
Scalable Multi-threaded Community Detection

in Social Networks

Jason Riedy David A. Bader

College of Computing

Georgia Institute of Technology

Atlanta, GA, USA

Henning Meyerhenke

Institute of Theoretical Informatics

Karlsruhe Institute of Technology

Karlsruhe, Germany

Abstract—The volume of existing graph-

structured data requires improved parallel tools

and algorithms. Finding communities, smaller

subgraphs densely connected within the subgraph

than to the rest of the graph, plays a role both

in developing new parallel algorithms as well as

opening smaller portions of the data to current

analysis tools. We improve performance of our

parallel community detection algorithm by 20% on

the massively multithreaded Cray XMT, evaluate

its performance on the next-generation Cray XMT2,

and extend its reach to Intel-based platforms with

OpenMP. To our knowledge, not only is this the first

massively parallel community detection algorithm

but also the only such algorithm that achieves

excellent performance and good parallel scalability

across all these platforms. Our implementation

analyzes a moderate sized graph with 105 million

vertices and 3.3 billion edges in around 500 seconds

on a four processor, 80-logical-core Intel-based

system and 1100 seconds on a 64-processor Cray

XMT2.

I. INTRODUCTION

Graph-structured data inundates daily electronic

life. Its volume outstrips the capabilities of nearly

all analysis tools. The Facebook friendship network

has over 800 million users each with an average

of 130 connections [1]. Twitter boasts over 140

million new messages each day [2], and the NYSE

processes over 300 million trades each month [3].

Applications of analysis range from database opti-

mization to marketing to regulatory monitoring.

Much of the structure within these data stores

lies out of reach of current global graph analysis

kernels.

One such useful analysis kernel finds smaller

communities, subgraphs that locally optimize some

connectivity criterion, within these massive graphs.

These smaller communities can be analyzed more

thoroughly or form the basis for multi-level algo-

rithms. Previously, we introduced the first massively

parallel algorithm for detecting communities in

massive graphs [4]. Our implementation on the

Cray XMT scaled to massive graphs but relied on

platform-specific features. Here we both improve

the algorithm and extend its reach to OpenMP

systems. Our new algorithm scales well on two

generations of Cray XMTs and on Intel-based

server platforms.

Community detection is a graph clustering

problem. There is no single, universally accepted

definition of a community within a social network.

One popular definition is that a community is

a collection of vertices more strongly connected

than would occur from random chance, leading

to methods based on modularity [5]. Another

definition [6] requires vertices to be more connected

to others within the community than those outside,

either individually or in aggregate. This aggregate

measure leads to minimizing the communities’

conductance. We consider disjoint partitioning of

a graph into connected communities guided by a

local optimization criterion. Beyond obvious visual-

ization applications, a disjoint partitioning applies

usefully to classifying related genes by primary

use [7] and also to simplifying large organizational

structures [8] and metabolic pathways [9].

The next section briefly touches on related work,

including our prior results. Section III reviews

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.203

1613

2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops & PhD Forum

978-0-7695-4676-6/12 $26.00 © 2012 IEEE

DOI 10.1109/IPDPSW.2012.203

1613

the high-level parallel agglomerative community

detection algorithm. Section IV dives into details

on the data structures and algorithms, mapping

each to the Cray XMT and Intel-based OpenMP

platforms’ threading architectures. Section V shows

that our current implementation achieves speed-ups

on real-world data of up to 29.6× on a 64-processor

Cray XMT2 and 13.7× on a four processor, 40-

physical-core Intel-based platform. On this uk-2007-

05 web crawl graph with 105 million vertices

and 3.3 billion edges, our algorithm analyzes the

community structure in around 500 seconds on a

four processor, 80-logical-core Intel-based system

and 1100 seconds on a 64-processor Cray XMT2.

II. RELATED WORK

Graph partitioning, graph clustering, and com-

munity detection are tightly related topics. A recent

survey by Fortunato [10] covers many aspects

of community detection with an emphasis on

modularity maximization. Nearly all existing work

of which we know is sequential, with a very recent

notable exception for modularity maximization

on GPUs [11]. Many algorithms target specific

contraction edge scoring or vertex move mecha-

nisms [12]. Our previous work [4] established the

first parallel agglomerative algorithm for commu-

nity detection and provided results on the Cray

XMT. Prior modularity-maximizing algorithms se-

quentially maintain and update priority queues [13],

and we replace the queue with a weighted graph

matching. Here we improve our algorithm, update

its termination criteria, and achieve scalable perfor-

mance on Intel-based platforms.

Zhang et al. [14] recently proposed a parallel

algorithm that identifies communities based on a

custom metric rather than modularity. Gehweiler

and Meyerhenke [15] proposed a distributed diffu-

sive heuristic for implicit modularity-based graph

clustering.

Work on sequential multilevel agglomerative

algorithms like [16] focuses on edge scoring and

local refinement. Our algorithm is agnostic to-

wards edge scoring methods and can benefit from

any problem-specific methods. Another related

approach for graph clustering is due to Blondel

et al. [17]. However, it does not use matchings

and has not been designed with parallelism in

mind. Incorporating refinement into our parallel

algorithm is an area of active work. The parallel

approach is similar to existing multilevel graph

partitioning algorithms that use matchings for edge

contractions [18], [19] but differs in optimization

criteria and not enforcing that the partitions must

be of balanced size.

III. PARALLEL AGGLOMERATIVE COMMUNITY

DETECTION

Agglomerative clustering algorithms begin by

placing every input graph vertex within its own

unique community. Then neighboring communities

are merged to optimize an objective function like

maximizing modularity [5], [20], [21] (internal con-

nectedness) or minimizing conductance (normalized

edge cut) [22]. Here we summarize the algorithm

and break it into primitive operations. Section IV

then maps each primitive onto our target threaded

platforms.

We consider maximizing metrics (without loss of

generality) and target a local maximum rather than

a global, possibly non-approximable, maximum.

There are a wide variety of metrics for community

detection [10]. We will not discuss the metrics in

detail here; more details are in the references above

and our earlier work [4].

Our algorithm maintains a community graph

where every vertex represents a community, edges

connect communities when they are neighbors in

the input graph, and weights count the number of

input graph edges either collapsed into a single

community graph edge or contained within a

community graph vertex. We currently do not

require counting the vertices in each community,

but such an extension is straight-forward.

From a high level, our algorithm repeats the

following steps until reaching some termination

criterion:

1) associate a score with each edge in the com-

munity graph, exiting if no edge has a positive

score,

2) greedily compute a weighted maximal match-

ing using those scores, and

3) contract matched communities into a new

community graph.

16141614

Each step is one primitive parallel operations.

The first step scores edges by how much the

optimization metric would change if the two adja-

cent communities merge. Computing the change

in modularity and conductance requires only the

weight of the edge and the weight of the edge’s ad-

jacent communities. The change in conductance is

negated to convert minimization into maximization.

The second step, a greedy approximately max-

imum weight maximal matching, selects pairs of

neighboring communities where merging them will

improve the community metric. The pairs are

independent; a community appears at most once in

the matching. Properties of the greedy algorithm

guarantee that the matching’s weight is within a

factor of two of the maximum possible value [23].

Any positive-weight matching suffices for optimiz-

ing community metrics. Some community metrics,

including modularity [24], form NP-complete opti-

mization problems, so additional work improving

the matching may not produce better results. Our

approach follows existing parallel algorithms [25],

[26]. Differences appear in mapping the matching

algorithm to our data structures and platforms.

The final step contracts the community graph

according to the matching. This contraction primi-

tive requires the bulk of the time even though there

is little computation. The impact of the interme-

diate data structure on improving multithreaded

performance is explained in Section IV.

Termination occurs either when the algorithm

finds a local maximum or according to external

constraints. If no edge score is positive, no con-

traction increases the objective, and the algorithm

terminates at a local maximum. In our experiments

with modularity, our algorithm frequently assigns

a single community per connected component, a

useless local maximum. Real applications will

impose additional constraints like a minimum

number of communities or maximum community

size. Following the spirit of the 10th DIMACS

Implementation Challenge rules [27], Section V’s

performance experiments terminate once at least

half the initial graph’s edges are contained within

the communities, a coverage ≥ 0.5.

Assuming all edges are scored in a total of

O(|Ec|) operations and some heavy weight maxi-

mal matching is computed in O(|Ec|) [23] where

Ec is the edge set of the current community

graph, each iteration of our algorithm’s inner

loop requires O(|E|) operations. As with other

algorithms, the total operation count depends on

the community growth rates. If our algorithm halts

after K contraction phases, our algorithm runs in

O(|E| ·K) operations where the number of edges

in the original graph, |E|, bounds the number in

any community graph. If the community graph is

halved with each iteration, our algorithm requires

O(|E|·log |V |) operations, where |V | is the number

of vertices in the input graph. If the graph is

a star, only two vertices are contracted per step

and our algorithm requires O(|E| · |V |) operations.

This matches experience with the sequential CNM

algorithm [28] and similar parallel implementa-

tions [11].

IV. MAPPING THE AGGLOMERATIVE

ALGORITHM TO THREADED PLATFORMS

Our implementation targets two multithreaded

programming environments, the Cray XMT[29] and

OpenMP [30], both based on the C language. Both

provide a flat, shared-memory view of data but

differ in how they manage parallelism. However,

both environments intend that ignoring the parallel

directives produces correct, although sequential,

sequential C code. The Cray XMT environment

focuses on implicit, automatic parallelism, while

OpenMP requires explicit management.

The Cray XMT architecture tolerates high mem-

ory latencies from physically distributed memory

using massive multithreading. There is no cache in

the processors; all latency is handled by threading.

Programmers do not directly control the thread-

ing but work through the compiler’s automatic

parallelization with occasional pragmas providing

hints to the compiler. There are no explicit parallel

regions. Threads are assumed to be plentiful and

fast to create. Current XMT and XMT2 hardware

supports over 100 hardware thread contexts per

processor. Unique to the Cray XMT are full/empty

bits on every 64-bit word of memory. A thread

reading from a location marked empty blocks until

the location is marked full, permitting very fine-

grained synchronization amortized over the cost of

16151615

memory access. The full/empty bits assist automatic

parallelization of a wider variety of data dependent

loops.

The widely-supported OpenMP industry standard

provides more traditional, programmer-managed

threading. Parallel regions are annotated explicitly

through compiler pragmas. Every loop within a

parallel region must be annotated as a work-sharing

loop or else every thread will run the entire loop.

OpenMP supplies a lock data type which must be

allocated and managed separately from reading or

writing the potentially locked memory. OpenMP

also supports tasks and methods for interaction, but

our algorithm does not require them.

A. Graph representation

We use the same core data structure as our earlier

work [4] and represent a weighted, undirected graph

with an array of triples (i, j, w) for edges between

vertices i and j with i �= j. We accumulate repeated

edges by adding their weights. The sum of weights

for self-loops, i = j, are stored in a |V |-long array.

To save space, we store each edge only once, similar

to storing only one triangle of a symmetric matrix.

Unlike our earlier work, however, the array of

triples is kept in buckets defined by the first index i,

and we hash the order of i and j rather than storing

the strictly lower triangle. If i and j both are even

or odd, then the indices are stored such that i < j,

otherwise i > j. This scatters the edges associated

with high-degree vertices across different source

vertex buckets.

The buckets need not be sequential. We store

beginning and ending indices into the edge array

for each vertex. In a traditional sparse matrix

compressed format, the entries adjacent to vertex

i + 1 follows those adjacent to i. Permitting the

buckets to separate reduces synchronization within

graph contraction. We store both i and j for easy

parallelization across the entire edge array. Because

edges are stored only once, edge {i, j} could appear

in the bucket for either i or j but not both.

A graph with |V | vertices and |E| non-self,

unique edges requires space for 3|V |+3|E| 64-bit

integers plus a few additional scalars to store |V |,
|E|, and other book-keeping data.

B. Scoring and matching

Each edge’s score is an independent calculation

for our metrics. An edge {i, j} requires its weight,

the self-loop weights for i and j, and the total

weight of the graph. Parallel computation of the

scores is straight-forward, and we store the edge

scores in an |E|-long array of 64-bit floating point

data.

Computing the heavy maximal matching is less

straight-forward. We repeatedly sweep across the

vertices and find the best adjacent match until all

vertices are either matched or have no potential

matches. The algorithm is non-deterministic when

run in parallel. Different executions on the same

data may produce different maximal matchings.

Our earlier implementation iterated in parallel

across all of the graph’s edges on each sweep and

relied heavily on the Cray XMT’s full/empty bits

for synchronization of the best match for each

vertex. This produced frequent hot spots, memory

works of high contention, but worked sufficiently

well with nearly no programming effort. The

hot spots crippled an explicitly locking OpenMP

implementation of the same algorithm on Intel-

based platforms.

We have updated the matching to maintain an ar-

ray of currently unmatched vertices. We parallelize

across that array, searching each unmatched vertex

u’s bucket of adjacent edges for the highest-scored

unmatched neighbor, v. Once each unmatched

vertex u finds its best current match, the vertex

checks if the other side v (also unmatched) has

a better match. We induce a total ordering by

considering first score and then the vertex indices.

If the current vertex u’s choice is better, it claims

both sides using locks or full/empty bits to maintain

consistency. Another pass across the unmatched

vertex list checks if the claims succeeded. If not

and there was some unmatched neighbor, the vertex

u remains on the list for another pass. At the end of

all passes, the matching will be maximal. Strictly

this is not an O(|E|) algorithm, but the number of

passes is small enough in social network graphs

that it runs in effectively O(|E|) time.

If edge {i, j} dominates the scores adjacent to i

and j, that edge will be found by one of the two

16161616

vertices. The algorithm is equivalent to a different

ordering of existing parallel algorithms [25], [26]

and also produces a maximal matching with weight

(total score) within a factor of two of the maximum.

Social networks often follow a power-law dis-

tribution of vertex degrees. The few high-degree

vertices may have large adjacent edge buckets,

and not iterating across the bucket in parallel

may decrease performance. However, neither the

Cray XMT nor OpenMP implementations currently

support efficiently composing general, nested, light-

weight parallel loops unless they fit one of a few

textual patterns. Rather than trying to separate out

the high-degree lists, we scatter the edges according

to the graph representation’s hashing. This appears

sufficient for high performance in our experiments.

Our improved matching’s performance gains over

our original method are marginal on the Cray XMT

but drastic on Intel-based platforms using OpenMP.

Scoring and matching together require |E|+ 4|V |
64-bit integers plus an additional |V | locks on

OpenMP platforms.

C. Graph contraction

Contracting the agglomerated community graph

requires from 40% to 80% of the execution time.

Our previous implementation was efficient on the

Cray XMT but infeasible on OpenMP platforms.

We use the bucketing method to avoid locking and

improve performance for both platforms.

Our prior implementation used a technique due to

John T. Feo where edges are associated to linked

lists by a hash of the vertices. After relabeling

an edge’s vertices to their new vertex numbers,

the associated linked list is searched for that edge.

If it exists, the weights are added. If not, the

edge is appended to the list. This needs only

|E| + |V | additional storage but relies heavily

on the Cray XMT’s full/empty bits and ability

to chase linked lists efficiently. The amount of

locking and overhead in iterating over massive,

dynamically changing linked lists rendered a similar

implementation on Intel-based platforms using

OpenMP infeasible.

Our new implementation uses an additional |E|
space. After relabeling the vertex endpoints and

re-ordering their storage according to the hashing,

we roughly bucket sort by the first stored vertex in

each edge. If a stored edge is (i, j;w), we place

(j;w) into a bucket associated with vertex i but

leave i implicitly defined by the bucket. Within

each bucket, we sort by j and accumulate identical

edges, shortening the bucket. The buckets then are

copied back out into the original graph’s storage,

filling in the i values. This requires |V |+1+2|E|
storage, more than our original.

Because the buckets need not be stored contigu-

ously in increasing vertex order, the bucketing and

copying do not need to synchronize beyond an

atomic fetch-and-add. Storing the buckets contigu-

ously requires synchronizing on a prefix sum to

compute bucket offsets. We have not timed the

difference, but the technique is interesting.

V. PARALLEL PERFORMANCE

We evaluate parallel performance on a wide

range of threaded hardware including two genera-

tions of Cray XMT systems and three different Intel-

based systems. We use two graphs, one real and one

artificial, to demonstrate scaling and investigate per-

formance properties. Each experiment is run three

times to capture some of the variability in platforms

and in our non-deterministic algorithm. We focus

on multithreaded performance and leave evaluation

of the resulting communities across many metrics to

future work. Smaller graphs’ resulting modularities

appear reasonable compared with results from a

different, sequential implementation in SNAP [31].

Our current implementation achieves speed-ups

on artificial data of up to 24.8× on a 64-processor

Cray XMT2 and 16.5× on a four processor, 40-

physical-core Intel-based platform. Smaller real-

world data achieves smaller speed-ups. Comparing

similar runs of our current Cray XMT implemen-

tation with our earlier work shows around a 20%

improvement. Our earlier OpenMP implementation

executed too slowly to evaluate.

A. Evaluation platforms

The Cray XMT used for these experiments is

located at Pacific Northwest National Lab and

contains 1 TiB of 533 MHz DDR RAM and

128 Threadstorm processors running at 500 MHz.

These 128 processors support over 12 000 hardware

16171617

Processor # proc. Max. threads/proc. Proc. speed

Cray XMT 128 100 500MHz

Cray XMT2 64 102 500MHz

Intel E7-8870 4 20 2.40GHz

Intel X5650 2 12 2.66GHz

Intel X5570 2 8 2.93GHz

TABLE I

PROCESSOR CHARACTERISTICS FOR OUR TEST PLATFORMS.

thread contexts. The next generation Cray XMT2

is located at the Swiss National Supercomputing

Centre (CSCS). Its 64 updated processors also run

at 500 MHz but support four times the memory

density for a total of 2 TiB on half the nodes

of PNNL’s XMT. The improvements also include

additional memory bandwidth within a node, but

exact specifications are not yet officially available.

The Intel-based server platforms are located at

Georgia Tech. One has four ten-core Intel Xeon E7-

8870 processors running at 2.40GHz with 30MiB

of L3 cache per processor. The processors support

Hyper-Threading, so the 40 physical cores appear

as 80 logical cores. This server, mirasol, is ranked

#17 in the November 2011 Graph 500 list and is

equipped with 256 GiB of 1 067 MHz DDR3 RAM.

Two additional servers cluster have two six-core

Intel Xeon X5650 processors running at 2.66 GHz

with 12MiB of L3 cache each and two four-core

Intel Xeon X5570 processors at 2.93 GHz with

8MiB L3 cache. They have 24 GiB and 48 GiB of

1 067 MHz DDR3 RAM, respectively. Both support

two Hyper-Threads per core.

Note that the Cray XMT allocates entire pro-

cessors, each with at least 100 threads, while

the OpenMP platforms allocate individual threads

which are mapped to cores. We show results per-

processor on the XMT and per-thread for OpenMP.

We run up to the number of physical Cray XMT

processors or logical Intel cores. Intel cores are

allocated in a round-robin fashion across sockets,

then across physical cores, and finally logical cores.

Table I summarizes the processor counts, threads

per processor, and speeds for our test platforms.

Graph |V | |E| Reference

rmat-24-16 15 580 378 262 482 711 [32], [33]

soc-LiveJournal1 4 847 571 68 993 773 [34]

uk-2007-05 105 896 555 3 301 876 564 [35]

TABLE II

SIZES OF GRAPHS USED FOR PERFORMANCE EVALUATION.

B. Test graphs

We evaluate on two moderate-sized graphs. Ex-

cessive single-processor runs on highly utilized

resources are discouraged, rendering scaling studies

using large graphs difficult. Table II shows the

graphs’ names and number of vertices and edges.

Our first graph is an artificial R-MAT [32],

[33] graph derived by sampling from a perturbed

Kronecker product. R-MAT graphs are scale-free

and reflect many properties of real social networks

but are known not to possess significant community

structure [36]. We generate an R-MAT graph with

parameters a = 0.55, b = c = 0.1, and d = 0.25
and extract the largest component. An R-MAT

generator takes a scale s, here 24, and edge factor

f , here 16, as input and generates a sequence of

2s · f edges over 2s vertices, including self-loops

and repeated edges. We accumulate multiple edges

within edge weights and then extract the largest

connected component.

Our second graph is an anonymous snapshot

of the LiveJournal friendship network from the

Stanford Large Network Dataset Collection [34].

The graph is relatively small but is rich with

community structures. There are no self-loops or

multiple edges, and all weights initially are set to

one. The final, large graph was generated by a web

crawl of English sites in 2007 [35]. This graph is

too large for the smaller Intel-based platforms and

triggers platform bugs on the Cray XMT, so we

consider it only on the larger Intel E7-8870 and

updated Cray XMT2.

C. Time and parallel speed-up

Figure 1 shows the execution time as a function

of allocated OpenMP thread or Cray XMT proces-

sor separated by platform and graph, and Table III

scales the time by the number of edges to show

the peak processing rate. Figure 2 translates the

16181618

Platform soc-LiveJournal1 rmat-24-16 uk-2007-05

X5570 3.89× 10
6

1.83× 10
6

X5650 4.98× 10
6

2.54× 10
6

E7-8870 6.90× 10
6

5.86× 10
6

6.54× 10
6

XMT 0.41× 10
6

1.20× 10
6

XMT2 1.73× 10
6

2.11× 10
6

3.11× 10
6

TABLE III

THE PEAK PROCESSING RATE ACHIEVED IN EDGES PER

SECOND OF THE INPUT GRAPH OVER THE FASTEST TIME.

OUR IMPLEMENTATION SCALES TO LARGE DATA SETS.

time into speed-up against the best single-thread

or single-processor execution time. Figure 3 shows

the larger uk-2007-05 graph’s data. Note that the

uk-2007-05 graph uses 32-bit integers for vertex

labels on the Intel-based platform to fit in memory.

Comparing the Cray XMT to the Cray XMT2

shows substantial performance improvements in

the new generation. While details are not publicly

available, we suspect increased memory bandwidth

related to wider memory paths and an upgrade

from slow DDR memory are responsible. The

variation in time on the Cray XMT2 appears

related to finding different community structures

and is a consequence of our non-deterministic

algorithm. Monitoring execution shows that the

XMT compiler under-allocates threads in portions

of the code, leading to burst of poor processor

utilization. Explicitly annotating the loops with

thread counts may increase performance.

Trading the earlier list-chasing implementation

for our new algorithm with bursts of sequential

access shows good performance on Intel-based

platforms. Within the Intel-based platforms we

see speed-ups past physical cores and into logical

cores with Hyper-Threading. The 2.40GHz E7-

8870 achieves better single-core performance than

the 2.93GHz X5570 but lower performance than

the 2.66GHz X5650. The X5570 is an earlier

generation of processor with a less advanced

memory controller that supports fewer outstanding

transactions. This data is insufficient to see if

a single, slower E7-8870’s additional cores can

outperform the faster X5650’s fewer cores. With

twice the processors, the E7-8870-based system

performs more than twice as quickly as the X5650

on the artificial R-MAT graph but only slightly

faster on the real-world soc-LiveJournal1 graph.

The reproducible drop in performance on the

X5650 at full processor count on soc-LiveJournal1

may be related to finding a different community

structure. While still under investigation, there may

be an unfortunate locking interaction within the

matching phase. A similar but smaller issue occurs

on the Cray XMT with soc-LiveJournal1 above 64

processors.

Except for the one case on the X5650, the

best performance on Intel-based platforms always

occurred at full utilization. The smaller size of soc-

LiveJournal1 provides insufficient parallelism for

large processor counts on the XMTs, but the larger

uk-2007-05 shows scaling similar to the artificial

rmat-24-16.

VI. OBSERVATIONS

Our improved parallel agglomerative community

detection algorithm demonstrates high performance,

good parallel scalability, and good data scalability

on both the Cray XMT series and more com-

mon Intel-based platforms using OpenMP. We

achieved high performance by carefully choosing

data structures and algorithms that map well to

both environments. Reducing linked list walking,

locking, and synchronization improves performance

on both the Cray XMT and Intel-based architecures.

Our implementation is publicly available1.

Outside of the edge scoring, our algorithm relies

on well-known primitives that exist for many

execution models. Much of the algorithm can be

expressed through sparse matrix operations, which

may lead to explicitly distributed memory imple-

mentations through the Combinatorial BLAS [37]

or possibly cloud-based implementations through

environments like Pregel [38]. The performance

trade-offs for graph algorithms between these

different environments and architectures remains

poorly understood.

ACKNOWLEDGMENTS

This work was supported in part by the Pa-

cific Northwest National Lab (PNNL) Center

1http://www.cc.gatech.edu/∼jriedy/community-detection/

16191619

Threads (OpenMP) / Processors (XMT)

T
im

e
(s

) 3

10

32

100

316

1000

3162

3

10

32

100

316

1000

3162

X5570 (4−core)

●●●●●
●

●

●●

●●●

●●●●●●

●●●●●●

●●●●●●

●●

143s

823s

●●●●●●

●●●●●●

●●●
●●●

●●●
●●●

●●●●●
●

●●

17.8s

90.9s

1 2 4 8 16 32 64128

X5650 (6−core)

●●●●●●●●●●●●●●●●●●

●●●●●●

●●●●●●

●

●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●

●●

103s

502s

●●●●●●●●●●●●
●●●●●●

●●●●●●

●●●●●●

●
●●
●●●

●
●●
●●
●

●●●●●
●

●●●●●●
●●●●●●●●●●●●

●●

13.9s

52.4s

1 2 4 8 16 32 64128

E7−8870 (10−core)

●●●●●●

●●●●●●

●●●●●●

●●●●●●
●●●●●●

●●●●●●

●●●●●●
●●●●●●

●●●●●●

●●●●●●

●●●

44.8s

737s

●●●●●●

●●●●●●

●●●●●●

●●
●●
●●●

●●
●●●

●●●●●●

●●●
●●●

●●
●●
●●

●●●●●●

●
●
●●
●
●

●●

10s

80.1s

1 2 4 8 16 32 64128

XMT

●●●●

●●●●●

●●●

●●●●

●●●●●●

●●●●

●●●●●●●●

●●●●●

●●

●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

218s

4320s

●●●

●●●
●

●
●●

●

●●●

●●
●

●
●
●

●
●●●●●

●

●

●
●

●

●●
●●
●
●
●
●●
●●

●●

●●●●●●●●●●●●●●●●●●●

167s

571s

1 2 4 8 16 32 64128

XMT2

●●●●●●

●●●●●●

●●●●●●

●●●●●●●●●●●
●

●
●
●●●●

●●●●●●
●

●●●

●
●●●●●●●●●●●●●

●
●●●●●

●●●

●●

●●●

124s

3080s

●●●
●●●

●●

●

●●●

●●●
●●●

●●●●

●

●
●●●●●●

●●

●

●●

●

●●●●

●

●

●

●●

●
●
●

●●

●

●
●●
●

●

●●
●

●

●●●●●

●
●●●●●●●●●

●●●

39.9s

369s

1 2 4 8 16 32 64128

rm
at−

24−
16

soc−
LiveJournal1

Fig. 1. Execution time against allocated OpenMP threads or Cray XMT processors per platform and graph. The best

single-processor and overall times are noted in the plot. The blue dashed line extrapolates perfect speed-up from the best

single-processor time.

for Adaptive Supercomputing Software for Multi-

Threaded Architectures (CASS-MT), NSF Grant

CNS-0708307, and the Intel Labs Academic Re-

search Office for the Parallel Algorithms for Non-

Numeric Computing Program. We thank PNNL

and the Swiss National Supercomputing Centre for

providing access to Cray XMT systems. Attendees

of the 10th DIMACS Implementation Challenge

and anonymous reviewers from MTAAP and within

Oracle provided helpful comments.

REFERENCES

[1] Facebook, Inc., “User statistics,” March 2011, http://

www.facebook.com/press/info.php?statistics.

[2] Twitter, Inc., “Happy birthday Twitter!” March 2011, http:

//blog.twitter.com/2011/03/happy-birthday-twitter.html.

[3] NYSE Euronext, “Consolidated volume in NYSE

listed issues, 2010 - current,” March 2011,

http://www.nyxdata.com/nysedata/asp/factbook/viewer

edition.asp?mode=table&key=3139&category=3.

[4] E. J. Riedy, H. Meyerhenke, D. Ediger, and D. A. Bader,

“Parallel community detection for massive graphs,” in

Proc. 9th International Conference on Parallel Process-

ing and Applied Mathematics, Torun, Poland, Sep. 2011.

[5] M. Newman and M. Girvan, “Finding and evaluating

community structure in networks,” Phys. Rev. E, vol. 69,

no. 2, p. 026113, Feb 2004.

[6] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and

D. Parisi, “Defining and identifying communities in

networks,” Proc. of the National Academy of Sciences,

vol. 101, no. 9, p. 2658, 2004.

[7] D. M. Wilkinson and B. A. Huberman, “A method for

finding communities of related genes,” Proceedings of

the National Academy of Sciences of the United States

of America, vol. 101, no. Suppl 1, pp. 5241–5248, 2004.

[8] S. Lozano, J. Duch, and A. Arenas, “Analysis of large

social datasets by community detection,” The European

Physical Journal - Special Topics, vol. 143, pp. 257–259,

2007.

[9] E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and

A.-L. Barabási, “Hierarchical organization of modularity

in metabolic networks,” Science, vol. 297, no. 5586, pp.

1551–1555, 2002.

[10] S. Fortunato, “Community detection in graphs,” Physics

Reports, vol. 486, no. 3-5, pp. 75 – 174, 2010.

16201620

Threads (OpenMP) / Processors (XMT)

S
pe

ed
−

up
 o

ve
r

on
e

th
re

ad
 (

O
pe

nM
P

)
or

 p
ro

ce
ss

or
 (

X
M

T
)

1

2

4

8

16

32

1

2

4

8

16

32

X5570 (4−core)

●

●●

●●
●

●●●●●
●

●●●●
●
●

●●●●●●

5.75x

●
●●●●●

●●●

●●●

●●
●
●●●

●●
●●●●

5.12x

1 2 4 8 16 32 64128

X5650 (6−core)

●●●●●●
●●●●●●
●●●●●●

●●●●●●

●

●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●
●●●●●●

4.86x

●
●●●●●●●●●●●

●●●●●
●●●●●●●

●
●
●
●
●●

●

●●
●●

●

●●●●●●

●●●●
●●

●
●
●●●●

●●●●●●

3.78x

1 2 4 8 16 32 64128

E7−8870 (10−core)

●
●
●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●
●●●

●●●●
●
●

●●
●●●●

●●●●
●
●

16.5x

●
●
●●●
●

●
●●●●●

●●
●●
●●

●
●
●●●●

●●●●●●

●●●●●
●

●
●●●
●●

●
●
●●●●

●
●

●
●

●

●

8.01x

1 2 4 8 16 32 64128

XMT

●●●●
●

●●●

●●●●

●●●
●●●

●●●●

●●●
●●
●●●

●●●●●

●●

●●●●●●●●

●●●●●●●

19.8x

●●●

●

●
●●

●

●
●●

●●

●

●

●
●

●

●●●●●

●

●

●
●

●

●●

●
●

●
●
●
●●
●
●

●●

3.42x

1 2 4 8 16 32 64128

XMT2

●●●●
●
●

●●●●●●

●●●
●●●

●●●●●

●

●
●
●●●●

●●
●●●●

●

●●
●

●

●
●
●
●●●●●
●●●●●

●

●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

24.8x

●●

●

●●●

●●●

●
●
●

●●●●

●

●
●●●●●●

●
●

●

●●

●

●
●●●

●

●

●

●●

●
●

●

●
●

●

●

●●
●

●

●●

●

●

●
●
●●●

●

●●●●●●

9.24x

1 2 4 8 16 32 64128

rm
at−

24−
16

soc−
LiveJournal1

Fig. 2. Parallel speed-up relative to the best single-processor execution. The best achieved speed-up is noted on the plot.The

dotted line denotes perfect speed-up matching the number of processors.

Threads (OpenMP) / Processors (XMT)

T
im

e
(s

)

210

212

214

●

●

●

●

●
●

●

●

●

●●●

●

●
● ●

● ●

●

●

●

●

●

●

504.9s

1063s

6917s

31568s

●●●

●

●●●

●●●

●
●●

●
55●

1 2 4 8 16 32 64

Platform

● E7−8870 (10−core) XMT2

Threads (OpenMP) / Processors (XMT)

S
pe

ed
 u

p
ov

er
 s

in
gl

e
pr

oc
es

so
r/

th
re

ad

21

22

23

24

●

●

●

●

●

●

●

●

● ●●

●

●

● ●

● ●

●

●

●

●

●

●

13.7x

29.6x29

1 2 4 8 16 32 64

Platform

● E7−8870 (10−core) XMT2

Fig. 3. Parallel speed-up relative to the best single-processor execution on the uk-2007-05 graph.

16211621

[11] B. O. F. Auer and R. H. Bisseling, “10th DIMACS im-

plementation challenge: Graph coarsening and clustering

on the gpu,” 2012, http://www.cc.gatech.edu/dimacs10/

papers/[16]-gpucluster.pdf.

[12] R. Görke, A. Schumm, and D. Wagner, “Experiments on

density-constrained graph clustering,” in Proc. Algorithm

Engineering and Experiments (ALENEX12), 2012.

[13] A. Clauset, M. Newman, and C. Moore, “Finding

community structure in very large networks,” Physical

Review E, vol. 70, no. 6, p. 66111, 2004.

[14] Y. Zhang, J. Wang, Y. Wang, and L. Zhou, “Parallel

community detection on large networks with propinquity

dynamics,” in Proceedings of the 15th ACM SIGKDD

international conference on Knowledge discovery and

data mining, ser. KDD ’09. New York, NY, USA: ACM,

2009, pp. 997–1006.

[15] J. Gehweiler and H. Meyerhenke, “A distributed diffusive

heuristic for clustering a virtual P2P supercomputer,” in

Proc. 7th High-Performance Grid Computing Workshop

(HGCW’10) in conjunction with 24th Intl. Parallel and

Distributed Processing Symposium (IPDPS’10). IEEE

Computer Society, 2010.

[16] A. Noack and R. Rotta, “Multi-level algorithms for

modularity clustering,” in Experimental Algorithms, ser.

Lecture Notes in Computer Science, J. Vahrenhold, Ed.

Springer, 2009, vol. 5526, pp. 257–268.

[17] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and

E. Lefebvre, “Fast unfolding of communities in large

networks,” J. Stat. Mech, p. P10008, 2008.

[18] G. Karypis and V. Kumar, “Multilevel k-way partitioning

scheme for irregular graphs,” Journal of Parallel and

Distributed Computing, vol. 48, no. 1, pp. 96–129, 1998.

[19] M. Holtgrewe, P. Sanders, and C. Schulz, “Engineering

a scalable high quality graph partitioner,” in Proc.

24th IEEE Intl. Symposium on Parallel and Distributed

Processing (IPDPS’10), 2010, pp. 1–12.

[20] D. Bader and J. McCloskey, “Modularity and graph

algorithms,” Sep. 2009, presented at UMBC.

[21] M. Newman, “Modularity and community structure in

networks,” Proc. of the National Academy of Sciences,

vol. 103, no. 23, pp. 8577–8582, 2006.

[22] R. Andersen and K. Lang, “Communities from seed sets,”

in Proc. of the 15th Int’l Conf. on World Wide Web.

ACM, 2006, p. 232.

[23] R. Preis, “Linear time 1/2-approximation algorithm for

maximum weighted matching in general graphs,” in

STACS 99, ser. Lecture Notes in Computer Science,

C. Meinel and S. Tison, Eds. Springer Berlin /

Heidelberg, 1999, vol. 1563, pp. 259–269.

[24] U. Brandes, D. Delling, M. Gaertler, R. Görke, M. Hoefer,

Z. Nikoloski, and D. Wagner, “On modularity clustering,”

IEEE Trans. Knowledge and Data Engineering, vol. 20,

no. 2, pp. 172–188, 2008.

[25] J.-H. Hoepman, “Simple distributed weighted matchings,”

CoRR, vol. cs.DC/0410047, 2004.

[26] F. Manne and R. Bisseling, “A parallel approximation

algorithm for the weighted maximum matching problem,”

in Parallel Processing and Applied Mathematics, ser.

Lecture Notes in Computer Science, R. Wyrzykowski,

J. Dongarra, K. Karczewski, and J. Wasniewski, Eds.

Springer, 2008, vol. 4967, pp. 708–717.

[27] D. Bader, H. Meyerhenke, P. Sanders, and D. Wagner,

“Competition rules and objective functions for the 10th DI-

MACS Implementation Challenge on graph partitioning

and graph clustering,” Sep. 2011, http://www.cc.gatech.

edu/dimacs10/data/dimacs10-rules.pdf.

[28] K. Wakita and T. Tsurumi, “Finding community

structure in mega-scale social networks,” CoRR, vol.

abs/cs/0702048, 2007.

[29] P. Konecny, “Introducing the Cray XMT,” in Proc. Cray

User Group meeting (CUG 2007). Seattle, WA: CUG

Proceedings, May 2007.

[30] OpenMP Application Program Interface; Version 3.0,

OpenMP Architecture Review Board, May 2008.

[31] D. Bader and K. Madduri, “SNAP, small-world network

analysis and partitioning: an open-source parallel graph

framework for the exploration of large-scale networks,”

in Proc. Int’l Parallel and Distributed Processing Symp.

(IPDPS), 2008.

[32] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A

recursive model for graph mining,” in Proc. 4th SIAM

Intl. Conf. on Data Mining (SDM). Orlando, FL: SIAM,

Apr. 2004.

[33] D. Bader, J. Gilbert, J. Kepner, D. Koester, E. Loh,

K. Madduri, W. Mann, and T. Meuse, HPCS SSCA#2

Graph Analysis Benchmark Specifications v1.1, Jul. 2005.

[34] J. Leskovec, “Stanford large network dataset collection,”

At http://snap.stanford.edu/data/, Oct. 2011.

[35] P. Boldi, B. Codenotti, M. Santini, and S. Vigna,

“Ubicrawler: A scalable fully distributed web crawler,”

Software: Practice & Experience, vol. 34, no. 8, pp.

711–726, 2004.

[36] C. Seshadhri, T. G. Kolda, and A. Pinar, “Community

structure and scale-free collections of erdös-rényi graphs,”

CoRR, vol. abs/1112.3644, 2011.

[37] A. Buluç and J. R. Gilbert, “The Combinatorial BLAS:

design, implementation, and applications,” International

Journal of High Performance Computing Applications,

vol. 25, no. 4, pp. 496–509, 2011. [Online]. Available:

http://hpc.sagepub.com/content/25/4/496.abstract

[38] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,

I. Horn, N. Leiser, and G. Czajkowski, “Pregel: a system

for large-scale graph processing,” in Proceedings of the

2010 international conference on Management of data,

ser. SIGMOD ’10. New York, NY, USA: ACM, 2010,

pp. 135–146.

16221622

