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Abstract— We introduce a low-complexity distributed slotted
MAC protocol that can support all feasible arrival rates in a wire-
less backhaul network (WBN). For arbitrary wireless networks,
such a maximum throughput protocol has been notoriously hard
to realize because (i) even if global topology information is
available, the problem of computing the optimal link transmission
set at each slot is NP-complete (ii) no bounds exist on the number
of steps required for such a computation (per-slot overhead). For
the logical tree structures induced by the WBN traffic matrices,
we first introduce a centralized algorithm that solves the optimal
scheduling problem in a number of steps at most linear in the
number of nodes in the network. This is achieved by discovering
and exploiting a novel set of graph-theoretical properties of the
WBN contention graph. Guided by the centralized algorithm, we
design a distributed protocol where, at the beginning of each slot,
nodes coordinate and incrementally compute the optimal link
transmission set. We then introduce an algorithm to compute
the minimum number of steps to complete this computation,
thus minimizing the per-slot overhead. Using both analysis and
simulations, we show that in practice our protocol yields low
overhead when implemented over existing wireless technologies
and significantly outperforms existing suboptimal distributed
slotted scheduling mechanisms.

I. INTRODUCTION

Wireless Backhaul Networks (WBNs) forego costly wired
infrastructure via wirelessly multi-hopping to and from high-
speed wired Internet entry points. We consider WBN archi-
tectures that use scheduled Medium Access Control (MAC)
protocols such as IEEE 802.16. Scheduled access is attractive
for backbone systems like WBNs because it not only avoids
well-known starvation/unfairness phenomena of contention-
based access (e.g., 802.11) but can also provide throughput
and delay guarantees.

In a scheduled access MAC protocol, all nodes are time-
slot synchronized and communication occurs in a sequence of
frames. Each frame consists of a scheduling phase followed
by a data phase, both of fixed duration and spanning several
slots. During the scheduling phase, nodes must determine a set
of conflict-free links that will transmit during the data phase.

We introduce a distributed scheduled access MAC pro-
tocol that can support all feasible arrival rates in a WBN.
Such a maximum throughput protocol has been notoriously
challenging to realize in arbitrary wireless networks for two
reasons. First, selecting the optimal link transmission set can
be a problem of extremely high complexity even if centralized
information is available. In a seminal paper [17], Tassiulas
and Ephremides established that selecting a conflict-free set of
links having a maximum sum of queue sizes at each scheduling

phase is a maximum throughput policy. This result holds for
arbitrary topologies and link access contraints. However, it re-
quires solving an instance of the maximum weight independent
set (MWIS) problem before each frame, which is NP-complete
in general. Second, the duration of the scheduling phase should
exceed the time it takes the nodes to solve any instance of the
optimal scheduling problem, thereby requiring a deterministic
upper bound on the number of computation steps. This bound
should also be as small as possible since it determines the
scheduling phase duration, a fixed per-frame overhead during
the protocol operation.

In this paper, we exploit the WBN tree structure and solve
the MWIS problem in a number of steps at most linear in the
number of nodes in the network.1 We first prove that the WBN
contention graph possesses a recursive reduction property,
where at each reduction step it is always possible to find a link
that mutually interferes with all of its interfering neighbors.
We utilize this property to devise a two-phase centralized
algorithm that computes a MWIS by traversing the network
in forward and reverse order. The algorithm visits each link
exactly once in each phase, regardless of the MWIS problem
instance at each frame. This bounds the size of the scheduling
phase to twice the number of nodes in the WBN. Based on
the centralized algorithm, we design a distributed protocol in
which nodes converge to a MWIS using at most two-hop
message exchanges. Despite being linear, the bound on the
scheduling phase duration of the protocol can still be large in
practice. We provide an algorithm that solves the offline design
optimization problem of determining the minimum scheduling
phase duration for a given WBN topology.

We compare our protocol to a protocol that computes a
maximal link transmission set at each frame. For the case
of arbitrary wireless networks, maximal scheduling has been
shown to guarantee at least half the region of the feasible
arrival rates [11], [14], [19] and can be implemented using
distributed protocols with a linear bound on the scheduling
phase [7]. We show that maximal scheduling remains subop-
timal in the case of WBNs, and existing maximal scheduling
protocols can yield up to 80% higher overhead depending on
the desired degree and depth of the WBN tree structure.

Finally, we evaluate the protocols stability properties under
the effect of transmission errors occuring in control and
data packets. Of course, the maximum throughput region is
essentially reduced due to lost data packets; however, the new

1The tree structure is logical (for forwarding and routing) vs. physical
(interference). Protocols such as IEEE 802.16j mandate such a structure.



maximum throughput region is not reduced any further as
errors occur in the scheduling phase as well. More precisely,
we find that stability is retained provided that the packet
loss probability of control packets is less than that of data
packets, a common design choice in practice. This illustrates
the robustness of our scheduling mechanism.

The rest of the paper is organized as follows: In Section II,
we review the state of the art in distributed scheduled access
protocols for both arbitrary and tree-based wireless networks.
In Section III, we describe the WBN interference model and
define the maximum throughput scheduling policy. In Section
IV, we introduce the graph-theoretical properties of the WBN
contention graph which lead to a centralized algorithm that
solves the MWIS problem in linear time. We introduce the
distributed protocol that realizes the centalized algorithm in
Section V. We solve the overhead minimization problem in
Section VI and evaluate the protocol performance in Section
IX. Section X concludes.

II. RELATED WORK

The problem of provision of throughput guarantees through
distributed scheduling has received significant attention lately.
The works can be classified with respect to topology struc-
ture and link interference constraints: either multi-channel
systems where only primary interference due to half-duplex
radio constraint exists, or single-channel systems where both
primary interference and secondary interference (due to hidden
terminals) exist.

Wireless networks of arbitrary topology: Given the
difficulty of MWIS problem, most works have focused on
evaluating performance of suboptimal approaches based on
maximal scheduling. In [11], [19], it was shown that max-
imal scheduling can achieve at least 50% of the maximum
throughput region, for single-hop flows and multi-hop flows,
respectively; while the works in [14] showed that in single-
channel systems this guarantee may decrease to 1/8. Existing
distributed algorithms to find maximal matchings [9] only
specify the required message exchanges, but are not directly
applicable to the wireless setting. In addition, they only
guarantee performance in terms of average complexity. In a
protocol implementation the constants may play a big role
in the overhead of the scheduling phase. While all works
acknowledge the need for node coordination, they do not
specify a protocol to find the maximal schedule. The spec-
ification of such a protocol determines the overhead induced
by the scheduling phase and plays an important role on
overall performance. Recently, Modiano et al. introduced a
distributed randomized scheduling algorithm for maximum
throughput scheduling in multi-channel networks [12]. This
work is also the first to consider the overhead issue. However,
the coordination protocol to achieve the required objective has
not been specified.

Tree-structured wireless networks: The work in [13] de-
signs a distributed scheduled access protocol on top of 802.11
PHY and is demonstrated to achieve better performance than
802.11 DCF. The work in [18] focuses on packet scheduling
for delay guarantees using techniques from wireline networks.
Both [13], [18] use a two-frame period where half the links
are activated in each frame. This technique utilizes only two

link activation sets, hence cannot realize all feasible arrival
rates. The work in [15], designs an asynchronous distributed
maximum throughput protocol for multi-channel systems. The
work in [6] also shows that multi-channel systems allow
distributed heuristics based on Longest Queue First (LQF) to
be throughput optimal. However, such heuristics only provide
average complexity. In contrast to [6], [15], our protocol
achieves maximum throughput for a broader set of interference
constraints of WBNs by directly solving the MWIS problem
in linear time.

III. SYSTEM MODEL

We represent the WBN by a Network Graph (NG) G(N, L)
where each edge (u, v) ∈ L signifies that nodes u and v of the
set N are within range and have established a logical wireless
link. Links can only transmit under certain scheduling con-
straints. Each node has a single radio transceiver and cannot
transmit and receive simultaneously. This primary interference
constraint prohibits two links sharing a node from being sched-
uled simultaneously. Secondary interference constraints arise
between links that do not share a common node but at least one
of their corresponding transmitter or receiver nodes are within
range. This definition of secondary interference constraint
refers to a communication model where each successful link
transmission requires a successful DATA/ACK exchange.

Secondary interference can be mitigated by preassigning
different channels (orthogonal frequency bands or spread spec-
trum codes) to all nodes within a two-hop neighborhood. We
will call WBNs with primary interference only, multi-channel
and WBNs with both primary and secondary interference,
single channel.

Nodes in the WBN communicate using a logical tree
structure overlaid on top of the physical topology defined by
the nodes’ wireless proximities. This structure can be explicitly
enforced by planning. It can also be implicitly induced by
cycle-free routing protocols. In this case, the WBN topology
changes at the time scale of the routing updates which would
span several frames. For simplicity we consider the WBN
topology to be static and that secondary interference among
the different branches of the WBN tree has been suppressed.
This holds for multi-channel WBNs, where only primary
interference exists. In the single channel case, this can be
achieved by directional antennas [13] or by embedding the
WBN tree in a hexagonal structure [8].

A link transmission set is a set of links that can transmit
simultaneously subject to the WBN scheduling constraints.
Since a multi-channel system has primary interference con-
straints only, any matching in the NG is a link transmission
set (e.g., the link set {a, e, k, m, r} in the NG of Fig. 1).
In a single-channel system, a link transmission set must also
satisfy the secondary interference constraints (e.g., the link set
{a, h, k, l} in the NG of Fig. 1).

The WBN operates with a synchronized frame structure. At
each frame, the scheduling phase decides a link transmission
set to transmit during the entire data transmission phase. Each
link transmission set is represented by a 0-1, |L|×1 vector in
which each unit entry at index l corresponds to link l scheduled
for transmission. We denote the set of all link transmission sets
in the WBN by I(G).



Each link l is represented by a queue maintained at its
transmitter node. Let Al(k) and Ql(k) be the number of
arrivals at l and the number of packets already in the queue of
l at the beginning of time slot k, respectively. Let the arrival
rate at link l be λl. An arrival rate vector λ = {λl, l ∈ L}
is feasible if there exists a collection of link transmission sets
Ij ∈ I(G) and numbers αj ∈ [0, 1) such that:

λl ≤
M∑

j=1

αjIj , and
M∑

j=1

αj < 1 (1)

The set of all feasible rates forms the feasibility region denoted
by Λ. A scheduling algorithm is a maximum throughput
algorithm (or stable algorithm) if for every feasible set of
arrival rates, the average queue size of each link l does not
grow to infinity, that is, lim supk E[Ql(k)] < ∞ for every link
l in the WBN.

In [17], Tassiulas and Ephremides considered a synchro-
nized slotted system where each frame consists of a single
slot. They established that selecting at each slot k a link
transmission set with maximum sum of queue sizes is a
maximum throughput algorithm [17]:

I∗(k) = arg max
I∈I(G)

QT (k)I (2)

The result was shown to hold for arbitrary topologies, ar-
bitrary link scheduling constraints and iid arrival processes.
It has also been extended to more general classes of arrival
processes, and multi-slot frames [16]. Despite its universality,
this algorithm assumes that the scheduling procedure is made
by a centralized controller. Furthermore, to determine the
optimal link transmission set, it requires solving a Maximum
Weight Independent Set (MWIS) problem at each slot. In
multi-channel systems, this reduces to a Maximum Weighted
Matching (MWM) computation, which is of polynomial com-
plexity (O(N 3)). To the best of our knowledge, no known
distributed algorithm exists to solve either MWIS or MWM,
for any topology structure.

We proceed to show that the WBN structure allows to
overcome the above difficulties and solve the MWIS problem
distributively, in linear time, for both multi-channel and single
channel systems. The proofs for all analytical results and
algorithm pseudocodes appear in the Appendix.

IV. LINEAR COMPLEXITY SCHEDULING

In this section, we introduce a set of graph-theoretical
properties particular to the link interference relationships of the
WBN structure. Using these properties, we devise a centralized
algorithm that can provably solve the MWIS problem in linear
time.

A. Graph-theoretical properties of WBNs

The link interference relationships in the WBN can be
captured by a Contention Graph (CG) G(V, E). Each vertex
v in the CG corresponds to a link in the NG of the WBN
and each edge in the CG signifies that the two links in NG
corresponding to the two endpoints vertices of the edge are
interfering. The CG allows us to abstract the specific link
interference constraints and treat multi-channel and single-
channel systems in a unified manner. For example, the CG in
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Fig. 1. A Network Graph (NG) and its corresponding Contention Graph
(CG) for a multi-channel system.

Fig. 1 corresponds to a multi-channel WBN. An independent
set in a CG corresponds to a feasible link transmission set in
its NG. Thus, solving the MWIS problem on a CG, where
the weight of each vertex is equal to the corresponding link’s
queue backlog, leads to the maximum throughput guarantees.

The graph-theoretical properties of the WBN CG are
summarized by the following Lemmas:

Lemma 1: For any vertex a in a WBN CG, if a is adjacent
to two other non-adjacent vertices b and c, then
(i) b and c cannot be both adjacent to a vertex d unless
vertex a is adjacent to d itself.
(ii) Every path from b to c should have an intermediate vertex
that is adjacent to a.

Lemma 2: Given a WBN CG, it is always possible to find
at least one vertex v such that v and all its neighbors form a
clique. Moreover, if v is removed from the CG, the resulting
graph possesses the same property.

Lemma 1 summarizes the connectivity patterns of a WBN
CG (see Fig. 2). Lemma 2 reveals a recursive structure in
a WBN CG. The properties summarized by the above two
Lemmas are not satisfied in general CGs.
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Fig. 2. (a) Lemma1-(i): Possible connectivity patterns for 4 vertices a,b,c,d
in a WBN CG (b) Lemma1-(ii). Lemma 1 holds given that (1) a is adjacent
to b and c (2) b and c are not adjacent.



B. Enumeration Algorithm

Based on the Lemma 2 criterion, we first design an enumer-
ation algorithm that assigns a unique sequence label to each
vertex in CG. The enumeration sequence determines the order
CG vertices will be visited each time the MWIS scheduling
algorithm needs to be executed.

Enumeration Algorithm: A graph ICG is initialized to
graph CG. At every iteration i, and as long as ICG is not
empty: (i) select an arbitrary vertex v in ICG such that v and
all its neighbors constitute a clique (guaranteed to exist by
Lemma 2), (ii) label v by the number i, and (iii) delete v
from ICG.

Fig. 1 shows the output of the enumeration algorithm in the
multi-channel WBN CG. The sequence label of each vertex is
shown below its id.

C. MWIS algorithm

The centralized MWIS scheduling algorithm takes as input a
weighted CG and returns an independent set. It consists of the
Weight-Exchange Phase and the Independent Set Construction
Phase discussed below.

Weight Exchange Phase: Initialize a vertex set called
TRAV to be empty. Also, initialize the residual weight RW of
each vertex to its weight. Based on the enumeration sequence,
traverse each vertex of the CG in increasing label order. For
each vertex v traversed, if its RW is positive: (i) add it to the
TRAV set, (ii) decrease its RW to zero, and (iii) decrease the
RW of its neighbors in CG by v’s RW; otherwise skip to the
next vertex.

Independent Set Construction Phase: Initialize a vertex
set I to be empty. Traverse every vertex v in TRAV in
decreasing label order. Vertex v will be included in I as long
as I does not contain any neighbor of v.

Table I illustrates the first few iterations of the Weight
Exchange Phase and Table II illustrates the first few iterations
of the Independent Set Phase for the CG in Fig. 1.

MWIS Theorem: The independent set I computed by the
end of the Independent-set Construction Phase of the MWIS
scheduling algorithm is a MWIS.

Proof: In a vertex-integer-weighted graph G, a set C
of cliques is called a clique cover if every vertex of G is an
element of at least as many elements of C as its weight is. Note
that every vertex v in an independent set should be covered
by at least as many cliques as the weight of v is. Therefore,
since each clique can cover one and only one element of the
independent set, the cardinality of any clique cover of a vertex-
integer-weighted graph is greater than or equal to the weight
of any independent set. Making use of this fact, we prove
now that the independent set I extracted by the Scheduling
Algorithm is a maximum weight independent set by showing
that we can obtain a clique cover of the same cardinality as
I’s weight in a straightforward manner.

By Lemma 2, the set of any vertex v and all v’s
neighbors that have been enumerated after v form a
clique. We denote such a clique by Cv (see Figure 3 for
an example). Construct a set C of RWx cliques Cx for
every vertex x in the TRAV set which was built during
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Fig. 3. Some Cliques Cv as obtained after the enumeration algorithm

the Weight-exchange phase - RWx is the residual weight
of x right before it was traversed during the Weight-
exchange phase. For example, in the case of Table I, C =
{Ca, Cb, Cb, Cc, Cd, Ce, Ce, Ce, Ch, Ch, Cj , Cj , Ck, Cl, Cl, Cl

Cn, Co, Co, Co, Cp, Cq, Cq, }. C is a clique cover: every vertex
x in TRAV is covered by exactly as many cliques as x’s
weight, and there is no vertex y outside the TRAV set that
is not covered by at least as many cliques as y’s weight
(otherwise, y would have been part of the TRAV set).
Moreover, no clique Cv in C does not contain any of I’s
vertices (otherwise, v would have been part of I). Therefore,
and since no clique can contain more than one vertex of I,
every clique in C covers one and only one vertex of I.

For the sake of contradiction, assume that the cardinality of
C is strictly greater than the total weight of I. According to
the Pigeonhole Principle, at least one vertex z in I is covered
by more cliques than z’s weight which is false.
⇒ the cardinality of C is exactly equal to the summation of
the weights of I’s vertices
⇒ I is a MWIS.

Both phases of the MWIS scheduling algorithm require a
number of iterations equal to the number of nodes in CG,
which is in turn equal to the number of links L in the WBN.
Since the WBN topology is a tree, the scheduling algorithm
requires a total of 2(N-1) steps, which is linear in the number
of nodes in the network.

V. DISTRIBUTED PROTOCOL

The MWIS algorithm of the previous section is centralized
and executed on the vertices of the WBN CG. We now use
this algorithm to design a slotted distributed protocol executed
by the nodes in the WBN NG that still solves the MWIS
problem in linear time. In the following, we focus on the
protocol description for the multi-channel case. The single-
channel case follows similar steps and is described in detail
in Section V.

The frame structure of the distributed protocol is reported in
Fig. 4. Each data transmission phase can accommodate several
packets and is preceded by a scheduling phase. Each schedul-
ing phase is made up of two subphases: the Weight-exchange
phase and the Independent-set Construction phase, denoted



TABLE I

FIRST THREE ITERATIONS FOR THE WEIGHT-EXCHANGE PHASE OF CG IN FIG. 1 FOR AN ARBITRARY SET OF WEIGHTS. DEPICTED DURING EACH

ITERATION ARE THE MODIFIED RW VARIABLES AND THE TRAV SET.

Contention Graph Vertex Residual Weights RW TRAV
Iteration (=label #) a b c d e f g h i j k l m n o p q r

0(initialization) 1 4 2 5 6 2 6 2 2 3 1 4 2 3 3 4 2 2
1 0 3 1 4 a
2 4 0 0 a, h
3 1 2 0 a, h, k

Data Packet 1 ……. Data Packet N

Data Transmission Phase

Weight Phase MWIS Phase

Round 1 ……. Round MaxSEQ1 Round 1 ……. Round MaxSEQ2

Scheduling Phase

Fig. 4. Scheduling Mechanism

by Weight-phase and MWIS-phase respectively. The Weight-
phase and MWIS-phase consist of several synchronized rounds
each.

Each link in the WBN NG is mapped to a particular Weight-
phase round and to a particular MWIS-phase round. During
each round of the scheduling phase, the end nodes of a link
mapped to this round broadcast the link’s residual weight (if
positive) or their independent set membership status (if the link
is going to be scheduled). In addition, broadcasting nodes and
other nodes in their range update the residual weight values
and the independent set membership status of their adjacent
links. We describe the protocol steps in detail in the following
subsections.

The size of each round, the number of rounds per phase,
and the information about which nodes perform what actions
and during which rounds are all constant and predetermined.
This information is computed offline based on a variant of the
enumeration procedure discussed in Section IV. The schedul-
ing phase corresponds, therefore, to constant overhead per each
transmission data phase. We discuss overhead minimization in
Section VI and next present the scheduling phase mechanism.

TABLE II

FIRST THREE ITERATIONS OF THE INDPEPENDENT SET CONSTRUCTION

PHASE FOR THE CG IN FIG. 1. THE MWIS IS FOUND BY VISITING THE CG

VERTICES IN TRAV SET IN DECREASING LABEL ORDER.

0: Not Traversed, 1: ∈MWIS, -1: �∈MWIS I
labl a b c d e h j k l n o p q

0 0 0 0 0 0 0 0 0 0 0 0 0
17 1 -1 l
16 -1 1 -1 l, e
14 l, e

A. Offline Parallel Enumeration Procedure

The scheduling phase is based on two enumeration se-
quences SEQ1 and SEQ2 generated offline for the Weight-
phase and the MWIS-phase respectively. We denote the

procedure that generates SEQ1 and SEQ2 by the Parallel
Enumeration procedure. The Parallel Enumeration procedure
assigns labels sequentially to CG vertices based on the order
each link is allowed to exchange its weight and MWIS status
information. The end nodes of two links that have the same
SEQ1 (SEQ2) enumeration label are allowed to transmit a
weight-exchange (independent set membership) control packet
during the same Weight-phase (MWIS-phase) round. The
details of how to enumerate the CG vertices in an optimal
way is discussed in Section VI as well.

Figure 1-b shows the (SEQ1,SEQ2) enumeration pair above
each link’s id shown in the multi-channel CG. The details of
the distributed protocol scheduling phase (Weight-Phase and
MWIS-Phase) are given next.

B. Online Scheduling Phase

We demonstrate the protocol operation for a multi-channel
implementation based on a transmitter-oriented channel as-
signment scheme. Each node has been assigned a channel for
transmissions and channels have been assigned such that there
is no secondary interference. When a node is scheduled to
receive from a particular transmitter during a frame, it switches
to the channel of that transmitter. For this purpose, nodes
maintain a local schedule for the weight-phase and for the
MWIS-phase that indicates when and which link they should
transmit for or receive information from.

1) Weight-Phase: Each node maintains a per-link residual
weight table where each residual weight entry RW is initialized
to be equal to the link’s queue size at the beginning of the
scheduling phase.

At the beginning of each weight-phase round i, both end
nodes of every i-enumerated link l broadcast its residual
weight RW on their channels if RW is positive. Then, both
endpoint nodes of link l and all nodes within their range
decrement the residual weight of all their adjacent links by
RW . As a result, the end nodes of every link whose CG
vertex is adjacent and has a higher SEQ1 label than the CG
vertex of link l will decrement the residual weight of that link.
Moreover, a link for which the residual weight becomes zero
or negative is eliminated by its end nodes from the rest of the
Weight-phase and the MWIS-phase.

Figure 5-a shows an example of the Weight-phase during the
first Weight-phase round based on the enumeration sequence
shown in Figure 1-b. Broadcasting nodes are dotted in black,
and their weight transmissions represented by arrows. The
endpoint nodes of links a and o (both having a SEQ1 label
equal to 1) are the broadcasting nodes and both sets of
nodes dotted in black and white update their residual weight
information for the corresponding neighboring links b, c, d, m,



and p. Note that the root node of the tree and the leaf nodes
do not need to broadcast the weight of their links, and hence
they are preconfigured not to do so.
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Fig. 5. Weight-phase and MWIS-phase in multi-channel WBN based on the
(SEQ1,SEQ2) enumeration Sequences shown in Figure 1-b

2) MWIS-Phase: At the beginning of MWIS-phase round
i, both endpoint nodes of an i-enumerated link l, broadcast
a short MWIS-membership packet on their channels if link
l has not been eliminated during the previous Weight-phase
or during previous rounds of the current MWIS-phase. Then,
the endpoint nodes of l as well as their one-hop neighbors
which sensed the MWIS-membership transmission eliminate
all their adjacent links except link l. Thus, by the end of round
i, all links whose CG vertex is adjacent to the CG vertex of
link l are effectively eliminated from the MWIS.

Figure 5-b shows an example of the MWIS-phase during the
second MWIS-phase round based on the enumeration shown
in Figure 1-b: the endpoint nodes of links d and l dotted in
black are the broadcasting nodes (assuming that links d and l,
of SEQ2 equal to 5, were part of the TRAV set by the end of
the Weight-phase, and link g, of SEQ2 equal to 6, was not),
and both set of nodes dotted in black and white are supposed
to eliminate links a, b, c, e, f, m, and n from the MWIS
transmission set.

VI. OVERHEAD MINIMIZATION

The overhead of the distributed protocol is dictated by the
duration required to complete the MWIS computation for the
scheduling phase. This consists of control slot durations, τ1

and τ2, and the control slot counts, SEQ1 and SEQ2, for the
Weight-phase and MWIS-phase respectively.

The durations τ1 and τ2 depend on the physical layer.
We present minimum slot durations for an 802.16 PHY in
Section VIII. The number of control slots SEQ1 and SEQ2
is at most linear in the number of nodes in the network.
While this can still yield high overhead in practice, this bound
is topology-independent and holds even in networks with no
spatial reuse (e.g., star topology).

In this section, we design algorithms that exploit spatial
reuse to minimize both SEQ1 and SEQ2, given a WBN topol-
ogy. In contrast to the distributed protocol, these algorithms
are centralized and executed at the much slower time scale
of topology changes in the WBN. The algorithms determine

the minimum constant per-frame overhead, as well as the
optimal transmission schedule during the scheduling phase of
the protocol.

The determination of the optimal schedule cannot be ad-
dressed by classical graph coloring approaches because, in
addition to interference constraints, there are timing constraints
dictated by the protocol operation. Our solution exploits the
problem structure and is based on a recursive procedure.
Guided by our optimal algorithms, we also derive closed form
expressions for the case of regular tree structures to gain
insights on the overhead size in terms of the breadth and depth
of the WBN.

A. Enumeration Constraints

We describe the constraints that shape our problem and
differentiate it from classical graph theoretical problems. Each
enumeration procedure has time and spatial constraints: time
constraints essentially dictate which CG vertices can be enu-
merated first (hence, have lower label numbers), whereas
spatial constraints enforce that no control messages will collide
during the scheduling phase.
SEQ1 Time Constraints: As discussed in the centralized
algorithm, any CG vertex is constrained to satisfy Lemma 2
when it is SEQ1-enumerated.
SEQ1 Spatial Constraints: In order to avoid collisions be-
tween weight-exchange packets, two links of which any node
endpoints are within 2 hops in a multi-channel NG (4-hops in a
single-channel NG) cannot be enumerated by the same SEQ1
label number. Under both single-channel and multi-channel
access constraints, this is equivalent to the restriction that CG
vertices within a shortest distance of 3 cannot be enumerated
by the same label number. For example, in the network shown
in Figure 1-a under multi-channel access constraints, link g
cannot be enumerated by the label number of any other link
in the network.
SEQ2 Time Constraints: Regarding SEQ2 enumeration
constraints, CG vertices are supposed to inform their neighbors
of their independent transmission set membership status in
the reverse order (with respect to the SEQ1 sequence). Hence,
for every pair of adjacent CG vertices (V, V ′),

if SEQ1V < SEQ1V ′ ⇒ SEQ2V < SEQ2V ′ (3)

SEQ2 Spatial Constraints: The MWIS phase allows more
spatial reuse than the Weight-phase because it only re-
quires nodes to sense MWIS-membership transmissions in-
stead of decoding weight-ecxhange packets. Sensing the cor-
rect MWIS-membership transmissions requires links subject to
primary interference in a multi-channel NG (subject to both
primary and secondary interference in a single-channel NG)
not to be enumerated by the same SEQ2 label number. Under
both single-channel and multi-channel access constraints, this
is equivalent to the restriction that adjacent CG vertices cannot
be enumerated by the same SEQ2 label number.

B. Minimum-Enumeration Algorithms

Algorithms to compute the minimum number of Weight-
phase rounds (SEQ1 size) and MWIS-phase rounds (SEQ2
size) needed for any multi-channel WBN are presented
below. The single-channel case is similar and can be found



in Section VII. We first introduce the Maximum-enumeration
index theorem, crucial in solving the problem and deriving
the proofs of the optimal algorithms:

Highest-Index Vertex Theorem: If a particular CG vertex v
is constrained to have the highest SEQ1 enumeration label,
then v and only v will have the highest SEQ1 and SEQ2
enumeration labels.

The Highest-Index Vertex Theorem provides a starting point
toward the solution. Since the highest label for both SEQ1 and
SEQ2 will be occupied by a single vertex in the CG, it suffices
to consider a problem instance that minimizes SEQ1 and SEQ2
starting from a vertex. Then the solution is the minimum of
all problem instances.

We represent each problem instance by a pivot tree derived
from the network graph and rooted at each node R. We then
design algorithms that operate on the pivot tree to compute
the minimum possible SEQ1 and SEQ2 Parallel Enumeration
sizes. For a particular pivot tree TR, our algorithms make use
of the Maximum-enumeration index theorem and constrain
the set of links in the network corresponding to the root
vertex R to contain a link corresponding to such a vertex
v with the highest index. The algorithms find the minimum
SEQ1 and SEQ2 enumeration labels such a vertex v can
obtain. Denote these minimum SEQ1 and SEQ2 labels by
SEQ1R and SEQ2R respectively. An optimal SEQ1 and
SEQ2 size pair is essentially the pair that minimizes the
following overhead equation for every vertex R being the
root of a pivot tree:

SEQ1R × τ1 + SEQ2R × τ2 (4)

Focusing on a WBN node R, we proceed to describe the
methodology that solves its corresponding problem instance
using three algorithms: the Pivot Tree Construction Algorithm,
Min-SEQ1 computation algorithm, Min-SEQ2 computation
algorithm.

1) Pivot Tree Construction Algorithm: For any non-leaf
node R in the network, a pivot tree TR is constructed as
follows:

• The pivot tree is initialized to be the same as the NG
except that R is designated to be the root of the pivot
tree.

• Every node in the pivot tree is assigned a weight equal
to the number of children is has, and every link in the
network graph is now represented by the corresponding
non-leaf parent vertex in the pivot tree.

Figure 6 illustrates the construction of the pivot trees TR

for the WBN in Figure 1.
2) Min-SEQ1 computation algorithm: Delete the leaf ver-

tices of the pivot tree, denote the lowest level number of the re-
maining pivot tree TR by L, and associate with each vertex V
in the tree two distinct-element sets: SelfV and ChildrenV .
SelfV contains the Parallel Enumeration SEQ1 numbers of all
the network graph links represented by V while ChildrenV

contains the Parallel Enumeration SEQ1 numbers of all the
links corresponding to every child vertex V ′ of V in the
remaining pivot tree. The contents of these two sets can vary
during the minimum-size computation procedure. However, at
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Fig. 6. The Tl,g pivot tree construction for the network shown in Figure 1

the end of the computation procedure, the maximum-valued
element in the Self set of R is equal to SEQ1R. This is
given the restriction that the root vertex R in the pivot tree
should represent the link with the highest SEQ1 label. The
details of how to arrive to the Self set of the root vertex of
TR are shown next.

For a pivot tree vertex V , denote V ’s children vertices
and V ’s weight by ChV and WV respectively. For every
vertex V in the remaining subtree, initialize the SelfV set
to {1, 2, 3 . . .WV } and the ChildrenV set to be empty.

Starting from level L− 1 of the tree recursively up to level
0 (the root of the pivot tree), traverse every tree vertex on the
same level of the tree. For every vertex V traversed, traverse
each child vertex V ′ of V and increase SelfV ′ label values as
necessary. More specifically, before increasing the label values
of a SelfV ′ set, the SEQ1 enumeration labels for the links
represented by the subtree rooted at V ′ were optimized for
maximal spatial reuse; however, this was done assuming that
the enumeration labels in the SelfV ′ are independent from the
Self sets’ labels of V ’s other children (which is generally not
the case according to the SEQ1 Spatial Constraints discussed
earlier). Therefore, for SEQ1-size’s optimality, increasing the
label values in a SelfV ′ set should be done while preserving
as much spatial reuse as possible. To achieve this objective, we
increase the value of every element member in SelfV ′ by the
minimum value such that the spatial constraint is not violated:

SelfV ′ ∩ (ChildrenV ′ ∪ SelfV ′′) = φ

∀ (V ′, V ′′) ∈ ChV × ChV (5)

The Children set of V is now made equal to the union of all
the Self sets of its children. The Self set of V is then made
equal to the minimum lexographic set of WV elements such
that both spatial and time constraints are captured as follows:

SelfV ∩ (ChildrenV ∪ SelfV ′′ ∪ ChildrenV ′′) = φ, (6)

and

∀ vertexV ′ ∈ ChV : ∃x ∈ SelfV such that

x.SEQ1 > x′.SEQ1 ∀x′ ∈ SelfV ′ (7)

Figure 7 shows the final Self and Children sets of each
vertex in the pivot tree shown in Figure 6.
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3) Min-SEQ2 Computation Algorithm: Denote the lowest
level number of the pivot tree TR by L and the set of the
children of a vertex V by ChV . Sort V ’s children by their
weight in decreasing order and denote the position of V ’s child
V ′ in the sorted list by orderV ′ . Starting from level L− 1 of
the tree recursively up to level 0, traverse all the tree vertices
on the same level. For every vertex V traversed, update the
weight of V wV as follows:

wV = max(wV ′ + orderV ′)∀V ′ ∈ ChV

The final weight of the root vertex is the minimum SEQ2
Parallel Enumeration index for r. The pseudocode for mini-
mum SEQ2 size computations is shown in the appendix, and
Figure 7 shows the final weight of each vertex in the pivot
tree shown in Figure 6.

C. Minimum-enumeration Size-computation for Regular Trees

Simple expressions can be derived from the general size-
computation algorithms for regular trees where each non-leaf
node has the same number of children, and all leaf nodes
are equidistant from the tree’s root node. Denote the uniform
neighborhood degree of the tree by D, where D is greater
than or equal to 2, and the distance between the leaf node
and the root node by L, where L is greater than or equal to
2. The minimum size computation formulas are reported in
table III. As the table shows, the order of overhead-increase

TABLE III

MINIMUM (SEQ1,SEQ2) OVERHEAD FOR REGULAR TREES

Min SEQ1 (rounds) Min SEQ2 (rounds)

Multi-channel D + LD2 − D2 − 1 LD − 1

Single-channel D + D2 + 2D3(L − 2) − 1 2LD − D2 − D − 1

as a function of the neighborhood degree for a fixed-depth tree
is quadratic (polynomial of order 3) in multi-channel networks
(single-channel networks). The order of overhead-increase as
a function of the depth level for a fixed-neighborhood-degree
tree is linear in multi-channel and single-channel networks.
Hence, trees that grow by depth tend to have less overhead
with our protocol than trees that go by breadth.

VII. SINGLE CHANNEL WBNS

The centralized MWIS algorithm is identical for both single-
channel and multi-channel systems because it is executed on

the vertices of a CG. However, the distributed protocol oper-
ates on the NG which is characterized by different interference
constraints in each system. In a single-channel NG, one-hop
vertex neighbors of a vertex v in CG, correspond to links both
one-hop and two-hop away from its corresponding link l (Fig.
8), as opposed to links only one-hop away in a multi-channel
NG (Fig.1-b). This implies further propagation of control
messages for the distributed protocol and different time and
spatial (SEQ1,SEQ2) constraints for overhead minimization.
We proceed to describe the modifications and extensions for
the multi-channel distributed protocol and overhead minimiza-
tion algorithms for single channel systems.
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Fig. 8. A Network Graph (NG) and its corresponding Contention Graph
(CG) for a single-channel system.

A. Distributed Protocol

The distributed single-channel protocol uses the same frame
structure as the multi-channel protocol (Fig. 4), with two main
differences. First, all transmissions occur over a single channel
in both scheduling and data phase. Hence, the node local
schedules in the scheduling phase only determine whether
nodes are in transmit or receive mode. Second, each iteration
i for link l of the centralized algorithm in both Weight-Phase
and MWIS-phase is mapped to two rounds, i and i+1 for link
l: During round i, the link l node endpoints broadcast a control
variable (RW or MWIS membership, depending on the phase);
during round i+1, the one-hop neighbors broadcast the same
control variable. Finally link l node endpoints and all nodes
within their two-hop neighborhood make the corresponding
adjustments on their adjacent links. The specific steps taken
during rounds i and i + 1 at each phase are described below:

1) Weight-Phase: At the beginning of each weight-phase
round i, both end nodes of every i-enumerated link l broadcast
its residual weight RW if RW is positive. Once they receive it,
the one-hop neighbors act as forwarding nodes and rebroadcast
the RW value during round i + 1 to their own one-hop
neighbors. At the end of round i+1 the link l endpoint nodes
and their one-hop neighbors decrement the residual weights of
all their adjacent links by RW . The two-hop neighbors only
decrement the residual weights of their adjacent links from



which they received the RW message during round i+1 2. As a
result, the end nodes of every link whose CG vertex is adjacent
and has a higher SEQ1 label than the CG vertex of link l will
decrement the residual weight of that link. Moreover, a link
for which the residual weight becomes zero or negative is
eliminated by its end nodes from the rest of the Weight-phase
and the MWIS-phase.

2) MWIS-Phase: At the beginning of MWIS-phase round
i, both endpoint nodes of an i-enumerated link l, broadcast
a short MWIS-membership packet on their channels if link
l has not been eliminated during the previous Weight-phase
or during previous rounds of the current MWIS-phase. Then,
during round i + 1, the one-hop neighbors act as forwarding
nodes and rebroadcast the MWIS-membership packet. At the
end of round i + 1 the link l endpoint nodes and their one-
hop neighbors eliminate all their adjacent links (except link
l). The two-hop neighbors only eliminate their adjacent links
which correspond to one-hop neighbors that transmitted the
MWIS-membership packet during round i + 1.

B. Overhead Minimization

As briefly discussed in Section VI, the main difference
between single-channel and multi-channel systems for the
overhead minimization problem lies in the more restrictive
spatial enumeration constraints for the single channel case. The
overhead minimization algorithms for the single channel case
follow the same methodology as in the multi-channel systems.
The Pivot Tree Construction Algorithm is common to both
systems because it is independent of interference constraints
as it is constructed based on the logical tree of the WBN.
We proceed to show the modifications required for the Min-
SEQ1 Computation Algorithm and Min-SEQ2 Computation
Algorithm for the single channel case. The proofs of the
algorithms’ optimality can be found in the Appendix.

1) Min-SEQ1 Computation Algorithm: The same
terminology is used and nodes are traversed in the same way
as in the multi-channel case except that the spatial constraints
are reflected as follows when updating the Self set of the
traversed pivot tree vertex V and of every children vertex V ′:

ChildrenV ′ ∩ ChildrenV ′′ = φ

and
SelfV ′ ∩ (ChildrenV ′ ∪ ChildrenV ′′ ∪ ChildrenV ′′′ ∪

SelfV ′′) = φ
and
ChildrenV ′ ∩ SelfV ′ = φ
and
SelfV ∩ (ChildrenV ∪ ChildrenV ′ ∪ ChildrenV ′′ ∪

ChildrenV ′′′) = φ
∀ combinations of vertices V ′ and V ′′ ∈ ChV and V ′′′ ∈

ChV ′′

The pseudocode for the minimum SEQ1 size calculations
is shown in the appendix.

2The knowledge about which adjacent links to decrement upon hearing a
message on a specific round is preconfigured as part of the offline Parallel
Enumeration procedure. This is because for efficiency purposes, both weight-
exchange and MWIS-membership packets do not contain the address of their
sender.

2) Min-SEQ2 Computation Algorithm: The same terminol-
ogy is used and nodes are also traversed in the same way as in
the multi-channel case except that the weight of each traversed
pivot tree vertex V is updated as follows:
wV = wV + max(wV ′)∀V ′ ∈ ChV .
The pseudocode for the minimum SEQ2 size calculations is
shown in the appendix.

VIII. IMPLEMENTATION CONSIDERATIONS

Being frame-based, our MAC protocol is best suited for
a scheduling structure similar to 802.16 MAC as opposed to
contention-based access of 802.11 MAC. However, in addition
to 802.16 physical layer (PHY) [1] our MAC protocol can also
operate over 802.11a PHY [5]. 802.11a PHY is designed to
provide speeds up to 54Mbps in the 5 GHz unlicensed band.
It also provides robustness and multi-path immunity for time-
slotted systems (small guard times of 0.8μs being sufficient)
and has been strongly suggested to be integrated with 802.16
MAC into a wireless MAN system that employs TDM [3].

We therefore analyze the feasibility of our protocol based
on both 802.16 PHY and 802.11a PHY. More specifically,
we estimate the duration of each round in the Weight-phase
and the MWI-phase. Combined with the number of rounds
given by the overhead minimization algorithms of Section VI,
this fully specifies the overhead required by our protocol for
existing wireless technologies.

An 802.16 (802.11a) PHY frame consists of a 8 (16) μs
preamble, followed by a 4-μs-SIGNAL field that carries the
length of the packet and the transmission rate (6, 9, 12, 18,
24, 36, 48 or 54 Mbps). The first 4 (8) μs in the preamble
are used to acquire the automatic gain control (AGC), coarse
frequency offset recovery, and coarse symbol synchronization.
The next 4 (8) μs are used for fine offset recovery, symbol
synchronization, and channel equalization. In 802.16 as well
as in 802.11a, the first 4 μs in the preamble are enough to
acquire the AGC, which essentially means that a transmission
has been detected. More specifically, such a 4-μs transmission
would be long enough to be sensed during one of the MWI-
phase rounds and would signify a positive MWI-membership
status. In addition, the SIGNAL field can be replaced by the
actual weight value in the case of control packets sent during
the Weight-phase. A weight-control packet would be assumed
therefore to be always sent at the base rate. In addition to the
transmission time and sensing time requirements, the length
of each round in the Weight-phase and the MWI-phase should
take into account the Transmit-to-Receive switching time.
802.16 and 802.11a PHY specify this time, together with a
reasonably big propagation delay period and a single guard
slot, not to exceed 5 μs. Therefore, it is sufficient to allocate
17 (25) μs for each weight-phase round and 9 μs for each
MWI-phase round in the case of an 802.16 (802.11a) PHY.

Given that we have investigated both, the number of control
rounds needed to accomplish the MWI schedule and the size
of each round slot, we can now evaluate the exact amount of
overhead introduced by our protocol in a number of particular
topologies.

We assume data frame sizes to be between 4 and 20 msec as
this has been suggested for the 802.16 protocol in the TDM
mode [4], [2]. Tables IV and V show numerical overhead
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Fig. 9. Two Example Topologies for Overhead Illustration as Shown in
Tables IV and V

TABLE IV

OVERHEAD UNDER MULTI-CHANNEL ACCESS CONSTRAINTS

Overhead with Different Slot Sizes

Topology 4msec 8msec 12msec 16msec 20msec

Figure 1 7.41% 2.85% 2.60% 1.96% 1.57%

Figure 9-a 11.23% 5.95% 4.06% 3.07% 2.47%

Figure 9-b 8.32% 4.34% 2.94% 2.22% 1.78%

values for the topologies show in Figures 1 and 9 under multi-
channel and single-channel access constraints respectively
while varying the slot size. The values calculated are based
on the 802.16 PHY standard, and we assume the minimum
sufficiently large weight-phase and MWI-phase round slot
sizes of 17 μs and 9 μs respectively.

IX. PERFORMANCE EVALUATION

A. Comparison with Maximal Scheduling

We compare our protocol with maximal scheduling proto-
cols since they can be implemented in a distributed manner.
The work in [11] specifies a protocol to compute maximal
schedules for single-channel systems in 2N rounds. For multi-
channel systems, Lin and Shroff outline a maximal protocol
in [7] based on Hoepman’s algorithm for distributed weighted
matchings [9]. This algorithm does not have a deterministic
upper bound as [7]. Its time complexity is O(N) for wired
networks and increases to O(N 2) if the primary interference
constraints are taken into account [12]. We therefore denote

TABLE V

OVERHEAD UNDER SINGLE-CHANNEL ACCESS CONSTRAINTS

Overhead with Different Slot Sizes

Topology 4msec 8msec 12msec 16msec 20msec

Figure 1 17.18% 9.40% 6.47% 4.93% 3.98%

Figure 9-a 26.74% 15.43% 10.85% 8.36% 6.21%

Figure 9-b 20.05% 11.14% 7.71% 5.90% 4.78%
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Fig. 10. MWI Maximal Overhead Ratio in Single-channel Networks

the protocol in [7] as Maximal and compare it with the single-
channel version of our protocol.

Overhead. The Maximal protocol is time slotted and uses
a transmission architecture similar to ours: a scheduling phase
followed by a data transmission phase for each frame.

The scheduling phase of Maximal consists of a constant
number of rounds where nodes are scheduled to broadcast
an ID message during one round and a schedule inclusion /
exclusion message during another round. More specifically,
each node in the network is allocated one round to broadcast
an ID message, another round to potentially broadcast an ex-
clusion message, and a third round to potentially broadcast an
inclusion message (if the link has not transmitted an exclusion
message yet). Therefore, based on our PHY parameter values
for the control slot durations, each ID message (inclusion and
exclusion message) should be allocated a round of at least τ1

(τ2). Hence, the overhead of Maximal is equal to (τ1 +2τ2)N
where N is the number of nodes in the network.

For regular trees, the overhead of Maximal becomes (τ1 +
2τ2)(DL+1 − 1)/(D − 1) . Figure 10 shows the overhead
ratio of our single channel protocol over Maximal for various
regular trees. The overhead is computed using the SEQ1 and
SEQ2 formulas in Table III and the same slot durations τ1

and τ2 we compute in Section VIII assuming 802.16 PHY
specifications. The trend is that the ratio is quickly decreasing
when either the degree or the depth of the tree increases. When
d is fixed and L is varied, the decrease in the overhead ratio
is exponential of order O(L(D−L)). When L is fixed and
d is varied, the decrease in the ratio is polynomial of order
O(D1−L). Hence, deep trees are worse for Maximals protocol
than for our protocol.

Stability. Single-channel maximal scheduling protocols
have been analytically shown to guarantee at least 1/8 of the
maximum throughput region in arbitrary wireless networks.
We show through simulations that their performance limita-
tions hold for the case of WBN topologies. We conducted
experiments for the WBN shown in Figure 1. The capacity
of each transmission link is normalized to one packet per slot
and all packets are of fequal size. Using the technique in [10],



we compute the link Max-Min Fair (MMF) rates, and use
them as input CBR traffic load to the WBN links. We monitor
the average queue sizes every 900,000 time units. The total
running time for the experiment was 17,100,000 time units.

For our protocol, we observed that the average queue size
of each link remained constant, which verifies the stability
property of the scheduling algorithm on the (feasible) MMF
allocation. However, Maximal was only found stable by scal-
ing down all input rates to 25% of the MMF rate allocation.
This fraction depends on the particular WBN topology and on
that the arrival rates were scaled down as a fraction of the
MMF rates. However, this example illustrates that a maximal
scheduling protocol fails to schedule a significant amount of
points which can be scheduled using our maximum throughput
protocol.

B. Robustness

Here we evaluate the effect of transmission errors on the
stability of our protocol. As discussed in Section V, weight-
phase and MWI-phase control messages are transmitted in
the form of a broadcast. A broadcast link transmission fails
whenever the weight or the MWI information cannot be
received correctly over one of the links where the control
message broadcast is taking place. In our simulations, links fail
independently and failures can occur with equal probability for
data packets and scheduling packets.

When a node fails to receive a broadcasted weight in-
formation for a link L during its weight-phase round, it
assumes the most recent value received for this link and
updates the residual weight information accordingly. For a
MWI-phase control message transmission, control packets are
only transmitted if a link is broadcasting the information it has
scheduled for the following data-phase. Therefore, broadcast
link transmission failures during the MWI-phase indicate that
neighboring nodes falsely assume the opposite scenario. Such
inconsistency potentially leads to collisions during the data
phase.

Figure 11 shows the stability region with respect to different
arrival rates as a fraction of the Max-Min fair allocation vector:
the average queue sizes were monitored while varying the
probability of having a link transmission error (x-axis) and the
arrival rates for each probability value (y-axis) were varied as
a fraction of the Max-Min fair arrival rates until stability was
achieved. Interestingly, that same stability region was found
to coincide with the stability region obtained when assuming
that an error can occur during the data phase only. This was
verified with respect to other rate allocation vectors on the
boundary of the maximum throughput region as well.

The significance of this result lies in illustrating that the
maximum throughput region guaranteed by our protocol is
not compromised due to our protocol’s mechanism itself
(although errors during the scheduling phase can lead to faulty
MWIS computations or data collisions). This robustness result
was further verified in a hypothetical set of simulations in
which errors could occur during the scheduling phase but not
during the data phase. In that case, stability was achieved
at all error rates except the case of 100% failure. Such a
stability result can be verified by noting that having non-
zero error rates on control packets is equivalent to statistically
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delaying the scheduling computations while still performing
them periodically on average. This has the same stability
effect as increasing the data transmission size, which has been
analytically shown to maintain stability [16].

X. CONCLUSIONS

In this paper, we introduced a distributed low-complexity
maximum-throughput scheduling protocol for Wireless Back-
haul Networks. We showed that the MWIS problem for
the WBN setting can be solved in linear time using novel
graph-theoretical properties of the WBN contention graph.
We also provided algorithms to minimize the overhead of
the scheduling phase. We have demonstrated that our protocol
outperforms existing protocols based on maximal scheduling
and is robust to errors in the control and data channel.
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APPENDIX A

Algorithm 1 Pseudo-code of the enumeration procedure
i = 1;
ICG = CG;
while (ICG �= φ ) do

enumerated vertex = any vertex in ICG that satisfies
lemma 2;
enumerated vertex.sequence = i;
ICG = ICG − {enumerated vertex};
i + +;

end while

Algorithm 2 Pseudo-code of the procedure that builds the
TRAV set
i = 1;
v.RW = v.weight ∀ v ∈ CG;
TRAV = φ;
while (v.RW > 0 ∀ v in CG) do

if (v.sequence == i && v.RW > 0) then
traversed node = v;
v.RW = v.RW − traversed vertex.RW ;∀v neighbor
of traversed vertex
TRAV = TRAV

S{traversed vertex};
end if
i + +;

end while

Algorithm 3 Pseudo-code of the procedure that finds the
MWIS set
i = numberoflinks;
I = φ;
ITRAV = TRAV ;
while (ITRAV �= φ ) do

if ((v.sequence)== i && v ∈ ITRAV) then
traversed vertex = v;
I = I

S{traversed node};
ITRAV = ITRAV − { v : ∀ v adjacent to
traversed vertex in TRAV };

end if
i −−;

end while

Algorithm 4 Pseudo-code of the Procedure for the Minimum
SEQ1 Size Computations for Multi-channel Networks
SelfV = {1, 2, . . . |C|}∀ leaf vertex V
CurrentLevel = L − 1;
while (CurrentLevel ≥ 0) do

for (vertex V on level# CurrentLevel) do
Adjust V ′s Children Self Set
ChildrenV =

S
SelfV ′∀V ′ ∈ ChV

Adjust V ′s Self Set
end for
CurrentLevel −−;

end while
SEQ1R = max(i)∀i ∈ SelfVTR,R ;

Algorithm 5 Pseudo-code of the Procedure for the Minimum
SEQ2 Size Computations for Multi-channel Networks
CurrentLevel = L − 1;
while (CurrentLevel ≥ 0) do

for (vertex V on level# CurrentLevel) do
wV = max(wV ′ + orderV ′)∀V ′ ∈ ChV

end for
CurrentLevel −−;

end while
SEQ2R = wV ;

APPENDIX B

A. Proof of Lemma 1

To prove Lemma 1, we follow the methodology below.
1- Enumerate all (a,b) combinations such that a is adjacent

to b.
2- Given each (a,b) combination above, enumerate all (c,d)

combinations such that:
i- c is adjacent to a but not to b

ii- d is adjacent to b but not to a
Without loss of generality, we show in Figure 12 all the

combinations that result from the above methodology (shown
on the network graph level for simplicity).
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Fig. 12. All (a,b,c,d) combinations under single-channel access constraints
(A) and multi-channel access constraints (B) such that a is adjacent to b, c is
adjacent to a but not to b, and d is adjacent to b but not to a

As we can notice in Figure 12 a node c can never be
connected to a node d. In addition, deleting the two nodes
constituting link a in the network graph will make node c
unreachable from node b, hence it will break all the connecting
paths between b and c in the contention graph. Essentially,
these paths are either traversing a itself or are having an
element vertex other than b and c that is connected to a.

B. Proof of Lemma 2

If CG is a clique, then any vertex in CG satisfies the lemma.
Otherwise, let x and y be two non-adjacent vertices in CG and
let SCG be a minimum-cardinality-set of vertices such that
every path between x and y has at least one element in SCG.
Let D be a maximum-cardinality-set of disjoint paths between
x and y (see part a - Figure 13). On one hand, it is impossible
that |D| > |SCG| for any D as each element of SCG can cover
at most one path in D. On the other hand, if |D| < |SCG| for
some D, then a set S ′

CG of vertices with |S ′
CG| = |D| can

be trivially constructed where every path between x and y has
an element in S ′

CG. However, it is impossible that there exists
such a set S ′

CG since SCG is a minimum-cardinality-set of
vertices with every path between x and y having at least one
element in SCG. Therefore, D has exactly |SCG| disjoint paths
between x and y. In addition, for any set D, every path in D
should contain one element vertex from SCG by the definition
of SCG, and no vertex element in S can belong to two paths
in D by the definition of D. Therefore, for any set D, every
vertex element in SCG is an element of one and only one path
element in D, and there is no other vertex element in S that
is an element of the same path.

Since every vertex element in SCG is an element of one
and only one path element in D, for every vertex element v
in S, there exists a path Pxv and a path Pyv that connects v
to x and y respectively, and Pxv

⋂
Pxv′ = φ, Pyv

⋂
Pyv′ = φ

for every v′ 
= v in SCG.
For every pair of vertex elements (v, v ′) in SCG, delete

all the other vertices in SCG and denote the node subgraph

by CG’. The path PxvPxv′ connects v to v′ through x, the
path PyvPyv′ connects v to v′ through y, and PxvPxv′ and
PyvPyv′ are disjoint paths. Note that, by the definition of SCG,
deleting all the vertices in SCG creates at least two disjoint
components in CG: one component Gx,CG that has the vertex
x, and another component Gy,CG that has the vertex y (see
part b - Figure 13). Therefore, we can further conclude that
in CG’ none of the vertices on the path PxvPxv′ is connected
to any of the vertices on the path PyvPyv′ .

We prove the rest of the lemma by contradiction: assume
that v and v′ are not adjacent. Among the vertices on the path
PxvPxv′ , consider the subset SPx of vertices that constitute the
shortest path between v and v ′. Because of the assumption, the
shortest path is made up of one or more intermediate nodes.
Denote the first two consecutive nodes after v on SPx by
u and u′ respectively (see part c - Figure 13). u ′ can be
either v′ or just another intermediate node on the shortest
path. In either cases, u′ is not connected to v (otherwise,
we are either contradicting the assumption or the shortest
path definition). Therefore, according to Lemma 1, since u is
directly connected to v and u ′ while v and u′ are not directly
connected, then every path connecting v to u ′ should have at
least one element that is connected to u. This is not the case as
the path PyvPyv′Pv′u′ does not have any element connected
to u (PyvPyv′ is part of the Gy,CG component while Pv′u′

is part of the shortest path). This contradicts Lemma 1 and
shows that our assumption that v and v ′ are not connected is
wrong.
⇒ any arbitrary pair of vertices v and v ′ in SCG is adjacent;

hence, SCG constitutes a clique.
If SCG

⋃
Gx,CG constitutes a clique, then x satisfies

Lemma 2, otherwise, we can similarly find another pair of
non-adjacent vertices x′ and y′ in SCG

⋃
Gx,CG (x′ is chosen

such that none of its neighbors in CG has been deleted
yet). We also find a minimum-cardinality-set SSCG

S
Gx,CG

of vertices such that every path between x ′ and y′ has at least
one element in SSCG

S
Gx,CG

. SSCG

S
Gx,CG

is a clique, and
if SSCG

S
Gx,CG

⋃
Gx′,SCG

S
Gx,CG

is not a clique then we
recursively repeat the same procedure until we end up with a
clique structure (note that in every iteration at least one node
from the remaining graph is eliminated). In conclusion, we can
always find at least one vertex in Gx,CG that satisfies Lemma
2. Similarly, we can find such a vertex in Gy,CG. Therefore,
whenever CG is not a clique itself, we can always find at least
two vertices that satisfy Lemma 2. This result is particularly
important for the design of the distributed version of the MWI
scheduling protocol discussed in Section V.

C. Proof of the Highest-index Vertex Theorem

We prove the Theorem by contradiction.
Assume that the remaining graph to be enumerated has

two or more vertices with the highest enumeration index
(equivalent to having two or more cliques that contain a
highest-index vertex). The remaining contention subgraph to
be enumerated is essentially a connected component since no
vertex can be deleted unless it is connected to two adjacent
vertices. Select any pair (a, b) of such highest-index vertices
such that the shortest path between a and b does not contain
any other highest-index vertex. Let vertex c be an intermediate
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Fig. 13. Steps and Terminology for Proving Lemma 2

vertex on this shortest path. c could not have satisfied Lemma
2 before a and b were enumerated since it would be always
part of more than one maximal clique (otherwise, knowing that
a and b cannot be connected, c would not have been on the
shortest path by the definition of the shortest path). Therefore,
c has an enumeration index higher than that of a and b.
⇒ There is one and only one clique C in the contention graph
that can have the highest SEQ1 and SEQ2 enumerated vertex
in the case of minimum enumeration.

D. Proof of Correctness for the Optimal-SEQ1 Size-
computation Algorithms

We first prove the feasibility of the computations after which
we prove their optimality.

Consider an arbitrary link L in the network such that L
is element of two maximal set of links sharing the same
node each. Let L’s SEQ1 enumeration index be SEQ1L and
denote the maximal set that was deleted when containing
L by S0. Consider the remaining network graph after S0’s
deletion during the pivot tree construction. In the other set S
of L’s maximal set of links connected to the same node, all
the other vertices in S must have a SEQ1 enumeration index
less that SEQ1L. Otherwise, the Lemma 2 requirement in
the SEQ1 enumeration procedure is being violated. Therefore,
a necessary condition for all the contention graph vertices
representing S0 to be SEQ1 enumerated (according to the
Lemma 2 requirement) is to have all the vertices corresponding
to all VTR,S0’s children enumerated first. VTR,S0’s parent
vertex has been excluded among the other vertices adjacent
to VTR,S as such a requirement would essentially lead to
contradicting the Highest-index Vertex Theorem when not
contradicting Lemma 2 itself.

Now consider the set of links W in the network graph that
correspond to a set of a pivot tree vertex and its children
vertices. Any two links in W have their end nodes within
three hops in the network graph. Therefore, no two links in the
network graph represented within a set of a pivot tree vertex
and its children can be enumerated by the same SEQ1 value
as this would violate the Weight-Phase SEQ1 Enumeration

Requirements under multi-channel access constraints. This
condition, together with the Lemma 2 necessary condition for
multi-channel networks, makes SEQ1 enumeration always fea-
sible in multi-channel contention graphs and is considered by
the Minimum-SEQ1 Size-computations algorithm for Multi-
channel Networks.

For the case of single-channel access constraints, we con-
sider the set of links W in the network graph that correspond
to a three-level sub-tree in the pivot tree graph. Any two
links in W have their end nodes within three hops in the
network graph. Therefore, no two links in W can be enu-
merated by the same SEQ1 value as this would violate the
Weight-Phase SEQ1 Enumeration Requirements under single-
channel access constraints. This condition together with the
Lemma2 necessary condition is also sufficient and necessary
for SEQ1 enumeration feasibility in single-channel contention
graphs and is also considered by the Minimum-SEQ1 Size-
computations algorithm for Single-channel Networks.

At this point, we have proven that the SEQ1 computation
achieved under both access constraints is feasible. We now
proceed to prove by induction that the two algorithms
compute the optimal sizes as well:

- In the case of a three-level pivot subtree for multi-channel
networks and five-level pivot subtree for single-channel
network, the optimal-size computation is correct and the
Self set constructed has the minimum lexographic order
for the computed size by construction.

- Assume that optimal-size computation is optimal and the
Self set constructed has the minimum lexographic order
up to level i in an i-level pivot subtree

- By construction, the Self set constructed at level i+1 has
the minimum lexographic order. Moreover, the highest-
value element in the Self set has the minimum value
given the computation values done for the subtrees of
every vertex at level i+1. Therefore, the highest-value
element in the Self set has the minimum feasible value
for among all possible feasible enumerations. Otherwise,
the Self sets constructed for at least one of the subtrees
at the lower levels does not either satisfy the optimality
assumption made above or does not have the minimum
lexographic order given its optimality (given that the Self
set constructed at level i+1 has the minimum lexographic
order and is constructed as mentioned in the computation
algorithms). This leads to a contradiction in either cases.
Therefore, the Self set constructed at level i+1 has
the minimum lexographic order, and the highest-value
element in the Self set has the minimum value among
all possible feasible enumerations.

⇒ The size computation performed by the two algorithms
achieves the optimal values.

E. Proof of Correctness for the Optimal-SEQ2 Size-
computation Algorithms

Consider an arbitrary link L in the network such that L is
element of two maximal set of links sharing the same node
each. Let L’s SEQ1 enumeration index be SEQ1L and denote
the maximal set that was deleted when containing L by S0.
Consider the remaining network graph after the deletion of



S0 during the pivot tree construction. In the other maximal
set S of L’s adjacent links, all the other vertices in S must
have a SEQ2 enumeration index less that SEQ2L. This is
sufficient and necessary to meet the Lemma 2 requirement
for multi-channel networks. For single-channel networks, it
is sufficient and necessary in every three-level subtree of
the pivot tree graph to have each link in the root vertex
enumerated after all the links represented in the corresponding
child vertex and all the child vertex children are enumerated
first. Note that L’s adjacent link in VTR,S0’s parent vertex has
been excluded among the other links adjacent to L. This is
because enumerating the link in VTR,S0’s parent vertex before
L would essentially lead to contradicting the Highest-index
Vertex Theorem when not contradicting Lemma 2 itself.

Any link in S0 which was enumerated before L does not
have its contention graph vertex adjacent to the contention
graph vertex of any of L’s adjacent links after S0’s deletion
in the case of multi-channel networks (otherwise, such links
would have been part of S0 itself). Similarly, in single-channel
networks, any link in S0 which was enumerated before L does
not have its contention graph vertex adjacent to the contention
graph vertex of any of L’s two-hop adjacent links after S 0’s
deletion. Hence, in multi-channel networks, the enumeration
size can be increased by one while enumerating two links
each represented in one distinct vertex of two adjacent pivot
tree vertices. In single-channel networks, the enumeration size
can be increased by one while enumerating two links each
represented in one distinct vertex of two two-hop adjacent
pivot tree vertices.

The two SEQ2 size computation algorithms presented in
this paper take into consideration the necessary and sufficient
conditions discussed in the first paragraph as well as the
flexibility for enumerating multiple links with the same value
discussed in the second paragraph. The correctness of the two
algorithms can be trivially verified for two-level trees and
recursively for every tree that has more levels. The recursive
computation holds optimal because each subtree minimum-
size SEQ2 computation depends only on the degree of the
root vertex and the minimum-size SEQ2 computed for each
of its children subtrees. This is the case in multi-channel and
single-channel networks as can be deduced from the first two
paragraphs in the proof.


