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Abstract— In this study the Feed Forward Artificial Neural 

Networks (FFANN) for crack identification and estimates the 

turbine operating conditions in Francis turbine type was 

investigated. The sets of vibration data were used as vibrational 

signatures for studied mechanical structure, and they fed to 

FFANN as input vector for identification purpose. Different 

arrangements of FFANN were taken into consideration to find 

out the best topology which can produce identification results with 

acceptable accuracy levels. In order to examine the performance 

of the FFANN and obtain the satisfactory arrangements, different 

numbers of input data sets are tested. The test results showed that 

the use of very large number of input data will cause a large 

increase in training time beside to it may lead to unstable FFANN 

with over-fitting. To avoid these deteriorated results, different data 

reduction techniques have been proposed for reducing 

dimensionality of the input data to achieve an acceptable data 

reduction level.  

The conducted results indicated that the FFANN models have 

been successfully employed for crack identification and estimates 

the turbine operating conditions using vibration data sets. 

Moreover the results revealed that the pruning mechanism which 

is based on the data reduction mechanism can led to satisfactory 

results. 
 

Index Terms— Crack Identifications, Feed Forward Artificial 

Neural Networks, Francis Turbines Runner, Pruning Algorithm 

I. INTRODUCTION 

Damages initiate a breakdown period on the hydropower 

station; therefore the structures are required to work safely 

during service life. Damage detection is very important to 

provide early detection of damage and allow maintenance 

planning to take place before the catastrophic failure occurs 

[8]. Recently, there are growing interests for non-destructive 

techniques allowing the early detection of damages; these 

techniques are based on vibration analysis.  

Significant efforts have been spend for developing different 

diagnosis approaches for damage identification in structures 

based on vibration characteristics [3], [13]. Measured 

amplitude of FRFs are often used for damage identification 

with satisfactory accuracy [2]. For instance, [7] used 

measured amplitude of FRFs data for damage detection in 

truss structure and a plate structure. A detailed literature 

review of the various methods for damage detection in 

different structures was reported by [15]. All these studies 

indicate that there is a connection between the change in the 

vibration characteristics of the structure and damage in 

structure. Therefore, vibration-based methods have been 

intended for the identification of crack and estimate the 
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structural conditions. Those methods based on comparison of 

the vibration data with a standard level since the characteristic 

of vibrations are different when the turbine is not operating 

satisfactorily.  

Crack identification in Francis turbine runners is 

considered to be a very difficult problem [1]. Therefore, 

Artificial Intelligent (AI) techniques are used for automation 

crack identification and estimate the turbine operating 

conditions (Power output- P, Net Head - H, and Discharge - 

Q). Different AI techniques are applied for damage detection, 

such as fuzzy logic, artificial neural network (ANN) and 

genetic algorithms (GA) [9]. The ANN approach based on 

vibration characteristics have been used for damage 

identification in different structures, such as: different kinds 

of vessels [5], beam structure [11], rectangular plate [9], truss 

structure [18], railway wheel [19] and composite frames [20]. 

Several authors used ANNs technique based on vibration 

characteristics for fault detection and diagnosis in various 

machines, such as: fan turbo-jet [8] and power station [10], 

axial-flow fan [12] and residual gas compressor [16].  

During a routine inspection of Unit 2 in Derbendikhan 

power station, in February 2002, it was found that multiple 

fatigue cracks were developed in turbine runners. 

Derbendikhan hydropower station is one of the major 

suppliers of electrical power generation in the north of Iraq- 

Kurdistan region which consists of 3 Units. Each Unit has the 

following parameters [14]:  the rated head is 80 m, power 

output at rated head is 83 MW, discharge at rated head is 113 

m
3
/s, and rotational speed 187.5 rpm.  

The aim of this study is developing and examining a Feed 

Forward Artificial Neural Network (FFANN) with back 

propagation (BP) algorithm for crack identification in the 

runner and for making expectations about the turbine 

operation conditions using its vibrational data; which can be 

provided from implementation some mechanical-numerical 

analysis methods. Additionally the main objective of this 

work is the investigating the possibility reducing the number 

of input data sets to FFANN using the pruning mechanism 

which is based on the data reduction techniques.  

II. SIMULATION 

This section discusses the three-dimensional simulations of 

the flow through the whole turbine, and the structural model 

of the turbine runner. Afterwards, integrating fluid-structure 

simulation to analyse the vibrations of the turbine runner is 

explained. 

A. Flow Simulations 

The flow simulation of the Francis turbine is quite 

complicated and can be calculated only by using numerical 

methods. Therefore, CFD simulation of all flow channels of 

the Francis turbine has been performed. According to the 
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provided specifications from Derbendikhan hydropower 

station a three-dimensional geometrical model has been 

created, as shown in Fig 1, the computation of the Spiral 

Casing, Stay Vane, Guide Vane, Runner and Draft tube was 

handled. As shown in the figure, the entire fluid passageway 

between the inlet from the Spiral Case side and the outlet at 

the draft tube side for the turbine is considered. The geometry 

of the fluid domain has been created used AutoCAD software 

and then inserted into ANSYS software. 
 

 

Fig 1: The geometrical model used in the simulation 

B. Structural Modelling 

In order to investigate the influence of cracks and load 

conditions on the dynamic behaviour of the runner, a 3D FEM 

simulation of the whole turbine runner has been designed 

according to the dimensions of the turbine runner at 

Derbendikhan power station. A complete 3D model of the 

turbine runner is shown in Fig 2. 

 

Fig 2: Model of the runner 

C. Fluid–Structure Coupled Analysis 

The vibrations of the Francis turbine runner are examined 

by coupling fluid-structure models in order to compute the 

amplitude of FRFs for the intact and damaged runner under 

different load conditions. Fig 3 shows the details of the 

connection between flow domains for CFD simulation and 

Francis turbine runner model. The analysis of vibration 

modes has been performed by ANSYS software. 

 

Fig 3: The flow domain and structure model 

Since the computational domain has a very complicated 

geometry, the analysis of the fluid flow model and turbine 

runner models at each operational condition requires large 

computer memory and computational time. Therefore, in 

order to analyze the vibrational behaviour, the simulations of 

the flow through the turbine runner and the structural model of 

the Francis turbine runner used in the computations. Three 

different data sets of the amplitude of FRFs along x 

(Horizontal), y (Vertical) and z (Axial) directions have been 

obtained as a result of the modelling. 

D. Boundary Conditions  

Inlet boundary condition at given performance point of the 

hydraulic turbine runner are derived from the operation 

condition. Outlet boundary condition is defined to an opening 

case with an average relative pressure equal to the 

atmospheric pressure. The simulations were carried out for 

different real operation conditions of Francis turbine in 

Derbendikhan power station to address different load 

conditions.  

The runner is rigidly connected to the shaft of the runner 

through the crown (zero displacements are assumed at the top 

edge of the crown). It is assumed that a single crack is located 

in one of the blades of the runner. The positions of the cracks 

in all calculations presented further are always in the trailing 

edge of the runner blade towards the crown, while the crack 

length varies. The spectrum computed for 10 cases of the 

damaged runner (crack lengths varying from 10mm to 

100mm) and 1 case of the undamaged runner (without crack) 

for 24 different operation conditions for each case makes in 

total 264 cases. The size of the amplitude of FRFs data sets 

obtained from numerical analysis is represented by 500 

spectral lines in each measurement, where each line is 

represented by a portion of the frequency spectrum (1 Hz). 

The numerical analysis provide amplitude of FRFs along x, 

y and z-directions under different operating loads and 

different sizes of damage in the structure. Subsequently, the 

data sets are formulated and fed into Artificial Neural 

Networks (ANNs) in order to identify the crack length in the 

runner and estimate the turbine operational state. 

III. ARTIFICIAL NEURAL NETWORKS  

The amplitude of FRFs data sets contains information 

regarding the turbine operation load and damage conditions. 

Therefore, the ANNs have been produced using MATLAB 

code to establish the relationship between the turbine 
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conditions and dynamic characteristics of the runner. The 

amplitude of FRFs data sets along x, y and z-directions have 

been used for training ANN to identify the crack in the runner 

and estimate turbine operating parameters. Each data sets of 

amplitude of FRFs along x, y and z-directions was used 

separately for training an appropriate single ANN to identify 

the turbine conditions, and they aggregated together and used 

for training multiple ANN scheme to improve the crack 

identification. 

The implementation of an ANN model includes the training 

and testing procedure. In the training process, Feed Forward 

Artificial Neural Networks (FFANN) were trained using the 

obtained amplitude of FRFs data sets along x, y and 

z-directions. For training purpose the back propagation (BP) 

training algorithm was adapted. A sufficient number of 

combinations of input and output pairs is introduced for 

training; then the network become a “trained network” 

capable of identifying the crack size and estimates the turbine 

operating conditions. After that, the trained FFANN model 

was tested on the data that has not been used in the training 

process.   

Large numbers of input data (high number of neurons in the 

input layer of the FFANN model) make the system unstable. 

Therefore, in order to reduce dimensionality in the input 

layer, different data reduction techniques have been 

proposed. A data reduction technique is used to achieve an 

acceptable data reduction level and obtain suitable number of 

spectral lines data, which retaining all features of the original 

data sets. This approach allows to significantly reducing the 

amount of amplitude of FRFs data sets.  

A. Pruning Neural Network  

The pruning process is a continuous process of reducing the 

number of input nodes of the neural network. The pruning 

goal is to reduce the number of involved nodes in the NN that 

have no significant effect on classification. In this study, 

selection of all spectral lines of FRFs data sets are excessive 

for training ANN directly, it may lead to unstable model and 

over-fitting the training data. To avoid large models, a subset 

of the amplitude of FRFs data sets can be used by considering 

fewer measurement points (input nodes), and its extra 

(un-necessary) nodes should be pruned. Pruning process 

begins by training a fully-connected neural network, and then 

pruning process is implementing by eliminating a number of 

input nodes. The pruning process is used for reducing the size 

of the network significantly without causing significantly 

degradation in classification accuracy because pruning 

eliminates the less effect and redundant inputs.  

In this study, in order to apply pruning process for selecting 

the nodes to be deleted and to investigate the required number 

of neurons in the input layer of the ANN, two different 

techniques have been proposed.  

1) The First Proposed Technique 

In the first proposed technique, to determine the required 

number of frequencies/neurons in the input layer the training, 

testing and validation data sets are loaded. In the first step, the 

number of frequencies/neurons in the input layer is reduced 

sequentially (1 input frequency/neuron at each attempt). For 

the first attempt, 1
st
 frequency/neuron is eliminated from the 

input data sets then ANN is trained and tested with the new 

data sets. In the second attempt, 1
st
 frequency/neuron is 

returned back to the input data sets and the 2
nd

 

frequency/neuron is eliminated from the input data sets then 

ANN is trained and tested. In the third attempt, 2
nd

 

frequency/neuron is retained back to input data sets and the 

3rd frequency/neuron is eliminated from the input data sets 

and then ANN is trained and tested. This process is continuing 

until the last frequency/neuron is reduced. In the next step, the 

summation of correlation coefficients between predicted and 

existence data for each attempt have been determined. In the 

final step, the maximum correlation coefficients are identified 

which are corresponding to one of the attempts, and then the 

frequency/neuron that is eliminated in this attempt is removed 

from the input data sets permanently. The explained 

procedure is continuing until reaching the satisfactory 

reduction number of frequencies /neurons in the input layer of 

the ANN. 

2) The Second Proposed Technique 

In the second proposed technique, to determine the 

required number of frequencies/neurons in the input layer the 

training, testing and validation data sets are loaded. The 

applied method for selecting the nodes to be deleted is based 

on the values of best weights matrix between input and first 

hidden layer. In this technique and after training ANN, the 

variance of each column of weight in the best weight matrix is 

determined which is representing the variance of weights 

between each input frequency/neuron with all neuron in the 

first hidden layer. The input frequency/neuron with the low 

variance weights in the best weight matrix has less effect on 

the model; therefore this frequency/neuron is removed from 

the training, testing, and validation data sets permanently. In 

the next attempt, the ANN will be training again with the new 

input data sets after removing one of the input 

frequency/neuron from the input data sets. Then the variance 

of each column of weight in the best weight matrix is 

determined. Next, the input frequency/neuron with the 

minimum variance in the weight matrix is eliminated from the 

training, testing, and validation data sets permanently. The 

explained procedures continue until the satisfactory reduction 

number of frequencies/neurons in the input layer of the NN.  

These techniques are applied to amplitude of FRFs data 

sets to achieve an acceptable data reduction level which 

significantly reduces the amount of required input data sets. 

The new data sets of amplitude of FRFs along x, y, and 

z-directions are used such as input vectors to the ANN models 

as an alternative of using the original data sets. Such 

truncation of data sets has very little effect on the accuracy of 

the classifier results but considerably reduces the number of 

inputs into the model.  

For crack identification in the runner and estimates the 

turbine operation conditions, changes in amplitude of FRFs 

along one direction may not be sufficient, because the change 

in a particular frequency could be attributed to different 

damage size and turbine operation conditions. It is expected 

that the overall accuracy can be improved by combining the 

network models trained with the amplitude of FRFs along x, y 

and z-directions.  

B. Multiple Artificial Neural Networks 

In this section, instead of training several networks and 

choosing the best network (i.e. ANN-1 and ANN-2), all 

individual networks are combined into a multiple neural 

networks-MNN (ANN-3). Vibrations data are aggregated 

together for training ANN-3 to improve the overall estimation 
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error that could be smaller than the individual errors for each 

individual ANN (ANN-1 and ANN-2). Integrating the 

information of two input data sets for the construction of 

multiple ANN models makes the identification to be more 

accurate than the decision obtained from an individual neural 

network. The combination of multiple neural networks by 

using data fusion techniques is implemented in the MATLAB 

code. 

IV. RESULTS AND DISCUSSION  

From the numerical results, the values of amplitude of 

FRFs are quite similar along x and y-directions, therefore 

amplitude of FRFs along y-direction are not taken into 

consideration. Two different amplitude of FRFs data sets 

along x and z-directions are used to train two different models 

of ANN to estimate the turbine operation conditions and crack 

length in the runner. First, data sets of amplitude of FRFs 

along x and z-directions are used separately for training two 

different ANN models (ANN-1 and ANN-2). Then, both of the 

amplitude of FRFs data sets along x and z-directions have 

been used together to train multiple ANN (ANN-3).  

For learning classifier models, amplitude of FRFs data sets 

are used as input parameters and the corresponding turbine 

conditions and runner damage state are used as output 

parameters. The complete data sets (264 patterns) are divided 

into three subsets. The first subset, 80% (212 patterns) of the 

complete data sets selected randomly, is used for training, 

while the remaining (20%) are used for validation 10% (26 

patterns) and testing 10% (26 patterns). The testing data sets 

are used to verify the accuracy and the effectiveness of the 

classified model, while the validation data sets are used to 

optimise the performance of the ANN model by stopping the 

training process when the validation error starts to increase as 

the classifier model becomes over-fitted [4], [6]. 

During the learning process, different multi-layer neural 

network arrangements have been investigated in order to 

determine the best possible number of hidden layers and the 

neurons number in each hidden layer. It was revealed from 

experiments that the neural network may not be able to 

represent the system adequately if the number of hidden 

layers and neurons in the hidden layer in the neural network is 

too small. On the other hand, it becomes over-trained if the 

network is too big [18]. During the training process, the ANNs 

have been tested for all combinations of training rates: 0.005, 

0.01, 0.05, 0.1, and 0.3 and momentum: 0.6, 0.7, 0.8 and 0.9. 

The simulation results show that simultaneous changes of all 

training parameters (training rate, momentum) can reduce the 

training time. The training process is terminated when there is 

no improvement for a limited number of cycles, or when the 

mean square error (MSE) for training samples falls below a 

specified limit, typically below 0.001 [8], [10], or when it 

reaches the maximum number of iterations. The maximum 

number of training epochs is set to be 10000 epochs. 

For the NN model using amplitude of FRFs along x and 

z-directions (ANN-1 and ANN-2), it was found that the 

minimum of MSE could be further reduced by decreasing the 

learning rate value to 0.001; the momentum rate was 

considered as 0.6. Hyperbolic tangent function is used as 

activation function for hidden layer neurons and sigmoid 

function is used as activation function for output layer 

neurons. 

A. Testing of ANN Using Amplitude of FRFs along 

x-direction 

In order to select the suitable number of neurons in the 

hidden layer, the performance of FFANN with one hidden 

layer (ANN-1) with different number of neurons in the hidden 

layer (from 1 neuron to 40) has been examined. As a result, 

the correlation coefficient (CC) and MSE values for 

estimation of the turbine operation conditions (Power output- 

P, Net Head - H, and Discharge - Q) and crack length (L) in 

the turbine runner for different numbers of the neurons in the 

hidden layer have been determined, and the results are shown 

in Fig 4 and Fig 5.  
 

 

Fig 4: Correlation coefficient for estimation of the turbine 

operation conditions and crack length by using amplitude of 

FRFs along x-direction (500 spectral lines) 

 

Fig 5: MSE for estimation of the turbine operation conditions 

and crack length by using amplitude of FRFs along 

x-direction (500 spectral lines)     

During the training process of the NN using amplitude of 

FRFs along x-direction, it was found that the FFANN with one 

hidden layer NN consist of 7 neurons in the hidden layer 

produce the best identifications for the damage size in the 

runner and turbine operation conditions. The best attained 

correlation coefficients are around (0.95, 0.93, 0.94, and 

0.92) and for MSE are around (9.41, 5.55, 15.01, and 172.7) 

for estimation of the turbine operation conditions (P, H, and 

Q) and crack length (L) respectively.  

After are successful training of the FFANN (ANN-1), new 

data set of the amplitude of FRFs along x-direction are fed to 

the trained model, where these new data sets were not used 

during the FFANN training stage. The results obtained from 

testing this model are presented in Fig 6. The figure shows a 
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scatter plot between the identified results of the ANN model 

with the actual values of the turbine operation conditions and 

crack length. As displayed in the figure, it can be seen that the 

estimation for the crack length and operation parameters by 

the trained model show good agreement with the actual 

parameters values.  

 

Fig 6: Estimation of the power output (A) net head (B) 

discharge (C) and crack length (D) by using amplitude of 

FRFs data sets along x-direction (500 spectral lines) 

The size of the used amplitude of FRFs data sets along 

x-direction, which are obtained from numerical analysis, is 

take 500 spectral lines in each test. Using whole spectral lines 

of the FRFs data sets had caused long training time. To avoid 

long time operation and over-fitting, the size of input 

amplitude of FRFs data is reduced using data reduction 

method. The reduction technique was applied for amplitude 

of FRFs matrix (264x500) to achieve an acceptable data 

reduction level.  

In this section, the suitable number of spectral 

lines/neurons in the input layer of ANN-2 had been 

investigated. In order to reduce the number of spectral 

lines/neurons in the input layer to a satisfactory number of 

neurons, second data reduction technique has been 

implemented. Based on this technique, different ANN 

arrangements have been examined with different input data 

sets, where the number of input amplitude of FRFs data 

samples is gradually reduced by 1. The results of attempted 

sets are shown in Fig 7. 
 

 

Fig 7: Reducing spectral lines of the FRFs along x-direction 

using the second data reduction technique 

At the right side of the figure a close view of the results of 

last 10 attempts (from 488 to 497) of reduced data of the 

amplitude of FRFs data sets are shown. The correlation 

coefficient and MSE for the trained NN which corresponds to 

certain set reduced spectral line of the FRFs were determined 

and the results are presented in Fig 8 and Fig 9.  

The investigations show that the last 7 spectral lines of the 

FRFs data sets are sufficient to identify the crack length and 

turbine operation conditions. Fig 10 shows the last 10 

attempts (from 488 to 497) for reducing dimensionality of the 

amplitude of FRFs data along x-direction. As indicated in the 

figure, the use of only 7 spectral lines of the amplitude of 

FRFs data sets captured the largest amount of variations in the 

original data and they have been used further on. Therefore 

the original amplitude of FRFs data array of 264x500 is 

reduced to 264x7. 

 

Fig 8: The correlation coefficients for estimated and actual 

crack length and turbine operation conditions using amplitude 

of FRFs data sets along x-direction (500 spectral lines) 

 

Fig 9: MSE for estimation crack length and turbine operation 

conditions using amplitude of FRFs data sets along 

x-direction (500 spectral lines) 

The reduced data sets of the amplitudes FRFs along 

x-direction have been used as input vectors to the classifier 

ANN-1 as an alternative of the original amplitude of FRFs 

data sets. Such reduction of data sets has little effect on the 

accuracy of the classifier results but considerably reduces the 

operation time (weather in the training or recognition). 
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Fig 10: The 10 attempts (from 488 to 497) for reducing 

dimensionality of the amplitude of FRFs data along 

x-direction 

In the following section, different number of neurons is 

taken in the hidden layer (i.e., from 1 to 40 neurons). The 

FFANN (ANN-1) was trained the reduced input data sets, to 

determine the best number of neurons in the hidden layer. 

While, the number of neurons in the input layer is fixed to 7 

spectral lines/neurons, the learning rate and momentum are 

set 0.005 and 0.9 respectively. The correlation coefficient and 

MSE values for identification of the crack length and location 

for testing NN using reduced natural frequencies data sets 

with different numbers of the neurons in the hidden layer have 

been determined and the results are presented in Fig 11 and 

Fig 12.  

As illustrated in the figures, the correlation coefficient is 

around 0.835 for the identification of crack length. The 

investigations showed that a one hidden layer NN with 4 

neurons in the hidden layer leads to best acceptable results, 

where the correlation coefficients are 0.93 and (0.985, 0.95, 

and 0.93) for the identification of the crack length and turbine 

operation conditions (P, H, and Q), respectively. 

Additionally, the corresponding MSE to estimate the crack 

length and turbine operation conditions (P, H, and Q) are 

130.59 and (6.69, 2.67, and 15.69) respectively. 
 

 

Fig 11: Correlation Coefficient for estimation of the turbine 

operation conditions and crack length by using amplitude of 

FRFs along x-direction (7 spectral lines) 

 

Fig 12: MSE for estimation of the turbine operation 

conditions and crack length by using amplitude of FRFs along 

x-direction (7 spectral lines)     

So, the tests indicate that the required numbers of spectral 

lines /neurons in the input layer, it can be concluded that one 

hidden layer NN (ANN-1) with 4 neurons in the hidden layer is 

sufficient to estimate the crack length and operation 

conditions effectively. Therefore, the performances of one 

hidden layer NN for the identification of the crack length and 

operation conditions have been tested and the results are 

illustrated in Fig 13. So, the number of neurons in the input 

layer is fixed to 7 spectral lines/neurons and the number of 

neurons in the hidden layer is fixed to 4. The testing results 

reveal that this model can estimate the turbine operation 

condition and this model can identify the existence of a crack 

in the turbine runner. 

 

Fig 13: The identification results of the power output (A) net head (B) 

discharge (C) and crack length (D) using amplitude of FRFs data sets 

along x-direction (7 spectral lines) 

B. Testing of ANN Using Amplitude of FRFs along 

z-direction 

In order to determine the required number of neurons in the 

hidden layer using amplitude of FRFs (along z-direction) data 

sets; FFANN with one hidden layer consist of different 

number of neurons in the hidden layer (from 1 neuron to 40) 

have been tested. In consequence, the correlation coefficient 

and MSE values for estimation of the turbine operation 

conditions and crack length in the turbine runner have been 

determined. The obtained results are shown in Fig 14 and Fig 

15.  
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During the training and testing process of the NN using 

amplitude of FRFs along z-direction, it was found that the 

three layers FFANN with 4 neurons in the hidden layer had 

produced the best identifications for the damage size in the 

runner and monitoring turbine conditions. The correlation 

coefficients are more than 0.90 for the identification of the 

turbine operation conditions and crack length. The correlation 

coefficients and MSE are more than (0.97, 0.97, 0.89, and 

0.92) and (9.16, 2.59, 36.20, and 152.15) for the 

identification of the turbine operation conditions (P, H, and 

Q) and crack length (L), respectively. 
 

 

Fig 14: Correlation coefficient for estimation of the turbine 

operation conditions and crack length by using amplitude of 

FRFs along z-direction (500 spectral lines)  

 

Fig 15 : MSE for the estimated crack length and turbine 

operation conditions using amplitude of FRFs data sets along 

z-direction (500 spectral lines)     

The size of the amplitude of FRFs data sets along 

z-direction obtained from the numerical analysis is 

represented by 500 spectral lines in each measurement. The 

spectral lines of the FRFs data cause very long training time. 

To avoid large operation time and over-fitting, the data 

reduction mechanism was used to reduce dimensionality of 

the spectra. This technique allows to significantly reducing 

the amount of amplitude of FRFs data. The reduction 

technique is applied on amplitude of FRFs matrix (264x500) 

to achieve an acceptable data reduction level. The new data 

sets of amplitudes FRFs along z-direction are used as input 

vectors to the classifier (ANN-2) as an alternative for using the 

original amplitude of FRFs data sets.  

In order to investigate the required number of spectral 

lines/neurons in the input layer of the ANN, second data 

reduction technique has been applied. Based on this 

technique, different FFANN have been trained with different 

input data sets, where the number of input data was gradually 

reduced from 1 spectral line to 497 spectral lines, the obtained 

results are shown in Fig 16. 

 

Fig 16: Reducing spectral lines of the FRFs along z-direction 

using the second data reduction technique 

The figure at the right side shows a close view of the last 10 

attempts (from 488 to 497) of the reduced amplitude of FRFs 

data sets. The correlation coefficients and MSE have been 

determined for all trained FFANN and the results are 

presented in Fig 17 and Fig 18. 

The above figures indicate that the accuracy of the crack 

identification and the estimation of turbine operation 

conditions is decrease with the increase of the number of 

reduced spectral lines in the input layer, particularly after 

reducing the number spectral lines by 490 lines as illustrated 

in Fig 17 and Fig 18. The 17 attempts (from 470 to 486) for 

reducing dimensionality of the amplitude of FRFs data sets 

are shown in Fig 19. 

 

Fig 17: Correlation coefficients for the estimated crack length 

and turbine operation conditions using amplitude of FRFs 

data sets along z-direction (500 spectral lines) 

 

Fig 18: MSE for the estimated crack length and turbine 

operation conditions using amplitude of FRFs data sets along 

z-direction (500 spectral lines) 
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 Fig 19: The 15 attempt (from 470 to 484) for reducing 

dimensionality of amplitude of FRFs data along z-direction 

The test set shows that the 10 spectral lines of the FRFs 

(along z-direction) data sets, as indicated in the figure, is 

sufficient to estimate the crack length and operation 

conditions in the Francis turbine. The remained 10 spectral 

lines of the FRFs data are shown in Fig 19. These spectral 

lines capture the largest amount of variations in the original 

data and they have been used further on. Therefore, the 

original amplitude of FRFs array of 541x500 is reduced to 

541x10. Such truncation of data sets has little effect on the 

accuracy of the classifier results but considerably reduces the 

input data. The reduced data sets of amplitude of FRFs along 

z-direction are used as input vectors to the classifier models as 

an alternative to the original amplitude of FRFs data sets.  

In the following, different number of neurons in the hidden 

layer (from 1 to 40 neurons) have been examined for training 

FFANN (ANN-2) by using the reduced input data sets, to 

determine the best number of neurons in the hidden layer. 

While, the number of neurons in the input layer is set equal to 

10 spectral lines/neurons, the learning rate and momentum are 

fixed at 0.005 and 0.9 respectively.   

The correlation coefficient and MSE values for 

identification results of the crack length and turbine operation 

conditions when the trained FFANN is fed with reduced input 

data sets are determined, and the results are presented in Fig 

20 and Fig 21.  
 

 

Fig 20: Correlation coefficients for estimated crack length and 

turbine operation conditions using amplitude of FRFs data 

sets along z-direction (10 spectral lines) 

 

Fig 21: MSE for the estimated crack length and turbine 

operation conditions using amplitude of FRFs data sets along 

z-direction (10 spectral lines)     

During the training process of the NN using the reduced 

amplitude of FRFs data sets, it was found that three layer 

FFANN with 3 neurons in the hidden layer had produced the 

best identifications for the damage size in the runner and 

turbine operation conditions. The correlation coefficients and 

MSE are around (0.978, 0.968, 0.945, and 0.942) and (6.43, 

2.55, 9.60, and 101.11) for the estimation of the turbine 

operation conditions (P, H, and Q) and crack length (L), 

respectively.  

For testing a trained FFANN a new data set of reduced 

amplitude of FRFs data sets along z-direction are introduced 

to the system, this new data set was not used in the FFANN 

training stage, the obtained results are presented in Fig 22. 

The number of neurons in the input layer is set 10 spectral 

lines/neurons and the number of input neurons is set 3. The 

figure shows the scatter plots between the estimated results of 

the trained FFANN model with the actual values of the turbine 

operation conditions and crack length. As displayed in the 

figure, it can be seen that the estimation for the crack length 

and the operation parameters by the trained FFANN model 

show good agreement with the actual parameters.  
 

 

Fig 22: Identification of the power output (A) net head (B) 

discharge (C) and crack length(D) by using amplitude of 

FRFs data sets along z-direction (10 spectral lines) 
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After successful training of the FFANN classifier models 

(i.e. ANN-1 and ANN-2); new data sets (26 data sets) of the 

reduced amplitude of FRFs data sets (along x and 

z-directions) corresponding to both healthy and damaged 

runner conditions, and under different operation conditions, 

were selected and fed simultaneously into the FFANN 

classifier models. The obtained results from the classifier 

models (i.e., ANN-1 and ANN-2) are presented in Fig 22 and 

Fig 13. Where ANN-1 and ANN-2 are trained using the 

reduced amplitude of FRFs (along x and z-directions) data 

sets, the number of spectral lines are taken 7 and 10, 

respectively. These figures presents the scatter plots between 

the identified crack length and operation parameters using the 

classifier models versus the actual crack length, taken into 

consideration that in ideal situations it should lie on the 

straight line. As evident from the figures, the identified results 

are in good agreement with the actual turbine condition 

parameters.  

The high value of correlation coefficients and low values of 

MSE for the identifying of crack parameters showed that 

FFANN have good identification performance. The sufficient 

number of neurons in the hidden layer is 4 for ANN-1 and 3 

neurons for ANN-2, where the correlation coefficients and 

MSE for NN using amplitude of FRFs data sets along 

x-direction are (0.93, 0.985, 0.95, and 0.93) and (6.69, 2.67, 

15.69, and 130.59) and for NN using amplitude of FRFs data 

sets along z-direction are (0.978, 0.968, 0.945, and 0.942) and 

(6.43, 2.55, 9.60, and 101.11) for the identification of the P, 

H, Q, and L respectively. Based on obtained results, one can 

conclude that by knowing the amplitude of FRFs data sets 

along x and z-directions the trained classifier models are able 

to adequately identify the crack length and operation 

parameters in the Francis turbine. By comparison between the 

presented results, as shown in Fig 22 and Fig 13, it’s 

concluded that ANN-2 more accurate than ANN-1 for 

identification the crack length and turbine operation 

conditions.  

The implementations of the existence techniques such as 

ultrasound, X ray, dye penetrants, magnetic particle and 

acoustic emission, for damage identification are limited [7] 

and also these techniques are costly and time consuming [17]. 

On the other hand, because a limited number of samples are 

used for training of the neural network, ANN is not so 

sensitive as compared with these techniques. Therefore, ANN 

can be used as an initial assessment, which can be followed by 

one of the other methods to determine the crack 

characteristics more precisely. To provide improved model 

for the crack identification, multiple FFANN (MNN) model 

had been proposed. 

C. Implementation of MNN Using Amplitude of FRFs 

along x and z-directions 

In this section, instead of training two networks and 

choosing the best network, ANN-1 and ANN-2 are combined 

into one scheme (called ANN-3). The data sets of amplitude of 

FRFs along x-direction (7 spectral lines) and along z-direction 

(10 spectral lines) are assumed as input vector elements, and 

they used for training ANN-3 to improve the overall 

estimation. The trained FFANN was able to learn the 

relationship between amplitude of FRFs along x and 

z-directions with the corresponding damage and operation 

state. The number of neurons in the hidden layer is taken 4 and 

3 for 1
st
 ANN and 2

nd
 ANN, respectively. The learning rate and 

momentum are assumed to be 0.001 and 0.6 respectively for 

1
st
 ANN and 2

nd
 ANN, while the value of learning rate and 

momentum are set 0.1 and 0.6 for the 3rd ANN. The 

convergence has been achieved after 10000 epochs. 

After the successful training of the FFANN (ANN-3), a new 

data set, which was not used for training the FFANN, is tested 

by the trained net. Reduced data sets of amplitude of FRFs 

along x-direction (7 spectral lines) and along z-direction (10 

spectral lines) were fed simultaneously into the 1
st
 ANN and 

2
nd

 ANN respectively. The results obtained from the testing 

ANN-3 are presented in Fig 23. The figure shows the scatter 

plots between the identified results of the proposed models 

and turbine state. As displayed in the figure, it can be seen that 

the crack estimation by the trained ANN-3 shows good 

agreement with the existence of the crack length and turbine 

operation conditions. 

A new data set (26 data sets) of amplitude of FRFs along x 

and z-directions corresponding to both healthy and damaged 

runner cases have been selected and fed simultaneously into 

the trained classifier models (ANN-3). The results obtained 

from testing the trained ANN-3 for the identification of the 

crack length in the runner and turbine operation condition are 

presented in Fig 23. 
 

 

Fig 23: Identification of the power output (A) net head (B) 

discharge (C) and crack length(D) by using reduced 

amplitude of FRFs data sets along x and z-directions  

The obtained results, as shown in Fig 23, revealed that 

ANN-3 shows improved identification performance in 

comparison with performance of both ANN-1 and ANN-2. The 

figure presents the scatter plots between the identified crack 

lengths and operation conditions versus the actual parameters, 

where for perfect performance the points should lie on the 

straight line. The correlation coefficients and MSE are around 

(0.996, 0.978, 0.964, and 0.97) and (1.24, 1.62, 8.03, and 54) 

for the identification of the turbine operation conditions (P, 

H, and Q) and crack length (L), respectively. As evident from 

the figure, it can be noticed that the estimation of the turbine 

operating parameters (P, H and Q) by the trained multiple 

ANN model show good agreement with the actual turbine 

operating parameters. The identification results of multiple 

ANN models for the crack length in the turbine runner indicate 

that these models can identify the crack accurately even if the 

turbine operating conditions are changed. 
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Based on obtained results one can conclude that, by 

knowing the amplitude of FRFs along x and z-directions the 

trained FFANNs are able to adequately identify the crack 

length in the turbine runner. Also these models can be applied 

for evaluating turbine operating parameters (power output P, 

head H and discharge Q) effectively.  

V. CONCLUSIONS  

From the analysis of conducted simulation results the 

following conclusions are drawn: 

1. FFANN which have single and multiple arrangements 

have been successfully employed for crack identification 

in the runner and estimating turbine conditions using 

amplitude of FRFs data sets. 

2. The data reduction techniques have effectively reduced 

the input data (spectral lines of the FRFs). The results 

revealed that the pruning mechanism which is based on 

the data reduction mechanism can led to satisfactory 

results. 

3. The comparison between the results of the FFANN 

models indicates that the ANN-2 is more accurate than 

ANN-1 for the estimation of crack and operation 

parameters in the Francis turbine. 

4. The results show that the multiple FFANN (ANN-3) can 

improve the precision and can provide better results 

compared to the single ANN.  

5. The identified results of multiple ANN model for 

estimating the crack length in the turbine runner 

demonstrate that these models can identify the crack 

accurately even if the turbine operating conditions are 

changed.  
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