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Abstract

Using the method of upper and lower solutions, we study the existence of solutions of the hyperbolic equation in-
volving the distributional Henstock-Kurzweil integral. Results presented in this paper are extension of the previous
results in the literatures.
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1. Introduction

In the present paper, we consider the existence for solutions of the hyperbolic equation
∂2z
∂x∂y = f

(
x, y, z, ∂z

∂x ,
∂z
∂y

)
, on Q

z(x, c) = σ(x), a ≤ x ≤ b,
z(a, y) = τ(y), c ≤ y ≤ d,

(1)

where Q = {(x, y) : a < x < b, c < y < d}, a, c ≥ 0, Q̄ is the closure of Q, z ∈ C(Q̄), C(Q̄) denotes the space
of all continuous functions on Q̄. ∂2z

∂x∂y denotes the mixed distributional derivative of z and f is distributionally
Henstock-Kurzweil integrable on Q.

The hyperbolic equations have been studied by many contributors. In (A. Alexiewicz & W. Orlicz (1956)), the
authors use the ordinary derivative to discuss the hyperbolic equation. Moreover, authors use the approximate
derivative instead of the usual derivative to discuss a special case of hyperbolic equation in (D. Bugajewska & S.
Szufla (1995)) . The classical Carathéodory’s existence theorem about the special case is discussed in (F. Deblasi
& J. Myjak, (1986)). It is well known that the notion of a distributional derivative is a general concept, including
ordinary derivatives and approximate derivatives . In this paper, we use the distributional derivative instead of
the approximate derivative and usual derivative to study the hyperbolic equation (1). The distributional Henstock-
Kurzweil integral is defined by the distributional derivative. Hence our results get the corresponding results in (A.
Alexiewicz & W. Orlicz (1956)) by another way.

This paper is organized as follows. In section 2, we define the distributional Henstock-Kurzweil integral in the
plane and present its preliminary concepts and properties. In section 3, we apply the method of upper and lower
solutions to verify the existence of solutions of hyperbolic equation (1) under weaker hypotheses. In Section 4,
two examples are also worked out to illustrate our results.

2. The Distributional Henstock-Kurzweil Integral

In this section, we present the definition and some basic properties of the distributional Henstock-Kurzweil integral.

Denote D(Ω) = C∞c = {ϕ : Ω → R | ϕ ∈ C∞(Ω) and ϕ has compact support in Ω} where Ω denotes the open
rectangle (a, b) × (c, d) in the plane R2, a, b, c, d ∈ R, a < b and c < d and the closure of the set on which ϕ
does not vanish. The continuous linear functional on D(Ω) are called distribution , the dual space to D(Ω) is
denoted by D′(Ω) and its elements are called distributions. Define the generalized derivative f ′ of distribution f
as ⟨ f ′, ϕ⟩ = −⟨ f , ϕ′⟩, where f ∈ D′(Ω), f ′ ∈ D′(Ω), ϕ ∈ D(Ω). Under this generalized derivative, distribution is
any differentiable and any derivative of the distribution is distribution. Through this paper, ∂ = ∂xy = ∂yx stand for
the mixed distributional derivative and “

∫
” denotes the DHK-integral.
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Note that BC(Ω̄) = {F ∈ C(Ω̄) : F(a, y) = F(x, c) = 0, x ∈ [a, b], y ∈ [c, d]} is a Banach space with the uniform
norm ∥F∥∞ = max{|F(x, y)| : (x, y) ∈ Ω̄, F(x, y) ∈ C(Ω̄)}.
Now we are able to introduce the definition of DHK-integral on Ω.

Definition 1 A distribution f is distributionaly Henstock-Kurzweil integrable on Ω̄ if f is the distributional deriva-
tive of a continuous function F ∈ BC(Ω̄).

The DHK-integral of f on Ω̄ is given by ∫
Ω̄

f = F(b, d).

Denoted the space of DHK-integrable distributions by

DHK(Ω) = { f ∈ D′(Ω)| f = ∂F, F ∈ BC(Ω̄)}.

In the following, we consider the structure of DHK(Ω). For f ∈ DHK(Ω), the norm is defined as the follows:

∥ f ∥ = sup
{∣∣∣∣∣∣

∫
[a,x]×[c,y]

f

∣∣∣∣∣∣ : (x, y) ∈ Ω̄
}
.

Lemma 1([D. D. Ang, K. Schmitt & L. K. Vy,(1997),Theorem 1]) (DHK(Ω), ∥ · ∥) is a separable Banach space,
isomorphic to (BC(Ω̄), ∥ · ∥∞).

Now we introduce an ordering in the space DHK(Ω). For f , g ∈ DHK(Ω), we say that f ≽ g if and only if f − g is a
positive measure on Ω̄. We obtain the ordering preserving property of the DHK-integral in (Ang et al., 1997), i.e,∫

Ω̄

f ≥
∫
Ω̄

g, (2)

whenever f ≽ g, f , g ∈ DHK(Ω).

Definition 2 Let f ∈ DHK(Ω), x ∈ [a, b], y ∈ [c, d]. We define

∂1F(·, y) =
∫ y

c
f (·, v)dv,

∂2F(x, ·) =
∫ x

a
f (u, ·)du.

From this definition, we know that ∂1F(·, y) ∈ DHK((a, b)), ∂2F(x, ·) ∈ DHK((c, d)).

Now we give the Fubini type theorem for the DHK-integral.

Lemma 2 ([D. D. Ang, K. Schmitt & L. K. Vy,(1997),Theorem 4, Fubini theorem]) For all f ∈ DHK(Ω), we have∫
Ω

f =
∫ b

a

(∫ d

c
f (·, η)dη

)
=

∫ d

c

(∫ b

a
f (ξ, ·)dξ

)
.

A sequence { fn} ⊂ DHK(Ω) converges strongly to f ∈ DHK(Ω) if ∥ fn − f ∥ → 0 as n → ∞. This implies that
lim
n→∞

∫
Ω̄

fn =
∫
Ω̄

f . Then we have the following convergence theorem.

Lemma 3 [D. D. Ang, K. Schmitt & L. K. Vy,(1997),Corollary 5, Dominated convergence theorem of DHK-
integral] Let { fn} ⊂ DHK(Ω) such that fn → f inD′(Ω). Suppose there exist f−, f+ ∈ DHK(Ω) satisfying f− ≼ fn ≼
f+,∀n ∈ N. Then f ∈ DHK(Ω) and lim

n→∞
(DHK)

∫
Ω̄

fn = (DHK)
∫
Ω̄

f .

3. Main Results

In this section, we shall prove the existence of solutions of the hyperbolic equation (1).

Assume that f satisfies

(C1) f
(
x, y, z, ∂z

∂x ,
∂z
∂y

)
is DHK-integrable with respect to (x, y) ∈ Q̄.
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(C2) f
(
x, y, z, ∂z

∂x ,
∂z
∂y

)
is increasing with respect to z ∈ C(Q̄) and ∂z

∂x ,
∂z
∂y ∈ DHK(Q).

(C3) There exist f1, f2 ∈ DHK(Q) such that for all z ∈ C(Q̄) and ∂z
∂x ,
∂z
∂y ∈ DHK(Q), f1(·, ·) ≼ f

(
·, ·, z, ∂z

∂x ,
∂z
∂y

)
≼

f2(·, ·) on Q̄.

We recall that [u0, v0] = {z ∈ C(Q̄) : u0(x, y) ≤ z(x, y) ≤ v0(x, y), (x, y) ∈ Q̄}.
Let E be an ordered Banach space, K a nonempty subset of E. The mappingA:K → E is increasing if and only if
Au ≤ Av, whenever u, v ∈ K and u ≤ v. The symbol “≤ ” represents the relationship of size in the space of E.

Lemma 4([D. Guo, Y. J. Cho & J. Zhu, (2004),Theorem 3.1.3])Let u0, v0 ∈ E with u0 < v0 and T : [u0, v0] → E
be an increasing mapping satisfying u0 ≤ Tu0, Tv0 ≤ v0. If T ([u0, v0]) is relatively compact, then T has a maximal
fixed point z∗ and a minimal fixed point z∗ in [u0, v0]. Moreover,

z∗ = lim
n→∞

un, z∗ = lim
n→∞

vn, (3)

where un = Tun−1 and vn = Tvn−1 (n = 1, 2, 3, · · · ),

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ z∗ ≤ z∗ ≤ · · · ≤ vn ≤ · · · ≤ v1 ≤ v0. (4)

Now we give the main result of this paper.

Theorem 1Under the assumptions (C1) − (C3), there exist monotone sequences {un}∞n=0 and {vn}∞n=0 on C(Q̄) with
u0(x, y) = F1(x, y) + σ(x) + τ(y) − σ(a) and v0(x, y) = F2(x, y) + σ(x) + τ(y) − σ(a) where

F1(x, y) =
∫ x

a

∫ y

c
f1(u, v)dvdu, F2(x, y) =

∫ x

a

∫ y

c
f2(u, v)dvdu

such that
lim
n→∞

un(x, y) = z∗(x, y), lim
n→∞

vn(x, y) = z∗(x, y),

where z∗ and z∗ are the minimal and maximal solutions of the hyperbolic equation (1), respectively.

proof After integral operation of the hyperbolic equation (1), we can get that

z(x, y) + f (x) + f (y) =
∫ x

a

∫ y

c
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
dvdu. (5)

The insertion y = c and x = a in (5) yields z(x, c) + f (x) + f (c) = 0 and z(a, y) + f (a) + f (y) = 0, which together
with (1) imply that f (x) = − f (c) − σ(x) and f (y) = − f (a) − τ(y).

So, z(x, y) = σ(x) + τ(y) + f (c) + f (a) +
∫ x

a

∫ y
c f

(
u, v, z(u, v), ∂z(u,v)

∂u ,
∂z(u,v)
∂v

)
dvdu.

Since f (a) + f (c) = −σ(a) = −τ(c),

z(x, y) = σ(x) + τ(y) − σ(a) +
∫ x

a

∫ y

c
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
dvdu. (6)

Compute the mixed partial derivative of z with respect to x and y in (6). Then we can get the hyperbolic equation
(1). Therefore, the hyperbolic equation (1) is equivalent to the integral equation (6).

For (x, y) ∈ Q̄, z ∈ C(Q̄), define a mapping

Az(x, y) :=
∫ x

a

∫ y

c
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
dvdu + σ(x) + τ(y) − σ(a). (7)

In view of (C2),A is increasing.

Now we verify thatA satisfies the hypotheses of Lemma 4 in two steps.

Step 1: A : [u0, v0]→ [u0, v0].
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Let

F1(x, y) =
∫ x

a

∫ y

c
f1(u, v)dvdu, F2(x, y) =

∫ x

a

∫ y

c
f2(u, v)dvdu.

Since f1, f2 ∈ DHK(Q̄), then the primitives F1(x, y) and F2(x, y) are continuous on Q̄.

According to (C3) and (2), we have

F1(x, y) ≤
∫ x

a

∫ y

c
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
dvdu ≤ F2(x, y). (8)

It follows from (7) and (8) that

F1(x, y) + σ(x) + τ(y) − σ(a) ≤ Az(x, y) ≤ F2(x, y) + σ(x) + τ(y) − σ(a).

Denote

u0(x, y) = F1(x, y) + σ(x) + τ(y) − σ(a),
v0(x, y) = F2(x, y) + σ(x) + τ(y) − σ(a).

It is clear that u0(x, y), v0(x, y) are continuous on Q̄ and

u0(x, y) ≤ Az(x, y) ≤ v0(x, y),∀z ∈ [u0, v0].

Hence,A : [u0, v0]→ [u0, v0].

Step 2: A([u0, v0]) is relatively compact.

Let (x1, y1), (x2, y2) ∈ Q̄, we have, for each z ∈ [u0, v0],

A(z)(x1, y1) −A(z)(x2, y2) =
∫ x1

a

∫ y1

c
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
dvdu

−
∫ x2

a

∫ y2

c
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
dvdu

+ σ(x1) − σ(x2) + τ(y1) − τ(y2).

For simplicity, we denote

T =
∫ x1

a

∫ y1

c
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
dvdu

−
∫ x2

a

∫ y2

c
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
dvdu.

In view of Lemma 2, then

T =
∫ x2

a

(∫ y1

c
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
dv

)
du

+

∫ x1

x2

(∫ y1

c
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
dv

)
du

−
∫ y1

c

(∫ x2

a
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
du

)
dv

+

∫ y1

y2

(∫ x2

a
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
du

)
dv

=

∫ x1

x2

(∫ y1

c
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
dv

)
du

+

∫ y1

y2

(∫ x2

a
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
du

)
dv.
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Hence

A(z)(x1, y1) −A(z)(x2, y2) =
∫ x1

x2

(∫ y1

c
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
dv

)
du

+

∫ y1

y2

(∫ x2

a
f
(
u, v, z(u, v),

∂z(u, v)
∂u

,
∂z(u, v)
∂v

)
du

)
dv

+ σ(x1) − σ(x2) + τ(y1) − τ(y2).

By (C3)

|A(z)(x1, y1) −A(z)(x2, y2)| ≤
∣∣∣∣∣∣
∫ x1

x2

(∫ y1

c
f1(u, v)dv

)
du

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫ y1

y2

(∫ x2

a
f1(u, v)du

)
dv

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ x1

x2

(∫ y1

c
f2(u, v)dv

)
du

∣∣∣∣∣∣ +
∣∣∣∣∣∣
∫ y1

y2

(∫ x2

a
f2(u, v)du

)
dv

∣∣∣∣∣∣
+ |σ(x1) − σ(x2)| + |τ(y1) − τ(y2)|.

Since f1, f2 ∈ DHK(Q) and z ∈ C(Q̄), the primitives of them are bounded and uniformly continuous on Q̄. Hence,
for each z ∈ [u0, v0], A([u0, v0]) is equi-uniformly continuous. In view of Ascoli-Arzelà theorem, A[u0, v0] is
relatively compact.

According to Lemma 4, A has the minimal fixed point z∗ and the maximal fixed point z∗. It follows from (3) and
(4) that z∗ and z∗ are the minimal and maximal solutions of the hyperbolic equation (1).

Remark 1(Ascoli-Arzelà Theorem) If F is bounded and uniformly continuous on [a, b], then exists { fn} ⊂ F is
equi-uniformly continuous on [a, b].

4. Examples

In this section, we shall give two examples for the application of Theorem 1.

Example 1 Consider the existence of solutions of the following special hyperbolic equation
∂2z
∂x∂y = f (x, y, z), on Q
z(x, 0) = σ(x), 0 ≤ x ≤ 1,
z(0, y) = τ(y), 0 ≤ y ≤ 1,

(9)

where Q = {(x, y) : 0 < x < 1, 0 < y < 1}, Q̄ is the closure of Q, z ∈ C(Q̄), C(Q̄) denotes the space of all continuous
functions on Q̄. ∂2z

∂x∂y denotes the mixed distributional derivative of z and f is distributionally Henstock-Kurzweil
integrable satisfying

(1◦) increasing in z for fixed (x, y) ∈ Q,

(2◦) bounded, there exist f1, f2 ∈ DHK(Q̄) such that f1(·, ·) ≼ f (·, ·, z) ≼ f2(·, ·), for all z ∈ C(Q̄).

It is well known that the DHK-integral contains the Lebesgue integral. Obviously , the existence of solutions of
equation (9) is guaranteed by Theorem 1.

Example 2 Consider another hyperbolic equation
∂2z
∂x∂y = f

(
x, y, z, ∂z

∂x ,
∂z
∂y

)
= r(x) + g

(
x, y, z, ∂z

∂x ,
∂z
∂y

)
, on Q

z(x, 0) = σ(x), 0 ≤ x ≤ 1,
z(0, y) = τ(y), 0 ≤ y ≤ 1,

(10)

where Q = {(x, y) : 0 < x < 1, 0 < y < 1}, Q̄ is the closure of Q, z ∈ C(Q̄), C(Q̄) denotes the space of all continuous
functions on Q̄, r(x) is the distributional derivative of R(x) =

∑∞
n=1

sin n2πt
n2 , ∂

2z
∂x∂y denotes the mixed distributional

derivative of z and g is distributionally Henstock-Kurzweil integrable satisfying

(i) g(x, y, z, ∂z
∂x ,
∂z
∂y ) is increasing in z for all (x, y) ∈ Q,

(ii) There exist f1, f2 ∈ DHK(Q̄) such that f1(·, ·) ≼ f
(
·, ·, z, ∂z

∂x ,
∂z
∂y

)
≼ f2(·, ·), for all z ∈ C(Q̄) and ∂z

∂x ,
∂z
∂y ∈ DHK(Q̄).
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It is easy to see that R(x) ∈ C[0, 1] and R(0) = 0, hence r(x) is DHK-integrable. In view of (10), f (x, y, z, ∂z
∂x ,
∂z
∂y )

satisfies (C1), (C2). Thus, for (x, y) ∈ Q, z ∈ C(Q̄), we have

r(x) + f1(·, ·) ≼ f
(
·, ·, z, ∂z

∂x
,
∂z
∂y

)
≼ r(x) + f2(·, ·) (11)

That is, f
(
x, y, z, ∂z

∂x ,
∂z
∂y

)
satisfies (C3).Therefore, the existence of solutions of equation (10) is guaranteed by The-

orem 1.

Remark 2 The Riemann function R(x) in (10) is continuous everywhere in the interval (0, 1) within the irrational
points but continuous nowhere in the interval (0, 1) within the rational points. Then, the distributional derivative r
in (10) is neither HK nor Lebesgue integrable. Hence, the methods using HK or Lebesgue integral are ineffective
for equation (10).
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