
Fully Abstract Semantics of Additive Aspects by Translation

S. B. Sanjabi C.-H. L. Ong
Oxford University Computing Laboratory

Abstract
We study the denotational semantics of an aspect calculus by com-
positional translation to a functional language with higher-order
store and ML-style references. The calculus is designed to con-
struct only “additive” aspects i.e. those that do not elide the exe-
cution of the base computation. Such an aspect calculus is suffi-
ciently expressive to encode before(), after() and around()
advice which calls proceed(). We prove that our translation is
adequate i.e. it reflects observational equivalence. Further if a stan-
dard object-oriented view of labels is adopted, the translation is
fully abstract i.e. it preserves and reflects observational equiva-
lence. A pleasing consequence is that full abstraction of the target-
language semantics is thereby inherited by the source-language se-
mantics. This yields the first fully abstract game model for a func-
tional language of additive aspects.

1. Introduction
Aspect-oriented programming languages such as ASPECTJ [6] en-
dow the programmer with the ability to associate a code fragment
with a predicate matching a set of program points in an exist-
ing code base. Whenever program control reaches such a program
point, the code fragment, called advice, is executed if the base pro-
gram’s execution state satisfies the predicate, known as a pointcut.
In general, advice may influence the runtime behaviour of the base
program, alter its final value, or even prevent it from executing al-
together. Because of these features, aspect-oriented programs can
be formidably hard to understand and reason about.

Denotational semantics by compositional translation
Researchers in programming languages have recently taken the first
steps in understanding aspect-oriented computation: some have in-
troduced prototypical calculi for studying aspectual features in pu-
rified form [4, 5]; others have proposed new features, or restrictions
of existing features, that are designed to bring runtime behaviour
under closer control [3, 8]. This paper is concerned with the deno-
tational semantics of aspects that do not allow advice to suppress
the execution of base code. Following [4], we shall call this class
of aspects additive in that they only add code to the advised base
computation; eg. harmless advice considered by Dantas and Walker
in [3] is additive. We introduce a functional calculus of additive as-
pects – which is a slight variant of the Core Aspect Calculus of
Walker et al. [4], and construct its denotational semantics by com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
AOSD ’07 March 12-16, Vancouver, British Columbia, Canada
Copyright c© 2006 ACM [to be supplied]. . . $5.00

positional translation to a functional language with higher-order
store in the style of ML-references.

By compositional, we mean the property that the translate of a
program is a composite of the translates of its component phrases;
compositional translations are typically defined by recursion on
program syntax. Because the translation is compositional, a deno-
tational semantics of the target language can be transformed to a
denotational semantics of the source language simply by precom-
posing the valuation function with the translation map. Further,
the more faithful the translation, the greater the extent to which
goodness-of-fit properties of the target-language semantics are in-
herited by the source-language semantics.

Translation and its faithfulness criteria
Fix a source language S and a target language T. Let P, Q range
over units of interest of S (be they terms-in-context, programs, con-
figurations, etc.) and let M, N range over the corresponding units
of T. Assume that each language has a notion of evaluation, denoted
by ⇓ annotated by the language name. We write P ⇓S U to mean
“P evaluates to value U”. An important and compelling notion of
program equivalence we shall study in the paper is observational
equivalence. Intuitively two terms are observationally equivalent,
written P 'S Q, just if one can be replaced by the other in all
programs without causing any observable difference in the compu-
tational outcome. (For a precise formulation, see Definition 3.1.)

A basic property one asks of a translation p−q from units of S
to those of T is the following:

Property E (Preservation and reflection of evaluation). For
every P and U , P ⇓S U iff for some V , pPq ⇓T V and
V 'T pUq.

Writing P⇓T to mean “there is some U to which P evaluates”,
sometimes a weaker property is sufficient for our purpose:

Property T (Preservation and reflection of termination).
For every P , P⇓S iff pPq⇓T.

In case a translation satisfies Property E (respectively T), the target
language can be regarded as an emulator of the evaluation relation
(respectively termination property) of the source language.

A good translation should preserve and reflect stronger be-
havioural properties than termination. We call a translation ade-
quate if it reflects observational equivalence, and fully abstract if,
in addition, it preserves observational equivalence.

Property A (Adequacy). For every P and Q, if pPq 'T

pQq then P 'S Q.
Property F (Full Abstraction). For every P and Q, P 'S Q
iff pPq 'T pQq.

An important aim of this paper is to exhibit a fully abstract
translation. A useful technical condition, often a pre-condition of
full abstraction, is the following:

Pproperty D (Definability). For every M ∈ T, there is some
P ∈ S such that pPq 'S M .

This states that, modulo observational equivalence, the translation
map is a surjection.

Recall that a denotational model for a language is fully abstract
if the equational theory of the model coincides with observational
equivalence. Fully abstract models are thus powerful and highly
accurate models. An important reason for studying fully abstract
translation is that it offers a way to build a fully abstract semantics
for a language. Riecke [9] and McCusker [7] have shown that if
the translation is adequate (respectively fully abstract), then the
semantics inherited by the source language enjoys the property of
adequacy (respectively full abstraction) provided the semantics of
the target language does.

Contributions of the paper
This paper studies the semantics of a language of additive aspects,
called COREAML. Our approach is by a compositional translation
p−q from COREAML to a language with higher-order store in the
style of ML-references [16], called GREF∗. Both the source and the
target languages share a common core of a call-by-value simply-
typed λ-calculus. In the target language GREF∗, for each type τ ,
the reference type

ref[τ] = (1→ τ)× (τ → 1)

is identified with the product of its read method (which has type
1→ τ) and its write method (which has type τ → 1), in an object-
oriented style. A consequence of the identification is the presence
of so-called “bad references” (or bad variables). Even though ev-
ery term of type ref[τ] can be assigned to and dereferenced, not
all terms of the type behave as bona fide references (for exam-
ple, reads need not be causally related to writes). We show that
the translation from COREAML to GREF∗ preserves and reflects
evaluation and termination; it is also adequate (i.e. it reflects ob-
servational equivalence) and has the definability property. But full
abstraction fails; we trace this to a fundamental mismatch between
the labels of type τ (say) and their translates, which are references
of type pτq → pτq (and so, just pairs of read and write methods).

To fix the problem, we “object-orientate” the types of labels
(and hence aspects) in COREAML into their component accessor
methods, much as the types of references in GREF∗ are products of
the corresponding read and write methods. In other words we en-
dow the source language COREAML with the power to construct
“bad labels” – the analogue of bad references, and call the aug-
mented language COREAML∗. We show that the new translation
from COREAML∗-to-GREF∗ does have the desired properties (T,
D, A and F). Further, since the target language GREF∗ has a fully
abstract semantics [16], we obtain a fully abstract semantics for the
aspect language COREAML∗ by translation. We tabulate the main
technical results of the paper concerning the various translation in
Theorem 6.4.

We summarise the main contributions of our work as follows.

• We have given compositional translations from functional lan-
guages of additive aspects, COREAML and COREAML∗, to
a language with higher-order store and ML-style reference
GREF∗.

• We have examined the faithfulness of the translations (i.e. the
extent to which behavioural properties of the source language
are preserved and reflected by the translation) and calibrated it
in terms of Properties E, T, D, A and F.

• We have constructed the first fully abstract (game) model for a
functional language of additive aspects (with an object-oriented
view of labels) COREAML∗ by the translation method.

• Our method gives an adequate (game) model for COREAML
(and hence Walker’s MINAML), in which one can reason
soundly (but not completely) about observational equivalence
in the aspect language.

Previous models of aspect orientation, while covering larger
segments of the paradigm, are not as fitting and accurate as the
game semantics presented in our work. Wand et al. [12] define a
monadic semantics for dynamic join points but they do not prove
any of its formal properties. Closer to our work, Andrews [10]
translates a language of static aspects into a CSP-like process al-
gebra, but does not address the goodness-of-fit of the semantics.
We believe that our results are new and the translation method can
be extended to model non-additive aspects and dynamic pointcuts.

Outline of the paper
The remainder of this paper is structured as follows: Section 2 gives
an overview of Walker et al.’s aspect calculus; Section 3 defines the
target and source languages; Sections 4 and 5 define the translations
and examine their properties; Section 6 presents a fully abstract
translation and gives a complete picture of the “translation space”;
and finally Section 7 concludes and discusses future directions.

2. The core aspect calculus
This Section gives an informal introduction to a language of addi-
tive aspect called COREAML. In their ICFP03 paper [4], Walker
et al. define a simple aspect-oriented programming language called
MINAML; it extends a small functional language with ASPECTJ-
like features such as before, after, and around advice, using function
calls as the only join points. The semantics of MINAML is given by
translation to a core aspect calculus called Core Mini AML. What
we shall call COREAML – our object of study – is this calculus,
but less the return operator, thus restricting it to additive advice.

COREAML has a distinguished type lab[τ], whose values are
taken from a countable set of labels. New labels are created (in
block structured scopes) by a new command. COREAML also has
a type asp[τ] of aspects, whose values take the form {`.x → e},
where ` is a label, and e (the advice) is a term of the same type as
the variable x. Terms are evaluated in an environment comprising
a sequence of aspects A, which can be extended by the constructs
a << e and a >> e – the former prepends the aspect a to the head
of the sequence (and then proceeds to evaluate e) and the latter
appends the aspect to the tail of A.

Labelled program points `〈e〉 are an essential construct of
COREAML, providing the mechanism for aspect substitution. In
aspect-orientation terminology, they form the join points of the lan-
guage. After e has been evaluated to a value v, the term `〈e〉 causes
any advice associated with the label ` to be triggered. If there are
aspects of the form {`.x → e′} in A, then `〈e〉 reduces to e′[v/x].

Labels can be used to tag distinct control flow points; thus the
term (`〈v1〉 AND `〈v2〉) triggers two instances of the advice in
a ≡ {`.x → e}, passing the value v1 in one instance and the
value v2 in the other. In general, several pieces of advice may be
associated to the same label `. In this case, evaluation of `〈v〉 results
in v being passed to the composition of all of the advice associated
to ` (i.e. advice whose pointcut is `) in the order specified in the list
A. The importance of advice ordering is illustrated by the following
evaluations (assuming for the moment that the language has natural
number arithmetic):

newlab ` in {`.x → x + 1} << {`.y → y2} << `〈3〉 ⇓ 10

newlab ` in {`.x → x + 1} << {`.y → y2} >> `〈3〉 ⇓ 16

In the first case, the incrementing advice is installed at the head
of the advice sequence, followed by the installation of the advice

which squares its input ahead of it. Thus, when `〈3〉 is evaluated, it
is first squared, then incremented. In the second case, the squaring
advice is installed at the tail of the list, and thus is executed after
the increment.

These simple features already endow the underlying simply-
typed λ-calculus of COREAML with the ability to write non-
terminating programs. Let v be a value and consider the following
term

newlab ` in {`.x → `〈x〉} << `〈v〉

which has an infinite reduction sequence, even though the under-
lying term (the base code) is already a value. In fact, this trick of
invoking a given aspect from within its own body can be used to
encode recursive functions. Take, for example, the following naı̈ve
definition of the exponential function ba:

exp(b, a) , newlab ` in

{`.x → cond (x = 0) (1) (b ∗ `〈x− 1〉)} >>
`〈a〉

Note how closely the syntax of labelled join points and their associ-
ated aspects resembles that of named procedure calls. However the
code behaves quite differently from a stack-based recursive proce-
dure. The term installs advice that implements the body of the ba-
sic exponential function, and then invokes it immediately with the
input argument. The recursive “call” is made by invoking the ad-
vice from within its own body with a decremented argument. This
implementation is, of course, quite inefficient, as a new piece of
advice is installed each time the exp function is called, but this is
required in order to ensure that no external references to the label `
are possible. and hence better understood

The power of aspects does not stop at recursion. Walker et
al. [4] give a term that uses aspects to implement a reference
cell. We adopt the same technique to prove our definability result
(Proposition 5.7). Indeed the object of our work is to make this
connection precise, by showing that not only can these aspectual
features emulate references, but that the reverse is also possible.

A remark on obliviousness
We take the Core Aspect Calculus of Walker et al. to be our pro-
totypical aspect-oriented language, even although it does not enjoy
obliviousness [13]. We would argue that this is not a deficiency
of our approach because obliviousness is not a linguistic feature
(such as assignment); rather it refers to the situation that the “base
code” programmer is unaware that his code may be advised. For
instance, the surface language MINAML of Walker et al. would
be considered oblivious; however, a programmer who is aware that
MINAML functions are join points could apply “dummy” identity
functions to arbitrary program points in order to artificially invoke
advice. This is exactly the feature provided by labels in the aspect
calculus of Walker et al. While obliviousness may be a useful prac-
tical abstraction, it has arguably no real effect on the formal seman-
tics of the language.

3. Language definitions
This Section defines the source and target languages of the com-
positional (and fully abstract) translation. We begin with a brief
treatment of the core λ-calculus that underlies both of them.

A core functional calculus L
The common fragment shared by both languages is a typed, call-
by-value λ-calculus L whose types and expressions are given by

the following grammars:

τ, σ, ρ ::= 1 | bool | σ × τ | σ → τ

e, f, g ::= x | skip | tt | ff | cond e e1 e2 |
〈e1, e2〉 | πi(e) | λxτ .e | e1 · e2

The typing rules and operational semantics are standard. We
shall use ` e to mean that the term e is well-typed i.e. that Γ ` e : τ
is provable for some Γ and τ . The type 1 is the unit type (i.e. the
type of commands) with the sole value skip. The operational se-
mantics is given in terms of an evaluation relation ⇓ between ex-
pressions and values i.e. terms generated by the following gram-
mar:

v, u ::= skip | tt | ff | 〈u, v〉 | λxτ .e

We equate terms up to α-renaming of bound names. Given a se-
quence g of terms of type τ → τ , we write g1 ◦ · · · ◦ gn to mean
the sequential composition of the terms in the sequence i.e.

λxτ .(g1 · (g2 · (· · · · (gn · x) · · ·)))

COREAML: A language of additive aspects
Given a countable set of label names ranged over by l, COREAML
adds to L a type of labels and a type of aspects, together with the
respective constructs to generate (locally scoped) labels, label pro-
gram points, and create and install aspects. The types, expressions,
and values of this language are defined by adding the following
rules to those defining L

τ, σ, ρ ::= · · · | lab[τ] | asp[τ]

e, f, g ::= · · · | newlabτ | {e1.x → e2}
| e1〈e2〉 | e1 >> e2

v, u ::= · · · | l | {v.x → e}

Though label names appear in the syntax, they only arise as the
outcome of an evaluation (i.e. values), and may not appear in
user programs. The typing rules and operational semantics are
presented in Table 1. By a configuration, we mean a triple of
the form (L, A, e), comprising a map L from labels to types, a
sequence A of aspects, and a term e to be evaluated; in case the
expression e is a value, we shall call the configuration a value
configuration. The operational semantics of COREAML is given
in terms of an evaluation relation between configurations and value
configurations; note that label mappings and aspect sequences are
omitted from the rules where possible so as to keep the presentation
concise. The rules defining the operational semantics of L are
naturally extended to the corresponding configurations (i.e. these
rules make no changes to the L or A components). The rules use
the notation a :: A and A :: a to denote the sequence obtained
by respectively prepending and appending the element a to the
sequence A. The empty sequence is denoted by ε, labs(e) is
defined as the set of label names appearing in the term e, dom(F)
as the domain of the map F , and F{x 7→ n} as the same map
as F except that x ∈ dom(F) is now mapped to n. Finally, for
an aspect sequence A, we write A(l) as the subsequence g of l-
labelled advice occuring in A.

A term e is closed if it contains no free variables, and open oth-
erwise. We refer to terms that contain no label names as user terms.
A program is a closed user-term of ground type. A configuration
P ≡ (L, A, e) is well-typed (denoted `P) if each a ∈ A is of type
asp[τ] for some τ , labs(e) ⊆ dom(L), and the mapping L cor-
rectly realises the typing of the labels of e. The semantics also uses
an auxiliary family of functions CL,A which, given a label l, return
the term v obtained by functionally composing all l-labelled advice
in A in sequential order. We use upper-case letters P , Q to range

Type System

(TP ASPECT)
Γ ` e1 : lab[τ] Γ, x : τ ` e2 : τ

Γ ` {e1.x → e2} : asp[τ]

(TP NEWLAB)

Γ ` newlabτ : lab[τ]

(TP INSTALL)
Γ ` e1 : asp[σ] Γ ` e2 : τ

Γ ` e1 >> e2 : τ

(TP INVOKE)
Γ ` e1 : lab[τ] Γ ` e2 : τ

Γ ` e1〈e2〉 : τ

Operational Semantics

(⇓ INSTALL)
e1 ⇓ (L, A, a) (L, A :: a, e2) ⇓ v

e1 >> e2 ⇓ v

(⇓ ASPECT)
e1 ⇓ v

{e1.x → e} ⇓ {v.x → e}
(⇓ NEWLAB)

(L, A, newlabτ) ⇓ (L{l 7→ τ}, A, l)
l /∈ dom(L)

(⇓ INVOKE)
e1 ⇓ (L, A, l) e2 ⇓ u e[u/x] ⇓ v

e1〈e2〉 ⇓ v
[CL,A(l) = λx.e] CL,A , λl.

8>><>>:
id[L(l)] if l ∈ dom(L) and A(l) = ε

gn ◦ · · · ◦ g1 if l ∈ dom(L) and A(l) = g

⊥ if l /∈ dom(L)

Table 1. Typing Rules and Operational Semantics of COREAML

over well-typed configurations of COREAML, and an upper-case
U to range over value configurations.

The evaluation relation ⇓ coincides with the transition seman-
tics (denoted here by �) defined for COREAML in [4]1 i.e.

Proposition 3.1. For any well-typed configuration P , we have
P ⇓ U if and only if P �∗ U , writing �∗ for the reflexive,
transitive closure of �.

For a well-typed configuration P , we write P⇓ (read “P con-
verges”) if there exists a configuration U such that P ⇓ U and
P ⇑ otherwise. We also use this notation for well-typed user terms,
writing e⇓ if (⊥, ε, e) converges and e⇑ for divergence.

Observational equivalence is a compelling notion of program
equivalence. Intuitively we say that two terms are observationally
equivalent just in case one term can be replaced by the other in
every program without any observable difference in the computa-
tional outcome.

Definition 3.1. Precisely we say that two well-typed user terms
e1 and e2 of COREAML are observationally equivalent if for any
context C[−] : 1 such that C[ei] is a program, we have

C[e1] ⇓ ⇐⇒ C[e2] ⇓

and denote this situation by e1 ' e2.

We can define syntactic sugar for sequential composition, the
let construct, and block structured labels (new . . . in . . .) by using
λ abstraction as follows:

let x = e1 in e2 , (λx.e2) · e1

newlab x in e , (λx.e) · newlab
e1; e2 , (λd.e2) · e1 (d /∈ fv(e2))

Finally we use id[τ] as a shorthand for the identity function λxτ .x
of type τ .

1 For expository purposes, we omit Walker’s other installation primitive to
the head of the aspect sequence. While we could easily include it, it is
not used in the encoding of MINAML, nor is it needed to encode general
references.

GREF∗: A language of general references
The language GREF∗ is defined by extending L with higher-order
store in the style of ML-references (the “*” superscript in the
language indicates the presence of “bad references”, for which
more anon). Given a countable set of references whose elements
are ranged over by r, the expressions of the language are defined
by extending the expression grammar ofLwith the following rules:

e ::= · · · | newrefτ (e) | e1 := e2 | !e

The typing rules and operational semantics of these constructs
are defined in Table 2. Rather than introducing a distinguished
type for references, we take an approach now standard in (game)
semantics of viewing the reference type ref[τ] as a product of a
“read method” and a “write method”, a la Reynolds [14]. The write
method assigns a value to the location and has type τ → 1; the
read method retrieves the value currently stored there and has type
1→ τ . Thus we use the following shorthand:

ref[τ] , (τ → 1) × (1→ τ)

A consequence of the identification is the presence of so-called
“bad references” (or bad variables). Even though every term of type
ref[τ] can be assigned to and dereferenced, not all terms of the
type behave as bona fide references (for example, reads need not be
causally related to writes).

Remark 3.1. To our knowledge, all known fully abstract game
models of Algol-like languages interpret reference types as prod-
ucts of read and write methods. Consequently bad references live
in all these game models. Interested readers may wish to consult
[16, §2.4] for a discussion on whether the presence of bad refer-
ences should be regarded as a defect.

The operational semantics of GREF∗ is defined as an evaluation
relation between triples (R, S, e) comprising a map R from refer-
ences to types, a store S mapping references to values, and a term e
to be evaluated. The rules omit the R and S components of the triple
when they play no role in a particular evaluation. The grammar of
values is extended with reference names:

v ::= · · · | r

By definition a reference is a pair, so we must be able to project it in
order to retrieve its “components”; the rules (⇓REFPROJi) give us
the capability. The rules (⇓DEREF-BAD) and (⇓ASSIGN-BAD) re-
spectively define the behaviour of executing the read and write op-
erations on a bad reference. The “*” superscript in the language in-
dicates the presence of bad references. The language GREF (with-
out the superscript) is defined by regarding the reference type
ref[τ] as primitive (as opposed to a composite of other types), and
removing the rules for bad-reference assignment and dereferenc-
ing, and those for projections over references.

We use upper-case letters M and N to range over well-typed
configurations of GREF∗, and V to range over value configura-
tions. As for COREAML, we write M⇓ if M is well-typed and
there exists a V such that M ⇓ V , and write e⇓ just if (⊥,⊥, e)⇓,
where ⊥ is the map that leaves all elements in its domain unde-
fined. Observational equivalence of GREF∗ terms is defined as for
COREAML.

Shorthands for the let construct, sequentical composition,
and the identity function are defined as in COREAML, and the
new . . . in . . . construction for references is defined as

newref x = e1 in e2 , (λx.e2) · newref(e1)

The language GREF∗ is identical to the language of Abramsky et
al. [16] except for the absence of distinguished reference types (and
hence also the absence of an explicit “bad reference” constructor
mkref), and the fact that we initialize newly created references.
These differences have no semantic consequences. In fact, the game
model of the language of Abramsky et al. is fully abstract for
GREF∗.

Remark 3.2. The preceding statement deserves an explanation. In
the language of Abramsky et al., for each type τ , there is a primitive
reference type ref[τ]; in addition there is a “bad reference” con-
structor that takes a write method e1 : τ → 1 and a read method
e2 : 1 → τ and cast them as a reference mkref 〈e1, e2〉 : ref[τ].
Crucially the reference type ref[τ] is isomorphic to the product
type (τ → 1)× (1→ τ)

ref[τ]
PR(−) //

(τ → 1)× (1→ τ)
mkref

oo

The isomorphism is witnessed in one direction by the bad-reference
constructor mkref; in the other direction, a term e of reference type
ref[τ] can be tranformed to a pair of type (τ → 1)× (1→ τ) as
follows:

PR(e) , 〈 λxτ .(e := x) , λd1.(!e) 〉

The two transformations are inverse of each other, modulo obser-
vational equivalence; that is to say, we have

mkrefPR(e) ' e : ref[τ]

PR(mkref 〈f, g〉) ' 〈f, g〉 : (τ → 1)× (1→ τ).

It follows that the types ref[τ] and (τ → 1) × (1 → τ) – which
are distinct syntactic objects – must have isomorphic denotations
in every fully abstract model. In the game model in [16]; the types
have the same denotations.

As noted above, the language GREF∗ is identical to the lan-
guage of Abramsky et al. except that its reference types are not
primitive; indeed ref[τ] is just a shorthand for (τ → 1)×(1→ τ).
For this reason, GREF∗ has no bad-reference constructor such as
mkref (there is no need for it), but it does need projections i.e. (⇓-
REFPROJ{1,2}) to extract the corresponding read and write methods
of a reference. The game model of [16] is therefore also a fully ab-
stract model of GREF∗.

Types

plab[τ]q , ref[pτ → τq]

pasp[τ]q , plab[τ]q× pτ → τq

Terms

plq , L (clb)
pnewlabτq , newref xpτ→τq = id[pτq] in L (x)

pe1 >> e2q ,
h
let a = pe1q in π1(a) := π2(a)

i
; pe2q

p{e1.x → e2}q , 〈pe1q, λx.pe2q〉
pe1〈e2〉q , !pe1q · pe2q

Label Mapping

p⊥q , ⊥
pL{l 7→ τ}q , pLq{clb 7→ pτ → τq}

Aspect Sequences

pεqL , IDpLq

p〈l, v〉 :: AqL , pAqL{clb_ pvq}

Configurations

p(L, A, e)q , (pLq, pAqL, peq)

Table 3. Translation from COREAML to GREF∗

4. Translating aspects to references
This Section introduces a compositional translation p−q from
COREAML into GREF∗; see Table 3 for the key clauses of the
definition. In the following, we comment on the salient features of
the translation.

The main intuition is to translate a COREAML label of type τ
into a GREF∗ reference of type pτq → pτq, and to translate an
aspect into the pairing of the respective translates of its pointcut
(the label) and advice (a function). Installing an aspect then cor-
responds to composing the advice with the current content of the
location, and invoking an aspect simply dereferences the location
and applies the result to the value of the underlying term. We give
the translation of the types of labels and aspects at the top of Ta-
ble 3. The translation acts trivially (and compositionally) on the
remaining types of COREAML (i.e. the types of the underlying
calculus L): it is the identity map on ground types, and the trans-
late of a product type is the product of the respective translates of
its components, similarly for function type.

For the translation of the terms of L, we assume a bijection
between label names and references names, writing clb as the
image of l under the bijection. Intuitively we will be storing the
composite of all the advice associated to a label l in the reference
location clb. Since the only way to access advice in COREAML
is by accessing the entire composite, we are free to compose it at
“storage time” without losing any expressive power. The translation
uses a shorthand

L (e) , 〈 λxτ→τ .(e := x ◦ !e) , λd1.!e 〉

for any GREF∗ term e such that Γ ` e : ref[τ → τ] is derivable
for some τ . This term is the heart of the translation; it defines a
bad reference of type τ → τ whose assignment function composes
its input with the current contents (rather than simply overwriting
them). This allows aspect installation to be modelled by an assign-
ment to the corresponding reference, and aspect invocation then

Type System

(TP NEWREF)
Γ ` e : τ

Γ ` newrefτ (e) : ref[τ]

(TP DEREF)
Γ ` e : ref[τ]

Γ `!e : τ

(TP ASSIGN)
Γ ` e1 : ref[τ] Γ ` e2 : τ

Γ ` e1 := e2 : 1

Operational Semantics
(⇓ NEWREF)

e ⇓ (R, S, v)

newrefτ (e) ⇓ (R{r 7→ τ}, S{r 7→ v}, r) r /∈ dom(R)

(⇓ ASSIGN)
e1 ⇓ r e2 ⇓ (R, S, v)

e1 := e2 ⇓ (R, S{r 7→ v}, skip)

(⇓ ASSIGN-BAD)
e1 ⇓ 〈v1, v2〉 e2 ⇓ v v1 · v ⇓ skip

e2 := e2 ⇓ skip

(⇓ DEREF)
e ⇓ (R, S, r)

!e ⇓ (R, S, v)
[S(r) = v]

(⇓ DEREF-BAD)
e ⇓ 〈v1, v2〉 v2 · skip ⇓ v

!e ⇓ v

(⇓ REFPROJ1)
e ⇓ r

π1(e) ⇓ λxτ .(r := x)

(⇓ REFPROJ2)
e ⇓ r

π2(e) ⇓ λd1.(!r)

Table 2. Typing Rules and Operational Semantics of GREF∗

simply amounts to dereferencing the current location. Label cre-
ation, newlabτ , translates to the creation of a new reference (of the
above kind) initialised to the appropriately typed identity function.
As with the pairing transform PR(−), we can use a let statement
to ensure that the L (e) converges if and only if e does. Since there
is exactly one newref statement in peq for each newlab statement
in e, we assume that if the new label chosen by evaluating e is l,
the corresponding newref in peq generates clb.

We extend the translation to act on configurations of COREAML,
producing configurations of GREF∗. First a label mapping L that
maps l to τ is translated to the reference mapping that takes each
clb to the translate of the function type τ → τ . An aspect sequence
A must be translated with respect to the label mapping because of
the case in which the sequence is empty. In this case any labels
not appearing in A but appearing in L must be mapped to the ap-
propriate identity function in the GREF∗ store. This is achieved by
the IDR function (for R a reference/type mapping from an GREF∗

configuration) defined as follows:

IDR , λr.

8<: id[τ] if R(r) = (τ → τ)

⊥ otherwise

Informally this is just the store that maps each reference r to the
identity function if r is defined in R and is of function type with
identical input and output types. Every type in R will be of this
form if it has been translated from COREAML, so our definition is
well formed. Further, for an GREF∗ store S, location r and value
v of type τ → τ , we write S{r _ v} for the store obtained by
remapping r to its current contents composed with v:

S{r _ v} , S{r 7→ (S(r) ◦ v)}
We will often drop the subscript from pAqL when it is clear which L
was used. Finally the translate of complete configurations is defined
as the pointwise translation of each of its components.

We first establish some basic properties of the translation:

Proposition 4.1. (1) If x1 : τ1, . . . , xn : τn ` e : τ is valid in
COREAML then x1 : pτ1q, . . . , xn : pτnq ` peq : pτq is
valid in GREF∗.

(2) If v is a COREAML-value, then pvq is a GREF∗-value.
(3) For COREAML-terms g1, · · · , gn of type τ → τ , we have

pg1 ◦ · · · ◦ gnq = pg1q ◦ · · · ◦ pgnq.

(4) If ` (L, A, e) in COREAML then ` p(L, A, e)q in GREF∗.

Proof. (1) is proved by a straightforward induction on the structure
of e. (2) follows immediately from the definition of the translation
over the core calculus L and the fact that L (v) is a value for any
value v. (3) is trivially proved by following the definition of the
translation over λ-terms. (4) follows from the fact that every label
l in the environment is translated into clb, and each label in e is
translated into L (clb), which itself only contains the reference
clb.

5. Properties of the translation: adequacy and
definability

How faithful is the compositional translation from COREAML
into GREF∗? In this Section, we examine the extent to which be-
havioural properties of user terms of COREAML (as considered in
Section 1) are preserved (and reflected) by the translation. We prove
that the translation is adequate, and satisfies the definability prop-
erty i.e. every term of GREF∗ is the translate of some COREAML-
term. However the translation fails to be fully abstract; we use a
simple counterexample to explain why. In the next Section, we shall
show how a fully abstract translation can be achieved by a slight
modification to COREAML.

Basic properties of the translation
We present some basic properties of the translation that will help us
reason about typing judgements involving substitution. In the first
two lemmas, we let e and v be well-typed user terms of COREAML
where v is a value.

Lemma 5.1. If ` e[v/x] holds in COREAML, then ` peq[pvq/x]
holds in GREF∗.

Proof. By assumption there are Γ, τ , σ such that

Γ, x : σ ` e : τ and Γ ` v : σ

are valid. By Proposition 4.1, we have

pΓq, x : pσq ` peq : pτq and pΓq ` pvq : pσq

are valid in GREF∗. Then, since pvq is a value, we know that
peq[pvq/x] is a well-typed term of GREF∗.

The converse of the lemma does not hold i.e. we could well
have terms e and v such that peq[pvq/x] is well-typed in GREF∗,
but e[v/x] is not well-typed in COREAML. For instance, let e be a
variable x of type lab[τ] and

v ≡ 〈λyτ→τ .skip, λy1.id[τ]〉 : ref[τ → τ].

It is precisely the lack of this property that we shall later exploit to
show the failure of full abstraction. Therefore the remedy proposed
in the following section is designed to ensure that the translation on
types is a bijection.

Next we prove a useful substitution lemma, which states that
the translate of a substitution is a substitution of the respective
translates.

Lemma 5.2. If ` e[v/x] holds in COREAML then pe[v/x]q =
peq[pvq/x] holds in GREF∗.

Proof. By the composition of the translation, and by the result of
the previous lemma, we know that both sides of the desired equality
are well-typed terms of GREF∗. The equality is proved by an easy
induction on the derivation of

Γ, x : σ ` e : τ

whose existence is implied by ` e[v/x]. The proof requires a
standard weakening lemma in the case of application.

The last basic lemma establishes the correctness of the transla-
tion of COREAML environments. It states that for a given environ-
ment (L, A), the translate of the composite CL,A is the GREF∗ store
pAqL.

Lemma 5.3. For any label l, we have pCL,A(l)q = pAqL(clb).

Proof. If l /∈ dom(L), then clb/∈ dom(pLqL) and so both sides of
the equation are equal to ⊥. For the remaining cases, denote A � l
as the restriction of A to l (i.e. the subsequence of l-labelled advice
of A), and note that

CL,A(l) = CL,(A�l)(l) and pAqL(clb) = pA � lqL(clb)
We therefore only need to consider aspect sequences A that are
comprised entirely of l-labelled advice. In this case, if A = ε, then
CL,A = id[L(l)]. By the definition of the translation we have

pid[L(l)]q = id[pL(l)q]

which is exactly pAqL(clb) because pεqL = IDpLq. If A is not
empty, then CL,A = (gn ◦ · · · ◦ g1) for some sequence g of advice.
The translate of this term is therefore (pgnq ◦ · · · ◦ pg1q) by
Proposition 4.1(2). But then a routine induction easily shows that
this is exactly the value of pAqL(clb).

Preservation and reflection of termination and evaluation
We are now ready to prove the main properties of the translation.
The first result shows that the evaluation of user terms is preserved.
However a stronger induction hypothesis is needed to push through
the argument; we thus prove the result for all possible configura-
tions, and with respect to syntactic equality (up to α-equivalence)
rather than observational equivalence.

Proposition 5.4. For every well-typed COREAML configuration
P , if P ⇓ U then pPq ⇓ V and V = pUq.

Proof. The proof is by induction on the derivation of P ⇓ U . The
base case where P is a value configuration follows immediately
from the fact that the translation preserves values, i.e. Proposi-
tion 4.1(2). Cases for the rules stemming fromL follow easily from
the induction hypothesis, we present the case for application:

Case (⇓APP). The induction hypothesis applied to the premises of
this rule yield derivations of

D1 ≡
...

pe1q ⇓ λx.peq
D2 ≡

...
pe2q ⇓ puq

D3 ≡
...

pe[u/x]q ⇓ pvq

Applying Lemma 5.2 to D3 yields

peq[puq/x] ⇓ pvq

and combined with D1 and D2, this yields a derivation of

pe1q · pe2q ⇓ pvq

in GREF∗, which by definition is exactly the required derivation of

pe1 · e2q ⇓ pvq

The remaining cases are label creation, aspect installation, as-
pects, and join points. The case for rule (⇓ASPECT) follows imme-
diately from the inductive hypothesis as above, the remaining cases
are presented below:

Case (⇓NEWLAB). For this case, we simply carry out the evaluta-
tion of the translated term using the GREF∗ evaluation rules. The
translation of (L, A, newlabτ) is

(pLq, pAqL, newref xpτ→τq = id[pτq] in L (x))

which, using rule (⇓ NEWREF), immediately evaluates to

(pLq{clb 7→ pτ → τq}, pAqL{clb 7→ id[pτq]}, L (clb))
but one can routinely check that this is exactly the translation of
(L{l 7→ τ}, A, l) as required.

Case (⇓INSTALL). The induction hypothesis yields GREF∗ deriva-
tions of

D1 ≡
...

pe1q ⇓ (pLq, pAqL, paq)

D2 ≡
...

(pLq, pA :: aqL, pe2q) ⇓ pvq

Supposing, without loss of generality, that a ≡ {l.x → e}, we
calculate the following:

paq = 〈L (clb), λx.peq〉
pA :: aqL = pAqL{clb _ (λx.peq)}

Note that the result of assigning λx.peq to L (clb) in environment
pAqL is skip in the updated environment pA :: aqL. We therefore
know that we can derive

π1(paq) := π2(paq); pe2q ⇓ pvq

and since paq is already a value, we can certainly let abstract it in
the assignment without affecting the evaluation, yieldingh

let x = paq in π1(x) := π2(x)
i
; pe2q ⇓ pvq

and finally, by derivation D1, we know that pe1q evaluates to paq,
therefore we can conclude thath

let x = pe1q in π1(x) := π2(x)
i
; pe2q ⇓ pvq

which is precisely the desired derivation of

pe1 >> e2q ⇓ pvq

Case (⇓INVOKE). Applying the induction hypothesis to the first,
third, and fourth premises of this rule yields GREF∗ derivations of
the following evaluations:

D1 ≡
...

pe1q ⇓ (pLq, pAqL, L (clb))

D2 ≡
...

pe2q ⇓ puq
D3 ≡

...
pe[u/x]q ⇓ pvq

Note firstly that dereferencing L (clb) is equivalent to dereferenc-
ing clb, and secondly that applying the store correctness lemma
we have pAqL(clb) = λx.peq. Combining these two facts with
D1 yields a derivation of

...
!pe1q ⇓ λx.peq

Using this together with D2 and D3 (and the substitution lemma),
we can apply rule (⇓APP) to construct a derivation of

!pe1q · pe2q ⇓ pvq

which is exactly the desired derivation of

pe1〈e2〉q ⇓ pvq

The next proposition proves the converse of the preceding re-
sult, thus showing that that the translation from COREAML to
GREF∗ preserves and reflects evaluation in the sense of Property E.
It follows that the translation also preserves and reflects termination
of configurations.

Proposition 5.5. For every well-typed COREAML configuration
P , if pPq ⇓ V then P ⇓ U and V = pUq.

Proof. By induction on the derivation of pPq ⇓ V . The base case
occurs when P is a value, and is trivially true by Proposition 4.1(2).
As in the previous proof, the rules of the underlying languageL fol-
low relatively straightforwardly from the induction hypothesis, the
most complex case being application (which requires the substitu-
tion lemma):

Case (⇓APP). The induction hypothesis on the first two premises
allows us to deduce that pe1q must evaluate to λx.peq for some
COREAML term e, that pe2q evaluates to puq for some COREAML
value u, and that the following derivations exist:

D1 ≡
...

e1 ⇓ λx.e
D2 ≡

...
e2 ⇓ u

For the third premise, note that since the original term was well
typed in COREAML, then e[u/x] must also be well-typed. This al-
lows us to apply Lemma 5.2 to yield that peq[puq/x] = pe[u/x]q,
and therefore allowing us to apply the induction hypothesis to the

third premise to conclude that the substitution must evaluate to pvq
for some COREAML term v, and that

D3 ≡
...

e[u/x] ⇓ v

is derivable in COREAML. Finally we use D1, D2, and D3 as
premises of rule (⇓APP) in COREAML to construct the desired
derivation of e1 · e2 ⇓ v.

The remaining cases are those enumerated by the rules added to
L to define COREAML. The rule (⇓ASPECT) follows easily from
the induction hypothesis, leaving the cases for the creation of new
labels, and installing and invoking advice.

Case (⇓NEWLAB). Translating P ≡ (L, A, newlabτ) and evaluat-
ing it using the evaluation rules of GREF∗ yields a derivation that
the following configuration:

(pLq, pAqL, newref xpτ→τq = id[pτq] in L (x))

evaluates to the following value:

(pLq{clb 7→ pτ → τq}, pAqL{clb 7→ id[pτq]}, L (clb))
This is exactly a translation of the COREAML configuration

(L{l 7→ τ}, A, l)

which, as required, is exactly the value to which P evaluates.

Case (⇓INSTALL). Assuming the antecedent, evaluating the trans-
late of e1 >> e2 yields the following derivation:

E ≡
...h

let x = pe1q in π1(x) := π2(x)
i
; pe2q ⇓ V

for some value configuration V . The first command in the sequence
(i.e. let x = · · ·) was derived from an evaluation of pe1q. We
apply the induction hypothesis to this derivation, yielding that it
evaluates to a value configuration (pLq, pAqL, paq) which is the
translate of a COREAML aspect a, and that

D1 ≡
...

e1 ⇓ (L, A, a)

Supposing without losing generality that a = {l.x → e}, then the
body of the let command amounts to an evaluation of

(pLq, pAqL, L (clb) := λx.peq)

which evaluates to

(pLq, pAqL{clb_ λx.peq}, skip)
by the definition of L (−). This then, is the environemnt under
which pe2q must have been evaluated in order to yield derivation
E . By the definition of the translation, the GREF∗ configuration

(pLq, pAqL{clb_ λx.peq}, pe2q)

is precisely the translation of (L, A :: a, e2), and so we may apply
the induction hypothesis to its evaluation to yield that it evaluates
to some value configuration V = pUq, and that

D2 ≡
...

(L, A :: a, e2) ⇓ U

Finally, using D1 and D2, we can construct the desired derivation

...
e1 >> e2 ⇓ U

using rule (⇓INSTALL).

Case (⇓INVOKE). Assuming the antecedent, translating e1〈e2〉 and
evaluating it yields the following GREF∗ derivation:

E ≡
...

!pe1q · pe2q ⇓ V

for some value configuration V . This must have been derived from
a derivation that !pe1q evaluates to some λ term g, and this must
have in turn been derived from an evaluation of pe1q. We ap-
ply the induction hypothesis to the latter to deduce that pe1q ⇓
(pLq, pAqL, L (clb)) and that

D1 ≡
...

e1 ⇓ (L, A, l)

for some label l (WLOG). The second premise of the evaluation
of !pe1q must therefore have been the application of skip to the
second component of L (clb) (because this is a bad reference). By
definition, this is exactly the same as dereferencing clb directly,
and therefore we must have pAqL(clb) = g. Now by Lemma 5.3
we know that g must be the translate of CL,A(l), and hence the
translate of some COREAML λ term λx.e, i.e. g = λx.peq and
hence

D2 ≡ [CL,A(l) = λx.e]

Thirdly, we can apply the induction hypothesis to the subevaluation
of pe2q to yield that pe2q ⇓ puq for some COREAML value u, and
that

D3 ≡
...

e2 ⇓ u

and doing the same to the last premise of the application E , and
using the substitution lemma, we get pe[u/x]q ⇓ pUq (where
pUq = V), and that

D4 ≡
...

e[u/x] ⇓ U

and finally, we note that D1, · · · ,D4 form exactly the premises of
the required derivation that

e1〈e2〉 ⇓ U

Adequacy
We can now prove that the translation satisfies adequacy i.e. obser-
vational equivalence of COREAML-terms is reflected by the trans-
lation. Termination preservation and reflection, as well as the sub-
stitution lemma, are the only results required to prove adequacy.

Theorem 5.6 (Adequacy). For every well-typed COREAML open
user terms e1 and e2, if pe1q ' pe2q then e1 ' e2.

Proof. Let e1 and e2 be such that pe1q ' pe2q, and let C[−] be
an arbitrary COREAML context such that both C[e1] and C[e2] are
programs (i.e. closed terms of type 1). By Lemma 5.1, pCq[−] is
similarly a closing context for pe1q and pe2q. Since observational
equivalence is a congruence, we have pCq[pe1q] ' pCq[pe2q];
but then by Lemma 5.2 we have pCq[peiq] = pC[ei]q, and hence
pC[e1]q ' pC[e2]q. Now suppose C[e1]⇓; by Proposition 5.4 we
know that pC[e1]q⇓. Since pC[e2]q ' pC[e2]q, we have pC[e2]q⇓.
Hence by Proposition 5.5 we can deduce that C[e2]⇓. Symmetri-
cally, we can prove that if C[e2] converges then C[e1] converges.
Therefore we have e1 ' e2 as desired.

The Theorem tells us that we can soundly reason about the ob-
servational equivalence of COREAML-terms by reasoning about
the observational equivalence of their respective translates in
GREF∗. Since the translation is compositional, every denotational
model of the target language GREF∗ becomes a denotational model
of the source language COREAML by translation. Further, thanks
to the adequacy of the translation, since the game model of is ade-
quate (see GREF∗ [16]), the inherited semantics for COREAML is
also adequate.

Definability
The Adequacy Theorem tells us that, modulo observational equiv-
alence, there are “at least as many” terms in GREF∗ as there are in
COREAML i.e. the target language is at least as rich as the source.
The next result tells us that, modulo observational equivalence, the
target language is “no richer” than the (translate of the) source.
More precisely, for every GREF∗ term, there is some COREAML
term whose translate is observationally equivalent to it.

Proposition 5.7 (Definability). For every open term e of GREF∗,
there exists a user term of COREAML *e+ such that p*e+q ' e.

Proof. The proof is by induction on the structure of e. Most cases
follow immediately from the induction hypothesis, the notable ex-
ception is the newrefτ (e) construct. We don’t need to handle open
reference names because we only care about the definability of user
terms. Following [4], we essentially modify the reference cell term
defined by Walker et al. and tweak it to serve our purposes. As-
sume (by the induction hypothesis) that there is an *e+ such that
e ' p*e+q. A reference of type τ is modelled by creating a label
of type τ and using the ability to preserve local state to mimic a
reference cell. Omitting type annotations, consider the COREAML
term

cell(e) , newlab ` in

let init = *e+ in

〈
λv.

h
{`.d → v} >> skip

i
,

λd.`〈init〉
〉

the intuition is that ` will be the label modelling the newly created
reference cell, init will be the initial value of the reference cell, and
v will be bound to the value we will wish to assign to the cell. Now
consider the term’s translation into GREF∗ term pcell(e)q:

newref x = (λy.y) in

let init = p*e+q in

〈
λv.

h“
let a = 〈L (x), λd.v〉 in π1(a) := π2(a)

”
; skip

i
,

λd.
h
!L (x) · init

i
〉

The L (−)s appear because of the shorthand we used to encode the
new . . . in constructs, we’ve α-renamed ` to x to indicate that it is
no longer binding a label.

We claim that this term is equivalent to newref(e). First note
that if ` was a label of type τ in the original term, then pcell(e)q
is a term of type ref[pτq]. We first observe that 〈L (x), λd.v〉 is
already a value, and that sequential composition of a term of type 1
with skip is equivalent to just the term. Using these facts, and the
induction hypothesis that e ' p*e+q, we can simplify pcell(e)q

to

newref x = (λy.y) in

let init = e in

〈
λv.

h
L (x) := (λd.v)

i
,

λd.
h
!L (x) · init

i
〉

Note that the initial value stored in the new reference is the identity
function, and because it is guarded by a new, we know that this
location will appear nowhere else in any enclosing program. This
means that the only way to store any other value into the location
created here is by applying a value to the first component of the
reference pair. Therefore the only thing that can ever subsequently
be assigned to the location is a constant function composed with
its current contents (because of the definition of L (−)), and thus
the new location will only ever contain a constant function. We can
now complete the argument by noting the following observations:

• Because of the guarding let, this term has the same termina-
tion behaviour as newref(e), i.e. it converges if and only if e
converges.

• Suppose the new reference location created by evaluating this
term is r. There are three possible imperative actions one can
take on this location:
1. If this is immediately dereferenced, then the operational se-

mantics dictates that the result of the evaluation will be the
result of (!r) · init, which (since r contains the identity func-
tion in this case) evaluates to init: the result of evaluating e.
So an immediately accessed reference returns its inital value
as expected.

2. Any assignment of a term ê will result in divergence if and
only if ê diverges, and otherwise results in the constant
function returning the value v̂ (to which ê converges) to be
composed with the contents of r (this is due to the definition
of assignment to L (−)).

3. Thus, any subsequent dereferencing will converge to the
value v̂ last assigned to the term, because this operation
results in the application of the initial value init to the
contents of r, but since each function in the composition
!r ignore any input, this application immediately returns the
constant value of the last function in the sequence (i.e. the
last function assigned).

If we project the reference cell, we simply obtain the corresponding
function which we’ve shown above correspond exactly to assign-
ment and dereferencing to the cell. Therefore these points exactly
describe the observational behaviour of newref(e), thereby com-
pleting the proof of definability.

Though adequate, the translation from COREAML to GREF∗ is
not fully abstract i.e. it does not preserve observational equivalence.
This is somewhat surprising, especially in view of the definability
result (Proposition 5.7); it suggests that the translation is not fully
abstract for a subtle reason. Take the following COREAML user
terms and context:

e1 = λ`lab[τ].{`.x → x} >> skip

e2 = λ`lab[τ].skip

C[−] = [−] · 〈λx.Ω, λx.Ω〉

where Ω denotes a divergent term. Note that C[−] (viewed as a term
with a single free variable) paired with either of the ei’s, forms a
witness to the failure of the converse of Lemma 5.1. Now consider
the latter terms, the first takes a label as input and then installs the
trivial identity advice to it before evaluating to skip, while the sec-
ond simply evaluates to skip right away. We have e1 ' e2 in
COREAML. Now consider their respective translates in GREF∗:
pe1q assigns to the reference that is bound to `, whereras pe2q
does no such thing. Therefore, if ` is bound to a bad reference
whose components immediately diverge (say by plugging the ei

into C[−]), we obtain a term C[pe1q] which diverges and another
C[pe2q] which does not. Therefore the translates of the two terms
are not observationally equivalent in GREF∗, violating full abstrac-
tion. To summarise, we have:

Proposition 5.8 (Non full-abstraction). There are COREAML user
terms e1 and e2 such that e1 ' e2 but pe1q 6' pe2q.

In the next Section we will show how the situation can be
remedied by “breaking down” the types of COREAML so that the
translation both preserves and reflects subsitution.

6. Fully abstract translation and the complete
picture

The failure of full abstraction can be traced to a fundamental mis-
match between labels of type τ (say) and their translates, which
are references of type pτq → pτq (which are just pairs of read
and write methods). To fix the problem, we “object-orientate” the
types of labels (and hence aspects) in COREAML into their compo-
nent accessor methods, much as the types of references in GREF∗

are products of the corresponding read and write methods. In other
words we need to endow the source language COREAML with the
power to construct “bad labels” – the analogue of bad references.

Definition 6.1. Formally, we define the language COREAML∗ to
be the same as COREAML except that the types of labels and
aspects are viewed as shorthands for the following:

lab[τ] , ((τ → τ) → 1)× (1→ (τ → τ))

asp[τ] , lab[τ]× (τ → τ)

Under these definitions, the translation function p−q defined in
Section 4 is just the identity on types, and so, we no longer need
to distinguish between a COREAML∗ type τ and its translate pτq.
The intuition for the type of aspects should be obvious: we simply
separate an aspect explicitly into its pointcut (i.e. label) and advice,
and allow users to project on it to retrieve each component. The
type of labels pairs an installation function – which takes an advice
and installs an associated aspect into the environment – with an
invocation function – which returns the composite of all the advice
associated with the label. Since the translation on types is now
bijective, the converse of Lemma 5.1 is immediate, and we state
it here without proof:

Lemma 6.1. Let e and v be user terms of COREAML∗ where v is
a value. If ` peq[pvq/x] holds in GREF∗ then ` e[v/x] holds in
COREAML∗.

The rules defining typing judgements and operational semantics
in Table 1 are carried over to COREAML∗ directly, except that the
types of labels lab[τ] and aspects asp[τ] are now viewed as the
above shorthands; similarly {e1.x → e2} is viewed as a shorthand
for 〈e1, λx.e2〉. The rule (⇓ASPECT) is therefore subsumed by
the rule for tuples, and no longer necessary. As was the case for
references, any terms of the appropriate types may now be used
in installation and labelling statements, therefore the behaviour of
these constructs on pairs must be defined. Furthermore, since label

names are now of type lab[τ] (which is a pair), we must define the
behaviour of projecting over them. Thus we must add the following
rules to the operational semantics:

(⇓ INSTALL-BAD)
e1 ⇓ 〈〈v1, v2〉, g〉 v1 · g ⇓ skip e2 ⇓ v

e1 >> e2 ⇓ v

(⇓ INVOKE-BAD)
e1 ⇓ 〈v1, v2〉 v2 · skip ⇓ λx.e e2 ⇓ u e[u/x] ⇓ v

e1〈e2〉 ⇓ v

(⇓ LABPROJ1)
e ⇓ l

π1(e) ⇓ λxτ→τ .
h
〈l, x〉 >> skip

i (⇓ LABPROJ2)
e ⇓ l

π2(e) ⇓ λd1.
h
λx.l〈x〉

i
Preservation and reflection of termination
Lemmas 5.1, 5.2, and 5.3 still hold under the new translation with
basically the same proofs as before. However the translation no
longer preserves evaluation (w.r.t. syntactic equality) because of
the new cases for projection over labels, as can be evidenced by
considering the configuration P ≡ (L, A, π2(l)) which evaluates
to

V ≡ (L, A, λd.λx.l〈x〉).
Now, omitting the environments, we have

pPq = π2(L (clb)) ⇓ λd.!clb 6= pV q.

We could consider an appropriate variant notion of equivalence
between configurations, but we have not been able to find any such
notion that would support a suitably strong inductive hypothesis.
For example, an inductive hypothesis that pPq⇓ holds does not im-
ply that P evaluates to the translate of a valid COREAML∗ term,
and so, we cannot apply the hypothesis to a term involving substitu-
tion. Fortunately, using a continuation-based technique introduced
by Pitts and Stark [1], we are able to prove that the translation pre-
serves and relfects the evaluation of configurations (and hence eval-
uation of user terms).

Proposition 6.2. For every well-typed COREAML∗ configuration
P , we have P⇓ if and only if pPq⇓.

Proof. (Sketch) The idea is to introduce a variant notion of termina-
tion (for both languages) whose rules permit inductive reasoning.
Let C be the set of configurations, and K be the set of continua-
tions for an appropriate model of computation for the language. We
define a termination relation ↓ ⊆ C × K, where (P, K)↓ means
“P terminates for some continuation K”. The point is that the rules
defining the new termination relation ↓ enjoys a kind of subformula
property (each premise is a subformula of the conclusion); and so
it can quite easily be proved that

(P, K)↓ if and only if p(P, K)q↓
for all continuations K and configurations P (assuming a transla-
tion between continuations). The result follows from the following
correspondence between the two notions of termination

P⇓ if and only if (P, •)↓
where • is the empty continuation.

Fully abstract translation
To prove full abstraction, note that the proof of our earlier adequacy
result (Theorem 5.6) only requires that the translation preserves and
reflects termination of user terms. Therefore an identical proof can
be used to prove the adequacy of the translation from COREAML∗

to GREF∗. The definability result also carries over because we
have not reduced the expressive power of COREAML at all by
adding bad labels to it. Therefore it remains to prove the other
direction of full abtraction, namely, that the translation preserves
observational equivalence. We prove the contrapositive. Suppose
for some COREAML∗ user terms e1 and e2 that pe1q 6' pe2q.
By definition, there exists a closing GREF∗ context C[−] such that
(without losing generality) C[pe1q]⇓ but C[pe2q]⇑. By definability,
C[−] ' pD[−]q for some COREAML context D[−]. Since ' is a
congruence, we have pDq[pe1q]⇓ and pDq[pe2q]⇑. Now we apply
Lemma 6.1 to deduce that D[e1] and D[e2] are well-typed terms of
COREAML∗, and therefore by Lemma 5.2 we have

pD[e1]q ⇓ and pD[e2]q ⇑ .

But we are now done, because Proposition 6.2 tells us that D[e1] ⇓
and D[e2] ⇑. Therefore e1 6' e2 as required. To summarise we
have:

Theorem 6.3 (Full abstraction). For well-typed COREAML∗ user
terms e1 and e2, we have e1 ' e2 if and only if pe1q ' pe2q.

A pleasing consequence of the Theorem is that the fully abstract
semantics of the target language GREF∗ is at once inherited by
the source language COREAML∗. Since observational equivalence
of COREAML∗ coincides with the equational theory of the fully
abstract model, we may therefore reason about the former in the
model.

Space of translation: The complete picture
We have considered compositional translations from COREAML to
GREF∗ (Section 5), and from COREAML∗ to GREF∗ (Section 6)
– recall that the superscript “*” indicates the presence of bad labels
or bad references. In each case, we have examined the faithfulness
of the translation and calibrated it in terms of the satisfaction (or
not) of Properties E, T, D, A and F. It is natural to ask if there is a
compositional translation from COREAML (with only good labels)
to GREF (with only good references)? The answer is yes, and the
translation can be defined by moving the composition behaviour of
assignment to the aspect installation case. Precisely we substitute
the following for the corresponding rules in Table 3:

p newlabτ q , newref xpτ→τq = id[pτq] in x

p e1 >> e2 q ,
h
let 〈l, g〉 = pe1q in l := (g ◦ !l)

i
; pe2q

p l q , clb

We present the properties satisfied by the COREAML-to-GREF
translation, along with those of other translations, as follows.

Theorem 6.4. Properties satisfied by the respective translations
from COREAML / COREAML∗ to GREF / GREF∗ are as follows:

Properties of the Translation

labs. / refs. E T D A F

good / good Yes Yes No Yes No

good / bad Yes Yes Yes Yes No

bad / good No No No No No

bad / bad No Yes Yes Yes Yes

(Reading of the Table: E.g. the second row summarises properties
satisfied by the COREAML-to-GREF∗ translation (see Section 5),
which satisfies Properties E, T, D and A, but not F.)

Proof. (Sketch) The fourth row summarises the findings of Sec-
tion 6. We consider the first row, namely, the translation from

COREAML to GREF. The translation preserves and reflects eval-
uation and hence termination because we do not need to consider
projections over labels, and also because any assignment appearing
in the translated term is a direct consequence of an installation of
advice in the source term. Therefore it is irrelevant whether the as-
pect composition behaviour is encapsulated in the translate of the
label or of the installation2. Definability (Property D) is not satis-
fied by the translation because no term translates into a term of type
ref[τ] (where τ is not of the form σ → σ).

Lastly we include the third row for the sake of complete-
ness, although the “obvious” translation from bad-labels to good-
references would not satisfy even the most basic properties. Con-
sider pb〈x〉q for some bad label b and variable x; it is not even a
well-typed GREF term because it would result in the dereferencing
of the pair pbq.

7. Further directions
In the concluding Section, we discuss possible applications of the
fully abstract semantics and further directions.

Possible applications of the fully abstract semantics
In a fully abstract translation, the target language can be thought
of as a highly accurate emulator of the source language. In the
case of the COREAML∗-to-GREF∗ translation, since the target
language has a fully abstract (game) model, the model inherited
by COREAML∗ is also fully abstract [7]. I.e. the equational theory
of the inherited model coincides with observational equivalence
(in COREAML∗). Thus reasoning in the model is equivalent to
reasoning about the corresponding terms.

Fully abstract game models have recently found novel applica-
tions in software model checking [15]. For instance, the strategy-
denotations of terms in the second-order fragment of Idealized Al-
gol can be represented as regular expressions [2], but these re-
sults only apply to ground-type references. We would like to con-
struct the game semantics of an Algol-like language with a store
for second-order terms. Such a target language would correspond
(via the kind of translations we have considered) to an aspectual
language in which only program points of order at most one can be
advised.

Further directions
Our translation suggests an implementation strategy for additive
aspects in a functional setting. Specifically our work shows that
(this fragment of) additive aspects can be encoded as a library in a
language such as ML. It is unclear whether such an implementation
would be efficient, but the fact that the advice is only composed
once, at installation time, suggests that there are potential gains.

We also intend to extend our approach to non-additive as-
pects, thus giving a similar characterisation of constructs such as
ASPECTJ’s around() advice [6]. We believe that GREF∗ aug-
mented by locally declared exceptions in the style of [11] is a
suitable target language for a fully abstract translation. However
such a translation would not give a fully abstract model for the
source language because the game model described in [11] is for
a language with only ground-type references. Further extensions
would include dynamic pointcuts such as ASPECTJ’s cflow().

Finally current work on the semantics of aspect orientation as-
sumes that aspects and base programs are in the same global scope.
This simplified perspective does not reflect the important reality
that program components are often developed / compiled separately
and then composed together. The impact of applying aspects from
an imported module to an existing module (and vice versa) is hard

2 In fact this version of the translation could have been used for the
“good/bad” translation as well, but not the “bad/bad” one

to understand. We think that one cannot claim to understand aspec-
tual programs until and unless this issue – which goes to the heart
of “obliviousness” – is properly addressed. The semantics of obliv-
ious advice is in essence the semantics of open program fragments;
whence we believe game semantics is a promising setting in which
to study the problem.

References
[1] A.Pitts and I.Stark. Operational reasoning for functions with local

state. In Andrew Gordon and Andrew Pitts, editors, Higher Order
Operational Techniques in Semantics, pages 227–273. Publications
of the Newton Institute, Cambridge University Press, 1998.

[2] D.Ghica and G.McCusker. The regular-language semantics of second-
order idealised algol. Theoretical Computer Science, 2003.

[3] D.S.Dantas and D.Walker. Harmless advice. In Workshop on
Foundations of Object-Oriented Languages, January 2005.

[4] D.Walker, S.Zdancewic, and J.Ligatti. A theory of aspects. In
Proceedings of the 8th ACM SIGPLAN International Conference on
Functional Programming, pages 127–139, 2003.

[5] G.Bruns, R.Jagadeesan, A.Jeffrey, and J.Riely. µABC: A minimal
aspect calculus. In Proceedings of the 15th International Conference
on Concurrency Theory (CONCUR 2004), September 2004.

[6] G.Kiczales, E.Hilsdale, J.Hugunin, M.Kersten, J.Palm, and
W.G.Grisold. An overview of AspectJ. In European Conference
on Object-Oriented Programming (ECOOP 2001), volume 2072 of
Lecture Notes In Computer Science, pages 327–353, June 2001.

[7] G.McCusker. Full abstraction by translation. In Proceedings of the
Third Workshop of the Theory and Formal Methods Section, 1996.

[8] J.Aldrich. Open modules: A proposal for modular reasoning in
aspect-oriented programming. In Proceedings of the FOAL Workshop,
March 2004.

[9] J.G.Riecke. Fully abstract translations between functional languages.
In Eighteenth Symposium on Principles of Programming Languages,
pages 245–254, 1991.

[10] J.H.Andrews. Process algebraic foundations of aspect oriented
programming. In 3rd International Conference on Metalevel
Architectures and Separation of Crosscutting Concerns (Reflection
2001), volume 2192 of Lecture Notes In Computer Science. Springer-
Verlag, 2001.

[11] J.Laird. A fully abstract games semantics of local exceptions. In
Proceedings, 16th Annual IEEE Symposium on Logic in Computer
Science. IEEE Computer Society Press, 2001.

[12] M.Wand, G.Kiczales, and C.Dutchyn. A semantics for advice
and dynamic join points in aspect oriented programming. ACM
Transactions on Programming Languages and Systems, 26(5):890–
910, September 2004.

[13] R.E.Filman and D.P.Friedman. Aspect-oriented programming
is quantification and obliviousness. In Workshop on Advanced
Separation Concerns (OOPSLA 2001), 2000.

[14] J. C. Reynolds. The essence of Algol. In J. W. de Bakker and J. C.
van Vliet, editors, Algorithmic Languages, pages 345–372. North
Holland, 1978.

[15] S.Abramsky, D.Ghica, L.Ong, and A.Murawski. Applying game
semantics to compositional software modelling and verification. In
Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 2988 of Lecture Notes in Computer Science, pages
421–435. Springer-Verlag, 2004.

[16] S.Abramsky, K.Honda, and G.McCusker. A fully abstract game
semantics for general references. In Proceedings, 13th Annual IEEE
Symposium on Logic in Computer Science. IEEE Computer Society
Press, 1998.

