rates are above 90%; we expect that more 
uniform IR illumination in our remodeled configuration 

will allow for improved accuracy. Since there is immediate 
visual feedback on the posture that was recognized and 
opportunity for correction, the system should be useable 
with well below 100% accuracy, but it will take further 
experimentation to determine the best tradeoff between 
accuracy and the number of different postures recognized. 
 
Systematic user studies are planned for the future, but 
could not be performed by the time of submission due to a 
remodeling of the Interactive Room, which required 
dismantling our lighting and camera setup soon after the 
initial experiments.  Further evaluation of the effectiveness 
of the Barehands interaction technique will be carried out 
after remodeling is completed later this autumn. 
 
DISCUSSION 
The key assumption underlying Barehands is that for a 
significant class of users and interactions (in particular, the 
overface interactions), bare-handed interaction is better 
than using physical tools to determine the mapping from 
touch to action.  An alternative approach is exemplified by 
the tools that come with the SMARTBoard, based on 
traditional colored marker pens and erasers.  In order to 
annotate the screen with a colored mark, the user picks up 
the corresponding colored marker and draws with its tip 
(which is just a plastic cone).  To erase, she picks up the 
eraser and uses it in the conventional way. 
 
There are advantages to a tool-based and a tool-free 
approach: 

• When there are obvious tools for the interactions, 
the mapping is natural. Picking up a red pen is an 
obvious way to draw a red mark. 

• Tools can be shaped to be better suited to the task.  
Drawing with a pointed pen-tip is more accurate 
than drawing with a fingertip. 

• Appropriate use of tools can avoid the need to 
augment the physical mode with temporal ones 
(our two-touch mode). 

And there are complementary advantages for a tool-free 
approach 

• Bare hands (unlike tools) can never be misplaced, 
are always available, and do not need to be 
handed off from user to user in a multi-user 
environment 

• It is not necessary to invent a tool for actions that 
do not naturally suggest one (e.g., making an on-
screen gesture). 

• Specialized hardware is required for tool 
recognition and activation (of course there is also 
hardware for bare hands visual recognition). 

 
In regard to the last point, the actual SMARTBoard tools 
are highly unsatisfactory for the kind of use we envision. 
They are housed in a tray equipped with detectors to sense 
the presence or absence of each tool.  When a tool is 



removed from the board’s tray, all subsequent touches to 
the board (by any device, including bare fingers) are 
interpreted in a mode associated with the tool that was last 
picked up, until the tool is replaced in its tray or another 
one is picked up. 
 
This pseudo-physical mode (it has the intended physical 
mapping when the user picks up only one tool at a time and 
then replaces it) works relatively well for the single-
whiteboard-replacement applications that are the primary 
target for the device. However, confusion often results, for 
example due to picking up both a pen and the eraser (after 
which touches by either are interpreted according to 
whichever was the last picked up).  In our environment, 
further confusion results both from the multiple-device 
context (each of the three boards has its own tray of 
implements and associated sensors but people pick up tool 
on one board and then use it on another), and the mixing of 
whiteboard actions (such as sketching) with application 
interaction modes that are not part of simple pen-on-
whiteboard activity. 
 
These flaws could be corrected by using some different 
mechanism for tool sensing, and one of our long-term 
research questions is  understanding the criteria that make 
tool-based and bare-hand interaction appropriate for 
different kinds of situations and actions. 
 
Future Work 
Lighting arrangements have been the greatest technical 
challenge in the implementation of Barehands.  The setup 
shown in Figures 1 and 2, employing two arrays of IR 
LEDs, provides non-uniform lighting, as the light from 
each LED spreads out over a 30 degree arc.  The central 
regions of the board are well lit, but the outer edges remain 
dark.  We have tried unsuccessfully to solve this problem 
with various conventional lenses and filters.  The uneven 
light results in lower recognition accuracy for hand 
postures outside of the display’s central area.   
 
When we set up our lighting again, after the Interactive 
Room remodeling is complete, we plan to experiment with 
new arrangements of IR light sources to achieve more 
uniform illumination.  Since each source is composed of 
many LEDs, they can be arranged into other geometries, 
such as linear strings rather than concentrated arrays.  We 
will also experiment with using alternating lighting 
directions to improve recognition.  We are planning to 
experiment with lighting schemes where successive frames 
of video are lit in different ways and from different 
directions, enabling more sophisticated image analysis. 
 
More uniform lighting will facilitate more accurate image 
processing, which will enable us to expand our current set 
of five recognized postures.  Although the space of 
recognizable postures is large, many of the theoretically 

possible ones will be awkward or uncomfortable.  In our 
user experiments we will look for postures that are 
ergonomically appropriate and that have natural mappings 
to actions (e..g., using the side of the hand as an eraser).  
 
In addition to recognizing static hand postures, we plan to 
extend the system to recognize postural motions (such as 
"plucking" an item from the board), which will extend the 
space of potentially meaningful actions.  We also can 
easily extend the visual recognition algorithms to identify 
objects other than hands. A physical object of a known 
shape can be touched to the board and manipulated to 
achieve a desired tool-specific interaction. Although our 
general approach has emphasized implement-free 
interaction, there may be places where specialized tools are 
appropriate in combination with the Barehands interaction. 
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