
Journal of Economic Behavior & Organization 83 (2012) 292– 310

Contents lists available at SciVerse ScienceDirect

Journal  of  Economic  Behavior  &  Organization

j our nal ho me p age: www.elsev ier .com/ locate / jebo

Information  processing  and  decision-making:  Evidence  from  the  brain
sciences  and  implications  for  economics!

Isabelle  Brocas ∗

University of Southern California and CEPR, USA

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 13 October 2009
Received in revised form 23 March 2012
Accepted 26 June 2012
Available online 3 July 2012

JEL:
D81
D83
D87

Keywords:
Neurobiology
Decision-making
Economic modeling

a  b  s  t  r  a  c  t

This  article  assesses  the  potential  benefits  of  including  findings  from  neurobiology  in
economic  decision-making  models.  First,  we  emphasize  that  the  evidence  supports  both
‘expected  utility-like’  theory  and  ‘Bayesian-like’  information  acquisition  theory.  Second,
we explain  that  inferences  and  representations  are  subject  to physiological  limitations  that
affect decision  making.  We  report  in  particular  two  ‘mechanical’  models  developed  in neu-
roscience  to  represent  neural  data  and  choices.  We  then  propose  two economic  models
that  incorporate  physiological  limitations  into  an expected  utility  framework.  Interestingly,
these two  models  provide  foundations  for  those  developed  in  neuroscience  (which  emerge
endogenously  in  our  framework)  and  provide  further  predictions  that  can  be  tested  in  prin-
ciple.  This  allows  us  to discuss  the  benefits  of bringing  together  evidence  from  neuroscience
and  economic  modeling.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Economic models of decision-making rely on several important paradigms. Two of them are particularly important. First,
decision-makers’ choices can be represented by well-defined utility functions (satisfying well-defined axioms). Second,
decision-makers are Bayesian processors of information. Even though these two paradigms have merits and surely account
for a large proportion of observed behaviors still, various anomalies have been reported. Most of the hypotheses formulated to
justify those anomalies are introspective and make implicit claims about the underlying mechanisms leading to behavior. In
parallel, a myriad of experiments in neuroscience try to describe the brain processes involved in decision-making. We  believe
that this evidence could and should shed light on the fundamental causes of observed choice anomalies. The objective of this
article is to provide a motivated summary of a few findings from neurobiology and describe how they can be incorporated
in economic models in a useful way.

We are interested in individual decision-making in the following simple experiment. There are two  possible states of
nature S ∈ {A, B}. A decision-maker (hereafter DM,  he) faces uncertainty regarding the state. Nature chooses state A with
probability p0 and state B with probability 1 − p0 but the state is not communicated to DM,  who must decide between two
possible actions k ∈ {a, b}. The benefit of taking action a is GA if the true state is A and 0 if the true state is B. Similarly, the
benefit of taking action b is GB if the true state is B and 0 if the true state is A. DM may  obtain some information, a signal s
correlated with the true state S, prior to making his decision.
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From the perspective of economists, this is a simple problem of information processing: DM receives a signal s, he then
uses this information to form an updated belief about S, and makes a decision based on this belief. Economists would further
assume that the updating process is Bayesian and the decision is made by maximizing expected utility. They also would
model the signal as an imperfect indicator of the true state, and assume that the information transmitted is equal to the
information processed.

This paradigm follows closely standard experimental designs in neurobiology. A typical experiment is the well-known
random dot stimuli experiment (see for example Newsome et al., 1989). A monkey (DM) is facing a black computer back-
ground showing moving white dots. The percentage of dots that move in the same direction, or coherence,  can be manipulated
by the experimenter. A 100 percent coherence corresponds to the case they all move at the same speed and direction. A 0
percent coherence corresponds to the case they all move randomly. The more or less coherent dots display corresponds to
s in the previous notations, and it contains information about the true direction, which corresponds to S. The monkey must
identify the direction followed by the majority of dots by making a saccade. Correct answers are rewarded.

Neurobiologists work under three assumptions. (i) The stimulus is encoded by neurons in the sensory system (e.g. visual
and auditory systems), that is, a representation of s is created. This representation is data available to the brain, which we  call
D. (ii) Information is then interpreted to determine which response should be triggered. (iii) The decision is implemented
by the motor system. However, neurobiologists do not presuppose how information is processed or how decisions are made.
Rather, they measure cell activity in preselected brain areas and correlate it with response.

In this article, we use evidence from neurobiology to understand how DM processes the information contained in the
signal and makes a decision. This allows us to revisit existing economic models of decision-making and offer representations
more in line with the evidence. For expositional purposes, we will use the experimental two-action discrimination paradigm
described above.1 We  will also restrict attention to single neuron studies in non-human primates. This decision is somewhat
arbitrary and the reader shall keep in mind that many other kinds of experiments have been conducted, including single
neuron studies on rodents, fMRI experiments on humans and lesion studies on humans, among others.

The article is organized as follows. In Section 2, we  describe the underlying mechanics of information transmission across
brain cells. In Section 3, we investigate the implications of the existing evidence for expected utility and Bayesian learning. In
Section 4, we review decision-making models developed in neuroscience. In Section 5, we present economic decision-making
models inspired by the evidence reviewed in Sections 2 and 3 and the models outlined in Section 4. Section 6 concludes.

2. The underlying mechanism

For the reader unfamiliar with brain functioning, it might be useful to start with a few words on anatomy and physiology.
This description is by no means exhaustive and should be completed by further readings.2

2.1. Decision-making and brain systems

The human brain has a wide array of functions including functions to help us interpret sensory inputs, originate and
coordinate motor responses, control basic functions such as sleep, hunger or thirst, stock and retrieve information required
to perform tasks, and guide abstract and complex decision-making. The cerebral cortex controls higher functions. It is
composed of various systems with specific missions.

The primary sensory cortices are involved in the treatment of sensory information.3 Representations are created from
primary sensory inputs, which corresponds to the transformation of s into D in our experiment.

The motor cortices (primary and secondary) are responsible for the planning and execution of voluntary motor functions.
They host the process of action implementation rendering decisions. This corresponds to implementing action a or action b.

The prefrontal cortex is in charge of complex cognitive tasks, expressing personality, and moderating behavior.4 The
primary activity of the prefrontal cortex is thought to be cognitive control, that is the orchestration of thoughts and decisions
in accordance with internally generated goals.5 An additional set of structures, sometimes called the limbic system,6 support
a variety of functions including the regulation and manifestation of emotions and the formation of memory.7 These structures
participate in the formulation of a decision for a typical problem.

1 Most of the literature focuses on such two-action discrimination tasks.
2 See for instance Thompson (2000), Shepherd (2003) and Nicholls et al. (2001).
3 These include the primary visual cortex (in the occipital lobe), the primary somatosensory cortex (in the parietal lobe), the primary auditory cortex (in

the  temporal lobe), the primary olfactory cortex (in the piriform cortex in the temporal lobe) and the primary gustatory cortex (in the anterior insula and
the  frontal operculum). Higher order sensory processing occurs also in the orbitofrontal cortex. I refer the reader to Thompson (2000) for a more detailed
overview.

4 It is composed of the orbitofrontal (OFC), the ventromedial (vm-PFC), the dorsolateral (dl-PFC), the ventrolateral (vl-PFC), the medial (m-PFC), the
anterior (a-PFC) as well as the cingulate cortex.

5 See the theories of cognitive control and, in particular Miller and Cohen (2001).
6 The boundaries of the limbic system are difficult to delineate and there has been controversy over the terminology. More recently, it has been suggested

that  the concept should be considered obsolete. See Phelps (2009).
7 These are the hippocampus, responsible for the formation of long term memory; the amygdala, performing an important role in the processing and

memory of emotional reactions; the hypothalamus, responsible for controlling body temperature, hunger, thirst, fatigue, anger, circadian cycles and
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Neurophysiological studies reveal that the sensory and motor systems of the cerebral cortex are crucial structures (see
Sugrue et al., 2005 for a review) in tasks in which the monkey is trained to indicate a decision with an eye movement. The
transformation of s into D is made in areas of the occipital cortex where sensory neurons encode visual stimuli. Decision-
making is also made in areas of the parietal and frontal cortices. Decisions are based on the sensory stimuli strength and
decision-related systems make the animal’s ultimate choice.

2.2. Neural networks and information transmission

The brain is composed of many different types of cells but the main functional unit is the neuron.8 It is organized
in a network involving around 10 billion neurons. Neurons within the brain process and transmit signals. Some convey
information to the nervous system while others transmit signals from the nervous system. Even though neurons are highly
specialized and there is a wide variety of them, a typical neuron has a central part (the soma) and cellular extensions
(dendrites) that form a tree. Dendritic trees are the place where the neuron receives information. The signal then passes
through the soma and travels away from it down the axon, which carries nerve signals to another cell. The axon may  divide
into a large number of branches enabling communication with many target neurons. The terminal of the axon contains
synapses that are either electrical or chemical. Electrical synapses are direct and electrically conductive junctions between
cells. Chemical synapses release neurotransmitter chemicals to communicate with target neurons.9

If a neuron responds to a nerve impulse, then it responds completely (all-or-none principle). Several events must occur
for a neuron to respond and pass the signal to other cells. When a stimulus is received (after neurotransmitter release by a
presynaptic neuron), the membrane is depolarized, that is its voltage is increased. This triggers the opening of sodium and
potassium ion channels located in the axon. For small voltage increases, the potassium current dominates and the voltage
returns to its normal resting value.10 However, if the voltage increases past a critical threshold higher than the resting
value, the sodium current dominates.11 The positive feedback activates even more sodium channels12 and the cell “fires”,
producing an electrical impulse, called action potential or spike, that travels down the axon.13 It arrives at the synapse and
produces an influx of calcium ions that trigger a biochemical cascade resulting in neurotransmitter release.

Neurons can be classified according to their discharge patterns. Some are constantly active (e.g. some interneurons). They
produce a steady rate of firing and respond to increase intensity of a stimulus by increasing their firing frequency. Other
neurons are phasic and firing decreases or stops when the stimulus becomes steady. Some neurons have fast firing rates (fast
spiking neurons) while others have narrow action potentials (e.g. thin-spike interneurons in the prefrontal cortex). Synapses
can be excitatory, inhibitory or modulatory, depending on which effect they have on their target neurons.14 The post-synaptic
receptor is responsible for the action of the neurotransmitter released at the synapse. In other words, synapses will increase
or decrease the activity in the target neuron. When excitatory synapses are activated, the target neuron is induced to produce
nerve impulse. By contrast, when inhibitory synapses are activated, the action of excitatory synapses is counterbalanced to
prevent nerve impulse. The total activation of synapses determines when nerve impulses are sent out to other neurons. The
strengths of synapses (i.e. the effectiveness with which synapses produce or negate nerve impulse) vary largely. Information
sent via strong (resp. weak) synapses is emphasized (resp. de-emphasized). Many neuronal mechanisms are in place to
modify strength. Some cause persistent alterations that can last months or years, others cause short-term modifications
lasting from fractions of seconds to a few minutes.15

Measuring cell activity informs researchers about the involvement of brain areas into specific tasks. Studies rely on such
measures and draw correlations between cell activity and decision-making. In single neuron studies, two types of measures

maintaining overall homeostatic balance; and the thalamus, involved in the regulation of sleep and a primary relay station to translate sensory information
in  a form readable for the cerebral cortex.

8 Neurons are outnumbered by glial cells which are now also receiving attention in the literature.
9 There exist many different neurotransmitters. Acetylcholine is usually an excitatory neurotransmitter and governs muscle contractions and causes

glands  to secrete hormones. Gamma-aminobutyric acid (GABA) is usually an inhibitory neurotransmitter and can be found in the motor and visual systems.
Dopamine can have an excitatory or inhibitory action on the post-synaptic cell, and its effect depends on the receptor present on that cell. It is involved
in  mood and the control of complex movements. Dopamine-sensitive neurons are located in the PFC. Other important neurotransmitters are serotonin,
glutamate, adenosine and adenosine triphosphate (ATP).

10 See Hodgkin and Huxley (1952) for a seminal model of voltages and currents of the action potential.
11 The critical threshold voltage is usually around −45 mV, but it depends on the recent activity of the axon. A membrane that has just fired an action

potential cannot fire another one immediately, since the ion channels have not returned to their usual state. The period during which no new action
potential can be fired is called the absolute refractory period. After some but not all of the ion channels have recovered, the axon can be stimulated to
produce another action potential, but only with a much stronger depolarization, e.g. −30 mV.  Thresholds can be modified by secondary messengers (like
hormones or neurotransmitters) that also communicate with the neuron.

12 This “summation” of incoming information is made at the axon hillock.
13 Some neurons do not generate action potential, but instead they generate a graded electrical signal. They are called non spiking neurons. They are

generally sensory neurons or interneurons.
14 For a thorough description of synaptic functioning, see Cowan et al. (2003). Note that it is widely believed that synaptic strength provides the basic

mechanism for learning and memory. See Hebb (1949) for a seminal model of learning and memory.
15 These mechanisms are referred to as short-term plasticity. Short-term plasticity is correlated with the history of the activity of a synapse. It provides a

way  for a neuron to emphasize or de-emphasize particular types of information according to the pattern of activation in the past. It is a history dependent
filter that decides which information is the most important in determining the output of a neuron. See for instance Klyachko and Stevens (2006) for a study
of  hippocampal synapses.
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can be found: spike trains and firing rates. The fundamental unit of information in the brain is the action potential. However,
given the all-or-none principle, an action potential per se does not carry much information. Rather, the timing of action
potentials does. For instance, increasing the intensity of the stimulation does not produce a stronger signal but can produce
more impulses per second. The response of a single neuron can be summarized as a list of dates at which the neuron fired
action potentials, or spike train. Alternatively, we can compute the average number of action potentials per unit of time, the
firing rate.16

2.3. Summary

Decision-making involves brain systems that process the information made available to DM toward a decision that is
eventually implemented. Systems are composed of neurons tuned to react to specific characteristics of the information they
receive from the outside world or from neurons in other systems. Neuronal cell-firing and synaptic connectivity determine
how a sensory stimulus (received in the sensory cortices) will be interpreted and mapped into a response (implemented
by the motor cortex). Throughout the process, some information will be emphasized or deemphasized, as synapses act as a
filter of information.

3. Representations

In this section, we relate findings in neurobiology to the two building blocks of economic theory described in Section 1,
namely expected utility and Bayesian updating. We  want to assess whether these two  paradigms are reliable representations
of DM’s motivations and ability to reason.

From the perspective of economics, a DM facing our experiment should evaluate action a at P(A)GA, where P(A) is the
probability that the true state is A. Similarly, he should evaluate action b at P(B)GB = (1 − P(A))GB. It is therefore efficient to
choose action a (respectively b) if P(A)GA > (1 − P(A))GB (respectively P(A)GA < (1 − P(A))GB). Now, to formulate a decision, the
brain must represent and combine two pieces of information. First, information D needs to be extracted from the signal s to
represent probabilities P(A) and P(B). Second, the magnitude of the payoffs GA and GB must be represented.

3.1. Expected utility

Expected utility theory presupposes that DM is able to represent uncertainty as well as the magnitude of rewards,
and evaluate actions in expectations. To test this hypothesis, Platt and Glimcher (1999) designed an experiment in which
information about the magnitude of a reward as well as the probability of the reward are displayed visually to rhesus
monkeys. Subjects are then asked to choose an alternative and are rewarded accordingly.

This exercise reduces our experimental paradigm to a task that relaxes the signal extraction problem. More precisely, DM
is “given” the probabilities of the states P(A) and P(B) (and does not need to infer them from noisy signals) and must make
the correct decision as a function of the magnitude of these probabilities and the magnitude of the rewards GA and GB. This
design allows to test directly for expected utility theory by manipulating probabilities and rewards.17

Single intraparietal neurons were recorded, as they are sensitive to the probability that a particular response will result
in a gain. The authors showed that rewards as well as the probability that a particular choice result in a reward modu-
late the activity of the neurons in the lateral intraparietal (LIP) area. Moreover, when subjects are free to choose between
two responses, the expected gain influenced both the choice and the activation of parietal neurons. In other words, prob-
abilities and rewards were represented. Both activation and choice were also roughly compatible with expected payoff
maximization.18 That is, cell activation and behavior are in line with the expected utility representation. Said differently,
DM is capable of computing and comparing the expected payoffs of actions a and b.

A myriad of subsequent studies have reported similar findings and tried to uncover the circuitry involved in value rep-
resentation and action selection. Among others, Padoa-Schioppa and Assad (2006, 2008) studied the representation of
economic value by analyzing the activity of neurons in the orbitofrontal cortex of the monkey. The authors found that those
neurons encode the value of goods that are offered and chosen. Shortly after the offer, neurons encoding the value of one
alternative or the other are active. Then, neurons encoding the value of the chosen alternative are active, independently
of the characteristics of this alternative. Last and after the choice is revealed, neurons encode the identity of the chosen
alternative.19 Sugrue et al. (2004) studied the subjective evaluation of alternatives by measuring the activity of neurons in
the parietal cortex. Relying on a dynamic foraging task in which the values of alternatives changed over time, they found
that the relative value of the alternatives were represented by these neurons. Samejima (2005) found that action values
were represented in the striatum (basal ganglia). Lau and Glimcher (2008) reported that some neurons were responsible

16 This measure implicitly assumes that the exact timing of spikes should play no role. For a discussion, see Abbott (1994) and Gerstner and Kistler (2002).
17 Two DM may  represent the rewards in different ways, e.g. if they have different risk attitudes.
18 See also Glimcher and Rustichini (2004) for a review of studies offering insights on how (and where) the desirability of options is represented.
19 Moreover, the activity of a neuron in response to an alternative seems to be independent of the menu of alternatives that is offered.
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Fig. 1. D represents the spike rate when the stimulus s signals the true state S (true direction) and the curve plots the likelihood of obtaining response D.

for encoding chosen values. More precisely, the authors found in the striatum neurons encoding action values and neurons
encoding chosen values.

Taken together, these studies show that the brain is able to represent both ‘objective’ rewards offered by the experi-
menters and ‘subjective’ values such as tastes. Neurons in the parietal cortex, the prefrontal cortex and the basal ganglia
(among others) are part of the network linking visual stimulation to oculomotor behavior, and encode the expected values
of alternatives (see McCoy and Platt, 2005 as well as Kable and Glimcher, 2009 for reviews). Several studies have shown that
other areas also encode reward-related information. For instance, the recent literature on reward-prediction (see Schultz,
2006) shows that midbrain dopaminergic neurons signal the difference between reward expectation and reward outcome in
learning environments. For our simple experiment, the evidence just reviewed validates expected utility theory. We  gather
this important finding in the next result.

Result 1. For given P(A), GA and GB set by the experimenter, values and probabilities are represented (in the orbitofrontal
cortex and the striatum) and alternatives are compared (in the lateral intraparietal area). Decision-making is consistent with
choosing the action that maximizes DM’s expected utility. Formally, the optimal action k* satisfies

k∗ =

{
a if P(A)GA > (1 − P(A))GB

b if P(A)GA < (1 − P(A))GB

3.2. Inferences

Random dot stimuli type of experiments are meant to study how DM extracts information from a noisy signal. In such
experiments, the probability of the reward must be assessed by DM.  The experimenter manipulates the signal s sent to
DM but typically not the magnitude of the reward. The purpose of this section is to understand how information about s is
processed in the primary sensory cortices and used to produce a representation of the likelihood of the events. Compared
with studies in the previous section, the experiments now assume GA = GB and focus on the information that DM infers from
s.

There exists a fundamental difference between encoding and decoding. Encoding corresponds to the transformation
of s into neural responses. Decoding consists in estimating the true state S using neural responses. The overall process is
implemented by different layers of neurons. Neurons in the sensory cortices encode information, which produces a response
(measured in spike trains) D. The activity can be described by the conditional probability distribution P(D|S). The next layer of
neurons extracts this information by ‘calculating’ an estimate of S based on D. It is important to note that decoding requires
to measure the deviations between the estimated stimuli and the actual stimuli. It is therefore necessary to assess how
the activity of neurons in the first layer correlate and how these correlations are related to the stimulus. We  review some
findings in the next two sections. We  refer the interested reader to Schneidman et al. (2003) for details about the difficulties
arising in decoding noisy information.

3.2.1. Encoding
The signal sent by the experimenter is received by the sensory system where it is encoded. Given a stimulus s reflecting

S, the response of neurons is given in terms of a probability distribution P(D|S). For instance, in the random dot stimuli
experiment, S would be the true direction of dots and s the more or less coherent display. In that setting, D represents neural
activity in the area of neurons that encode s. Researchers take repeated measurements of the response of the neuron, which
generates a curve describing the responses (Fig. 1). This curve simply represents the likelihood of obtaining each possible
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Fig. 2. (a) Each dot represents the number of spikes obtained for a neuron with preferred direction A in a trial where the true direction is S. Values are
recorded for all trials. (b) Similar illustration with more than two states. The preferred direction of the neuron is Sp .

response P(D|S). We  can derive such a curve for each hypothesis, which provides us with two  probability measures p(D|A)
and p(D|B).20

Moreover, each neuron has a preferred direction (e.g. some are best at detecting upwards movements, others are best at
detecting downwards movements). These preferred directions correspond to the possible hypotheses S. In Fig. 2, the x-axis
represents the preferred direction of neurons (A and B) and the y-axis represents the number of spikes. Each dot corresponds
to the response of a neuron: the x coordinate is its preferred direction and the y coordinate the number of times it spiked
after receiving s.

Many analyses have shown that the neural response D is variable. Variability reflects the fact that the data used by the
brain is not fully accurate and in particular that neurons do not fire in a fully consistent way. This can be seen in Figs. 1 and 2.
For a given stimulus, the response of a neuron is variable and neurons with the same preferred directions do not all show
the same activity. A few hypotheses have been formulated leading to a myriad of experiments and theories. In particular,
studies have shown that neurotransmitter release is stochastic and synaptic release probabilities are heterogeneous across
synapses, sometimes dependent on the history of the activity (see Stevens, 2003 for a review). Also, the reliability of the
data depends on experimental conditions. For instance, firing distributions may  differ in naturalistic conditions compared
to other conditions (see Simoncelli, 2003; Lewen et al., 2001). Part of the noise in neural signals is due to the imprecision
around the stimulus s and the context in which s is displayed affects the perception about the true state of the world S.

20 Several theories based on information theory (Shannon, 1948) have been proposed to explain the goal of early stages of visual processing. According to
the  Efficient Coding Hypothesis (Barlow, 1961, 2001), it is to produce an efficient representation of the incoming visual signal. His model treats the sensory
system as a communication channel where neuronal spiking is an efficient code to represent s. To be efficient, the code must maximize the channel capacity
and  minimize the redundancy in the representation. See also the predictive coding theory (Srinivasan et al., 1982), the maximal decorrelation theory (Atick
and  Redlich, 1992), the maximal signal-to-noise ratio theory (McCarthy and Owen, 1996), and the maximal kurtosis theory (Field, 1994).
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Result 2. Information encoded in the primary visual cortex is subject to noise. This variability affects the distribution of
the neural responses conditional on the true state P(D|S).

For our experiment, the main lesson is that internal and external noises act on D as there is an imperfect correlation
between s and S as well as an imperfect correlation between D and s.21

3.2.2. Representation of prior probabilities
In a recent study, Hanks et al. (2011) showed that information related to prior probabilities is combined with sensory

evidence. To do so, the authors used a random dot stimuli task and they manipulated the prior probabilities of rewarded
choices. They found in particular that prior probabilities were incorporated into the decision process and was  reflected in
the firing rate of neurons in the LIP area. This result is consistent with Platt and Glimcher (1999).

3.2.3. Aggregation of individual neuronal responses and inferences
Sensory activity is encoded by the activity of a large population of neurons, and individual neuronal responses need to

be aggregated into a representation. For instance, neurons performing early detection produce an activity consistent with
the graph in Fig. 2b. This information is then sent to a new layer of neurons. The purpose of this section is to analyze the way
these neurons interpret the information they receive.

Stimuli are processed in different areas. For instance direction stimuli are processed in area V1 (striate cortex) and area
MT (middle temporal visual area). MT  neurons are specialized in motion processing and are not sensitive to a broad range of
stimuli like color or form. Their neuronal responses to direction are generally stronger than V1 neurons (see Albright, 1984).
This suggests that some features may  be emphasized in some areas and at the same time de-emphasized in others. Also,
some areas receive projections from other areas that have already performed a transformation of the incoming information.
For instance, area MT  receives projections from V1 and V2 areas, along with several others (see Van Essen et al., 1992).

It has been shown that the prevalent reaction might result from either competition or cooperation between neurons
with different perspectives. For instance Nichols and Newsome (2002) use a random dot stimuli task to study neurons
in the visual area with different preferred directions (e.g. detect accurately their preferred direction and less well other
directions). The authors show that neurons that have a wide range of preferred directions can cooperate to shape estimates
for directions (consistent with a vector averaging model), while those with opposite preferred directions compete (consistent
with a winer-take-all model). A classical model is the population vector estimator. It assigns to each neuron a vector. Its
length is proportional to the neuron’s activity and its direction corresponds to its preferred orientation. Then, it sums all the
individual vectors to form a population vector, and estimates the orientation from the angle of this vector (see Georgopoulos
et al. (1986) for an application to neuronal activity in the motor cortex and Gielen et al. (1988) for the case of the auditory
nerve). In the example of Fig. 2b, this would result in fitting the neuronal activity with a cosine function, as it is represented by
the solid curve in Fig. 3a. The peak of the function is the estimate of the true state S̃. Other approaches have been proposed to
represent neuronal activity of large populations of neurons. One common method is the maximum likelihood (ML) estimator
(see Abbott, 1994 for a review). Neural firing rates for a stimulus s are treated as random variables, and an overall estimate
(the likelihood) of the probability of the set of observations is taken. This method results in producing the solid curve in
Fig. 3b. The peak is the ML  estimator Ŝ.22 Deneve et al. (1999) show that biologically plausible networks can implement
ML.23

According to Ma  et al. (2006),  the response of neurons is given in terms of the probability distribution P(D|S) that encodes
the posterior distribution P(S|D) over the true state S. The Bayesian posterior belief of state A following the observation of D
is

P(A|D) = p(D|A)
p(D)

p0 ∝ P(D|A)p0

and therefore the probability distributions can be recovered from neuronal responses.24 Ma  et al. (2006) also show that
Bayesian inferences are simple to implement by population codes with Poisson-like variability. Indeed, if variability is
Poisson, simple linear combinations of populations of neural activity (say a population encoding visual cues and a population
encoding auditory cues) achieve Bayesian inferences.25

Result 3. The brain is capable of drawing approximately Bayesian inferences from signal. More precisely, the activity of
neurons D is given as a probability distribution P(D|S) that encodes posterior beliefs about the hypotheses P(S|D).

21 This latter noise if often assumed to be Poisson, because the variance increases with the mean activity, a feature consistent with the activity of cortical
neurons.

22 The ML  estimator is found to perform better as it has a minimum variance over trials under some conditions.
23 In other words, if the network receives noisy pooled input from a population of neurons, the output activity of the network is an optimal ML  estimator.
24 The prior belief p0 could be encoded by a population of neurons that spike before the beginning of the trial.
25 Suppose there are two cues 1 and 2 encoded by two different populations representing likelihood functions p(D1|S) and p(D2|S), Bayesian inferences

can  be achieved by constructing a third population with D3 = D1 + D2 as long as the prior is flat and variability is Poisson. This results extends under weaker
conditions.
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Fig. 3. (a) Population vector estimator. (b) Maximum likelihood estimator (Ŝ and S̃ may  not coincide).

3.3. Summary

Result 1 shows that given a set of beliefs about the true state of the world and related rewards, the brain can compute
the expected payoff of each alternative and compare them. Result 3 establishes that the brain is capable of estimating those
beliefs accurately. In particular, it can extract information from a signal and encode Bayesian posterior beliefs about the true
states of the world.

Formally, a DM facing our experiment will evaluate action a at P(A)GA, where P(A) is the posterior probability that the true
state is A conditional on the signal s sent by the experimenter and the ‘data’ D encoded. In previous notations, P(A) = P(A|D)
where D is a noisy representation.

In the case of the random dot stimuli task, a very coherent display s where the majority of dots move in the same direction
(state A) will generate high activity from neurons tuned to detect that direction and a higher probability that DM selects that
direction (action a) as a response, both consistent with a high P(A|D). This informs us that DM is confident enough that the
dots move actually in that direction to indicate so with a saccade. This also suggests that enough evidence of A triggers action
a and insufficient evidence of A triggers action b. In the next section, we  review models that refine this idea and address
decision-making.

4. Decision-making

So far, we have reviewed evidence that validates (i) the expected utility approach to evaluate alternatives for given repre-
sentations of probabilities and rewards, and (ii) the Bayesian model to assess the likelihood of S given a noisy representation
D of a noisy signal s. In this section, we report two families of models proposed in the neuroscience literature to explain how
decisions relate to D, and how DM chooses between alternatives. These models do not rely on expected utility theory and
optimization. We  shall study in Section 5 their relationship to it.
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Fig. 4. Psychometric function.

4.1. Comparison of signals

In studies based on the random dot stimuli task, researchers compare two  sets of data: behavioral data and neural activity.
On the one hand, the proportion of correct answers can be plotted for each coherence level. This data can be fitted using
standard statistical techniques to obtain a “psychometric function” (Fig. 4). This function is a representation of behavior. On
the other hand, it is possible to observe the number of spikes for each possible coherence level and each trial. Assuming that
a decision is made in favor of the decision preferred by the neuron under study if its response is large enough,26 it is possible
to estimate the probability that the decision rule give a correct response for each coherence level. This allows to compute
a “neurometric function” comparable to the psychometric function. Those functions are usually not significantly different
in this type of experiments. The decision favoring the preferred direction of the neuron under study (resp. null direction)
predominates when the neuron fires strongly (resp. weakly).

Inspired by these results, Shadlen et al. (1996) propose a simple flexible pooling model that links (pooled) neuronal
responses to decisions. Formally, suppose there are 2N neurons each represented by a random variable, N of which favoring
direction A and the remaining N favoring direction B. The response of each group of neurons (spike counts) is then averaged
into a signal measure and the larger measure dictates the decision.27 In other words, when the activity in favor of one
alternative is higher, then this alternative is chosen. In the same lines, Ditterich et al. (2003) show that, to decide between
two alternatives, the response of neurons with opposing preferences are compared to obtain net evidence for one alternative.
The sign of the difference represents which alternative is more likely, and the magnitude represents the persuasiveness of
the evidence.

This class of models can be roughly summarized as follows. Evidence is encoded into D which might be the list of spike
counts of neurons firing in response to s. Decision-making consists in simplifying this information into a measure ! and
act upon this measure. In a two-action discrimination task, some realizations of ! indicate confidence in A and the others
indicate confidence in B. To simplify the exposition, let us introduce an example for reference. We  assume that A refers to
danger and B absence of danger, and we suppose that the relevant information is captured by the activity of neurons in a
specific region (e.g. the amygdala). In that example, ! is a single variable, low activation indicates confidence in B while
high activation indicates confidence in A. Therefore, there exists a value threshold !*  to which ! can be compared.

Result 4. Decision-making is consistent with a threshold model in which evidence is pooled into a measure ! that is
compared to a decision threshold !*.  Then !>  ! * is evidence of A and a is triggered, while !<  ! * is evidence of B and b is
triggered.

Gold and Shadlen (2001) propose a related model of neural computations in which information over time is accumulated
into a single quantity: the logarithm of the likelihood ratio (LR) favoring one alternative over the other. As noted earlier (see
Fig. 1), the response of a sensory neuron (spike rate per second) is a random variable and the neural response varies as a
function of the experimental conditions. Given the true state S, the activity D can be summarized in the probability density
function P(D|S) similar to the one obtained in Fig. 1. In this experiment, the theoretical posterior belief of state A is

P(A|D) = P(D|A)p0

P(D|A)p0 + P(D|B)(1 − p0)

26 Britten et al. (1992) compare the signal coming from the neuron under study and the signal from an hypothetical anti-neuron with preferred opposite
direction.

27 The model also assumes the brain cannot compute the average with precision and considers a pooling noise. Pooling has the effect to depreciate
sensitivity.
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Fig. 5. Evidence is accumulated through time (r is the drift) until hitting the boundary x triggering a or the boundary y triggering b.

where P(A) and P(B) are prior beliefs. Interpreting the evidence in favor of A should result when P(A|D) > P(B|D), that is when
the likelihood ratio P(D|A)/P(D|B) is high enough:

P(A|D) > P(B|D) ⇔ P(D|A)
P(D|B)

>
1 − p0

p0
(1)

Suppose now there are two neurons (or populations of neurons): the first detects signals in favor of A (and is more likely
to fire if A is the true state), while the other detects signals in favor of B (and is more likely to fire if B is the true state). The
response of the first is denoted by DA and the response of the second is denoted by DB. In that case the likelihood ratio is:

P(DA, DB|A)
P(DA, DB|B)

= P(DA|A)
P(DA|B)

· P(DB|A)
P(DB|B)

taking the logarithm of the likelihood ratio linearizes the problem that can now be solved by taking simple additions. Gold and
Shadlen (2001) conjectured that LIP neurons accumulate sensory responses from pools of neurons to form a decision variable
that approximates log LR. It is sufficient to compare log LR to a threshold that triggers the action consistent with hypothesis
A if log LR is above that threshold. Overall, according to Gold and Shadlen (2001),  decision-making is consistent with a
threshold model in which evidence is pooled into the log-likelihood ratio favoring A over B, namely ! = log(P(D|A)/P(D|B))
and compared to a decision threshold !*.

Of course, the threshold !*  affects how the evidence is interpreted. Gold and Shadlen (2001) conjecture that the threshold
must make sure that the best rewards are obtained as often as possible, and therefore be an indicator of the expected values of
the possible responses. More formally, they propose that the left hand side of Eq. (1) should reflect not only prior probabilities
but also accommodate reward values GA and GB.

4.2. Accumulation of evidence toward a decision

It is well known that decisions tend to be more accurate when subjects are given longer exposure to the stimulus (see
Luce, 1986). Roitman and Shadlen (2002) use a random dot stimuli experiment to study reaction times (hereafter RT). They
measure activity of the neurons in the lateral intraparietal cortex (area LIP) of the monkey. Those neurons respond to visual
stimuli that are the target of a voluntary eye movement and their activity is known to predict eye movement response
(see Shadlen and Newsome, 1996, 2001). The authors compare two treatments, one in which subjects were exposed to the
stimulus for a fixed period of time, and a second in which they were exposed to it until they reached a decision. The spike
rate was found to be correlated with coherence, response and response time. More precisely, a steeper rise in the spike rate
was correlated with a stronger stimulus and a shorter RT. The authors found evidence in favor of a RT model (as in Hanes
and Schall, 1996 or Ratcliff and Rouder, 1998) and hypothesized that LIP neurons accumulate evidence (from extrastriate
visual cortex, e.g. MT  neurons) over time for or against a specific response.

This evidence emphasizes that decision-making is compatible with a measure ! that is ‘constructed’ through time from
s. Information is accumulated up to a point where taking a particular action is desirable. Accumulation can be understood
as a random walk toward a threshold representing the level of evidence necessary to make a decision.

Even though the analysis of RT on neurophysiological data is recent, RT distributions obtained from behavioral data have
received a lot of attention in other areas. The related studies can help model neurophysiological data as well. In particular, the
diffusion model (see Ratcliff, 1978) offers an appropriate framework to study simple two-choice decisions. It presupposes
that decisions are made via a noisy process that accumulates information over time to one of two boundaries. The process
terminates when a boundary is reached, which triggers a decision. Fig. 5 illustrates the model with boundaries x and y.

The rate of accumulation of information is the drift rate and it reflects the quality of the information contained in the
stimulus. Accumulation is noisy and in particular processes with the same drift do not always reach a boundary at the same
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time—which produces RT distributions – and do not always reach the same boundaries—which generates errors (see Ratcliff
and McKoon, 2008 for an illustration of the diffusion model using a random dot stimuli experiment on human subjects).28

This model is similar in spirit to a class of models proposed in neurophysiology to fit neural activity. In a pioneering
work, Hanes and Schall (1996) designed an experiment where eight targets were displayed visually to monkeys. Seven had
the same color and monkeys had to detect the target with the different color by initiating a saccadic eye movement. The
authors noted that the speed with which saccades were produced was variable. At the same time, neurons in the frontal eye
field (an area responsible for voluntary eye movement) were found to be most active before a movement in their preferred
direction. The authors showed that neurons rose to a peak firing rate very quickly and a decision process was  initiated
later on: neuronal firing rates continued to grow or dropped back to baseline. The authors proposed a model similar to the
diffusion model to account for the behavioral and neurophysiological data.29 This and further studies show that the diffusion
process in the diffusion model accounts for neural activity (see Ratcliff and McKoon, 2008; Gold and Shadlen, 2007; Rangel,
2009 for details).

Other authors examine to what extent the behavior of populations of neurons approximates diffusion processes (see
Mazurek and Shadlen, 2002). The ‘race’ model, is summarized by two neural integrators that correspond to the two  alterna-
tives and a choice is made when one of the integrators exceeds a threshold (see Luce, 1986; Carpenter and Williams, 1995;
Shadlen and Newsome, 2001). For suitably chosen parameters, the race and diffusion models predict the same behavioral
data (see Van Zandt et al., 2000; Bogacz et al., 2006 for details).

Overall, in this class of model, decision-making consists in simplifying D into a time-dependent measure. At each instant
t, information is compiled in !t. If this measure has not reached a cutoff, no decision is made. Instead, DM extracts more
information from D and a new measure !t+1 is obtained. This process continues until a date " when !" reaches either
boundary.

Result 5. Decision-making is consistent with a noisy process that accumulates information !t over time to one of two
boundaries x and y, and which terminates when a boundary is reached. Reaching x is evidence of A and triggers a while
reaching y is evidence of B and triggers b.

4.3. Summary

Taken together, these models emphasize that the information encoded by sensory neurons will be transformed into a
measure to be compared to threshold point(s) triggering a decision. Yet, the models are mechanical in that they offer a
description of a plausible mechanism (that fits behavioral data) but do not explain for instance why this mechanism is
compatible with ‘good’ decision-making or where do the threshold(s) come from.

The purpose of the next section is to link the two  sets of results reported in Sections 3 and 4. One important feature of
expected utility theory is optimization. DM chooses the option that maximizes his objective. This offers an intuitive criterion
to choose between alternatives and should in principle provide foundations for the mechanical models outlined in Section
4. For instance, if DM maximizes some expected payoff, thresholds in Results 4 and 5 should result from optimization. Only
a few articles have addressed these important issues (see Bogacz et al., 2006). Rather, the studies take the mechanism as
given and attempt to optimize it locally only (e.g. they optimize one bound given an objective). In particular, they do not
address the reasons why optimizing is a relevant approach, why the mechanism should be a threshold mechanism and they
do not discuss the objective function to maximize. In the next section, we revisit decision-making in our experiment using
the economics methodology and we investigate the links between our results and the models proposed in neuroscience.

5. Economic models of decision-making

5.1. An economic diffusion model

In this section, we consider a model of information accumulation for our experiment which is reminiscent of a discrete
version of the diffusion model outlined in Section 4.2.  The model is also reminiscent of Rustichini (2008) (and to some extent
Dickhaut et al., 2009) and captures the basic trade-offs emphasized there. Our simple model allows to encompass different
experimental scenarii and derive different predictions.

The model goes as follows. The experimenter chooses state A with probability p0 and state B with probability 1 − p0.
These prior probabilities are common knowledge, but the realization of the choice is not known to DM.  We  shall assume
there is a final time T at which a decision must be made, although T might be arbitrarily large. If DM decides not to make

28 Ratcliff and McKoon (2008) showed that the model fits the behavioral data well and in particular error responses were slower than correct responses.
The  main difference compared to behavioral data obtained with monkeys is that RT distributions are right skewed with humans and symmetric with
monkeys.

29 The authors studied two specifications: a variable rate model and a variable threshold model. They also showed that regardless of the rate of increase
in  neuronal activity, the movement occurred when the neuron reached roughly the same firing rate, providing support for a variable rate model. See also
Schall  and Thompson (1999) and Schall (2003) for further studies of the various stages (perception and response preparation) that contribute to reaction
times.
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any decision in period t (< T), he receives a signal #t ∈ {˛, ˇ} about the true state of the world that can be used to update his
beliefs. Signals  ̨ and  ̌ are imperfectly correlated with states A and B. Noise represents both the noise introduced by the
experimenter and the internal noise due to cell firing variability (see Result 2). We model this in a very simple way30:

Pr(˛|A) = Pr(ˇ|B) = $ (> 1/2) and Pr(˛|B) = Pr(ˇ|A) = 1 − $.

Denote by n˛,t and nˇ,t the number of signals  ̨ and  ̌ received respectively up to date t. From standard probability theory,
if draws of #t are independent, then

Pr(A  | n˛,t, nˇ,t) = $n˛,t−nˇ,t p0

$n˛,t−nˇ,t p0 + (1 − $)n˛,t−nˇ,t (1 − p0)
.

Note that two different signals cancel each other out. Therefore, the relevant variable that will be used from now on is nt
(= n˛,t − nˇ,t), that is, the difference between the number of  ̨ signals and the number of  ̌ signals up to date t. As the agent
receives one signal per period, nt ∈ {−t, . . . , t} ⊂ Z.  In the notations of the previous sections, nt represents the summary
measure !t of the information D encoded by the sensory system up to time t. We  can define the following function31:

p(nt) ≡ Pr(A | n˛,t, nˇ,t) = $nt p0

$nt p0 + (1 − $)nt (1 − p0)
. (2)

Recall that Result 3 indicates that Bayesian inferences can be made, that is the above calculation can be implemented in
the brain. Now, according to Result 1, DM will evaluate the alternatives at their respective expected payoffs. The expected
benefit of taking action a for a difference of signals nt is

%a(nt) = p(nt)GA .

and the benefit of taking action b is

%b(nt) = (1 − p(nt))GB .

Denote by &(nt) the probability that if at some period t the difference of signals is nt, then at t + 1 the difference is nt + 1.
Formally, &(nt) ≡ Pr(nt+1 = nt + 1). We  have:

&(nt) = Pr(˛|A)p(nt) + Pr(˛|B)(1 − p(nt))

= (1 − $) + (2$  − 1)p(nt).

Note that &(nt + 1) > &(nt). Due to our binary signal structure, 1 − &(nt) ≡ Pr(nt+1 = nt − 1). Also, for any nt,
p(nt) = &(nt) p(nt + 1) + (1 − &(nt)) p(nt − 1). Note that given the independence of signals, we  can suppress time subscripts
in the difference of signals.

At each date t, DM can either take action a, action b or delay the decision until date t + 1 to receive a new signal. In case
an action is taken, the corresponding reward is obtained when it applies. We  assume that the representation of immediate
rewards differs from the representation of future rewards, and in particular any delayed reward is discounted by the discount
factor ı. This assumption is supported by a large body of research that has been reviewed in other studies (see Rangel et al.,
2008 for example). An alternative model would be that attention is costly: delaying the decision to accumulate an extra
piece of information induces a disutility c due to attention costs. Both models deliver the same qualitative properties and
we will concentrate on the first one for the sake of simplicity.

Denote by Ft(n) the value function of the agent at date t ∈ {0, . . .,  T} when the difference of signals is n. We  have

Ft(n) = max{%a(n); %b(n); ı[&(n)Ft+1(n + 1) + (1 − &(n))Ft+1(n − 1)]}

At date t, DM chooses between the three available alternatives corresponding to the three respective payoffs in the above
value functions, and selects the alternative yielding the highest payoff. His problem is to determine under which condition
it is optimal to choose any of those alternatives. In other words, we  want to determine the range of the values n for which it
is best to choose a, b or to delay the decision one period. Solving this problem is equivalent to maximizing expected utility
in our setting. Importantly, our methodology does not assume decision-making is made via thresholds, rather the model
delivers threshold values. Furthermore, given our optimization process, these threshold are optimal, that is they are set in
such a way DM achieves highest payoffs. Let us note that Gold and Shadlen (2002) proposed a diffusion model in which
subjects choose x so as to maximize the reward obtained in the experiment. This approach has been followed by others (see
Bogacz, 2007 for a review). However, all these studies presuppose that the mechanism is a threshold-mechanism or impose
arbitrary bounds.

30 The stochastic relation between the true state and the information perceived is captured by $ and corresponds roughly to the drift in the continuous
time  diffusion model.

31 Note that: (i) p(nt + 1) > p(nt); (ii) p(0) = p0; (iii) lim
T→+∞

p(−T) = 0; and (iv) lim
T→+∞

p(T) = 1.
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Fig. 6. Optimal diffusion model with horizon T.

Proposition 1. When a decision is due before time T, DM continues to accumulate information at date t ≤ T if and only if
nt ∈ (nb∗

t , na∗
t ). DM sops if nt = na∗

t in which case he undertakes a, or if nt = nb∗
t in which case he undertakes b. The thresholds have

the following properties:

(i) the lower threshold increases over time, i.e. nb∗
t < nb∗

t+1 for all t
(ii) the higher threshold decreases over time, i.e. na∗

t > na∗
t+1 for all t

(iii) at the last period nb∗
T = na∗

T = ñ where ñ is  such that %a(n) = %b(n).

For all t, na∗
t is decreasing in GA and increasing in GB, nb∗

t is increasing in GB and decreasing in GA. Furthermore, for all t < T, na∗
t

is increasing in ı and nb∗
t is decreasing in ı.

Proof. See Appendix A.

At each date, there are two optimal thresholds. Action a is triggered if n reaches na∗
t , while action b is triggered if n reaches

nb∗
t . If n lies in (nb∗

t , na∗
t ), DM waits one more period. In the last period, DM must make a decision and the two  thresholds

coincide. It corresponds to the difference of signals such that the payoffs of taking either action are the same. In period T − 1,
DM should wait if his difference of signal is ñ. Delaying one period will provide him with better evidence about the state. In
other words, there is a positive option value of waiting. The threshold above which it is optimal to choose a is strictly above
ñ whereas the threshold below which it is optimal to choose b is strictly below ñ. The option value of waiting is as large as
the horizon is large and as time passes, it becomes less beneficial to wait.32

Naturally, the magnitude of (nb∗
t , na∗

t ) – which we will call the ‘waiting region’ – affects the probability of reaching a
decision sooner or later. That is, the model makes also predictions in terms of reaction times. The bigger the reward of an
alternative, the higher the incentives to bias the decision toward that alternative. Anticipating there is a high chance to
choose it in the future, DM might as well choose it earlier. Formally, na∗

t decreases when GA increases, and nb∗
t increases

when GB increases, making DM more likely to choose early when rewards are high. Also, the higher the discount factor, the
higher the option value of waiting. Therefore, it is optimal to set nb∗

t as low as ı is high and na∗
t as high as ı is high. The waiting

region being enlarged, the decision is delayed more often (Fig. 6).
Our analysis predicts that the mechanical diffusion model has an optimization model counterpart. This is in itself already

important. An added benefit of the optimization approach is the possibility to perform comparative statics about the object
of interest. We  show first that the optimal thresholds vary over time. Second, they vary in a precise way. As time passes, it
becomes more urgent to make a decision. In particular, DM might wait in the early stages for a given value n but act upon it
in the later stages. Our results have also a few instructive corollaries.

Corollary 1. If the individual has no time constraint (T=+∞),  then na∗
t = na∗ and nb∗

t = nb∗ for all t. Furthermore,

(i) na∗ = nb∗ = ñ when ı → 0,
(ii) na*→ + ∞ and nb*→ − ∞ when ı → 1.

Last, the error rate in taking either action increases with the reward of that action, and the reaction time in taking either action
decreases with the reward of that action.

32 These results are reminiscent of those obtained in the literature on investment and uncertainty (see Dixit and Pindyck, 1994)
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Fig. 7. Optimal diffusion model with infinite horizon.

Proof. See Appendix A.

In the absence of time constraint, the option value of waiting is the same at all dates. Therefore, the optimal thresholds
need not be adjusted over time. In that case, and in that case only, boundaries are time invariant at the optimum. Interestingly,
boundaries are also affected by the size of the discount factor. If DM does not value the future (e.g. cannot represent future
rewards), each date is terminal from his perspective. The only relevant threshold is ñ. At equilibrium, he will make a decision
right away and never delay it. On the other extreme, if DM does not distinguish between present and future (i.e. DM is
infinitely patient), the option value of waiting is positive for any value n and at any point in time. DM will delay the decision
indefinitely. Taken together, these results suggest that the diffusion model with fixed boundaries can be rationalized in
experiments with no (implicit or explicit) time constraint and for intermediate values of time discounting. Obviously, data
collected from different subjects should fit different parameter values. Impatient (respectively patient) subjects are best
represented by a model with a narrow (respectively wide) waiting region (nb*, na*). These results are summarized in Fig. 7.

Last, it is interesting to note that the model makes clear predictions in terms of error rates. The probability of choosing
action a while the true state is A is equal to the probability of hitting na* before nb*. Given those thresholds are modulated by
the magnitude of the rewards, the error rates depend on GA and GB as well. We  know already that it is efficient to lower the
threshold when the reward of action a increases. Therefore, this action will be taken more often, also wrongly. Also, when
GA increases (in which case both n∗

a and n∗
b decrease) the reaction time in taking action a decreases while the reaction time

in taking action b increases.
The results in this section validates the overall mechanical layout of the diffusion model. However, they suggest that

a model with fixed and arbitrary boundaries might not be the most accurate representation of decision-making. Rather,
boundaries should be time-dependent and derived from a utility based optimization problem. The above results also indicate
that discounting is a necessary condition to have two interior threshold values. If DM is patient (or simply patient over the
length of the experiment), it is optimal to accumulate as much information as possible and make a decision at the last
minute.33 In a recent study, Resulaj et al. (2009) showed that decision making is consistent with a phase of accumulation of
information toward a boundary triggering an initial decision, followed by a phase in which the brain exploits information to
either reaffirm or reverse the initial decision. Even though the setting of the experiment is different from the model proposed
here, the evidence is consistent with one prediction of our model: thresholds may  change over time.

5.2. A single threshold model of information processing

We  now investigate a variant in which DM obtains the reward at date T independently of the time at which he makes a
decision. In such experiment, discounting does not play a role. It is optimal to wait until the last period to make a decision,
that is na∗

t = +∞ and nb∗
t = −∞ for all t < T and na∗

T = nb∗
T = ñ.  Said differently, the waiting region is unbounded up to date T

and collapses into a single decision threshold at T. This model is closer in spirit to the models reviewed in Section 4.1. Our
optimal threshold model suggests that !*  in Result 4 should be consistent with ñ.

Proposition 2. When rewards are delayed to the last period, DM should accumulate information until the last minute and select
action a if n > ñ and action b if n < ñ.  The optimal threshold ñ satisfies

$ñ

(1 − $)ñ
= GB

GA

1 − p0

p0

It is decreasing in p0, increasing in GA and decreasing in GB.34

33 This holds because waiting is costly. In our setting, the cost of waiting is indirect and due to the discount factor. Alternatively, and as noted earlier, we
could  assume DM faces a direct cost for obtaining extra evidence (e.g. an attention cost). The results obtained here would hold qualitatively.

34 Equivalently, the optimal threshold is ñ = log((GB/GA)(1 − p0/p0))/ log($/1 − $).
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Proof. See Appendix A.

The model is formally equivalent to a simple version of Brocas and Carrillo (forthcoming) and the result has two implica-
tions. First, the optimal single threshold is set in such a way that existing beliefs are likely to be confirmed. Suppose that the
prior belief p0 is such that it is a priori optimal to take action a (i.e. p0GA > (1 − p0)GB). New evidence will either confirm a is
the correct decision or provide evidence b should be taken instead. If the threshold is high, DM must receive strong support
of a to stick to that decision. If the threshold is surpassed, DM takes action a with a high confidence level. If it is not surpassed
however, DM still believes a was a good option but he implements b. Overall, DM is confident in his decision only in one
scenario. Instead, if the threshold is low, DM must collect a lot of evidence in favor of b to switch to that decision. If it is
surpassed, DM sticks to his initial belief as in the previous case. If the threshold is not reached however, DM is now convinced
that the state is B and takes action b confidently. DM ends up taking different actions depending on the information received
but, in both cases, he is confident about his choice. Overall, the optimal threshold balances the belief in favor of A conditional
on the threshold being surpassed and the belief in favor of B conditional on the threshold not being reached.

Second, the optimal single threshold is affected by the relative rewards. If the loss of taking the wrong action when the
true state is A increases, the threshold decreases, so it will be surpassed with higher probability. In equilibrium, the most
costly mistakes are most likely to be avoided.

Note that the optimal threshold is in line with the proposal made in Gold and Shadlen (2001).  Recall that they proposed
to compare log P(D|A)/P(D|B) to a cutoff ! * (p0, GA, GB). In our model, the information accumulated D is summarized into n,
and our optimal threshold is such that

$ñ

(1 − $)ñ
≡ P(D|A)

P(D|B)
= GB

GA

1 − p0

p0
.

Therefore
!∗ = log

(
GB
GA

1−p0
p0

)
.

Interestingly, the optimal threshold affects the collection of information in such a way that DM is more likely to end up
taking action a when p0 is originally high. This implies that DM will tend to confirm his prior. Also, DM is more likely to end
up taking action a if GA is relatively more attractive. Therefore, DM acts as if his ex-post beliefs are shaped by the outcomes.
These two conclusions are reminiscent of Brocas and Carrillo (forthcoming).35 In this analysis, the authors show that these
two fundamental biases are likely the source of some well documented behavioral anomalies. In particular, the tendency
to reinforce priors could be the reason why DM polarize when exposed to the same mixed evidence, or why the order in
which evidence is produced affect decisions. Also, the fact that outcomes affect posterior beliefs explains that two  DM with
the same prior and facing the same information may  end up disagreeing. More generally, given the impact of outcomes on
posterior beliefs, decisions are best represented by rank-dependent or security-potential/aspiration type of utility, and the
analysis therefore provides support for some form of relaxation of expected utility theory. It also explains why the same DM
may take decisions in apparent contradictions with each other. For instance, if an individual is most afraid of the damages
of an earthquake, he will interpret information in such a way he may  end up assigning a large probability to that event
and therefore purchase a very expensive insurance. If at the same time, he does not care as much about his health, he will
tend to believe he is not likely to have health issues and contract a minimal health insurance. These decisions are internally
consistent but might appear in contradiction to an outside observer. If behavior is required to fit a standard expected utility
model, the model will also pick different levels of risk aversion in the different situations.

6. Conclusion

While the overlap between the paradigms in economics and neuroscience have already been noted,36 an open debate is
still to determine how exactly can each field contribute to the understanding of the other. This article aims at providing a
few reasons why economists should pay attention to findings obtained in the brain sciences. We  know from a large body
of research that humans (e.g. from the social psychology and experimental economics literatures) and animals (e.g. from
the behavioral ecology literature) often make decisions in ways that are efficient.37 However, and rather systematically, DM
behave in a way that is not consistent with the previous view. The causes of departures are still unknown. We  believe that a
better understanding of brain functions and processes should help shedding light on systematic anomalies. We  can derive
two strong basic messages from the evidence reviewed here and the models we  built.

First, economic decision making paradigms are roughly consistent with brain functioning. Neuronal processes interpret
information and make decisions in a way that is consistent with the standard paradigm in economics: both ‘expected
utility-like’ theory (Result 1) and ‘Bayesian-like’ information acquisition theory (Result 3) are relevant hypotheses.

35 The authors consider a more general model in a non parametric framework (their model requires only the monotone likelihood ratio property to hold).
36 See for instance Glimcher et al. (2005).
37 Behavioral ecologists favor the hypothesis that evolution pushes animals toward efficient decision-making. They build models based on economic

theory to account for the computations that animals perform. See Glimcher (2002).
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Second, the standard paradigm in economics takes for granted a large number of features that may  distort our understand-
ing of decision-making. Indeed, some important ‘details’ may  cause differences between the predictions of these theories
and observed choices. Importantly, the brain accumulates information until there is enough information supporting a behav-
ioral response. This means it uses an economical process in which the information just necessary to make a decision is taken
into account, and decision-making is best represented by threshold mechanisms (Results 4 and 5). Recommendations are
collected from various entities (neurons in the sensory systems) and aggregated into a single measure that is then compared
to threshold(s) to formulate a decision. We  know from the social choice literature that any aggregation rule has a preferred
direction and ultimately favors some features. Therefore, the aggregation of information throughout layers of populations
of neurons will yield distortions of the signal, as some features will be emphasized and others de-emphasized.

The models we proposed in Section 5 combine these pieces of evidence to make predictions about behavior. Recognizing
the validity of expected utility theory leads to one fundamental conclusion: DM acts as if he is optimizing his objective. This
provides foundations for using an optimization approach. This is a drastic departure from the existing mechanical models
used in Neuroscience. At the same time, the optimization approach can provide foundations for such models. The analysis
provides also a few reasons why neuroscientists should pay attention to economic modeling. In particular, the approach is rich
as it derives a solution (an optimal threshold mechanism) as a function of primitives (variability, physiological constraints,
constraints set by the experimenter, etc.), rather than assuming the solution. Propositions 1 and 2 are examples of the
methodology. Not only they establish that threshold models are optimal mechanisms in the environments considered, but
they also suggest how thresholds should be set, and eventually give clear predictions about behavior. Such predictions
are in principle testable with neural and behavioral data. We  believe this constitutes an interesting alley of research in
Neuroscience.

Other features reviewed here may  be the source of other anomalies. For instance, given neuronal variability, the notions
of ‘complete information’, ‘perfect signal’ or even ‘objective probabilities’ might not be pertinent in the brain. Basically, the
brain is typically ignorant or uninformed before a signal is sent and it decodes the signal through variable processes. This
may  account for framing effects in situations where information is presumably disclosed or verifiable. For instance, revisiting
experimental results in complete information settings with this in mind may  help understanding inefficient behavior. Last,
from a normative perspective, it is useful to decompose the ingredients of a decision problem into utilities and probabilities.
However, it is important to keep in mind that both concepts are represented in a similar way in the brain. Being offered a
lottery, announced a weather forecast or showed a cookie triggers an informational process: neurons detect the characteris-
tics of the item offered, fire in a probabilistic manner, pass the information along, part of the information is de-emphasized,
this information is aggregated and processed to obtain a response, and last the response is implemented. Actual decision
making results from this underlying informational process. Understanding it better should shed light in a meaningful way
on decision theoretic paradigms. Concretely, we may  want to think about new theories in which brain processes are the
primitives (or axioms) to derive utility representations. The constant effort to collect evidence should allow to build such
new theories in the future.

Appendix A.

Proof (Proof of Proposition 1). Let ñ be such that %a(n) = %b(n), then the previous value function can be rewritten as:

Ft(n) =

{
max{%a(n); ı[&(n)Ft+1(n + 1) + (1 − &(n))Ft+1(n − 1)]}  n > ñ

max{%b(n); ı[&(n)Ft+1(n + 1) + (1 − &(n))Ft+1(n − 1)]} n < ñ

When n > ñ,  the optimization problem is equivalent to

Ha
t (n) = max{0; −(1 − ı)%a(n) + ı[&(n)Ha

t+1(n + 1) + (1 − &(n))Ha
t+1(n − 1)]}

where Ha
t (n) = Ft(n) − %a(n). Similarly, when n < ñ,  the optimization problem is equivalent to

Hb
t (n) = max{0; −(1 − ı)%b(n) + ı[&(n)Hb

t+1(n + 1) + (1 − &(n))Hb
t+1(n − 1)]}

where Hb
t (n) = Ft(n) − %b(n).

At time T, it is optimal to choose action a over b if n > n∗
T = ñ.

At time T − 1, there are two cases. If n > ñ,  the optimization problem is equivalent to

Ha
T−1(n) = max{0; −(1 − ı)%a(n) + ı[&(n)Ha

T (n + 1) + (1 − &(n))Ha
T (n − 1)]}

where Ha
T (n) = FT (n) − %a(n). Note that %a(n) is strictly increasing in n, and therefore Ha

T (n) is non-increasing in n. Given
& ′(n) < 0, then we also have

∂
∂n

[&(n)Ha
T (n + 1) + (1 − &(n))Ha

T (n − 1)] < 0 (3)
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and overall the (r.h.s.) of Ha
T−1(n) is strictly decreasing in n and the value function Ha

T−1(n) is non increasing in n. As a
consequence, there exists na∗

T−1 that satisfies

%a(na∗
T−1) = ı[&(na∗

T−1)FT (na∗
T−1 + 1) + (1 − &(na∗

T−1))FT (na∗
T−1 − 1)] > 0.

Therefore, na∗
T−1 > n∗

T .
If n < ñ,  the optimization problem is equivalent to

Hb
T−1(n) = max{0; −(1 − ı)%b(n) + ı[&(n)Hb

T (n + 1) + (1 − &(n))Hb
T (n − 1)]}

where Hb
T (n) = FT (n) − %b(n). Note that %b(n) is strictly decreasing in n, and therefore Hb

T (n) is non-decreasing in n. Given
& ′(n) < 0, then we also have

∂
∂n

[&(n)Hb
T (n + 1) + (1 − &(n))Hb

T (n − 1)] > 0 (4)

and overall the (r.h.s.) of Hb
T−1(n) is strictly increasing in n and the value function Hb

T−1(n) is non decreasing in n. As a
consequence, there exists nb∗

T−1 that satisfies

%b(nb∗
T−1) = ı[&(nb∗

T−1)FT (nb∗
T−1 + 1) + (1 − &(nb∗

T−1))FT (nb∗
T−1 − 1)] > 0.

Therefore, nb∗
T−1 < n∗

T .
To characterize the optimal cutoffs at times t < T, we use a recursive method. Suppose that the following properties hold

at date t when n > ñ:
(A1) Ha

t (n) is non increasing in n; (A2) Ha
t (n) ≥ Ha

t+1(n).

Ha
t (n) = max{0; −(1 − ı)%a(n) + ı[&(n)Ha

t+1(n + 1) + (1 − &(n))Ha
t+1(n − 1)]};

Ha
t−1(n) = max{0; −(1 − ı)%a(n) + ı[&(n)Ha

t (n + 1) + (1 − &(n))Ha
t (n − 1)]}.

Combining (A1) and the fact that & ′(n) > 0, we  get that the r.h.s. of Ha
t−1(n) is decreasing in n. Therefore, if Ha

t (n) is non-
increasing in n, Ha

t−1(n) is also non-increasing in n. Moreover, there exists a unique cutoff na∗
t−1 above which the agent takes

action a at date t − 1. In addition, given (A2), it is clear that

&(n)[Ha
t (n + 1) − Ht+1(n + 1)] + (1 − &(n))[Ha

t (n − 1) − Ha
t+1(n − 1)] ≥ 0.

and therefore, the r.h.s. of Ha
t−1(n) is greater than the r.h.s. of Ha

t (n), which is sufficient to prove that Ha
t−1(n) ≥ Ha

t (n). Overall,
we have shown that if (A1) and (A2) hold at date t, then they also hold at date t − 1, which completes the recursion. This in
turn implies that na∗

t−1 > na∗
t for all t.

Suppose that the following properties hold at date t when n < ñ:
(A1′) Hb

t (n) is non decreasing in n;
(A2′) Hb

t (n) ≤ Hb
t+1(n).

Hb
t (n) = max{0; −(1 − ı)%b(n) + ı[&(n)Hb

t+1(n + 1) + (1 − &(n))Hb
t+1(n − 1)]};

Hb
t−1(n) = max{0; −(1 − ı)%b(n) + ı[&(n)Hb

t (n + 1) + (1 − &(n))Hb
t (n − 1)]}.

Combining (A1′) and the fact that & ′(n) > 0, we get that the r.h.s. of Hb
t−1(n) is increasing in n. Therefore, if Hb

t (n) is non-
decreasing in n, Hb

t−1(n) is also non-decreasing in n. Moreover, there exists a unique cutoff nb∗
t−1 below which the agent takes

action b at date t − 1. In addition, given (A2′), it is clear that

&(n)[Hb
t (n + 1) − Hb

t+1(n + 1)] + (1 − &(n))[Hb
t (n − 1) − Hb

t+1(n − 1)] ≥ 0.

and therefore, the r.h.s. of Hb
t−1(n) is smaller than the r.h.s. of Hb

t (n), which is sufficient to prove that Hb
t−1(n) ≤ Hb

t (n). Overall,
we have shown that if (A1′) and (A2′) hold at date t, then they also hold at date t − 1, which completes the recursion. This in
turn implies that nb∗

t−1 < nb∗
t for all t.

We can also use a recursion to show that na∗
t is decreasing in GA. It is easy to see that ñ is decreasing in GA. At date T − 1,

%a(n) is increasing in GA and the r.h.s. of Ha
T−1(n) is decreasing in GA. Therefore Ha

T−1(n) is non increasing in GA and na∗
T−1 is

decreasing in GA. Assuming that Ha
t (n) is non increasing in GA, it is easy to show that Ha

t−1(n) is also non increasing in GA.
Therefore, na∗

t is decreasing in GA for all t. Also, ñ is increasing in GB. At date T − 1, the r.h.s. of Ha
T−1(n) is increasing in GB.

Therefore Ha
T−1(n) is non decreasing in GB and na∗

T−1 is increasing in GB. Assuming that Ha
t (n) is non decreasing in GB, it is easy

to show that Ha
t−1(n) is also non decreasing in GB. Therefore, na∗

t is increasing in GB for all t. A similar recursion applies to
show that nb∗

t is increasing in GB and decreasing in GA.
Last, at date T − 1, the r.h.s. of Ha

T−1(n) is increasing in ı. Therefore Ha
T−1(n) is non decreasing in ı and na∗

T−1 is increasing
in ı. Assuming that Ha

t (n) is non decreasing in ı, it is easy to show that Ha
t−1(n) is also non decreasing in ı. Therefore, na∗

t is
increasing in ı for all t. A similar recursion applies to show that nb∗

t is decreasing in ı.
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Proof (Proof of Corollary 1). When T→ ∞,  the problem is recursive and the value function is:

F(n) =

{
max{%a(n); ı[&(n)F(n + 1) + (1 − &(n))F(n − 1)]} n > ñ

max{%b(n); ı[&(n)F(n + 1) + (1 − &(n))F(n − 1)]}  n < ñ

Therefore, the thresholds are the same for all t. When ı = 0,

F(n) = max{%a(n), %b(n); 0}

DM chooses in the first period based on one single threshold: ñ. When ı = 1, the r.h.s. of the two  equations are positive
and it is best to wait for all n.

The probability of taking action a when the true state is B is equal to the probability q(GA, GB) of reaching na* before nb*.
It has been shown in Brocas and Carrillo (2007) that this probability is simply:

q(GA, GB) = p0 − p(na∗)
p(na∗) − p(nb∗)

1 − p(na∗)
1 − p0

Therefore

∂q

∂GA
≡ −∂nb∗

∂GA
p′(nb∗)(p(na∗) − p0)(1 − p(na∗)) − ∂na∗

∂GA
p′(nb∗)(p0 − p(nb∗))(1 − p(nb∗)) > 0

∂q

∂GB
≡ −∂nb∗

∂GB
p′(nb∗)(p(na∗) − p0)(1 − p(na∗)) − ∂na∗

∂GB
p′(nb∗)(p0 − p(nb∗))(1 − p(nb∗)) < 0

Last denote na*(GA) the threshold when the benefit of taking action a is GA. Consider GA and G′
A > GA such that na∗(G′

A) =
n∗a(GA) − 1. Consider a path that leads to take action a at some date " < t under G′

A (i.e. that reach na*(GA) − 1) may  now not
lead to take action a before date t. Therefore the reaction time in taking action a increases when GA decreases. A similar
argument holds for GB and action b.

Proof (Proof of Proposition 2). The comparative statics on ñ are obtained by differentiating Eq. (2).
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