Master Thesis

In Computer Science, track Software Engineering

a model-based approach for early analysis
and prediction of responsiveness

ing. W. Roosenburg
March 14, 2008

Dr. Ir. B. Tekinerdogan | University of Twente

Committee H. Sozer MSc. University of Twente
Dr. Ir. R. Scholte Thales Netherlands B.V.
Ir. M. Glandrup Thales Netherlands B.V.

Rese s

Twente Research & Educatlon THALES University of Twente

on Sollware Engineering Enschede - The Netherlands

Building a model-based reasoning framework for early
analysis and prediction or responsiveness

W. Roosenburg

March 14, 2008

- UNCLASSIFIED -

Abstract

A key quality concern in building mission-critical systems is responsiveness; Responsiveness comprises the
total end-to-end latency of multiple functional ows that ¢ an occur within a system. Thales Netherlands
B.V. designs and develops many mission-critical systems, wth the \Combat Management System", that
provides \command and control" capabilities to naval vesse Is, as a prime example. This system is be-
ing developed at the \System De nition" business unit, that is responsible for de ning large, responsive
and complex combat software. It is important that system eng ineers from this business unit can verify
the expected performance behavior \on-the- y"i.e. before the system is actually build. However, within
the current system engineering process, performance assesnent is performed too late e.g. only after the
integration phase. This induces a large nancial risk on the developed system, because not meeting per-
formance requirements lead to cost overruns that can result in project failures. Therefore, performance
assessment should be considered early during the overall pocess.

This research thesis presents an integrated performance egineering method that can assess and evaluate
responsiveness early; It uses responsiveness-related infmation that is currently scattered among Thales
Netherlands B.V. and their subcontractors. Integration is achieved by de ning a model-based process that
makes use of current development artefacts (models) and by providing automation to system engineers in
the form of modern tools. These tools allow the system engineer to compose systems and to predict the
expected performance behavior at the same time.

Structured performance engineering methods requires the eistence of metamodels; metamodels describe
the structure of systems and can provide a domain-level overview of all important responsiveness concepts
that in uences the performance behavior of the system. Ther efore, this thesis developed two UML meta-
models: one for describing the exact structure of systems ard one for describing important responsiveness-
related quality attributes. By combining both metamodels, a (simple) analytical model can be obtained
that can closely estimate the expected responsiveness behdor in practice.

However, analytical models are closed-form solutions: the calculated results represent averages in the form
of constants. It is also valuable to verify the certainty of t he outcome. Therefore, a simulation-based ap-
proach is incorporated within this thesis, as simulations ¢ an predict system behavior by using distributions
instead of constant values. As a result, the total end-to-en d latency of a functional ow cannot be described
only by a constant value (e.g. 500ms), but also with a degree o certainty (e.g. a peak latency of 500ms
will occur in less than 5% of all cases). This is very important for requirement veri cation. Model-driven
engineering techniques are used in order to \close the gap" between system models and (formal) analysis
models with the goal of generating an executable simulation model out of UML system analysis models.

The \proof of concept"” tool developed during this thesis use s the IBM Rational Software r product fam-
ily; It is based on the Eclipse r framework and provides good UML modeling capabilities, an i ntegrated
development environment and support for adding and extendi ng existing UML functionalities by means
of stereotypes and tagged values. Model-based approachesra supported by the provided JAVA transfor-
mation engine. Thales Netherlands B.V. (will) use the UML an d the IBM Rational Software r product
family for all kinds of system engineering activities.

The tool is available as two IBM Rational Software r plugins: one that provides modeling support to sys-
tem engineers and one that provides transformations that can calculate and generate a simulation model
out of a composed UML system analysis model. This simulation model can be fed into a discrete-event
JAVA simulator, that generates histograms with end-to-end latencies that can occur within the composed
system. System engineers use this feedback for composing aoptimal, responsive system con guration.

Preface

This Master thesis is the written outcome of my nal project a t the University of Twente, conducted
externally at Thales Netherlands B.V. in Hengelo, during th e period of May 2007 until March 2008. This
is my nal work in order to attain my Master's degree.

During my internship, | have been supported by many people. First of all, | would like to thank my
supervisors at the University of Twente, Bedir Tekinerdoga n and Hasan Sozer, for their constructive crit-
icism. Your help improved the structure and academic maturi ty of my thesis a lot. Second, | would like
to thank Rene Scholte and Maurice Glandrup at Thales. Rene, who was always in for a chat and never
unwilling to explain important things twice, because he bel ieved that | would understand it some moment
in time. Rene, thank you for that! Also a big thanks goes to Mau rice, from who | have learned a lot. Your
help towards describing the structure of Thales systems and the development of our metamodel is greatly
appreciated!

Last but not least, | would like to thank my “lunch colleagues ' at Thales. Boudewijn, Leon, Joris, Gijs,
Gregoire, Javier, Sergei and (again) Rene, thanks for all interesting and non-interesting # stories and our
never-ending discussions about soccer. By the way, the Dutd still rule the French! Hope to see you guys
again somewhere in the future.

Wouter Roosenburg
Enschede - March 14, 2008

"The limits of my language mean the limits of my world'
Ludwig Wittgenstein

Contents

10
11
11
11
13
13
13
14
14
14
16
18
19

21
21
22
23

CONTENTS

[3.1.3 _Formal models or a model-based approach? 26
[3.2_The model-based approadh 26
3.3 _Required methods and t00lS 28

[3.3.1 Software Performance Engineerifig e 30

[3.3.2 _Reasoning frameworks 32

[3.3.3 UML and its metamodeling facilities 33

13.3.4 UML Pro le for Schedulability, Performance and Timel. 35
BA_ConCIUSION 36

M Concept development and solution-design | 37

4 Towards a model-based approach for early analysis and pred iction of respon-
siveness 39
41 Requirements 39
B2 Approach 40

421 Modelthe system.o 42

422 Assess performante 47
l4.3 Supporting budget-driven performance modeling 50

431 Designlevels 51

l4.3.2 Hierarchy and decompositioh 51

433 Mapping$o 1
B4 ConcluSion 52

5_Integrating the models | 53
[5.1 Positioning the metamadels 53
in- i S e 54

- S 56

(5.4 The SystemModel and AnnotationModel metamodels 58

[5.4.1 The SystemModel::ModelElement package 59

55.4.2The AnnotationModel::QualityConcern package 63

[5.4.3 The AnnotationModel::Quality Constraint package 65

[5.4.4 The AnnotationModel::Scenario package 67
BE NGO . . . e 67

l6__Evaluation of responsiveness | 69
[6.1 Responsiveness models 69
[6.2 Calculation transformation 70

[6.2.1 Evaluating resource budgefs 71

[6.2.2 Evaluating allocation$ 73

[6.2.3 Evaluating responsiveness budgéts 74
[6.3 Simulation transformation 77

83

85
85
86
87
91

93

95
95
97
99

101
101
103
105
107

109

Xi

Xii

List of Figures

22 The SIMILARASKS o 10

[2.3__Model artefacts produced during the (early) designphag 12
NG bat Management Wstend 14
2.5 TACTICOS logical architecture [GEEOZ o v oot 15

4 Qverview of the Comba em and th

2.7 Splice infrastructure overviewm] 17
2.8 Architectural view of a Core-DDS SigMA node [Tha0#] 18

22
24
27
27
29
30
31
32
33
35

40
42
43
44
44
45
46
46
47
47
48
49

Xiii

LIST OF FIGURES

Xiv

List of Tables

XV

XVi

List of Abbrevations

AWS
CMS
COTS
CS
CSCl
CSDN
DDS
DFD
MDA
MOF
MS&SE
NRT
oC
OMG
OPENSPLICE
RSA

RT
S14S2
SigMa
SPE
TACTICOS
TTNL
UML
Uws

Above Water Systems

Combat Management System
Commercial O The Shelf

Combat System

Computer Software Con guration Item
Combat System Data Network

Data Distribution Service

Data Flow Diagram

Model Driven Architecture

Meta Object Facility

Modeling, Simulation and Synthetic Environment
Non Real-Time

Operator Console

Object Management Group

Open Implementation for SPLICE
Rational Software Architect
Real-Time

SPLICE1 For SPLICE 2

Signaal Modular Architecture
Software Performance Engineering
TACTical Information and Command System
The Thales Naval Netherlands

Uni ed Modeling Language

Under Water Systems

XVil

XViii

Part |

Setting the context

Chapter 1

Introduction

Nowadays, developing and maintaining highly responsive sstems is a complex task. This is due
to the fact that the total responsiveness of a system is detamined by many factors that could all
possibly in uence each other. Add up the still growing size ¢ an average software system and its
increasing complexity and it should be clear that analyzingand predicting the responsiveness of a
system is not an easy task.

However, current research in the eld of \performance analysis" is improving and shows that ana-
lyzing and predicting system behavior within a speci c doman can be achieved. A current trend
is to analyze and predict system behavior during the early deelopment phase, that is, before the
system is actually built and integrated, because xing performance issues earlier on is cheaper than
if the system was already built. Although current literatur e does not show yet a common ontol-
ogy [Cor085], applying domain speci ¢ knowledge to performace models can result in a realistic
understanding of the nal system behavior.

This thesis will make a contribution into the eld of \perfor mance analysis". It captures domain
speci ¢ knowledge (models) from a real industry case (develped within Thales Netherlands B.V.)
and applies performance analysis techniques in order to coenup with an early performance predic-
tion judgment. Software speci cation and automation are key issues here, as they largely determine
the successful appliance in industry.

1.1 Context

The Thales Netherlands B.V. Above Water Systems (AWS) depatment develops and integrates
complex combat system software for naval vessels. An exampbf such a complex combat system is
the \Combat Management System" (CMS). The CMS is a\mission-critical" system: it has to meet
a number of performance-related quality requirements suclas reliability, robustness and real-time
responsiveness, in order to perform well. Not meeting theseequirements can result in disastrous
consequences, such as not being able to respond to an incomithreat on-time, which is totally
unacceptable in a combat situation.

Within AWS, a speci c discipline is\Lead System Integratio n"(LSI). This eld is focused on man-
aging the complexity of the CMS. It encompasses the areas obperational performance analysis",
\system performance analysis", and \proof of concept demostrators". A key concern within LSI is
performance prediction during the early development phaseHowever, practice shows that during
the early development phase it is di cult to predict the exac t system behavior of a combat sys-
tem, because there is a lack of good tooling support that aidsystem engineers with performance
modeling and performance analysis models. As a consequengeedicting or simulating the system
behavior in a structured manner is di cult.

This master thesis is not the rst research assignment carréd out on this subject within Thales
Netherlands B.V. Previous research, performed by [Hoo06Hor06] and [Hor07] has led to initial
understanding in how to reason about performance and how to mdel it. Both research stud-
ies were aimed at improving the system performance predictin of the CMS used within Thales
Netherlands B.V.

Introduction

The rst research study that was conducted on this subject, was performed by Niek Hoogma in
2006 [Hoo06] and was mainly concerned with building a simular that could simulate system
behavior at functional ow level. Its contribution was that activity diagrams could be annotated
using the OMG UML SPT Pro le [Gro05]I These annotations resides at ow level and contains
information about e.g. latency and can be fed into a discreteevent simulator. This simulator was
built in JAVA based on the freely available Desmo-J [Des07] snulation library. The output of
the simulator was a report that estimated the average lateng of a system. Ivo Ter Horst [Hor06]
improved the work of Hoogma by conforming more to the SPT pro le, because Hoogma introduced
new concepts that made his method incompatible with the orignal SPT pro le.

Ter Horst continued the performance research with investigiting the possibility of adding \budget
information” to resources. The notion of a\budget" got intr oduced, which describes the resource
demand of a hardware or software entity. This was expressedsing parameters, such as the number
of CPU MIPS available and amount of RAM available. Its nal co ntribution was the development
of a layered system model and the possibility to add budget iformation at several levels: lower-
layered budgets could be dependent of higher-layered budge By using an UML deployment
diagram, the total resource utilization could be calculated.

1.2 Problem statement

Thales Netherlands B.V. is interested in early performanceanalysis and performance prediction,
that is, predicting system behavior without actually possessing a running system. This in order
to prevent expensive changes necessary later in the proces#\n important quality factor that
largely determines the nal system behavior of a combat systm is responsiveness: the \end-to-end
latency".

Using a systematic method that supports early performance malysis and prediction is important
for Thales Netherlands B.V. for a number of reasons:

1. Changes made to the system due to a lack of responsiveness expensive- the earlier (per-
formance) bottlenecks are detected, the better. Changes ntde later on the process are much
more expensive than if the change was made earlier on, espalty if this leads to architectural
or requirements changes.

2. Using a systematic performance engineering method prevemtscattering - in some cases,
performance engineering information is scattered among dicontractors. This information,
which contains complex formulas, is stored in Microsoft Exel spreadsheets and are exchanged
between Thales Netherlands B.V. and its subcontractors in ader to limit the resource usage.
Generally, a subcontractor is hired for implementing a piee of the system, but the avail-
able resources available for the implementation-piece thiaa subcontractor has to develop is
restrained, because a naval vessel does not have unlimiteghace available for i.e. placing
hardware cabinets (that can provide additional resources) Space on a naval vessel is also
costly.

The usage of Microsoft Excel spreadsheets leads to scatteg of performance information
(di erent versions, di erent metrics used) and managing this information centrally is hard.

Integrating performance engineering methods within the rgular development cycle of the
system leads to consistency among performance metrics usemhd prevents the ad-hoc incor-
poration.

3. Preventing uncertainty during the design phase- a well known question among system en-
gineers that has been asked many times during the design phasof the CMS is: “does this
application or extension still ts on my system?'. Answering this question becomes hard when
the development of the system is split up into di erent departments and subcontractors, and
nobody has an overview of the (emergent) performance behaoi of the system.

4. Assessing the extensibility and exibility of the system- important quality factors within
system engineering are extensibility and exibility. Exte nsibility means how well the system is
prepared for possible changes. Changing the radar type fonstance can lead to an increase in
resource usage, if the radar works at a higher revolution sped. Using a strucured performance
engineering method can assess the extensibility of the syain. Flexibility means how well the

system performs under di erent environments. Patrolling on the open sea generally means
less possible targets that have to be tracked than if the navavessel was patrolling in a harbor.
Using a structured performance engineering method can alsprovide an estimation of the
exibility of the system.

This thesis continues the research already initiated by Thdes Netherlands B.V. that led to rst
understandings and prototypes that could analyse and veri performance at di erent design ab-
straction levels. The main problem of the previous, propose solutions were that they are stand-
alone tools, and thus not well integrated within the system development process used within Thales
Netherlands B.V. Integration into the development processand the availability of automated tools
are key success factors in order to successfully apply perfaance engineering within industry.
Current system engineering methods use UML based methods iorder to develop and design
systems. UML models are supported by modern tools applied whin industry and can be easily
extended by meta-models and pro les. This provides adaptabity within models and compatibility
among tool vendors. Furthermore, Model Driven Engineering(MDE) will be used in the future
within Thales software and system engineering and therefax, a model-driven or model-based ap-
proach is preferable.

The above information leads to the initial problem statement which is de ned as

What ingredients are necessary to be able to develop a model- based performance
prediction framework that addresses real-time responsive ness and integrates within
the current system engineering process used within Thales N etherlands B.V. ?

1.3 Contribution

This contribution of this thesis encompassesnethods tools and simulation. The method that this
thesis proposes is presented in chaptér 4, were changes toetlsystem engineering process that are
necessary to incorporate performance engineering, are dated. In order to describe the structure
of systems and the performance model, an UML meta-model is deloped. This is presented in
section[§.

The tools that are developed are described in chaptdr]7. Heren overview is given of the structure
of the proof-of-concept tool. The tool also supports the evluation of models by means of simula-
tion. Model building and evaluation is described in chapterl[V]

However, the solution to the problem that this thesis tries to solve also touches on a number of
general problems currently found within literature. They are the following:

1. This thesis closes the gap between system models and anaysiodels- many performance
analysis and evaluation techniques use formal models, sues Queuing Networks and Markov
models, as their underlying analysis method. However, intgrating performance modeling
activities within regular system development does not impy that system engineers have to
model their architecture as a queuing network (this is call@ the\gap"between system models
and analysis models). One contribution of this thesis is thedevelopment of an UML meta-
model that explicitly de nes what system components can be nodeled by system engineers
and what kind of performance information can be attached to hhem. Furthermore, mod-
eltransformations are used in order to transform annotatedsystem models into simulation
analysis models. As a result, the \gap" between the two is cleed. This is a concept that is
acknowledged in current literature [Gro07] [PS02][[Sch06but how to exactly do it remains
unclear.

2. This thesis uses domain speci c information in order to evalate system models- when
composing system models and attaching performance infornt@n, the models needs to be
evaluated. Thales Netherlands B.V. already possesses mamgeasurements taken from real
running systems that can help with evaluating the system. The developed prototype tool is
able to specify and change the calculations / metrics that the tool performs on the model
in a exible way. This stimulates separation of concerns the system engineer composes the
system and the performance engineer provides the necessgrgrformance metrics.

Introduction

3. This thesis uses simulation to verify the results- using domain speci c (analytical) informa-
tion for evaluating system models is not enough in order to olain a realistic understanding
of the nal behavior of the system. Analytical approached can give an estimation of how the
system performs in practice, but it are e ectively closed fam solutions, which means that
the results are constant numbers. In order to obtain a betterunderstanding of the dynamic
behavior of the system, simulation is incorporated. Distrbutions are used that describe the
value and probabilities of events that can occur within the CMS, and therefore the outcome
is also a distribution. Simulation increases the performae analysis quality: it can verify
the outcome of the analytical solution and it provides extra information, such as the proba-
bility that a certain latency can occur within the system. Th is is also important for verifying
non-functional requirements of the system.

1.4 Approach

This thesis investigates the development of an integrated prformance engineering method that
analyses and predict the responsiveness of the Combat Manament System, without having the

running system available. As a proof of concept, a tool will ke developed that supports performance
analysis and performance prediction during the early develpment phase. To verify the usability

of the tool, a case study will be developed that uses real softare artefacts produced during the
system development life-cycle in order to estimate the nalsystem behavior.

In order to successfully perform the above activities, resarch questions have been de ned that

have to be answered in order to nd a solution to the problem. The main research question is
de ned as follows:

What process- and product changes are necessary in order tee kable to perform early analysis
and prediction of responsiveness for the Combat Managemer8ystem (CMS) used within Thales
Netherlands B.V. ?

Subquestions to the main research questions are:

What is responsiveness?

Are there general methods and frameworks available within arrent literature that address
performance and responsiveness?

What is the impact of responsiveness on system design?
How can consistency be achieved between system design andrfpemance models?

How to built a consistent set of tools that supports the modek used within a typical system
engineering process?

How can obtained performance results be veri ed?

This thesis starts with explaining the research context andinvestigating the current system devel-
opment process within Thales Netherlands B.V. It examines 8 the produced artefacts during this
process. It also describes a number of problems that are prest in the current process because of
the lack of early performance analysis and prediction.

After that, a number of key concepts that are necessary to undrstand performance engineering,
responsiveness and performance modeling are investigatedSoftware Performance Engineering
[Smi0Z?] is a structured method that shifts performance assssment towards an earlier development
phase. A reasoning framework[BIKMO5] provides a concretefhody of knowledge" that can be
used by non-experts in order to understand how to reason abduperformance. Responsiveness
is the main performance factor considered within this resegch thesis, because investigating more
quality attributes is not feasible within the planned timef rame, and outside the scope of this thesis.

After the required background information is gathered, a madel-based reasoning framework is
developed. This framework seperates process from producit provides an overview of the individ-
ual steps that the system- and performance engineer take inrder to compose the desired system

and evaluate the responsiveness. It also describes the geakarchitecture of the solution and the
models needed for using the solution.

The nal solution comprises a\two phase approach":

1. The system engineer composes a system, using componengsbd on a meta-model developed
within this thesis. Furthermore, he/she adds budget information to system components, using
a meta-model that describes the possible budget informatio that the system engineer can
add. As a result, the feasibility of the composed system can & calculated, which basically
results in a yes/no answer.

2. When the outcome of the feasibility calculations are within expectations (the system\ ts"on
available hardware), the system engineer develops behavial models(UML activity diagrams)
of key system components, or components that most likely ca@in performance bottlenecks.
Those models are annotated with latency information and midlleware related performance
information. Using middleware related formulas (obtained by Thales Netherlands B.V. when
measuring a running system) leads to an initial estimation ¢ end-to-end latencies. As a
veri cation step, simulation is used to verify if the obtain ed results are within the expected
range of the chosen distributions. The output is a histogramwhich shows the tabulated
frequencies of the overall latency.

Model transformations are used within the developed tool (bgether with a dedicated parser) in
order to calculate responsiveness and to generate a simulat performance model out of the (an-
notated) system model. Meta-models are developed becauséé solution should not only work
for one situation speci cally, but for every system that is an instance of the system meta-model,
annotated with information that is an instance of the quality attribute meta-model. A case study
is developed to verify the solution and the usability of the tool.

Finally, the solution is evaluated; Conclusions are drawn ad recommendations for the future
are given.

1.5 Outline

This thesis is split up into four parts, where each part contdans one or more chapters. The rst
part, “Part [} Setting the Context', introduces the problem statement and research questions. This
is described in the current chapter,chapter 1 . Chapter 2 investigates the research context and
the development process as used within Thales Netherlands.B. Chapter 3 contains background
concepts, such as software performance engineering, reastg frameworks, UML and pro les and
responsiveness.

The second part, "Part[Ill - Concept development and Solutiondesign', sketches the outline of the
model-based solution that is developed using the knowledgend theory obtained in Part[] Chap-
ter 4 describes the contents of the model-based reasoning framevk that is developed within
this thesis. It describes the process as well as the productChapter 5 contains the developed
metamodels: the system metamodel and the quality attribute metamodel. Chapter 6 contains
an exact description of the evaluation procedure: how can rgponsiveness be calculated and how
is it measured?

The third part, "Part Il Implementation’, describes the a ctual implementation of the solution.
In chapter 7 a proof of concept, DESIDE (DEcision Support In Design Envionments), is devel-
oped which contains an implementation of the metamodels andhe evaluation procedures. It can
evaluate the feasibility of a system in a modern UML design ewronment: IBM Rational Software
Architect. Furthermore, it can generate a simulation model and produces outputs in the form of a
histogram.

Finally, "Part [V} Evaluation' re ects back to all the work t hat is being done during this research
thesis and gives recommendations for the future Chapter 8 contains the conclusion and provides
an overview of work that still has to be done in the future within the \performance analysis and
performance modeling” eld.

Chapter 2

Thales Netherlands B.V. and the
research context

Thales Netherlands B.V. uses System Engineering for the delopment of their CMS. Generally,
System Engineering comprises a set of tasks and activitiedhat have to be executed successfully in
order to design and develop complex systems. These activés are referenced to as SIMILAR. This
chapter provides an overview of the SIMILAR activities, relates them to Thales Netherlands B.V.
and observes possible problems and bottlenecks that can aoscwhen executing these activities
during the system engineering process.

2.1 The Combat Management System

As stated in chapter[1, the Above Water System (AWS) department develops and integrates the

Combat Management System (CMS), which is speci cally targeed for use on naval vessels. The
CMS keeps track of objects that possibly could be a threat, btialso friendly objects are tracked.

The possible range and number of objects that could be trackd depends mainly on the radar type

that a customer wants to use.

In order to obtain a better overview of the performance aspets of the CMS, consider gure[Z1

below.

Figure 2.1: Example radar console

The above gure is an example of a (surveillance)radar conde. An important measure of a radar
its revolution rate, which is expressed inrpm, and means the number of full rotations completed in
one minute around a xed axis. Also, an often used measure ishie hertz rate, which is expressed
in Hz, and means the number of revolutions per second.

Assume that the radar console depicted in gure[Z1 is hookedo a radar with a rpm of 12.

Thales Netherlands B.V. and the research context

This means that a full rotation will occur every 5 seconds. Ifthere are 300 objects within range,
e ectively % = 60 plots a second are produced. A plot is the most atomic data item posble: it
is one measurement in a polar coordinate system, which mearbat it comprises only a radius and
an angle. After the plots are gathered, they arecorrelated, which basically means that the system
decides whether a plot belongs to a certain object (e.g. anber vessel) after performing numerous
processing steps. If it does (it does not have to, a radar alspicks up garbage) atrack is produced.
A track belongs to a moving object, and is basically nothing nore than a vector with additional
information. Whereas a plot was only one measurement, a trdc encompasses more information
such as moving speed and identi cation information (friend or foe).

The most important aspect that determines the overall perfaamance of the system isthe rate at
which system tracks are produced This rate is dependent of the number of incoming objects,
because they determine the plot- and track rate and impose aigni cant load on the system: the
amount of resources necessary (e.g. CPU and RAM) can increasiramatically when the number
of incoming targets grows.

High-load scenarios can also occur. When incoming objects are identi ed as foesthey get a
higher update ratio which increases the system load. They a \tracked" by specialized trackers,
which are sensors of other radars. These trackers also inases the load on a system, because
much more data due to a higher update ratio, has to processed.

2.2 The development process

System engineering is an interdisciplinary eld of engineeing, because it is applied to the develop-

ment of complex systems (such as combat systems), where malfgpecialized) disciplines deliver a

part of the system. The nal system is thus the sum of its parts.

According to [Inc07], system engineering is de ned asan engineering discipline whose responsibility

is creating and executing an interdisciplinary process to Bsure that the customer and stakeholder's

needs are satis ed in a high quality, trustworthy, cost e cient and schedule compliant manner

throughout a system's entire life cycle This process comprises a set of task$ [Inc07], which is
depicted in gure

Asses

Customer needs
performance

State the Investigate 3 Model the Integrate) Launch the
problem) alternatives system > system

TlMTMMng

re-evaluate l(—v‘ re-evaluate l(-l re-evaluate I(-I re-evaluatel(-l re-evaluate <

Figure 2.2: The SIMILAR tasks

re-evaluate

The tasks depicted in[2.2 are referenced to as SIMILAR. The ma point of the SIMILAR tasks, and
the engineering discipline that uses it, is that the system bould be treated as a whole. This means
that phases of the system development life-cycle are not oplexecuted in a sequential manner, but
also in parallel. As a result, after every phase there has to & the possibility of evaluating and
to go one step back in the process, if needed. Figufe 2.2 showss. Table 21 provides a more
detailed description of the SIMILAR tasks, as depicted in gure[2.2.

Task name Description

State the problem Description of the top-level functions that the system must perform
Investigate alternatives | Creation of alternative designs based on cost, performange
schedule and risks

Model the system Modeling of the system and possible alternatives

Integrate De ne interfaces between subsystems

Launch the system Run the system and produce outputs

Assess performance Measure system performance and perform tradeo analysis
Re-evaluate Continuous feedback-loop in order to modify the system if neessary

Table 2.1: Description of the SIMILAR tasks

10

The development process of the CMS, as used within Thales Nkerlands B.V., has many similar-
ities with the SIMILAR tasks. In order to categorize SIMILAR , there are a number of so called
\key area's" de ned that are important to system engineering in general. They are described in
table Z2.

Key area name Description

Operations How the system operates in practice

Performance How the system performs in the real world

Test How to test the system

Manufacturing How to physically build the system

Cost How to stay within budget when developing and how to determire
the total development cost of the system

Training and support | How to train people to use the system and giving accurate supprt

Disposal How to determine the lifecycle of the system

Table 2.2: Description of key areas used within SIMILAR

It is clear that the SIMILAR tasks almost touches on every aspect of system engineering. In
this thesis, the performance aspect is only \key area" that 5 being considered. The next subse-
guent sections describes how SIMILAR is implemented withinThales Netherlands B.V. and what

(performance related) problems arises from using it.

2.2.1 State the problem

The rst step in the system engineering process is to get a thoough understanding of the customers'
wishes. After customer needs are investigated, which basadly means that the customer speci es
which sensors and actuators he/she wants, the CMS options ardetermined. This includes whether
or not to include a training component, or external communication services. When this is nished,
response times are de ned for various combat scenario's.

These response times comprise the end-to-end latency of astgm, e.g. the time that passes between
object detection and presenting the track to the operator onthe screen. If the response times are
determined, corresponding budget information is establieed. This budget information comprises
maximum CPU resource usage, maximum RAM resource usage andi¢ maximum latency usage.
Sometimes the customer imposes extra constraints on the sk, if high-load scenarios are a key
issue. This budget information is also used to restrain the esource usage among subcontractors
and to get a better overview of the feasibility of the system.

2.2.2 Investigate alternatives

Investigating alternatives means creating alternate degins for comparison. Alternate radars, sen-
sors and actuators can be choosed and an initial performancanalysis can be performed. Multiple
performance scenarios are calculated using scenarios. Até end, the customer chooses the scenario
that ts the requirements best.

2.2.3 Model the system

Modeling the system and possible alternatives is a giant sfe in the system engineering process.
Usually, when a new component or module of the CMS is developk a developer starts withdomain
level modeling in the form of a conceptual model, which is ahigh level overviewof the system to
develop. As an addition to this conceptual model, a functioral ow diagram is constructed, which
is basically an UML activity diagram (the object oriented equivalent of a Data Flow Diagram)
where the most important high-level functional ows are de ned, as well as performance require-
ments(de ned in the rst step of the system engineering proess). This basically boils down to
de ning a maximum latency between processes, as described section[Z.2.].

The second abstraction-level that is being distinguished dring the early development process is
the architectural level. At this stage, the architectural model and the relational model are the

11

Thales Netherlands B.V. and the research context

most important artefacts. The architectural model is an UML -like diagram where architectural

concepts are shown. These concepts are derived from the réanal model, which is a more ne-

grained model of the conceptual model.

The third abstraction level is the designlevel. At this level, the detailed design is constructed, as
well as the 'topic model'. The topic model is the lowest information-model design artefact, and it

describes the publishers and subscribers related to a ceiitatopic as well as the topic itself and its

relations to other topics. An overview of all models and ther relations is depicted in gure E.3|

Information Mode! Functional Model

Conceptual Madel Functional Flow Diagram P Lava|

Architectural Level
Relational Model Architectural Model

i]
Tapic Model Detailed Design Design Leve

S %

Figure 2.3: Model artefacts produced during the (early) degyn phase

A 4

Modeling the system and its behavior

The produced models shown in gure[Z3B are related to each ottr with regards to the typical
development process used within Thales Netherlands B.V, wich is mainly data-oriented. There is
a horizontal relationship between the produced models in the sense that they are compteentary:
one cannot be produced without the other and vice versa. Thee is avertical relationship between
the models, because a model that is positioned on a lower lelis a re nement of its parent.
Furthermore, it is important to realize that the di erent mo dels produced during the three phases
describes thesystem behaviorin a static and dynamic way: the architectural (class) modek de-
scribes the architectural entities of the system, which is nainly a static diagram, whereas the
functional ow diagrams show the dynamic behavior of the sydsem at ow level.

Modeling performance of the system

Ideally, assessing system performance should start at theagliest SIMILAR task (stating the prob-
lem): when requirements are gathered alongside with stakefiders. A direct result of assessing
system performance at the end of the development process, that the cost to repair an require-
ment error during the integration phase is many times higherthan during the requirement /
development phase. A report from the Standish Group even shaes that incomplete or unclear
requirements are on top of the list when it comes to project filures and cost overruns|[Gro95].

Traditionally, there exist two types of requirements:

1. Functional requirements - they determinewhat the system should perform

2. Non-functional requirements - they determinehow the system should perform

Performance is strongly related to non-functional requirenents, and determines the overall quality
of a system. However, quality is a \broad" de nition and ther e are several ways to interpret and

12

measure the quality of a system. The ISO standardization grap [[So07] has de ned a framework
for evaluating the software-quality of a system, which is ako known as the I1ISO-9126 standard. It
comprises the areas [ESS07] described in table 2.3.

Quality category | Description

Functionality Are the required functions available in the software?
Portability How easy is to transfer the software to another environment?
Maintainability How easy is to modify the software?

E ciency How e cient is the software?

Usability Is the software easy to use?

Reliability How reliable is the software?

Table 2.3: Description of the 1ISO-9126 quality categories

When investigating the SIMILAR tasks and the ISO de nition, there is a clear similarity between
the two: performance impacts various phases of the system gmeering process and it should be
taken into account from the earliest phase, when requiremets are gathered.

However, traditional performance assessment techniquessaume that there is a running system
available. Shifting performance assessment to the early delopment phase automatically means
that other methods need to be used (such as analytical and sinlation-based techniques) in order
to predict the performance of a system, instead of measuring

This need for early performance prediction also raises thessue of verication and validation:
How do we know that obtained results are correct, even when thre is not a running system
available? According to the IEEE Standard Glossary of Softvare Engineering Terminology [IEEQ7],
veri cation is de ned as "the process of evaluating a systermor component to determine whether the
products of a given development phase satisfy the conditios imposed at the start of that phase’,
whereas validation is de ned as “the process of evaluating aystem or component during or at the
end of the development process to determine whether it saties speci ed requirements' [IEEQ7].
Veri cation focuses on showing that the output of a certain phase conforms to the expected input
and validation focuses on showing and proving that the resub that are obtained are actually
correct.

2.2.4 Integrate

The integration of the individual components is performed by system integrators. All components

and modules from subcontractors and internal departments & put together in order to compose
the nal system. Key issues concern\the emergent propertis of the system™ how does the system
respond and perform when all the components have to work togher? As a result of this, the

system is throughly tested (using simulated scenarios or gpadsheets) and if it does not perform
within expectation, the system engineers need to go back totte drawing board.

2.2.5 Launch the system

After the system is integrated, it is launched: it is actually deployed on a naval vessel and opera-
tional testing is performed. Real running measures are obtimed and functional requirements are
assessed.

2.2.6 Assess performance

After the system is launched and operational testing has bee performed the performance of the
system is assessed. If a non-functional required is not mesystem engineers have to x at the
running system itself, if possible. A drawback of this manud process is that every version of the
CMS deployed at naval vessels is di erent, maintenance is ha and the impact is massive when
performance issues are not xable when the system is deploge

13

Thales Netherlands B.V. and the research context

2.3 The development product

The Thales Naval Netherlands (TTNL) Systems De nition department is responsible for the sys-
tem de nition of the CMS. The primary goal of the CMS is managing the combat system. A
Combat System can be de ned as a set of resources consistinfmachinery and human operators.
Examples are sensors, weapons and information systems. Tée resources determine the total
ghting capabilities of a naval vessel.

The CMS controls the CS by means of providing Operator Consas (OC) to operators. An opera-
tor console provides detailed on screen information and hpk the operator with the decision-making
process. A typical CMS scenario would be displaying an unideti ed object on the OC. As a con-
sequence, the operator is given the choice of tracking the géct or identify it as a friend or neutral
object. The (abstract) overview of the CS and its relation to the CMS is given in gure P4

COMBAT SYSTEM

COMBAT MANAGEMENT SYSTEM

COMMAND SYSTEM COMMAND SUPPORT WEAPONS
SYSTEM
Combat Command &
Execution Contral SENSORS

Figure 2.4: Overview of the Combat System and the Combat Mangement System

Figure [Z4 shows that the CS encompasses the CMS. The CS encpasses the physical sensors
and e ectors, whereas the CMS only contains items such as midleware, operator consoles and
interfaces to sensors and e ectors. This clearly draws the ystem border between the CS and the
CMS.

The CMS is further subdivided in two parts: the Command System and the Command Support
System. The command system is decomposed into two subsystamCombat Execution and Com-
mand & Control (C&C). Combat execution is responsible for war- ghting: a typical scenario in
this context could be ring a 30mm gun. Command and Control is responsible for the situational
awareness component of a naval-vessel: sensor data is gatin order to evaluate possible threats
and their corresponding actions. Real-time responsivenasis a key issue concerning both subsys-
tems.

Finally, The Command Support System is responsible for mis®n planning or looking into historical
data. This subsystem is not under stringent performance regirements.

2.3.1 TACTICOS

An instance of the CMS is TACTICOS (TACTical Information and Command System) [Gee0l7].
TACTICOS consists of various subsystems, such as sensorfse&es, situational awareness and Com-
bat Warfare. TACTICOS is a modular, highly distributed CMS t hat is aimed at real-time per-
formance. Di erent versions (and capabilities) of TACTICO S are spread-out on di erent type of
ships. In order to get a better overview of TACTICOS, TACTICO S components and their relations
between them, the architecture is described according to tw di erent views(architectures) of the
4+1 view model according to Kruchten [Kru95]. This comprises the logical architecture and the
development architecture.

2.3.2 The logical architecture

According to [Kru95], the logical view is de ned as supporting the functional requirements - what
the system should provide in terms of services to its usersAn overview of TACTICOS and its
most important modules(as depicted ascomponents) is given in gure as taken from [GeeQY].
A description of the TACTICOS modules is given in table 4.

14

EEL L T ERL U]
QT

A SIS
B epsuoducss

b
(B spsodune

PR
S0 Y B
3 =waucdunas

SRR, ey
3 spaeduas

Figure 2.5: TACTICOS logical architecture [Gee07]

15

Thales Netherlands B.V. and the research context

Module Description

Sensor services Responsible for generating sensor track data and sensor
measurement data

Situation Awareness Responsible for interpreting and relating track data

External Communication Services | Provides communication to the outside world

Mission Planning and Control Responsible for mission planning

Assessment & Decision Provides warfare capabilities

Execution Responsible for executing engagement orders. Also provide
kill assessment

E ector / Asset Services Responsible for engagement plans. Monitors the e ectors

Training & Simulation Provides simulations for training purposes

Common Services Provides various data and functions, e.g. it keeps track of
ship movements and gives insight into historical data.

Table 2.4: Description of TACTICOS modules

Table 24 (and gure E.5, show that the CMS is a complex system It consists many subsys-
tems, each with their own performance requirements. This tkesis will focus only on the 'Situation
Awareness' part.

2.3.3 The development architecture

The development architecture focuses on, according td_[Kr@5] the actual software module organi-
zation on the software development environmentThe (basic) development architecture is shown
in gure £.6]

TACTICOS

Application layer

CSCI CSCI CSCI

Middleware layer
Core—DDa

SPLICEl 31452| TIMSTABl

OS layer

Basic Operating Environmenk

Figure 2.6: TACTICOS development architecture

The application layer

The applications reside at the top level, layer 3. Applications are mainly represented by Computer
Software Con guration Items (CSCI). A CSCI has one speci ¢ task, which could be gathering
sensor data or refreshing operator data. The typical CSCI bbavior is collecting information from
a source entity(such as a radar), do some processing and weitthe processed data back into the
system using the middleware database. If needed, CSCI's caaxchange information between each
other using its SPLICE/DDS middleware via a publish-subscribe mechanism.

16

The middleware layer

The middleware layer contains Core-DDS. Core-DDS (Core-Dta distribution Service) is the gen-
eral architectural view on middleware. SPLICE, as depictedon gure is for instance a com-
ponent of Core-DDS, because the usage of other types of midzhare is also possible, such as
CORBA. Core-DDS can be seen as a number of connected SigMA(@iaal Modular Architecture)
nodes interconnected via CSDN (Combat System Data Network) Multiple SigMA nodes, as well
as standard COTS (commercial-o -the-shelf) nodes conne@d via CSDN form 'the intended sys-
tem’, which in this thesis is represented as the CMS. COTS nods are nodes with a non real-time
purpose (NRT), whereas SigMA nodes covers the need for reéilme purposes (RT).

One of the most important components of Core-DDS is SPLICE (4o known as SPLICE/DDS),
because of its real-time distributed character. SPLICE/DDS is a middleware layer that provides
location transparency and real-time responsiveness. It @b contains an 'in memory' database,
which can be used to store and retrieve high-volume data. Thdowest data-entity in this database
is called a 'topic'.

Nowadays, SPLICE/DDS is a combination of the OMG standard for 'Data Distribution Service'
[Gro05] and its real-time publish-subscribe implementaton (SPLICE). Thales Netherlands B.V.
originally developed SPLICE and proposed it to the OMG as an ocial DDS standard. When it
nally was accepted, a number of changes were made by the OMGHhat made the Thales SPLICE
version incompatible with the OMG DDS standard. As a result, OpenSplice was developed to pro-
vide backwards compatibility via the S14S2 components(Spte 1 for Splice 2). Along with that,
Thales Netherlands added TIMSTAB in its middleware layer. TIMSTAB provides time synchro-
nization along a distributed network.

At some point, Thales Netherlands B.V. decided to outsourceOpenSplice to PrismTech[Pri07].
The combination of OpenSplice and DDS is now referenced to aSPLICE/DDS. SPLICE/DDS is
under stringent performance requirements because all inteCSCI communication depends on this
component. The typical SPLICE/DDS usage is depicted in gure[2.1.

COMPUTING NODE

Application 1 Application 2 Application 3
<<Publisher>> <<Publisher>> <<Subscriber>> <<Subscribers>
OpenSPLICE lib OpenSPLICE lib OpenSPLICE lib

Q

@ SHARED MEMORY e
S o ¢

OpenSPLICE lib OpenSPLICE lib OpenSPLICE lib

In-memory DB

C

ConfigService Network Service Durability Service

< CSDN NETWORK >

Figure 2.7: Splice infrastructure overview [Pri07]

17

Thales Netherlands B.V. and the research context

The Operating System layer

The operating environment resides at the bottom layer of gure[Z8. This layer contains the 'basic
operating environment', which provides basic access to théardware of a SigMa node. A complete

overview of a SigMa node is given in gureZ.8.

/

Servicebound or
Function-boun

Application pavioad:
- technical tass

- Sewaco sernvices

- datafiles

2.4

LOGEING, TIMDAT,
ORGCPNF, SYSCONF
LSSCONF|WIDEQSUPR,
WORLDCONF|SYSFPAR,
WARALERT, SEMICOM &
SUINSTALL ete

part=

Concole-bound parts
=ingle or dual display.
MOC-B53 park, e.q:
— WiCF, MSSh, RV,
TVC O, ()5, PR QEK
Wodcstation park, ea.
XA, Mlotif, DpenGL

Standard parts
in all A
Sight nod e e e
e e Filesystem far '
sotare & data e ?

Figure 2.8: Architectural view of a Core-DDS SigMA node [ThaD7]

Problems and observations within the development pro-
cess and product

There are a number of problems that come forward after invesgating the development process of
the CMS and studying the produced development artefacts:

1.

Performance assessment is performed late in the developmeprocess - which leads to high
costs when repairing performance related issues.

. Resource (budget) information is scattered along the orgdsation - because it is performed

using Excel spreadsheets. Version management of those spdsheets is hard.

. There does not exists a (meta) model of the system despite of all the models that are

produced during the design phase. In order to develop a struared approach for early
performance prediction, a model of the system is a rst prerguisite. Only if such a model
is available, responsiveness parameters can be attached amder to evaluate the performance
of the system.

Also a number of important observations were gathered:

1.

18

Responsiveness of the system is mainly determined by middlare overhead- because TAC-

TICOS leans heavily on its SPLICE middleware infrastructure, the total responsiveness of
the system is mainly determined by the time that data arrives at producer databases and
the time that data is read by consumers. This is an important doservation when evaluation

procedures has to be built.

. There is a lack of automated tools for performance evaluatio - although tools do exists, they

do not meet the specic needs of Thales Netherlands B.V. Alsahese tools are not able to
interpret models that are produced during the design phase bthe CMS.

2.5 Conclusion

The early identi cation of performance bottlenecks is a key issue during system de nition: if it
turns out that the operational performance of a running system is not satisfactory, expensive
changes are necessary in order to X issues due to non-functnal requirements. Therefore, the
goal of early performance analysis and prediction is to idetify those bottlenecks early during the
overall process: before the system is actually built.

Due to the incorporation of subcontractors and stringent peformance requirements, a structured
method needs to be developed that integrates system modelinand performance assessment. This
approach also \forces" system engineers to explicitly asss the (early) performance of the system,
and it prevents the ad-hoc approach. A model-based UML apprach is preferable, but unfortu-
nately, a good (meta)model of the system does not exist (yet)

Performance assessment within this thesis is restricted t@analyzing the responsiveness of the CMS
targeted at the SPLICE middleware infrastructure, becausethe end-to-end latency of the CMS is
mainly determined by its SPLICE usage. Therefore, methods amed at evaluating responsiveness
of the CMS should largely be focused towards analyzing the SRCE middleware overhead.

19

20

Chapter 3

Early model-based performance
prediction

Responsiveness is the key quality concern considered withthis research thesis. For Thales Nether-
lands B.V. responsiveness comprises the \end-to-end" latecy of functional ows that can occur
within a system. However, current literature in the eld of\ operational performance analysis" con-
tains other de nitions of responsiveness (and its related gality factor, scalability). This chapter
investigates both approaches, describes the commonaliteand variability, and points out which
de nition is the most usable for early, model based performace prediction of responsiveness.
The performance analysis and prediction process containsuwo important activities: \system model-
ing"and\performance modeling". System modeling means corposing the intended system, whereas
performance modeling means evaluating the performance ofhe intended system, by means of
adding performance related information onto system models System modeling leads to system
models whereas performance modeling leads to system anailysnodels. This chapter describes the
methods and tools necessary for integrating both activities within a model-based framework, with
responsiveness as the key quality factor.

3.1 Designing responsive and scalable systems

Generally, there are two important dimensions to software performance: responsivenessand scal-
ability. Responsiveness is ‘the ability of a system to meets its objéves for response time or
throughput' [Smi02] whereas scalability is “the ability of a system to continue to meet its response
time or throughput objectives as the demand for the softwarefunctions increases'[Smi0?2]. Both
de nitions are closely related, and in both de nitions is\r esponse time" the commonality.

Thales Netherlands B.V. is very interested in responsivengs as a software performance quality
factor, because (as described in the previous chapter) respsiveness mainly determines the overall
performance of the CMS. A non-responsive system will lead tgystem delays, which are unaccept-
able in combat situations. Furthermore, scalability determines how well a system \scales" towards
a more, demanding environment (e.g. more targets to track).Because the CMS is a\middleware
intensive" system, this thesis will focus only the responsiveness of its middieare component

Thales Netherlands B.V. de nes responsiveness as thend-to-end latency of functional ows that
can occur within a system. Basically, this is a time-based daition that can be expressed and
measured in seconds(s) or milliseconds (ms). A clear, nonsfictional requirement using this de ni-
tion could be that the time between determining a target and the generation of the corresponding
track may not exceed 50ms. This is an example of one functionaow of the system. However,
this functional ow can be decomposed if necessary and subggirements may be de ned, that
(obviously) has to satisfy the general 50 ms requirement metioned above.

21

Early model-based performance prediction

Designing responsive and scalable systems that have to safy those functional- ow requirements
is not an easy task. Two key design issues that a ect respongeness and scalability are, according
to [RVH95]:

1. Composition - the policy for allocating software components to\Operating System" processes

2. Distribution - the policy for distributing \Operating System" processes across nodes in a
network

Composition has a major impact on design and thus has to be caidered early. Moreover, a good
composition enables exible distribution. Distribution m ainly deals with con guration for speci c
target environments. Both composition and distribution have a major impact on responsiveness
and scalability. Composition can restrict shared data (impacts responsiveness) and distribution
can reduce the number of processes that runs on a node (impacscalability). Whenever designing
responsive and scalable system, both key design issues haeebe considered carefully. Currently,
composition and distribution policies are both implemented in the Sigma / Splice middleware
component, as described in sectioh’2.3.3.

3.1.1 Model building

To design responsive and scalable systems, models are negda order to compare alternative
composition and distribution policies. According to [RVH95], software performance models always
have two kinds of parameters:

1. Structure parameters - Describes the blocking relationships between software coponents,
using parameters such as the number of visits or service timesquirements.

2. Resource demand parameters Describes the used resource usage during the execution of
software components, using parameters such as the consume&®PU MIPS and RAM memory.

g2 Sending Sensordata

Sending Sensordata
SmokeDetector Server

«PaopenLoad

2Hz(=500ms) Time;
Constant 150 ms

« % «PAtransitions % o
S sendData- Phstep

&9 CollectData 3 ProcessData

Time: Data:
Uniform 20 - 60 ms uniforrn 20-40 kb

Figure 3.1: Example software performance model

Figure 3 shows an example of a software performance modehdt makes use of an annotated
UML activity diagram. The swimlanes (server, smokedetecta) represent two resources. On each
resource, a process is executed which takes a number of nsiiconds (ms) to execute (the service
time requirement). This can (possibly) be characterized ugg a distribution, because the service
time requirement does not have to be the same due to runtime diracteristics of a system (e.g.

22

gueuing delays, interrupts). A process can also exchange twith another process, but has to
take the throughput requirements into account. The throughput requirements (e.g. the maxi-
mum throughput capacity) can be drawn on the same diagram, oron another diagram (the UML
deployment diagram).

3.1.2 Model Evaluation

There are a number of techniques available that can help to ealuate the built performance model
in order to obtain the desired performance characteristics This is useful, because it gains under-
standing of the behavior of the system and it is necessary toampare alternate designs.
Generally, there are two approaches for evaluating perforrance models:

1. Analytical analysis this closed-form, mathematical approach \solves" an analyical model
in a deterministic way. Obtained performance characteristcs are usually \real" or \aver-
age" values. Examples of this approach are Stochastic Pross Algebras[[BBS02] or Layered
Queuing network models [PS0P2].

2. Simulation-based analysis this approach \simulates" a performance model in order to
build a stochastic, probabilistic model. It relies on probabilities and distributions, instead of
constant values. Therefore, it can describe the occurrencef events with a certain probability.

Analytical approaches have the advantage that they calculée an \exact" result and that the al-
gorithms are usually fast, but this approach also has a drawhck: it uses constant numbers as
input and outputs are real numbers, or averages. When buildig a responsiveness model, an initial
intuition in the form of \the responsiveness of process x is yms" is not enough for validating re-
guirements, also because all assumptions, such as the numbef incoming targets and tracks, are
based on constant numbers. A better (realistic) approach wald be that some information can be
obtained such as \the responsiveness of process x is in 95% alf the cases under y ms". This is
more valuable for system engineers, because requirementealso stated that way and it eliminates
the constant numbers, because functions with a probabilityhave to be used now. A simulation
approach, which uses distributions instead of constant nurhers seems a good candidate. However,
a drawback of using a simulation-based approach is that the gality of the obtained results are as
good as the simulation model itself.

However, the two approaches can also be used in conjunctioniti each other. When a system
engineer expects that there may exists certain bottlenecksvithin a composition, he may use an
analytical approach for obtaining a rst intuition of the ex pected system performance. More de-
tailed information can be added to speci ¢ system componerd that can be expected troublesome,
and a simulation analysis can be executed. If the result of tis simulation does not conform to the
initial intuition, the composition needs to ga back to the drawing board.

Analytical approach

This section will elaborate on a number of topics found within\operational performance analysis",

found within [Buz76], in order to provide an overview of an alstract approach of modeling systems
and responsiveness. It describekittle's law and the Utilization law that can be used when deter-

mining the responsiveness of an abstract system.

The most important (and fundamental) law in determining responsiveness id.ttle's law [Lit61].
This law states that the average number of requests in a systa must be equal to the product of the
throughput of the system and the average time spent in the syem by a request (the end-to-end
latency of a request). Little's law needs three quantities,so if two are known the third one can be
obtained as well. Little's law can be derived from the utilization law, that can be used in order
to determine the utilization of a resource. Combing the two rles together results in the average
(average)queuing delay of a request at a certain time. [Buz.

23

Early model-based performance prediction

Consider the abstract system depicted in gure[3.2 below.

AN

\/ Abstract \. COMPLETIONS ({)
/\ System / -~

ARRIVALS (A)

N

Figure 3.2: Abstract model of a system
[Buz76]

The following quantities could be observed from gure[3.2, diring observation time T (the total
length):

A, the number of arrived requests

C, the number of completed requests
The above observations leads to the following quantities:

De nition 1 , the arrival rate: 2

De nition 2 X, the throughput:

(]

If the system consists of a single resource, thbusy-time can also be measured:
De nition 3 B, the length of time that the resource was observed to be busy
The previous quantities leads to the following de nitions:

De nition 4 U, the utilization: &

Denition 5 S, the average service requirement per request: %

With the above de nitions, the utilization law can be derived. Utilization is de ned as %, which
algebraically equals$ &. Because of2 U, & Xand £ S the utilization law gives:

The utilizationlaw :U = XS (3.1)

The utilization (of a resource) is the product of the throughput (of a resource) and the average
service requirement (of a resource). Suppose that a procesgites data onto a disk with 75Hz, 75
times a second, with each write requiring 0.0125 seconds ofsk. As a result, the utilization law
calculates that the utilization of the disk must be 93,75%.

The utilization law is a useful analysis technique, becauseét is fast and does not make many
assumptions. In fact, the utilization law is a special case ba more general law: Little's law [Lit61].
Little's law uses some additional de nitions.

De nition 6 N, the average number of requests in the system: ¥
Denition 7 R, the average system residence time per request: =

24

In the above de nitions, W is de ned as the accumulated time between the arrival and thecom-

pletion of a request, usually measure as #requests per mings or #requests per second. If two

requests in ten seconds were observedy would 20 (which should be read as 20 accumulated

request-seconds).

With the above de nitions, Little's law can be derived. Because algebraicalyf- = < % and ¥
N, & Xand % R, Little's Law gives:

Little S Law : N = XR (3.2)

This means that the average number of requests in a system igjaal to the product of the through-
put of a system and the average time spent by a request.

Now, suppose that theaverage number of requests of the whole system is 30. The disk is seng

75 requests a second. Then Little's Law calculates that the gerage time spent by a request must
be % = 0.4 seconds. From the Utilization law, the service time requirement S was .0125, so the
average queuing time of a request must be .03875 seconds.4&econds was devoted to time spent
at both queuing and receiving service, of which .0125 was deted to receiving service, so the

di erence must be the queuing time).

Simulation-based approach

A (computer) simulation of a system is an attempt to model a real-life or hypothetical situation on
a computer so that it can be studied how it works. By changing \ariables, prediction may be made
about the behavior of the system. The di erence between an aalytical (mathematical) solution
and a simulation is that the analytical approach tries to nd a solution that enables the prediction
of the behavior of the system by a set of parameters and initiaconditions. However, when the
system has a high degree of complexity, nding an (solvablegnalytical closed form solution is most
of the time not possible. Instead, simulations are used in ater to nd a reasonable approximation
of the solution.

Simulations can be divided in three categories, accordingd [Pag84]:

1. Monte Carlo simulation - Monte Carlo simulation is a method by which an inherently
non-probabilistic problem is solved by a stochastic proces the explicit representation of time
is not required.

2. Continuous simulation - Within continuous simulation, the variables are continuous func-
tions, e.g. a system of di erential equations.

3. Discrete event simulation - If value changes to program variables occur at precise poia
in simulation time (i.e. the variables are \piecewise linea"), the simulation is discrete event.

Also variations of the mentioned above can occur. Ahybrid simulation can use an analytical
submodel within discrete event simulation, whereaggaming simulation contains components of all
the three simulation categories above.

Previous research, performed by [Hoo06] and citehor06 ledtthe development of andiscrete event
simulator, based on the freely available DesmoJ_ [Des07] simation library. The simulator takes
as input an (annotated) UML activity diagram, see gure 81] and produces outputs in the form
of a graph that shows end-to-end latencies and throughputs foscheduled activities and consumed
resources. The simulation di ers from analytical models inthe sense that input parameters are not
constant values, but distributions. Examples are \uniform" distributions or\poisson"distri butions.
Furthermore, the simulation runs for instance 1000 times, vith continuously generated random
numbers (within the bounds of the chosen distributions). In the end, this results in a histogram
of end-to-end latencies and throughputs.

25

Early model-based performance prediction

3.1.3 Formal models or a model-based approach?

During this literature study, the question raised if a formal-model approach was preferable or that a
pragmatic, model-based approach would be the way to go. The wdel-based approach was chosen
over the formal-model approach, because of the following tkee reasons:

1. Not all responsiveness information is available during themodeling phase- When system
engineers develop compositions of the system, not all respsiveness-related information is
available during the modeling phase. Usually, a system engeers knows from previous expe-
rience how well certain components of the system will respash Only those components that
likely will be the bottleneck are modeled in great detail. And it is exactly those components
that will be simulated. Formal models have the disadvantagethat in order to be able to
generate a detailed performance verdict, all complex facts have to be known in advance.
Within Thales Netherlands B.V. this is usually not the case.

2. Formal models are too complex to use for system engineersSystem engineers only think
about system concepts at system level. Formal models are thefore not suitable to be directly
used by system engineers, because they focus too much in daptn low-level concepts.

3. Formal models do not integrate well within current design atefacts - Currently, a lot of re-
sponsiveness information is stored within Excel spreadstets and a lot of system compositions
are already developed. The proposed method has to integrateithin current development
artefacts and this rules out the usage of new, formal models.

However, not using formal models directly does not imply thd they will be left out. Simulation-
approaches (and the previously developed simulator) usesjueuing networks" as the underlying
formal methodology. However, the advantage of using modelhased techniques is that other models
can be generated. Simulation will be incorporated in this thesis, and simulation models will be
generated out of system models.

3.2 The model-based approach

Using clean, UML models when describing systems, structur@and performance have a number
of important advantages over \formal" approaches, as good mdels possess all of the following
characteristics [Sel04]:

abstract - they emphasize important aspects

understandable- expressed in a form that is readily understood by observers
accurate - faithfully represents the modeled system

predictive - can be used to answer questions of the system

inexpensive- much cheaper to construct and study than the modeled system

Figure[33 illustrates this by using a simple example: it shavs that models can visualize architecture
much better than program-code. Box1 only contains program ode and extracting the architecture
from code is much harder than if a model was available. Box2 stws the actual architecture in the
form of a model, which is immediately clear after a rst glance.

26

SC_MODULE(preducer) SC_CTOR(consumer)
{ {

sc_outmaster<int> out1; SC_SLAVE(accumulate, in1);
sc_in<bool> start; /f kick-start - P
= um = 0; /linitialize

void generate_data () : wsc_link_mpy
SC_MODULE(top) // container 5
for(int i =0; i <10; i++) { { = {top) «sC_clors link1 «sc_ctors
1 =i ; fito i i
ot producer “At; producer | consumer
SC_CTOR(producer) consumer "B1;
{ sc_link_mp<int> link1;
SC_METHOD(generate_data); SC_CTOR(top)

sensitive << start;}}; {
{SC_MODULE(CDHS\\m&Ij A1 = new producer{*A1”);
sc_inslave<int>int; Atout{link1); .
int sum; /f state varable B1 = new consumer(*B1);
void accumulate () B1.in1({link1):}};

sum +=int;

cout << “Sum = “ << sum << endl}

Can you spot the architecture? Can you spot the architecture?

Figure 3.3: The need for working model-based [Sel04]

Using well de ned, clean and structured models is the \heart' of model-driven engineering that
address issues such as platform complexity and domain speciconcepts [Sch06], by means of
abstraction and automation.

» (1) ABSTRACTION (2) AUTOMATION
Realm of k =
}’;ﬁgﬁg;gs esc_modulen, m ST | Realm oftools
5y u producer producer.
start : outl start outi
SC_MODULE(producer) SC_MODULE(producer)
{sc_inslave<int>int; {sc_inslave<int= ini;
int sum; I/ int sum; //
void accumulate ()4 void accumulate ()
sum +=inl; sum +=int;
cout << “Sum = “ << gum << cout =< “Sum = =< sum <<
endl:} endl;}

Figure 3.4: Abstraction and automation in Model Driven Engineering [Sel04]
Model driven engineering (MDE) also combines the following[Sch06]:

1. Domain speci ¢ modeling languages- that formalize the structure, behavior and requirements
within particular domains. They are described using metamalels which de ne concepts and
the relationships between them.

2. Transformation engine and generators- that analyse certain aspects of models and produce
various artefacts such as program code or other models. Thikelps to ensure consistency
among requirements, models and implementation.

The approach presented in this thesis is not a strict model-diven engineering approach. Usually,
within MDE, model transformations are executed in order to re ne the models further, according
to the CIM, PIM, PSM analogy. The ultimate result is to generate working code with a certain
degree of complexity, only using clean (intermediate) modks. This approach uses MDE in order to
develop an integrated performance engineering method. Magls are used in order to provide ab-
straction and automation to performance engineering. The gal of using MDE within this approach
is to make the system modelexecutable that is, being able to simulate the composed system.
However, there exists a gap between system models and formaystem analysis models(such as
gueuing networks or simulator models). Concepts do not map dn-1 to each other: system models
basically construct the system (such as an architectural mdel), but they are not concerned with
thread levels or priorities, which are important to system analysis models. They are both di erent

27

Early model-based performance prediction

views. A model-driven approach can close this gap, becausd the automation and abstraction
concepts, but also because of the availability of transformation engines and domain speci ¢ mod-
eling languages.

In order to close the gap between system models and system dgais models and to prevent
terminology confusion, the following de nitions have to be understood:

1. System model- a system model describes the structure of the entire systepincluding soft-
ware, hardware and the allocations between them

2. Performance annotations - performance annotations describe speci ¢ parameters thiacan
be attached to model elements. In this thesis, they only degsibe SPLICE middleware pa-
rameters, that are important for calculating the responsiveness of the system

3. UML System analysis model- a system model annotated with performance annotations
represents a system analysis model.

4. Calculations - calculations can be made only on a UML system analysis modellThe outcome
of the calculations are various responsiveness metrics.

5. Simulation model - a simulation model is an UML model that describe only the cortepts
necessary for simulation. Usually, only behavioral ows that uses active or passive resources
are expressed, as well as a deployment diagram.

6. Formal system analysis model- a formal system analysis model is a queuing network or
Markov model. In this thesis, a queuing network is used as thaunderlying implementation
methodology.

System engineers describe systems and structure (using assgm metamodel) and add responsive-
ness related parameters to the models (using a performanceetamodel). This results in a UML
system analysis modeland contains structural and behavioral models that descrile the system
(or part of the system). Those models are used as input for vaous calculations that calculate
the responsiveness of a system analysis model. In order ®imulate a system analysis model, a
transformation needs to be made from a system analysis modéb a simulator model. Concretely,
this means that the system analysis model is madexecutable The simulator translates the system
analysis model into a formal system analysis model and runghe simulation. The simulation results
are presented to the user. This\chain"is depicted in gure[35 on the next page. The advantage of
this approach is that system engineers can compose the struce of systems in a modeling language
that they understand (UML) and that performance engineering activities can be integrated within
the current system development process.

3.3 Required methods and tools

Generally, performance problems may be so severe that theyripact various stages of a traditional
software (or system) development process. Consider for itesnce the Combat Management System
developed within Thales Netherlands B.V. : after the systemhas been built, integrators discover
when using the system that it does not respond within the requred timeframe that is stated in
the requirements, e.g. the time that the system needs to disiay a vessel is not within 1000ms
(1 second) but in 95% of the time within 1100ms. As a result, tte integrators need to give the
system back to the system engineers and automatically the gestions raises what the exact problem
is that caused the extra delay. If the system engineers are tky, they can x the problem and
just need to change minor things, such as connection paramets, but usually they are not that
lucky. In the worst case, they need to change the architectue of the system in order to conform to
requirements. This leads to enormous problems such as not brgy able to x the problem within
a reasonable timeframe and worse, changing requirements & results in unhappy customers or
nancial consequences.

28

Figure 3.5: Closing the gap between system models and formalystem analysis models

Thales Netherlands B.V. acknowledges this situation and eglicitly expressed the need forearly
performance prediction, which should avoid the mentioned problems. Early performace analysis
and prediction leads to:

a better understandingof performance related problems
the possibility of comparing alternate systemshased on performance parameters

evaluation of the systembefore the system has been built

The previous section already described a generic, model bed approach that can be used for early
performance analysis and prediction. Early performance aalysis leads to a an initial understand-
ing of the dynamic system behavior, whereas early performase prediction can be achieved by
using simulations.

In [BDMIS04], software performance is stated as "the procesof predicting(at early phases of the

life-cycle) and evaluating (at the end), based on performane models, whether the software system
satis es the user performance goals'. This is the \heart" of model-based performance prediction,
as it tries to predict performance early. Another goal is to integrate performance prediction in the

software life-cycle.

Within a performance modeling process, two features shouldalways be present[[BDMISO4]: a

29

Early model-based performance prediction

software performance model coupled with system software &facts and the evaluation of the
performance model in order to obtain software performanceesults. This is shown in gure 3.6.

Figure 3.6: Performance modeling process overview

Software speci cation represent the system software artifacts that are produced dring the life-
cycle. Out of the software speci cation, a performance modelis generated, which is used as an
input for performance model generation The results obtained from this step is used as feedback
for the original software speci cation model.

The approach presented in this thesis \ ts" exactly within t his theoretical background: inter-
mediate performance models are generated and by using modetJML approaches, integration of
modeling activities and performance analysis can be achied. However, there are various method-
ologies, both process and product based, that can be used teedhe exactly how the process should
be executed and what design artefacts should be delivered. Hese methodologies are described in
the next subsequent sections.

3.3.1 Software Performance Engineering

Software Performance Engineering (SPE) is an engineeringrpcess that supports early performance
analysis and prediction. It is "a systematic, quantitative approach to construct software systems
that meet performance objectives' [Smi02]. Its main goal isto measure ‘the degree to which
a software system or component meets its objectives for timmess' [Smi02]. This method also
complies to the de nition of the \Object Management Group (O MG)" [Gro05], where performance
analysis is de ned as "the rate at which a system can performts function given that it has nite
resources with nite QoS characteristics' [Gro05]. Both denitions contain two important concepts:
time and throughput.

Approach

SPE recognizes the fact that there exists two approaches to anaging performance [Smi02]:

1. Reactive performance management - which only deals with grformance problems after the
system has been built. This implies an\ x-it-later" approa ch, which is not preferable.

2. Proactive performance management - which is the \heart" ¢ SPE: it tries to anticipate on
potential performance problems and respond to those problas on time, preferably in an
early development phase.

SPE focuses on \proactive performance management" and espilly on the responsivenessand

scalability performance dimensions: the dimensions that could, in priniple, be measured by sitting
at the computer with a stopwatch in your hand.

Process

The SPE process starts with assessing possible performancisks, and identifying critical use
cases (the ones most important for responsiveness). Key pgiermance scenarios are identi ed

30

to establish performance objectives. After the performane objectives are established (usually
represented as workload intensities), the performance magls are constructed. This means that
resource and computer requirements are added to the perforance models. The next step comprises
the evaluation of the performance models. If the obtained rsults are satisfactory, the engineer
proceeds to the next performance model (e.g. system execati model) until the performance is

acceptable, otherwise he needs to go back to the drawing bodr

In order to apply SPE successfully, use cases and system segios are used in order to gain

understanding of the requirements, architecture and desig of a system. When all the necessary
information is gathered, workloads are identi ed and individual processing steps are derived from
scenarios. An schematic overview of the SPE process is praldd in gure 3.7.

Figure 3.7: Overview of the SPE process

Models

SPE envisions that performance problems are due to inapprajate architectural choices, rather
than ine cient coding. As a result, (simple) models of software processing are used that can
identify problems within the current system architecture, system design or implementation plans.
Therefore, modeling is deeply embedded in the SPE methodody.

Two types of models are heavily used within the SPE method: tle software execution modeland
the system execution model The software execution model is generally derived from UMLmodels
of the software it represents. The software execution modeitself encompasses the execution be-
havior of the system. An example of such a software model is aexecution graph, which would
represent one or more workload scenarios. Solving this mot@rovides a static analysis of the
mean, best and worst case response times of a system. On thent@ry, the system execution
model is a dynamic model that characterizes the software pdormance in the presence of factors
such as other workloads or multiple users that could cause etention for resources. In this model,
more precise metrics are needed for calculating possiblegeurce contention or queuing latencies.
This model is typically represented as an network of queueswhere every queue represents a key

31

Early model-based performance prediction

resource of a system.

Within SPE, the software execution model and the system exeation model are complementary
models: if the obtained results of the software execution mdel are satisfactory, the system execu-
tion model is constructed. Otherwise the software executin model is re ned until it is feasible.

3.3.2 Reasoning frameworks

Whereas SPE is concerned with models and how they should be @d in conjunction with each

other, a reasoning framework is a so-called \body-of-knovddge": "it provides a 'black-box' ap-

proach for non-experts and it captures the complex theoriesand tools needed to be able to arrive
at reliable answers about performance' [BIKMO5]. Its goal & to provide a general framework for
encapsulating the quality attribute knowledge needed to urderstand system quality behavior. Rea-
soning frameworks can be used within the SPE process in ordeéo describe exactly how to reason
about performance, because the models used within the SPE pcess are deliberately kept\simple".
A general overview of a reasoning framework and its componés is given in gure 3.8.

Figure 3.8: Reasoning framework overview [BIKMO5]

A system's software architecture has a signi cant impact o its ability to satisfy critical quality
attribute requirements in areas such as performance, modibility and reliability' [BIKMO5]. A
reasoning framework can be seen as a 'guide’ that captures oplex theories, methodologies and
tools in order to assess quality attributes related to archtecture. It must contain at least the
following elements in order to function as a 'black-box' to non-experts:

Architecture description - A description of the architecture, preferably model-base. This
description must also satisfy possible analytical constrats. Reasoning frameworks use ana-
lytical theories to reason about quality attributes, usually represented as formal models.

Desired quality attributes - A set of quality attribute measures.

Implementation of a reasoning framework- The implementation subsystem, where the actual
work is done. It takes the architectural descriptions (e.g. represented as UML models) as well

32

as the desired quality attributes measures as input, transbrms the architectural description

into a (formal) model representation, and produces output va transformations in order to

predict the desired quality attribute measures by evaluating the model representation using
sound analytical theories.

Quality attribute measures - The output of the reasoning framework. Usually a set of mea-
surements, but other artefacts (such as models) are also psible.

Reasoning frameworks also have their drawbacks: It is a vergeneral framework, because it does
not give any hints or guidelines of which analytical theory should be used for a specic class of
problems. Another problem is that, generally, when develophg an architecture for a system, the
architectural descriptions (or architectural models that represent them) are usually not designed
as an artefact that can satisfy analytical constraints, e.g, a queuing network. Finally, there is no
feedback loop: it is not clear how obtained results a ect theoriginal model.

3.3.3 UML and its metamodeling facilities

System models and system analysis models can be developedngsvarious methodologies, but
using standard UML has a number of advantages over other metbdologies. Moreover, UML will
be heavily used in the future within Thales Netherlands B.V. for system modeling. It also provides
good facilities for metamodeling, which increases abstrdion and guarantees tool interoperability.
When UML [BJR99] was invented and created, its main purpose \&s to make it ageneral purpose
language. Before UML, there was a wide variety of object-oented modeling languages, all trying
to solve their own speci c problems. At that time, there was a lot of confusion about terminology,
notation issues and many other things. UML lled this gap wit h the introduction of a general
purpose object-oriented modeling language, with a comprednsive set of modeling techniques for
analysis and design, as well as structural and behavioral maeling facilities.

On the contrary, domain speci c software engineering is concerned with modeling and analys
techniques within a speci ¢ domain. It tries to capture and de ne concepts that are specic
towards a certain domain and provide modeling support for it As a result, UML provides a bridge
between its general purpose language and domain speci ¢ emgering which is known asmetamodel
facilities.

Metamodel architecture

Basically, a meta-model is a model of a model. This can be exteled even further to a meta-meta
model, which is a model of a model of a model. In this way, the nmber of abstraction levels
that can be de ned are almost in nite. The OMG [omg07] de nes in most of their standards (e.g.
UML) a four-layered metamodel architectureapproach. This is depicted in gure 3.9.

3
===
1
| <<instance of>>
——]
— 1
A ==
1
| <<instance of>>
2
1
UML
—
—
" <<instance of>>
T !
1
Class
—
—
inst f:
W‘ | <<instance of>>
1
1
——

Figure 3.9: The OMG four-layered metamodel architecture

33

Early model-based performance prediction

Figure 3.9 shows the four levels that the OMG de nes as its arbitecture. It starts at the top at

M3 down to MO at the bottom. Every model of a upper layer is a metamodel for a lower situ-
ated model. So M3 is a metamodel for M2 etc. A special case is ¢hM3 level, where the Meta
Object Facility(MOF) is de ned. It conforms to itself. A des cription of all the layers is given below.

1. The top level (M3) is where the Meta Object Facility (MOF) i s de ned. MOF was invented
because the OMG was in need of a metamodeling architecture #t could de ne UML. They
came up with a meta-meta model that is an instantiation of itself and conforms to itself.
MOF is intensively used in the MDE (model driven engineering process, where every model
is a software artefact and the ultimate goal is to automaticdly construct code out of models.

2. The second level (M2) is where UML is positioned. UML is anmstance of MOF (meta-meta
model) and therefore UML can be seen as a meta-model. UML de es all modeling concepts
according to the general purposevision.

3. The third level (M1) contains classes. When modeling a syyem or software in UML, class
diagrams are an example of a commonly used model. Because sdas are rst-class entities
in UML, a class diagram can be seen as a model and an instance GML.

4. The fourth and last level (M0O) is where the actual objects ae situated. These are the concrete
instances of M1 (Classes) and thus contain the actual objectlata.

Metamodeling approaches

UML metamodeling has a wide variety of application areas. Examples are MDE, describing on-

tologies or metadata modeling. But also for bridging the gapbetween domain speci ¢ and general

purpose languages. This thesis will focus on bridging the gabetween a general purpose modeling
language and domain speci ¢ software performance engineieg modeling.

Within UML there are three extension mechanisms de ned: steeotypes, tagged values and con-
straints. Some of them are supported by tools (like IBM Rational Rose) and some of them are
partially or not supported at all by any tool.

Stereotypes

Stereotypes are one of the three extension mechanisms of théML. A stereotype can extend the
UML metamodel in such a way that new modelelements can be de ed for a speci c domain,
based on standard UML entities. However, four di erent kinds of stereotypes can be distinguished,
according to [SWO01]:

1. Decorative stereotypes -are only used to replace a symbol of a model element. They dan'
de ne speci ¢ semantics or whatsoever. It is the ‘weakest' ype of metamodel extension. An
example could be that a class is annotated with a decorativetsreotype, which contains a
speci ¢ kind of symbol.

2. Descriptive stereotypes -introduces a new pragmatic element. In the previous examplave
would still talk about an annotated class, but imagine that we would like to draw a specic
kind of 'hardware node'. We could annotate a class with a 'hadware' symbol (descriptive)
and we provide a new pragmatic element (the hardware node). & would then talk about
hardware nodes, not about classes, but in reality that hardvare node still remains an instance
of the original UML metamodel (the class).

3. Restrictive stereotypes -are new semantic elements added to the UML. They include a for
mal de nition of syntactical and semantical constraints and they extend the base language.
An instance of a restrictive stereotyper remains a valid insance of the stereotyped original
metamodel element.

4. Rede ning stereotypes -can replace any given metamodel element with a new one and deing
a completely di erent set of semantics and constraints for t. Obviously, this is the 'strongest'
type of metamodel extension: they can possibly alter the UMLand this can result in violating
UML conformance.

34

Tagged values

Tagged values are an extension of the UML property mechanism With tagged values (which
are basically name-value pairs) extra information can be aded to an UML element. In this
way, domain speci c information can be added to certain elenents which can be used for specic
purposes, such as con guration management or code generati. A tagged value is represented as
a string between brackets in a UML model.

Constraints

Constraints are used for specifying semantics or conditios that should hold for certain model
elements. A common used constraint language is the Object Gwtraint Language (OCL). Con-
straints are also speci ed between brackets in a UML model ad a typical usage scenario would be
specifying load constraints in a deployment diagram.

3.3.4 UML Pro le for Schedulability, Performance and Time

Over time, the \Object Management Group"[omg07] developedthe UML pro le for schedulability,
performance and time (SPT pro le). One of the intentions of this pro le is “to provide a common
framework within UML that fully encompasses the diversity of various real-time concepts and
notations' [Gro05]. One fundamental objective of this speccation is to analyze software models
in order to predict real-time concepts.

The UML-SPT does not de ne analysis methods: it only provides a generic domain model, where
common real-time concepts (such as resources and resourceages) are shown. This model can
be used to provide a generic overview of the system and can barther specialized where needed
(e.g. for a speci c analysis method). This is due to the so cdéd\gap" between system models and
analysis models: e.g. when performing schedulability angkis thread priority is a key concern, but
these concepts are rarely seen in system models or they do notap 1-on-1.

The \base" of the SPT pro le is the \resource usage" or \general resource model". This general
resource model de nes abtract concepts such as \resource'ra \resource instance". Furthermore,
the SPT pro le de nes a\performance modeling" component, which can be used for performance
analysis of UML models. This is depicted in gure 3.10.

Figure 3.10: Performance analysis component of the SPT Prde [Gro05]
The performance analysis component has four goals [Hoo06]:

1. Presenting performance results computed by modeling tde or found in testing

2. Associating performance-related QoS characteristics ith selected elements of a UML model

35

Early model-based performance prediction

3. Specifying execution parameters that can be used by modely tools to compute predicted
performance characteristics

4. Capturing performance requirements within the design catext

Previous research performed within Thales Netherlands B.V used this prole as a means for
adding performance related information to UML activity- an d deployment diagrams. The result
was a JAVA simulator that could interpret SPT annotated mode s in order to produce histograms
with performance-related attributes, such as latencies, tilization and throughputs. This was
useful, but it also had it limitations: the SPT pro le does on ly support time-oriented performance
characteristics and it does not solve the \gap" between anajsis models and system models: the
information that has to be added is still very speci ¢ and the \general resource model" of the SPT
pro le is too general.

3.3.5 UML Pro le for Modeling and Analysis of Real-Time Embe dded
systems

A (recently) very new development within the \Object Manage ment Group"is the development of
MARTE, or\Modeling and Analysis of Real-Time and Embedded systems". Thales Global is also
a submitter for MARTE, along with other vendors such as Alcatel and Lockheed-Martin which
all recognize the need for a new approach to performance analis of UML models. MARTE is
not an addition or new version of the SPT pro le, it completely replaces the SPT prole. It is
also more extensive: it de nes a metamodel and its underlyig UML pro le, it contains a domain
speci ¢ language (VSL) in order to add performance expressins, full support for OCL2 and it
provides detailed semantics for various performance feates in order to close the gap between
system models and analysis models. However, it only providelanguage constructs, not mappings
to transform system models into analysis models and vice vea. That is something that this thesis
will 1l up.

However, when the MARTE draft is accepted and a nal working version is released, it could be
very useful for Thales Netherlands B.V. to look into this na | release and investigate what could be
used in the future with regards to this pro le. This, because the MARTE pro le looks impressive
and is much more than just\another pro le" it also de nes se mantics that describe exactly what
to model and exactly how to model this. The current timescopeof this project was too short to
throughly investigate MARTE with regards to the current sub ject, but it seems promising for the
future and lots of performance-modeling research is put inb this nal (new) standard.

3.4 Conclusion

Responsiveness and scalability are closely as quality famts: responsiveness has to satisfy user
response times in a target environment; scalability meanshat the system can satisfy user response
times in other, more demanding environments. Two important factors of responsiveness and scal-
ability are composition and distribution and both have to be present in order to be able to design
and develop responsive and scalable systems.

Concretely, Thales Netherlands B.V. de nes responsivenesas the end-to-end latency that may
occur within functional ows of the system. This relates closely to the above, more general de ni-
tions. In order to verify the responsiveness of a system, the exist (formal)analytical approaches
and simulation-based methods. However, integrating formamodels with system models is not
preferable, as formal models are hard to understand, not altelated information is available dur-
ing design time and formal model concepts do not map 1-on-1 @h system models. Therefore, a
model-based approach is proposed that is able to close the gdgetween system models and system
analysis models, by means of using UML metamodels in conjution with UML modeltransfor-
mations. Intermediate models are generated with the goal obbtaining an executable simulation
model, that can provide information about latencies that may occur within a system. The UML is
used for expressing models that are understandable and wedlupported by modern tools, and for
providing a high degree of automation and abstraction.

36

Part Il

Concept development and
solution-design

37

Chapter 4

Towards a model-based approach
for early analysis and prediction of
responsiveness

Previous chapters described all background information neessary for understanding the problems
of Thales Netherlands B.V. and explained why early performace analysis and prediction is im-
portant. This chapter proposes a structured, model-based pproach that integrates performance
engineering activities with regular system development. 1 presents all models and transformations
necessary for describing the structure of systems and prests methods for assessing the respon-
siveness of the composed system. Within this chapter, budgelriven performance modeling and
model-driven techniques are key concepts.

4.1 Requirements

Every method or product starts with de ning requirements. B ased on information presented in
previous chapters that described as well the current develoment process and general performance
engineering methods and tools, a number of requirements wergathered that the nal, proposed
solution presented within this chapter should contain:

Requirement 1 The proposed, changed software performance process musteagrate with the sys-
tem engineering process used within Thales Netherlands B.VThis means that the prototype-tool
must use the UML models produced during the regular system gimeering process. These models
encapsulate structural information as well as behavioralriformation.

This requirement is related to the current system developmat process used within Thales Nether-
lands B.V. : models that are produced during this process musbe supported by the proposed
approach. This in order to prevent another \standalone" solution. Integration within the develop-
ment process is a key success factor for appliance in industr

Requirement 2 The prototype-tool has to use model-based techniques in edto close the gap
between system models and formal system analysis models.

This requirement originated from sections 3.1.3 and 3.2, tht already proposed a number of models
that should be presentin order to transform from system modés to (formal) system analysis models,
with the goal of obtaining an executable model that could be smulated. This was also depicted in

gure 3.5, that showed how that gap could be closed: by usingritermediate models in conjunction

with modeltransformations.

Requirement 3 Performance budget information, that is currently stored wthin Excel spread-

sheets and exchanged among subcontractors, should be uséihia system models in order to be
able to analyse and predict responsiveness early.

39

Towards a model-based approach for early analysis and pration of responsiveness

This requirement originates from the fact that currently, p erformance assessment is performed
within Excel spreadsheets. This should not have to be a drawack by itself, but performance
assessment is now performed ad-hoc. By integrating sprealdset information with system models,
system engineers are forced to assess performance at the satime when modeling the system.

Requirement 4 Performance evaluation should be twofold: constructed stem models should be
evaluated using middleware related budget information angsponsiveness budgets in order to assess
the total responsiveness of the composed system. Veri catn of the obtained results is achieved by
means of integrating a previously developed simulator, thais able to predict peak-loads with a
certain degree of probability.

This approach is based on the fact that the results obtained l calculating UML analysis models
have to be veri ed. The advantage of a simulation-based appoach is that it can show the overall
latency of the system with a certain degree of probability. f this probability does not conform to
the expected simulation results, estimated by gaining ingjht when using the rst method, system
engineers need to go back to the drawing table.

Requirement 5 The prototype tool has to provide automation to the system agineer. Ideally, the
system engineer only has to\click on a button"in order to gan insight in the performance behavior
of the system.

This requirement is based on the fact that automated tools ae a key-issue for adapting and applying
performance engineering within industry.

4.2 Approach

This section presents a global overview of the proposed appach that will be further used through-
out this thesis. It presents an overview of all components, pocess-based and product-based.

One of the most important requirements of the proposed solubn is requirement 1, that states that
integration within the current system engineering processmust be achieved. This process, depicted
in gure 2.2 of chapter 2, contains one major limitation: performance assessment is performed too
late (after the integration phase). Therefore, a change to his (global) process is proposed. This is
depicted in gure 4.1.

Figure 4.1: High level proposed process overview

In the new (proposed) situation, performance assessment igerformed after the system modeling
phase. The original performance assessment block is now na&h as \performance re-assessment”,

40

with the intention that after assessing the running system, more information is gathered about the
nal run-time behavior of the system. As a result, this infor mation can be used as a (updated)
base for the performance assessment phase after the modgjiphase: every time a runtime system
is assessed, new information and metrics are obtained in oed to ne-grain the analytical and
simulation-based models. This is depicted in gure 4.1 on tle next page.

The colored block in gure 4.1 is the central block considere within this thesis: software modeling
and performance assessment are key issues here. The othendHs are not further elaborated. The
separation of the three blocks depicted in gure 4.1 is intraduced because many activities performed
within that block are performed in parallel and usually, going back to the \drawing-board" means
going back one block in time, not just one activity. This new gure emphasizes this. However,
going one activity back is still possible.

In order to ful ll requirement 2, model-based techniques wil be used in order to support per-
formance engineering that makes use of regular UML models. l@apter 3 already explained the
need for a model-based approach and section 3.2 presented approach that integrated system
models and UML system analysis models with the goal of obtaimg an executable model (the
simulation model), without directly editing formal models . This chapter elaborates further on this
idea, together with chapter 5 and chapter 6.

An overview of the structure of the presented method, that is compatible with the global sys-
tem engineering development process depicted in gure 4.1lis depicted in gure 4.2 on the next
page. The di erence with gure 3.5 of chapter 3 is that in this gure, section numbers are present.
Those section numbers references to individual sections dhis thesis. Furthermore, it is worth
noticing that the model artefact\System model" is related to the \Model the system" process d
the global system engineering process, whereas thaodel artefacts\Performance annotations",
\UML system analysis model", \UML Simulation model" is rela ted to the \assess performance"
process. Furthermore, every \Implementable action” of gure 4.2, such as \Calculation transfor-
mation", \Simulation transformation" and \Simulation" ar e also part of the \assess performance"
process, but they are not models, but encompasses models amdtions that leads to models or
other results (such as simulation results).

41

Towards a model-based approach for early analysis and pration of responsiveness

Figure 4.2: Structured overview of the proposed approach (¥h section numbers)

4.2.1 Model the system

One of the two activities considered within this thesis is\model the system"activity. The envisioned
approach of the system engineer is as follows:

1. Requirements gathering- A system engineer collects the performance-related (nofunctional)
requirements from customers and speci cations, i.e. endd-end latency constraints

2. Hardware modeling - After requirements are gathered, a system is composed. Theumber of
processing nodes are determined along with the relevant specations (available CPU and
memory)

3. Software modeling - software modeling consists of a number of models. Tharchitectural
model describes the individual CSClI's and their characteristics The functional model con-

42

tains behavioral diagrams of individual CSCI's. The design modelprovides a detailed design,
and is a re nement of the functional model. It also provides an relational model, where
data-items are described.

4. Mapping development- mappings are models that \map" system components to softwae
entities. An allocation diagram, that de nes that 80% of a CSCI budget is mapped to a
certain hardware node, is an example of such a mapping.

5. Model constraint veri cation - if certain model constraints are not met, the system enginer
can't verify the performance of the system. An example of a mdelconstraint is that if an
entity exists in a behavorial model (such as a datastore) it fould have an corresponding item
in the relational model.

Figure 4.3 provides an UML activity diagram where each step m the \Model the process" activity
is shown.

Figure 4.3: Overview of the \Model the system" process
The\model the system" activity leads to system models, depcted as a swimlane in gure 4.3. This

is the same system model as depicted in gure 4.2. The goal of system model is that performance
annotations can be added and together they form the UML systen analysis model.

Example system model

A system model encompasses multiple models. This section gvides an overview of the most
common models that together form the system model, accordig to the analogy described in the
previous section.

43

Towards a model-based approach for early analysis and pration of responsiveness

The example system that will be described consist of 4 hardwa nodes, which is depicted in gure
4.4,

Figure 4.4: Deployment diagram of the example system

Figure 4.4 shows the deployment diagram of the example syste. The top node (annotated with
THWSystem) consists of two \Multi-Zweck-Consoles" (MZK's). A MZK is a hardware node with
a display attached to it. Furthermore, it contains a real-ti me node (RT1) where most of the pro-
cessing is executed. It also contains one non real-time nod&IRT1), that provides various services
(such as displaying historical data) to the operator.

Hardware budgets can be attached to hardware nodes: gure 4. shows that every hardware node
is annotated with a HWBudget stereotype. Here, the amount of CPU and memory available for
processing can be speci ed.

Constructing software starts specifying architecture. Within Thales Netherlands B.V. the most
important part in this process is identifying the necessary CSCI's, which is a logical grouping of
software components. This is depicted in gure 4.5.

Figure 4.5: High-level architecture of the example system

44

Figure 4.5 shows 5 CSClI's:

. Sensor-services- responsible for processing incoming sensor plots
. Situational-awareness- responsible for creating tracks of sensor plots
. Assessment- responsible for tracking air or surface objects, and identying \friend or foe"

Execution - responsible for executing warfare actions (such as launahg a missile)

a r W N R

E ector services - responsible for translating a warfare action to the actualaction (such as
rotating a gun)

CSClI's can also be annotated with budget information: gure 4.5 shows that every CSCI contains
a CSCIBudget stereotype. Resource consumption, such as CPU and memory isumption can be
attached. Also, middleware related performance parametes can be speci ed.

After the CSCI's are investigated, the system engineer can eécompose the CSCI's if needed. A
CSCl is the highest abstraction level of a software entity, lut lower abstraction are also possible.
Figure 4.6 shows this.

Figure 4.6: Re ned architecture of the example system

The example depicted in gure 4.6 shows a decomposition of tl \Situational Awareness" com-
ponent. The component is decomposed using a \composite assation” relation. The \Track
management” subcomponent is responsible for collecting pts and generating tracks, therefore it
contains three other subcomponents: \Plot Receiver" \Track Fuser"and\Track Creator". They are
also annotated with di erent stereotypes and di erent budg ets. The\General Operator Interaction
Environment" manages the operator consoles. Furthermoreit is important to realize that CSCl's
can be decomposed into other CSCl's, which indicates the ugg of the “Composite design pattern’
[GHJV95].

After the system engineer collected and speci ed the neceasy software (CSCI's) and the nec-
essary hardware (by developing a deployment diagram) allcations are the next step in the process
of specifying a complete system. Allocations determine hownany resource must be allocated on
a hardware node for running software entities.

Figure 4.7 shows for instance that 80% of the resource consiption of \Execution" is allocated
on \MZK1" and that the other 20% is allocated on \MZK2". By cha nging allocation-relations,
the system engineer can in uence the resource consumptionfdhe system. If the system\ts" on
available resources, the total resource consumption is snfiar than the available resources and the
resource consumption of one hardware node does not exceedetindividual resource availability,
as speci ed via allocation relationships.

45

Towards a model-based approach for early analysis and pration of responsiveness

Figure 4.7: Allocation diagram of the example system

Thales Netherlands B.V. is not only interested in resource Hocations by means of allocation-
relationships between a CSCI and a hardware node, but also &iroles. Figure 4.8 shows this.

Figure 4.8: Role mapping of the example system

A role is a functional grouping of one or more multiple worksés; A workset contains one or more
executables Executables are classi ed inprocessingand HMI . A processing executable runs usually
on a real-time node, whereas a HMI executable needs a computwith a display attached to it (a
MZzK), but this is not an absolute prerequisite. Finally, a role is always directly allocated on a
hardware-node.

The last two mappings that are necessary for specifying a copiete system are aworkset map-
ping and a executable mapping Workset mappings determines which \worksets", which bascally
is a set of tasks, belong to which roles. The workset mappingdepicted in gure 4.9 on the next
page, shows two di erent worksets attached to separate role. Furthermore, worksets can contain
executables, which is shown by the executable mapping, degtied in gure 4.9 on the next page.

46

Figure 4.9: Workset mapping of the example system

Figure 4.10: Mapping of executables of the example system

4.2.2 Assess performance

After te system has been composed, the system engineer adderformance information to the
system models. The goal of this activity is the evaluation ofresponsiveness, which are represented
by the \implementable actions" of gure 4.2. In order to be able to do so, the following steps in
the process have to be performed:

1. Annotating the models - the system engineer annotates the functional model, archectural
model and design model. The architectural model is annotate using resource budgets: the
hardware model (deployment diagram) supplies resources ahthe software models (CSCI's)
demand resource usage.

2. Evaluate analytical constraints - after the models are annotated, constraints are evaluated
If, for instance, a required mapping or model is missing thatis a prerequisite for performance
evaluation, a message is generated and the evaluation abed.

3. Evaluate responsiveness budgetsafter providing the required information, the evaluation
process is started. The models are evaluated and if resourckemand is more than provided,
model-feedback is provided.

4. Simulation - if the budget evaluation step is satis able, the simulation model is generated us-
ing model-transformations. After the generation is complee, the model is fed into a discrete
event simulator. A histogram of all behavioral diagrams is poduced where latency informa-
tion is shown. If results are not within expectation (e.g. budget evaluation is satis able, but
somewhere seems to reside an excessive \peak-load", the ®m engineer needs to change the
original models, until the outputs are acceptable.

47

Towards a model-based approach for early analysis and pration of responsiveness

Figure 4.11: Overview of the \assess performance" process

Figure 4.11 above shows three models that are important witin this process: the performance
annotations, the UML system analysis model and the UML simuktion model.

Performance annotations

The performance annotations are attributes or set(s) of atributes that are parameters of respon-
siveness. These parameters can be attached on modelelemert several levels. An example of
performance annotations, attached to the architectural madel, is depicted in gure 4.12 on the
next page. This gure shows imposed performance annotatios that are imposed on the \Sensor
services"CSCI from gure 4.5. Unfortunately, Rational Rose cannot show the stereotype attributes
of classes in the same diagram. However, gure 4.12 shows that top-level, the number of pro-
cessing entities (pa) is 10 and that the number of software dities that require interaction of the
operator (wp, or HMI) is 12. Furthermore, both pa's and wp's have resource budgets attached,
and a SPLICE budget.

48

Figure 4.12: Performance annotations

UML system analysis model

The UML system analysis model is a system model annotated wit performance information (at
several levels). Only when system models are annotated, itam be used for analysis, by means of
responsiveness calculations. When these calculations aperformed, the result of the calculations
are presented in the model itself, providing direct feedbak to the system engineer. An example of
this is depicted in gure 4.13.

Figure 4.13: Example result of initial performance analyss

Figure 4.13 shows that MZK1 and MZK2 have su cient budget available, whereas NRT1 has
not. If the exact budget values needs to be inspected, the symm engineer has to click on the
corresponding attribute. Note that the complete system andysis model, as used according to the
terminology presented in this thesis, encompasses all antated system models, plus the validation
information added to the model shown in gure 4.13.

UML simulation model
After the initial performance assessment (the budget verication), a simulation model can be

generated out of the system analysis models. This simulatio model is generated out of behavioral
diagrams of the composed system. An example simulation modiés depicted in gure 4.14

49

Towards a model-based approach for early analysis and pration of responsiveness

Figure 4.14: Example generated simulation model

Figure 4.14 shows an example generated simulation model. TEhstereotypes \PAOpenload" and
\PAStep"represent workloads and the time that it takes to ex ecute one processing step, respectively.
This conforms exactly to the UML SPT Pro le, previously described in section 3.3.4. The values
of the individual steps are determined by the values calculeed on the \UML System Analysis
Models". Therefore, those calculations have to performed bfore the system engineer is able to
transform to simulation models. The result depicted in gure 4.14 is the executable model that
is fed into the discrete event simulator, and reaching this (nal) model is the overall goal of the
method presented within this thesis.

4.3 Supporting budget-driven performance modeling

Teh presented approach in this chapter is based on the concépf budget-driven performance mod-
eling. This is a method designed within Thales Netherlands B.V. [GG07] and already applied within
a number of research topics [Hoo06] [Hor06] citehor07.

Budget driven performance modeling basically means that tie amount of cpu, memory and net-
work processing that may be consumed to execute software tot on available hardware, is usually
speci ed by (non-functional)requirements' [GS07]. Expressing and tracing these non-functional
requirements in artefacts produced during the software lié-cycle is not easy, due to a lack of ex-
pression techniques and automated tools. Budget-driven pgormance modeling allows the system
engineer to annotate its system model with \budgets" in order to determine resource utilization.
This principle was initially developed within Thales Netherlands B.V. and further developed during
this thesis. In this thesis, budget-driven performance moeling is used as a rst step in the model-
based performance prediction framework, because it allowspeci cation of systems and provides
the ability to verify resource constraints that may be imposed.

Basically, budget-driven performance modeling allows thesystem engineer to annotate system
models with budget information. This was described in this hapter in previous sections. Budgets
are a function of parameters such as the number of data-enties, message size and the frequency
of data access. When designing a system, the budget consunsesire software entities, whereas the
budget producers are the available hardware resources. If aystem\ts", the available budget of
the consumers does not exceed the available budget of the pitacers. In order to determine this,
the function of the budget parameters are used along with costraints. A constraint can limit a

50

budget usage, an example is that the available hardware budg usage may not exceed 50% in
order to handle peak-load scenarios.

The budget-driven performance modeling method introduceghe notion of \budgets" in order to
calculate resource utilization demanded by software. By deermining if a software system ts within
the current hardware setup, an early performance veri cation step can be made. This method per-
forms only resource utilization calculations, it does not &timate queuing delays or tries to simulate
any kind of dynamic system behavior. This is an addition to budget-driven performance modeling
incorporated in the framework developed during this thesis

4.3.1 Design levels

The main idea behind budget-driven performance modeling ighat regular models (artefacts) pro-
duced during a generic software development process can besed in order to calculate resource
utilization. Section 2.2 described the generic developmedrprocess as used within Thales Nether-
lands B.V. where di erent design levels were introduced:

1. Domain level - This is were the initial modeling takes pla@s. Domain level modeling mainly
produces functional ow diagrams were end-to-end latencie are determined. (e.g. the total
time from capturing data from a radar and to present this data in track-form to the operator
may not exceed 1 second). These models represent the top-tvstructure and top-level
sequences.

2. Architectural level - The architectural level produces architectural diagrams. After the main
functional ows are established, an (initial) architectur e is created. This architecture en-
compasses class diagrams and sequence diagrams. Examplesenalready introduced in the
previous section.

3. Design level - At this level, the low-level functional ows are created. This is the lowest level
in the development process, and is basically a detailed degi. Detailed architectural models
are also present at this level.

Within di erent design levels, multiple iterations take pl ace. Also, changes made at a higher level
may impact something at a lower level. This indicates a strom hierarchy between design levels.
Budget driven performance modeling supports the function& grouping of the three mentioned
design levels.

4.3.2 Hierarchy and decomposition

Budget driven performance modeling leans heavily on the carepts of \hierarchy" and \decompo-
sition". Models of the CMS contain a strong hierarchy becaug at top-level the detail is not very
high. During a development period the knowledge and detail 6the system engineers increases, so
more information is added to the model in a hierarchical way. This is called \decomposition". De-
composition can occur at di erent design levels, structurd models (e.g. UML class diagrams) can
be decomposed but also behavioral diagrams (e.g. functiohaow diagrams) can be decomposed.
These concepts are also depicted in gure 4.15.

The hierarchy and decomposition principles are introducedwith the goal of supporting the mod-
eling of bottlenecksinstead of modeling the complete system. System engineersilivonly model
those parts of the system in-detail if they suspect that a degaded performance might occur. For
other parts of the system, a general, global component with g cient resource- and responsiveness
budgets will be su cient.

4.3.3 Mappings
The goal of providing mappings is that identi ed design leves can be linked to each other. E.g.

there may exist a relation between high level ows of a concefual model that describe the general
behavior of architectural components, which resided at arhitectural level. Mappings enriches

51

Towards a model-based approach for early analysis and pration of responsiveness

the possibilities of a system engineer of describing a congle and well-de ned system, at three
design abstraction levels. Mappings make sure that relatins between design abstraction levels are
explicitly de ned: they describe the corresponding vertical relations explicitly.

Figure 4.15: Hierarchy and decomposition in budget driven grformance modeling

4.4 Conclusion

Within current research, there exists a\gap" between systen models and system analysis models.
By using regular models produced during the system developent process and applying model-
transformations, a powerful mechanism occurs that is able @ reduce this gap. The presented
solution proposes an architecture that supports two important activities: the rst activity com-
prises the modeling of systems and the second activity evahies the responsiveness of the composed
system. It uses analytical-based methods to evaluate the mponsiveness of the system in order to
obtain an initial understanding of the expected performane behavior. Simulation is used to verify
the outcome, and to show extra information. The details of the individual components presented
within this chapter, will be discussed in the next subsequehchapters. Automated tool support
will be provided in the form of a\proof of concept".

52

Chapter 5

Integrating the models

The presented approach within this thesis makes use of modealriven technologies that implements
performance engineering activities. This approach reliesn the use of metamodels, which are used
for domain-level modeling and for describing structure. Asa result, the metamodels developed
within this thesis provide building blocks to system engineers.

This thesis presents two metamodels: one for describing thstructure of systems and one for de n-
ing responsiveness and its parameters. It provides an oveiew of all individual system elements
that may be used by system engineers in order to compose systs, and it describes the impact of
the SPLICE middleware usage on responsiveness. Both metardels form the groundwork for the
proposed approach.

5.1 Positioning the metamodels

The previous chapter described the overall approach that wa introduced in order to be able to
perform early analysis and prediction of responsiveness. e next subsequent sections will describe
all (meta)models in detail. The relevant models for this chgter are depicted in gure 5.1.

Figure 5.1: Overview of the relevant metamodels discussedithin this chapter

Figure 5.1 shows two important metamodels:

1. The System Metamodel- which describes the structure of systems. The system metaadel
is used for composing systems

2. The Performance Annotation Metamodel - which describes the exact performance information-
and parameters that can be attached to elements of system mads, based on the system
metamodel

53

Integrating the models

Generally, metamodels can be designed in a number of ways, mething that was also described
in chapter 3 in sections 3.3.3 and 3.3.3. Based on the infornt@n in those sections, and the
requirements stated in section 4.1, the presented metamodwithin this chapter are designed with
the following objectives:

. It has to comply to the OMG four-layered metamodel- because many tool vendors (such as

IBM Rational and Borland Together) also use the four layeredmetamodel as a base for their
UML implementation. Extensions of the UML also follow these directives, so in order to
stay compatible among tool vendors, the proposed metamodés also designed with the four-
layered metamodel in mind. The four-layered metamodel waslaborated in section 3.3.3.
Our proposed solution mainly comprises level M2 in the fourlayered metamodel: both meta-
models are expressed as UML pro les with stereotypes, whichesides at M2 level. Whereas
a M3 level approach was also possible (a meta-meta model) thdasically leads to a MOF
based language, this was not preferable because Thales Nettands B.V. wants to model its
systems in UML and therefore designing M3 level solutions Wi result in a solution incom-
patible to the UML.

All models designed in this chapter were non-existent. By ettacting information from em-
ployees, researching technical documents and consultingsstem documentation, the system
metamodel and the quality attribute metamodel were obtained.

. The models are designed independently of the (possible) ifementation tool - some tools only

provide sophisticated metamodeling extensions. This modes developed using state-of-the-
art metamodeling techniques and possible changes due to ingient implementation support
will be dealt with in a later chapter. For instance, the UML ca n be extended with stereotypes
based on a custom pro le and MOF metamodel extensions, but nball tool vendors support
MOF-level extensions.

. the models are designed with exibility in mind - That means, it has to be relatively easy

to change certain parts in the future. If Thales Netherlands B.V. wants to add or change
something because they have gained new understandings ofah system, they should be able
to do this in a simple way. Most of the time, this resulted in models which make use of
certain design patterns like the composite pattern[GHJV95].

5.2 A domain-level view of the structure of systems

Before discussing the developed metamodels in detail, it ismportant to understand a number of
high-level concepts used within this thesis. These conceptshow the abstract relation between
system elements, constraints, calculations and quality cocerns. It is not a strict meta-meta model
according to the MOF speci cation, but a domain model that can be used for obtaining a high-level
overview. This is depicted in gure 5.2.

54

Figure 5.2: Abstract view on system structure and responsigness
Figure 5.2 shows the following (related) concepts and enties:

ModelElement - a ModelElement is an individual element that represents anitem of the
system. This can be a hardware-entity, or a software entity. An ModelElement can have
an association with a modelconstraint, which means that there is a required name-based
match with a ModelElement with the same name, but another type. A ModelElement can
associate to itself, which means that a ModelElement can imfgment a composite structure.
Furthermore, it is a specialization of the generalEntity class.

Calculation - a Calculation calculates the responsiveness of 1 or more MelElements. Fur-
thermore, it also veri es Quality Constraints, e.g. a loadconstraint that restrains the maxi-
mum resource usage. It uses 1 or mor@uality Concerns that describe the exact performance
parameters that a calculation have to use in order to calculée something.

Quality constraint - a Quality Constraint is a constraint that can limit the outc ome of a cer-
tain calculation, e.g. if a loadconstraint is imposed somevere, this automatically means that
the result of the calculation may not exceed a certain percetage. A calculation automatically

veri es this.

Quality concern - a Quality Concern is basically a set ofguality attributes, which in this thesis,
is represented byperformance annotations It is a set of quality attributes that describe the
performance behavior of ModelElements.

Scenario - a Scenario is a set of Quality Concerns, Quality Constrains and ModelElements.
Combining these three concepts, the nal goal of a scenaricsito specify in a unambiguous way
important scenarios, such as a combat scenario, that autontically imposes a combination
of Quality Concerns and Quality Constraints on ModelElemerts.

Entity - an Entity is the base abstract class for every entity, excep Scenario. An Entity can
contain mappings which means it connects elements at separate abstractiorelels. Further-
more, an entity can re ne or instantiate itself.

55

Integrating the models

5.3 A domain-level view of responsiveness

The gure with abstract domain concepts presented in the previous section shows the relation
between quality concerns, calculations, quality constrants and the modelelements. This section
will describe what information those quality attributes have to contain in order to assess respon-
siveness.

Generally, valuating if budget consumption does not exceedavailable resources on architectural
models is not enough for assessing responsiveness. It isuable contribution, because if the re-
source consumption is higher than available hardware, proessing will be stalled and the system will
not respond in time due to extra queuing delays. But, for assgesing responsiveness other methods
are needed in order to estimate the end-to-end latency of theystem.

Chapter 2 stated that the CMS is a \middleware intensive" system: the usage of the middleware
mainly determines the overall performance of the system. Thles Netherlands B.V. uses SPLICE
as their middleware layer, so the SPLICE usage is the main faor in determining the end-to-end
latency. The generic SPLICE usage is depicted in gure 5.3.

Figure 5.3: SPLICE usage overview

Figure 5.3 shows the generic SPLICE usage. SPLICE uses the plish-subscribe paradigm in order
to send/receive messages. Figure 5.3 shows ve nodes contegt by a network. Each node contains
a\topic" database. A topic is a data-item that can be sent over the network and be stored in the
database, which is a\in-memory" database. The problem with this con guration is every topic
gets \broadcasted" over the network. Consider for instancethe situation that a \sender" node is
responsible for producing a certain topic. When another noé is interested in this topic, he registers
with the \sender" node and every time a new update is availabé, the producing node broadcasts
the topic on the network. So even if a node is not interested ira certain topic, he still recieves an
induced network load. This important observation has led to the development of a domain model
for responsiveness, which is used as the base for the AnnotahModel metamodel. The domain
model is depicted in gure 5.4 on the next page.

56

LS

BudgetConsumer

+consumes

i

Processing

+produces

Budget

ResourceBudget

+publish/lsubscribe

HWNode |1

+thas I[HWComponent

RTNode

NRTNode

MOCNode

CPU MEM DISK

LINK

+entity_size: byte

SPLICEBudget
+nr_consumers: int
+nr_producers: int

* * +nr_prod_cons: int
Cscl HMI _p _
+publish/subscribe
Datasort

CPUBudget

MemBudget

+cpuValue: int
+cpuUnit: Enum

+memunit: int
+memValue: Enum

Datastore

1

*

*

*

Datasort_Instance

Field

Enumeration

+name: String
+type: PrimitiveType
+size: byte

+size: byte

+literal: EnumerationLiteral

A

Producer Store

Consumer Store

Figure 5.4: Domain level overview of SPLICE usage

Integrating the models

Figure 5.4 shows that a budgetconsumerrepresent a CSCI (or, when decomposed, processing
and hmi entities). Budgetproducers are hardware nodes proding resources. Budgetconsumers
use datasorts (or topics). These are SPLICE entities that catinuously are broadcasted over the
network. Furthermore, datasorts are stored in a datastore.

The SPLICE agent is the piece of middleware responsible forimadcasting and receiving datasorts.
Suppose that \producer A" produces a datasort that is broadasted over the network. This leads
to the following network ow:

the producer writes the datasort to its local producer daiastore

the producer broadcasts the datasort over the network

1.

2.

3. every consumer receives this datasort, which leads to nebrk overhead

4. the SPLICE agent of the consumer checks there is an interéén the produced datasort
5.

if there is an interest in the datasort, the SPLICE agent writes the datasort in its local
consumer database

Every step leads to a induced load on the hardware node wherehe SPLICE agent is allocated.
The induced network load produced by the producer/consumegparadigm has a major performance
impact on many SPLICE based Thales systemsand also on the CMS. In order to deal with
this, behavioral models (UML activity diagrams) which are produced during the development
process (functional- and design models) can be annotated ti latency information, such as latency
budgets and SPLICE speci ¢ parameters, in order to determire the induced load of the CMS. This
determines the responsiveness of the SPLICE usage of the CMS

5.4 The SystemModel and AnnotationModel metamodels

The SystemModel metamodel and the AnnotationModel metamoe! contain those elements that
are actually implemented by means of UML pro les: they are bah represented as packages. Four
elements from gure 5.2 of the previous section are presentScenario, Quality Concern, Quality
Constraint and ModelElement. They are represented as subpakages. This is depicted in gure
5.5 below.

AnnotationModel
Scenario |_ _____________ L — - -
. 1
<<use>> | <<use>> !
1
r= - =" =" "="="="="=-"="——"="="="="=-"="=-"=-"==== 1
|<<use>>
y
v v |
)) . 1
Quality Concern Quality Constraint X SystemModel
1
1
_______ >
ModelElement

Figure 5.5: The top-level package

Three subpackages of gure 5.5 are colored grey: they are alsused within the implemented pro-
totype tool. The scenario entity is available as an UML pro | e, but is currently not used within
the implementation. This is, also due to time constraints, asubject of future research.

The AnnotationModel comprises the Scenario package, the Qality Concern package and the Qual-
ity Constraint package. These packages contain only information that relates to quality attributes

/ annotations and responsiveness. The SystemModel contagonly the ModelElement package,
that only contains information that describes the structur e of systems. A thorough description of
the top-level packages is provided in table 5.1.

58

Package name Package description

SystemModel Base package that contains all subpackages that are
necessary in order to describe the structure

of systems(CMS) used within this thesis.

SystemModel::ModelElement Contains base-elements of the system. A base-element
is anything that can be modeled in order to compose
a system.

AnnotationModel Base package that contains all subpackages that are

necessary in order to be able to reason about
responsiveness. This package contains SPLICE related
responsiveness parameters.

AnnotationModel::Quality Constraint | Contains di erent kinds of constraints that could be
imposed on a system. A constraint adds semantical
meaning: e.g. it can prevent excessive resource usage.
AnnotationModel::Scenario Describes di erent kinds of scenario's that can be set
that a ects performance. Scenarios impact all the other
elements of the QAttributeModel. They can impose
constraints or set speci ¢ calculations.
AnnotationModel::Quality Concern A quality concern is basically a quality attribute, or set
of quality attributes, that describe a performance
parameter of a performance calculation

Table 5.1: Description of the top-level package

Furthermore, it is important to realize that the Annotation Model package uses the SystemModel
package in order to describe exactly what kind of performane annotations can be attached to
SystemModel elements. This is shown in the diagrams by a clesl extension arrow; which denotes
a (meta) extension. Also note that if elements are named the ame within the same diagram they
are the same.

5.4.1 The SystemModel::ModelElement package

The SystemModel::ModelElement package contains all modelements that are needed in order to
model a complete CMS. The content of the package is depictedi gure 5.6.

The dark-grey colored stereotypes / metaclasses of gure B.represent the structural modelelements
that add extra capabilities to existing classes. The light-grey colored stereotypes / metaclasses rep-
resent behavioral modelelements, that only adds an extra seantical meaning to existing activities.

Figure 5.6 comprises both hardware and software. Thereforethe metamodel providesHWSys-
tem and SWSystem entities, both containing modelelements. This could eithe be at class level
(like architectural diagrams) or on behavioral level (like behavioral ow diagrams).

The most important relations between modelelements aranappings and modelconstraints A map-
ping maps one entity to another, represented in a separate digram. An example of a mapping
could be hardware-software allocation. A software compor& (CSCI) can be allocated to a hard-
ware node. Other mappings are also possible, such as behardbmappings that maps behavioral
diagrams onto architectural components. Mappings are veryimportant to system engineers, be-
cause they determine the design freedom of the system: supg® that a composed system does not
conforms to its expected performance output. The system erigeer cannot change the internals of
the system, but he can change for instance the allocation-tationship or he can de ne an alterna-
tive behavioral path. The metamodel framework presented inthis chapter supplies the engineers
with that design freedom. In this framework, three types of mappings can exist:

1. A re nement mapping - re nement mappings are considered implicit mappings. Ths basi-
cally is a decomposition of a modelement or modelelements. rAexample of such a re nement
mapping is depicted in the previous chapter, in gure 4.6. There, an architectural model was
re ned. using decomposition. The relation with the original model and the decomposition is
the mapping relation.

59

Integrating the models

2. A semantic mapping - Semantic mappings adds more detail towards a existing mode When
a software component is allocated to a hardware node, the symm engineer can specify how
much processing time should be used for the software compone Usually, plain UML dia-
grams are used and the processing time is expressed in pertages. We use the cardinalities
of a standard UML class diagram to express this, but the meanig of those cardinalities
change compared to the original UML model. This changed meaing is the semantic map-
ping relation.

3. A syntactic mapping - Syntactical mappings allows to \work around" existing UML con-
structs. A system engineer can add and modify behavior of CSIZ on the y e.g. dragging
arrows between classes and behavioral diagrams. Howeverssociations between a class and
an activity violates existing UML constructs. A solution co uld be to represent activities as
classes in a separate diagram, drag arrows between architecal components represented as
classes and activities, and let some tool interprets the nam-based matching between the
activity and its related class. UML compatibility remains g uaranteed. This construct is a
syntactic mapping.

Currently, the following concrete mappings are implementel:

1. a hardware-software allocation mapping- that maps software onto hardware. This is an
example of a semantic mapping

2. a relational mapping - that maps a relational model, expressed as an UML class diagm, to
datastores used within behavioral diagrams. This is an exarmle of a syntactic mapping.

3. a behavioral mapping- that maps activities that describe behavior to software. This is an
example of a syntactic mapping.

Concrete re nement mappings make use of existing associains depicted in gure 5.6. Consider

for instance the CSCI entity. This entity provides an implementation of the composite dsign patter
[GHJV95] via the generalization of SWElement which ensures that everyCSCI can be decomposed
in another CSCI. This is a concrete example of a re nement maping. Other (non-composite) re-

nement mappings are also possible via theRole-Workset-SWElementassociations.

A modelconstraint is a constraint that forces some kind of convention. An examfe could be
a name-based dependency among models or mappings. Considbee relational mapping: if a
datastore exists within a behavioral diagram and we model tle according relational entity in the
structural relational class model, the names have to match.This match is enforced using a mod-
elconstraint.

A description of all individual elements (colored dark-grey) of gure 5.6 is provided in table 5.2.

60

Element name

Element description

System

Abstract base class for indicating a model of a hardware or stware
system.

ModelElement

Abstract base class for all model elements.

StructureModelElement

Base class for all structural modelelements. These elemendescribe
structure and are all extensions of the Metaclass Class eleemt.

BehaviorModelement

Base class for all behavioral modelelements. These elemsnilescribe
behavior.

SWElement

Abstract base-class for software elements.

HWElement

Abstract base-class for hardware elements.

OrganizationElement

Abstract base-class for organizational elements.

DataElement

Basic element for data-modeling. Can occur in relational
diagrams and behavioral diagrams

CSCl Basic software entity used within Thales Netherlands B.V.

Executable Abstract base class for low-level executables. A CSCI can ogists of
multiple executables.

Processing A processing entity is an executable that runs on a NRT or RT nade.
This is non-interactive.

HMI A HMI entity is an executable that runs on a MOC node,
that is, a node with a (graphical screen).
This is interactive.

Role A role is assigned to an operator (MOC) and comprises a set of
authorized functions that an operator can perform.

Workset A set of authorized functions.

HWComponent Abstract superclass for all hardware related entities.

CPU A processing unit.

MEM A memory unit.

Disk A storage unit.

Link A physical network interface card.

HWNode Abstract superclass for hardware nodes for speci ¢ purpose

RTNode A Real-Time node. Serves mostly processing entities.

NRTNode A non real-time node. Serves mostly CSCI's components that & not
mission-critical.

MOC A node with an operator console. Serves mostly HMI entities.

Requires interaction from the operator.

Table 5.2: Description of the SystemModel::ModelElement pckage

61

[AS)

Class. I‘——‘i System

=Stereoypess
HWSystem

=eSTeTeopes
Sswsystem Sy

“TSrereoEesS
Class. |4——‘|snuuureMune|E|emem | BehaviorModelElement

A

DataElement —WeTaeTaTeSS
“refbrences
Datastore

7]
Eicels DataElement

CSCIFlow I .

1

TRe
SWElement

+ownedComponents

A
=eSTereope

csci

+contains

WeTasTasesS
CallBehavior

Organiza

Totypess
tionElement

BT
ponent

|cscmehawov

—StereenRess
Executable

“connected_to

Workset

=SwreeyEess
Processing _— J
— Contr
z RTNode NRTNode mMoc |
i | e
|cunnnmaw | |Ghlech\nw | opaqueA:tmnl

Figure 5.6: The SystemModel::ModelElement package

s|apow ay) Buneibalu|

5.4.2 The AnnotationModel::QualityConcern package

A Quality Concern is a quality attribute or a set of quality at tributes, which represent one or
more performance parameters. Quality Attributes can be furctional classi ed in groups, and those
groups are represented by budgets. Examples are resourcednets or speci ¢ SPLICE middleware
budgets. Every budget contains a set of quality attributes that can be attached to an element
of the SystemModel::ModelElement package. Therefore, bugkts can be imposed on structural
elements and behavioral elements. An overview of the AnnotdonModel::QualityConcern package

is depicted in gure 5.7.

The most important elements are listed below in table 5.3.

Element name

Element description

Attribute The abstract base class for a quality attribute.

QAttributeSet A composite set of quality attributes. Specialized sets arale ned for
CSCls, hardware, datastores and SPLICE.

QAttribute A single quality attribute. Specializes attributes

are de ned for CPU, Storage, Memory and Link.

SpliceAttributeSet

Splice related quality attributes at ow level. Its members are the
number of Iters, the number of instances per datastore and he
number of comparisons performed in a query.

DatastoreAttributeSet

Datastore characteristics. Its members are data entity siz and
the number of instances stored.

SpliceBudgetSet

Splice budgets at CSCI level. Its members are the number of
consumers, the number of producers and the combination
between them.

ResourceBudgetSet

The set of available CPU and MEM resources. Its members are
available budgets.

FunctionalityBudget

Stereotype that de nes available budget for Processing and
Executables. Its members are budget consumption and CSCI dige
related quality attributes.

CSCIBudget Stereotype that de nes available budget for CSCl's. Its menbers are
the number of processing entities, the number of HMI entities,
the corresponding budgets and Splice related quality attrbutes.

HWBudget Stereotype that de nes available hardware resources. Its rambers are
resource budgets.

CPUBudgetAttribute CPU unit and value.

StorBudgetAttribute Storage unit and value.

MemBudgetAttribute Memory unit and value.

Table 5.3: Description of the AnnotationModel::Quality Co ncern package

63

¥9

ToMetaclassss
CSClBehaviorElement

Typess
SPLICEBudgetSet

+ownedAttributes

Attribute

[
SpliceAttributeS

et DatastoreAttributeSet

SPLICEBudgetSet

+nr_filters: SpliceAttribute

leccreates>>

+nr_instances: SpliceAttribute
+nr_comparisions: SpliceAttribute

“data_entily_size: SpliceAttribute
+nr_instances_entity: SpliceAttribute

[+nr_producers: int
[+nr_consumers: int

+nr_cons_prod: int

A

<<Stereolypes>

<Metaclassss

DataElement DatastoreBudgetset

T=Wetaclasss>

Processing

<<creates>> I

<<Wetaclasss>
cscl

S<Metaclassss
HMI

1

<<Stereotypes>

FunctionalityBudget

+budget_co
+splice_par.

nsumption: ResourceBudgetSet
ams: SpliceBudgetSet

ResourceBudgetSet

+cpuBudget: CPUBuUdgetAltribute
[+memBudget: MemBudgetAttribute

A

<<creates>>!

P
csciBudget

<<dreates>>

QAttribute

CPUBudgetAttribute

StorBudgetAttribute

MemBudgetAttribute

+cpuvalue: int
+cpuUnit: CPUBudgetUnit

+storvalue: int
+storUnit: StorBudgetunit

~memvalue: int
+memUnit: MemBudgetUnit

<<Stereotypes>
HWElement

+nr_processing: int
[+nr_HMI: int

[+pa_budget_consumption: ResourceBudgetSet
+wp_budget_consumption: ResourceBudgetSet
+splice_params: SpliceBudgetSet

P

HWBudget

d Resour

Figure 5.7: The AnnotationModel::Quality Concern package

<Enumerations>

StorBudgetUnit

+Kbyte
+Mbyte
+Gbyte

MemBudgetUnit

+Kbyte
+Mbyte
+Gbyte

CPUBudgetUnit

“MIPS
+SPECInt

s|apow ay) Buneibalu|

5.4.3 The AnnotationModel::Quality Constraint package

The AnnotationModel::QualityConstraint package contain s constraints that can be set at elements
of the SystemModel::ModelElements package that contain bdget information. A constraint can
limit the resource usage that may be available for processimpor can set a maximum bound on the
end-to-end latency (responsiveness). An overview of the PBarmanceModel::Constraint package is
depicted in gure 5.8 on the next page, that shows structuralconstraints and behavioral constraints.
Structural constraints limits the resource usage and behaioral constraints limits the responsiveness
budgets. A description of all elements is provided in table 4.

Element name Element description
Constraint Abstract base class for any type of constraint
ResourceConstraint Constraints speci ¢ to hardware elements.

This limits available resources available for processing.
BehaviorConstraint Constraints speci ¢ to behavioral elements
LatencyConstraint Limits the amount of milliseconds available for a

read or write process
LoadConstraint Limits the processing frequency of a read or write processes
HWConstraint (Stereotype) Stereotype for de ning a resource constraint
LoadConstraint(Stereotype) Stereotype for de ning a load constraint
LatencyConstraint (Stereotype) | Stereotype for de ning a latency constraint
FrequencyUnit Enumeration for expressing a frequency unit
LatencyUnit Enumeration for expressing a latency

Table 5.4: Description of the AnnotationModel::Quality Co nstraint package

65

99

<<Metaclass>>
HWNode

Constraint

aintSet

| ResourceConstraintSet

[Fsonstraint: Resou

TceConstraint

QConstraint

<<Enumeration>> <<Enumeration>>

FrequencyUnit LatencyUnit
+Mhz +mu(microseconds)
+Khz +ms(miliseconds)
+Hz +s(seconds)

HWConstraint

I LoadConstraintSet I

ResourceConstraint

[Feomstraint: toaaconstram: |

<<creates>>

LatencyConstraintSet

<<creales>>
1

+max_cpu_usage: int
+max_mem_usage: int
+max_disk_usage: int
+max_network_usage: int

<<creates>>

<<Metaclass>>

CsClBehaviorElementSet

<<Stereotype>>
HWConstraint

L
<<Stereotype>>
LatencyConstraint

+ownedConstraint: ResourceConstraintSet

+ownedConstraintSet: LatencyConstraint

BehaviorConstraint

LatencyConstraint

LoadConstraint

+endToEndLatency: Integer
+latencyUnit: LatencyUnit

<<Metaclass>>
DataBehavior

<<Stereotype>>
LoadConstraint

+ownedConstraint: LoadConstraintSet

Figure 5.8: The AnnotationModel::Quality Constraint pack age

+nr_tracks

+update_frequency: Integer
+frequencyUnit: FrequencyUnit

Integer

s|apow ay) Buneibalu|

5.4.4 The AnnotationModel::Scenario package

Scenarios are implicitly de ned by system engineers. A sceario contains a set of quality attributes
and constraints. If a naval vessel is patrolling at open searesource and latency usage is less
constrained than if it was ghting in a combat situation. Sce narios can be explicitly de ned within
the proposed meta-model framework, as gure 5.9 depicts.

QAttributeSet < - | = =>{QConstraintSet
1

1

1

I

|<<creates>> |<<creates>>
1

I 1

I 1

I

- .

<<Stereotype>> <<MetaClass>>

Scenario 4’ System

1

<<Stereotype>> <<Stereotype>>
CombatScenario PatrollingScenario

Figure 5.9: The PerformanceModel::Scenario package

Figure 5.9 shows the de nition of a scenario; A scenario can & attached to a system (SWSystem
of HWSystem) and comprises a set of quality attributes and castraints. These sets represents
speci ¢ performance behavior, as this can vary per scenario All individual elements are listed
below in table 5.5.

Element name Element description

Scenario Abstract stereotype for scenario

QAttributeSet The set of quality attributes to attach

QConstraintSet The set of constraints to attach

System Metaclass that scenario extends. A scenario can be attachei every

specialization of System
Combat Scenario | Example scenario
Patrolling Scenario | Example scenario

Table 5.5: Description of the AnnotationModel::Scenario package

5.5 conclusion

In this chapter a meta-model framework was developed in ordeto describe the structure of sys-
tems and responsiveness related quality attributes. This éd to the development of two separate
meta-models: a System Metamodel and a Quality Attribute Metamodel.

The System Metamodel introduced building blocks that can beused by system engineers in order
to compose systems. It introduced the notion ofmappings which are very important, because
mappings describe the allocation structure and can relate radel artefacts of di erent design ab-
straction levels, with the goal of composing a responsive sgem structure.

The Quality Attribute Metamodel introduced the notion of re source budgets and SPLICE perfor-
mance parameters. Resources are provided by hardware eris and consumed by software entities.
Providing su cient resources for consumption is a rst step in the responsiveness evaluation pro-
cedure: if resource demand exceeds available resourcegliced latencies will occur. However, if
resource demand does not exceed available resources, it istrguaranteed that induced latencies
will not occur at all. Therefore, responsiveness budgets & introduced and SPLICE performance
parameters are incorporated for calculating the exact readand write latencies at functional ow
level.

67

68

Chapter 6

Evaluation of responsiveness

Assessing the responsiveness of a system concretely meangaiting the evaluation procedure:
after models have been built, mappings are de ned and respaiveness parameters are attached,
responsiveness can be evaluated.

The evaluation procedure is twofold: it comprises an analyical evaluation step and a simula-
tion evaluation step. Analytical evaluation encompasses le evaluation of resource budgets (using
structural models) and responsiveness budgets (using ow mdels). This results in a basic yes / no
verdict. Furthermore, the calculated nal numbers are used as input for the transformation step
that transform UML system analysis models into simulation models. The executable simulation
model is simulated using a discrete-even JAVA simulator andthe output is compared to the an-
alytical evaluation results. If the output conforms to the expected input (step 1), the evaluation
procedure is considered successful.

6.1 Responsiveness models

The previous chapters already described responsiveness dels and metamodels: it provided an
overview of the required parameters and relevant modeleleents. This chapter will describe ex-
actly how responsiveness measures are calculated and whatformation can be obtained from the
measurements. The individual sections of this chapter aretie \implementable actions" from gure
4.2 of section 4.2. These are the following:

Calculation transformation - calculations on system analysis models are performed by dns-
formations on the same model. These calculations encompass the calculation and veri -
cation of resource- and responsiveness budgets. Feedbagle(pass/don't pass) is provided
directly to the system engineer in the same model.

Simulation transformation - for obtaining an executable model, the system analysis maal is
transformed into simulation models. This is also performedby means of transformations.

Simulation - executing the executable model and obtaining simulation esults is the actual
simulation. This is performed by an discrete-event JAVA simulator.

The three elements mentioned above form the base of the \asse performance"” process of 4.2 and
are implemented by means of \implementable actions", for carity reasons depicted in gure 6.1,
on the next page.

69

Evaluation of responsiveness

Figure 6.1: Relevant elements discussed this chapter

The\implementable actions"of gure 6.1 uses the UML systemanalysis model. This model contains
structural modelelements, as well as behavioral modeleleemts. An example of a behavioral model
that will be further used during this chapter is depicted in gure 6.2.

Figure 6.2: Behavioral example model
Figure 6.2 shows an UML Activity diagram that \presents operator data on screen". This is an
example of a (simple) functional ow. It contains a producer, a consumer and multiple loadcon-

straints. The next sections will discuss how structural mocaels and behavioral models can be used
for evaluating responsiveness.

6.2 Calculation transformation

Resource budget evaluation and responsiveness budget ewvation together basically form the \an-
alytical evaluation step" in the software performance proess. This evaluation is twofold:

1. First, an UML system analysis model is obtained by annotaing system models with perfor-
mance annotations. As a result, resource usage and end-toé latency can be calculated, by

70

using formulas and calculations from aperformance manual [Tha07] developed within Thales
Netherlands B.V. This performance manual contains informdion about SPLICE resource us-
age and SPLICE latency. This step is mainly represented by tle \simulation transformation™.

2. Second, a simulation model is generated. This is the \simlation transformation" step.
Furthermore, the simulation model can be executed by means fosimulation. This is the
\simulation" step. However, the simulation model generation requires that the \calculation
transformation” is executed, because its values are used average values for distributions.

6.2.1 Evaluating resource budgets

The rst substep in the \calculation transformation"is the evaluation of resource budgets: verify if
the expected resource demand does not exceed available resges. System engineers can currently
specify two type of resource budgets:

1. CPU budgets- expected SPLICE cpu usage
2. MEM budgets - expected SPLICE memory usage

All resource budgets are based on SPLICE usage. CPU budgetstimate the time that the system
spent on SPLICE related processing and MEM budgets estimateahe total SPLICE storage, that
is mainly determined by the number of consumer and producer dtabases.

Consider gure 4.6 (re ned example architecture) of chapter 4. In this example, the CSCI\Sit-
uational Awareness" was decomposed in two other CSCI's: \Tack Management" and \General
Operator Interaction Environment”. All three CSCI's conta in in this example responsiveness at-
tributes, attached according to the structure of the \QAttr ibuteModel" meta-model of chapter 5.
For this example, the attached quality attributes of the \Si tuational Awareness" CSCI and their
values are listed in table 6.1.

CSCI name Quality attributes
Situational awareness| nr_pa =10
nr_wp =12

pa_budgetconsumption:cpuBudget:cpuV alue= 20
pa_budgetconsumption:cpuBudget:.cpuUnit= MIPS
pa_budgetconsumption:memBudget:memV alue = 40
pa_budgetconsumption:memBudget:memUnit = Mbyte
wp_budget consumption:cpuBudget:cpuV alue= 10
wp_budget consumption:cpuBudget:cpuUnit= MIP S
wp_budgetconsumption:memBudget:memV alue = 30
wp_budgetconsumption:memBudget:memUnit = Mbyte
splice_params:nr _producers = 10

splice_params:nr _consumers = 12

splice_params:nr _prod_cons=5

Table 6.1: Description of the QAttributeModel::Constrain t package

For calculating the total CPU and MEM usage of a CSCI, equations 6.1 to 6.9 are used.

Descriptive part =(4:0+2:0) (nr_producers+ nr_consumers+ nr_prod_cons) (6.1)
Consumer part = (6:0+2:0) (nr_consumers+ nr_prod_cons) (6.2)
Producer part = (6:0+2:0) (nr_producers+ nr_prod_cons) (6.3)

71

Evaluation of responsiveness

Memory usage = (Descriptive part + Consumer part + Producer part) (6.4)

Equation 6.1 to 6.4 are used for calculating the SPLICE datalase memory storage contribution
for a specic CSCI. The formulas and constant values used whin these equations, are extracted
from [Tha07].

Average overheadM bytes) = (Memory usage=1024) 0:7 (6.5)

Equation 6.5 results in an average overhead factor per megate of memory budget. If a memory
budget of 1 Mbyte is demanded, extra memory needs to be alloted to handle the overhead,
calculated in equation 6.5.

MEM usage (proc) = (nr_proc averageoverhead + proc_memory_budget (6.6)
MEM usage (hmi) = (nr_hmi averageoverhead + hmi_memory_budget (6.7)
CP U usagdproc) = proc_cpu_budget (6.8)
CP U usagéhmi) = proc_cpu_budget (6.9)

For calculating the total CPU and MEM contribution, the abov e formulas are used. Note that
cpu budget is only a question of demand and supply, whereas faletermining the memory budget,
extra SPLICE related calculations are performed.

This example, followed by equations 6.1 to 6.9 leads to the towing calculation:

Descriptive part =(4:0+2:0) (10+12+5) =162:0
Consumer part =(6:0+2:0) (12+5) =136:0

Producer part =(6:0+2:0) (10+5) =120:0

Memory usage = (162:0 + 136:0 + 120:0) =418:0

Average overheadMbytes) = (418:0=1024) 0:7 0:29
MEM usage (proc) = (10 0:29) + 40 =42:90

MEM usage (hmi) = (12 0:29) + 30 =33:48

CPU usagédproc) = 20 =20

CPU usagdhmi) =10 =10

After calculating the budget contribution of a CSCI, the contribution of its children are calculated.
According to the \SystemModel::ModelElement" package of ®ction 5.4.1, a CSCI can contain other
CSClI's or Processing and HMI entities. The contribution of these entities are calculated according
to the same formulas, with the exception that for a HMI entiti e, only HMI formulas are executed
(a HMI entity can't contain CSCls or Processing entities).

After the calculations have nished, the results have to be &aluated. Concretely, this means that
CPU and MEM budgets of children are summed and compared to th& parent. This is performed
recursively by performing a DFS(depth rst search) on every software element. The pseudo-code
for this algorithm is presented in the next listing:

72

void dfsBudgetCalculation (SWElement elem) f
calculateBudget (elem);
for each elem.child f
dfsBudgetCalculation (elem. child);
g
if (hasParent(elem)) f
if (getParent(elem).getBudget < getParent(elem).getChildren.budgets)
exit;
g
g

The evaluation algorithm above can result in two possible otcomes:

1. Budgets of parents are satis able for their children - This means that the CPU and MEM
budget of each parent is greater or equal than the summed budgs of their children.

2. Budgets of parents are not satis able for their children- This means that the CPU and MEM
budget of each parent is less than the summed budgets of thethildren.

6.2.2 Evaluating allocations

After budgets have been calculated and child budgets are véed against their parent, allocations

have to be evaluated. Typically, system engineers specifyllacation relations by using mappings
of the meta-model. An example of an allocation diagram was pesented in section 4.2.1 in gure
4.7. Allocation relations express the percentage of the deamded budget that has to be allocated
on some hardware node.

Equations 6.10 to 6.14 calculate the allocation contributbn of software element components.

Replication contribution = sw_allocation=100 (6.10)
Replication hmi _mem = replication _contribution MEM usage (hmi) (6.11)
Replication hmi _cpu = replication _contribution CP U usag&ghmi) (6.12)
Replication proc_mem = replication _contribution MEM usage (proc) (6.13)
Replication proc_cpu = replication _contribution CP U usagé€proc) (6.14)

The example allocation diagram of section 4.2.1 showed thahe \Situational awareness"component
was allocated for 20% on\MZK2"and the remaining 80% on\NRT1". This results in the following
example calculation for \NRT1"

Replication contribution =80=100 =08
Replication hmi _mem =0:8 33:48 26.78
Replication hmi _cpu=0:8 20:0 =16:0
Replication proc_mem =0:8 4290 =34:24
Replication proc_cpu=0:8 100 =8:0

73

Evaluation of responsiveness

However, the above example calculation is a simplied one. Atually, the top level budget of a
software element is determined by the summed budgets of theichildren. Figure 4.6 showed that
\'Situational Awareness" was decomposed in other CSCI's, Rocessing and HMI entities. Thedfs-
CalculateBudget algorithm already checked if child budgets didn't exceed paent budgets. If they
did, the algorithm terminates. If not, allocations are evaluated and parent budgets were set. In
essence this means thathe top-level budget is always an upper-bound for its chilen.

After allocation contributions are calculated, the demanded budgets are subtracted from the allo-
cated hardware resource budgets. This nal evaluation algathm is showed below.

void dfsAllocationCalculation (SWElement elem) f
for each (elem.child) f
dfsAllocationCalculation (elem. child);

if (elem.isAllocated) f
calculateAllocationContribution(elem.budget);
demandAllocationContribution (elem.hwNode, elem.allocationContribution);
if (exceedHwBudget(elem.hwNode) f
markHwNode (elem . hwNode);

g
g
g

boolean exceedHwBudget(HWelement elem) f
if ((elem.cpuBudget< 0) jj (elem.memBudget< 0))
return true ;
else
return false ;

6.2.3 Evaluating responsiveness budgets

After structural models are composed, annotated and evaluged, behavioral models are composed.
These models describe the behavior of software componentand can be annotated with respon-
siveness quality attributes. These models result in an esthation of the total end-to-end latencyof
a composed ow-chain.

For this example, gure 6.2 of section 6.1 is used. Here, a siple ow model is presented: a system
track is read from the corresponding datastore and a controltrack is produced. The parent of
this process is a callbehavior action, that contains the regonsiveness budget. In this case, this
is 300ms (milliseconds). The read process has a \SpliceAtiouteSet" attached and, according to
the meta-model, contains the total number of comparisons tlat this process has to perform. This
information can be used in equation 6.15 to 6.21, which are fonulas that can calculate the SPLICE
overhead.

splice_agency checking=(2+1 :5 data_entity _size) sec=call (6.15)

SPLICE agency checking is the process of the SPLICE daemon #t continuously checks for data-
sorts on the network. This process is executed at every hardare node.

splice_agencywrite =5+ (4 nr_consumers) + (8 data_entity _size) sec=call (6.16)

SPLICE agency write is the contribution for writing a datasort in the local SPLICE database. Is
calculated only if a node contain interested consumers for &peci ¢ topic (consumer side).

splice_basicread access= 4+ (7 +6 data_entity _size) sec=call (6.17)

74

splice_basicread query = (0:3 nr_comparisions) sec=call (6.18)

Equations 6.17 to 6.18 describe the contribution for a SPLICE read process.

splice_basicwrite = 16 + (7 +4 nr_consumers) + (10 data_entity _size) sec=call (6.19)

SPLICE basicwrite is the local contribution for writing a da tasort to the local SPLICE database
(producer side).

splice_network_src =16 + (18 data_entity _size) sec=call (6.20)

SPLICE network overhead at source processor means the oveszhd that is caused by sending a
datasort over the network (at src node).

splice_network _dst = 14 + (35 data_entity _size) sec=call (6.21)

SPLICE network overhead at destination processor means theverhead that is caused by receiving
a datasort over the network (at trg node).

Before being able to calculate the end-to-end latency of thegure depicted in gure 6.2, some addi-
tional information is needed. The example ow-chain is allocated on\MZK1"from the deployment
diagram depicted in 4.4. This can be resolved using theole-workset- ow mapping speci cation.
All calculations are calculated for each individual proces and the result is subtracted from the
total latency budget that is speci ed in ow diagrams, using the LatencyConstraint constraint that
can be annotated onCallBehavior actions. These latency budgets are also allocated to hardwa
nodes via the same mapping. Datastore properties used withi ow diagrams reside at a separate
diagram: the relational model. In this example, the data enity size of \System track" is set at
2 kbyte and the number of instances stored is set at 120. 10 cgparisons are executed per read
and tracks are read with a frequency of 60Hz. The read/write fequency can be speci ed via the
LoadConstraint constraint and the datastore properties using theDataStoreBudget stereotype.
The data entity size of \Operator track"is set on 10 kbyte and the number of stored instances at
10. The write process (producer) writes tracks with a frequacy of 60Hz (60 writes a second) that
causes the SPLICE daemon to automatically publish these traks (datasorts) on the network. This
track has also 2 remote consumers, which means that there arether behavioral ow diagrams,
allocated on di erent hardware nodes, that reads instancedrom this track.

Using the above information in conjunction with gure 6.2 leads to the following example calcula-

75

Evaluation of responsiveness

tion:

Consumer calculations:
splice_basicread access=(4+(7+6 2)) 60 =1380sec
splice_basicread query = (0:3 10) 60 =180sec
Producer calculations:
splice_agency checking=(2+1:5 10) 60 =1020sec
splice_agencywrite =(5+(4 2)+(8 10)) 60 =5580sec
splice_basicwrite = (16 +(7+4 2)+ (10 10)) 60 =6960sec
splice_network_src = (16 + (18 10)) 60 =11760sec
splice_network_dst = (14 + (35 10)) 60 = 21840sec
Src node contribution:
(1380 + 180 + 6960 + 117601000 = 20:28msec
Trg node contribution:
(1020 + 5580 + 21840)1000 = 2844mseqfor trg nodes with consumer)
(1020 + 218401000 = 2286mseqfor trg nodes without consumer)

The above calculation calculates two possible outcomes; Téntotal latency that occurs at the src

node (MZK1) is in this example 20.88msec (milliseconds). Tk contribution for all target nodes

can vary, and this depends on the fact that there could be consmers present at a target node,
but this is not a prerequisite. So the nal contribution for e very node other than the source node
can be 20.88 msec or 22.86, depending on the existence of aomers at the target node. A large
system with many producers and consumers can lead to a explms of induced splice- and network
load, as this calculation is performed for every behaviorabiagram.

After all calculations have been executed, the total amountof latency is added up and compared
to the available latency budget. The result of this evaluation is a true or false answer. The nal

algorithm is presented below.

void evaluateFlowBudgets(Model model) f
for each BehavorialFlowDiagram in model f
Element initial = BehavioralFlowDiagram. getlnitialNode ();
recProcessNodes(initial);
g
evaluateFlowBudgets(getHwNodes(model));

g

void recProcessNodes(Element elem)f
if (elem.hasOutgoingEdge) f

if (elem.outgoingEdge.target = datastore) f
calculateProducerContribution(elem, elem.outgoingEdg.target);
g
g
else if (elem.haslncomingEdge) f
if (elem.incomingEdge.source = datastore) f
calculateConsumerContribution(elem, elem.incomingEde.source);
g
g
while (elem.outgoingEdge.target != null)
if (notVisited(elem)) f
visit (elem);
Element nextNode = getNextNode (Elem);
recProcessNodes(nextNode);
g
g
g

76

void calculateProducerContribution(Element elem, Datastore datastore) f
collectQualityAttributes(elem, datastore);
calculateProducerContribution(elem, datastore);
subtractContribution(elem.getProducerSrcContribution, elem.getAllocatedHwNode
for each node in systemf

if (node contains consumer)f
subtractContribution(elem.getProducerTrgConsumerContribution, node);

g

else f
subtractContribution(elem.getProducerTrgNonConsumerContribution , node);

g

g
g

void calculateConsumerContribution(Element elem, Datastore datastore) f
collectQualityAttributes(elem, datastore);
calculateConsumerContribution(elem, datastore);
subtractContribution(elem.getConsumerContribution, elem.getAllocatedHwNode);

g

6.3 Simulation transformation

After the system is composed and the resource- and latency ligets are evaluated, a system analysis
model can be generated out of the system models. The system alysis model is used as input for
the discrete-event simulator, that can show peak latencieamong convoluted distributions.

In order to simulate the induced load, Thales Netherlands BV. started a project with the goal of
measuring and analyzing SPLICE based system. After variousneasurements were taken from real
systems, formulas were de ned that described the exact reldon between induced network load
and SPLICE usage [ThaO7]. These formula's can measure respsiveness in absolute numbers.
The previous section described these formulas. A drawbaclsj however, that these formulas only
accept absolute numbers as input. Especially when estimatig the number of incoming targets it
is hard to establish an exact number, as this can vary over tine and is never constant. Therefore,
distributions are included instead of constant parametersand the constants of previous calculations
are used as an average for a distribution. When this model isiswlated, it results in a histogram
with tabulated frequencies of peak-latencies.

6.3.1 Transformation rules

In order to generate system analysis models out of system mets, a number of transformation
rules are de ned that describe exactly what source model elaent should be transformed into a
target model element.

The discrete event simulator accepts two type of diagrams a#put (the minimum):

1. A deployment diagram - a standard UML 2.0 deployment diagram

2. A behavioral diagram - an UML 2.0 activity diagram annotated according the UML SPT
pro le

Deployment diagram transformation
The rst transformation comprises the generation of a valid UML 2.0 deployment diagram out of

the system models. This is relatively a straightforward tak, as standard class diagrams are used
to express available hardware resources. The transformain is depicted in gure 6.3.

77

Evaluation of responsiveness

Figure 6.3: Deployment diagram transformation

The \SRC Model" box shows an example hardware con guration that could be composed. The
\TRG Model" box shows the result of the transformation:

1. Collect all classes that contain annotations that are a spcialization of HWNode (e.g. MOC-
Node and RTNode)

2. Create two \nodes" in the target model and name them \computer" and \network". A node
is a deployment diagram entity

3. For all collected classes at step 1: create \node instanséthat are an instance of \computer"”
and copy the names

4. Create a\node instance" of the \network" node

5. Connect all node instances of \Computer" to \Network".

After the transformation is successful, a valid deploymentdiagram is generated.

consumer transformation

The second (and third) transformation is the generation of \alid activity diagrams annotated
according to the UML SPT prole. The behavioral diagrams that describe CSCI or executable
behavior are used as input. This transformation is depictedin gure 6.4.

The rst\swimlane" depicted in gure 6.4 is the example sour ce model and the second swimlane,
\TRG Model" represents the model after the transformation. The following steps are executed in
order to transform from the source model to the destination nodel:

1. Collect all consumers. A consumer is an \OpaqueAction", vith an incoming arrow from a
datastore. This implies a read process.

2. For each consumer, delete the arrow and datastore. Annota the \OpaqueAction” with the
\PAStep" stereotype. A PAStep represents an active servicerequest form an active resource
(such as the CPU). In essence this represents the duration dhe read request.

3. If there is an initial node speci ed, annotate that load with an \PAOpenLoad" stereotype.

An PAOpenLoad represents a workload: e.g. a workload of 200exmeans that this workload
is scheduled ve times per second.

The consumer transformation is executed for each consumenoiind within an activity diagram, so
the number of transformations performed can vary.

78

Figure 6.4: Consumer transformation

producer transformation

The producer transformation is the most complex transformaion. This is due to the fact that
induced loads have to be simulated. A producer that broadcats tracks causes an induced loads
on all other nodes and the induced load may vary upon the factfi a node contains interested
consumers. This concept is depicted in gure 6.5.

Figure 6.5 encompasses the following transformation steps

1. Collect all producers. A producer is an \OpagueAction" with an outgoing arrow towards a
datastore

2. For every producer, create a\PAStep" for the local SPLICE write contribution and network
load at src node (TRG Model)

3. For every other node (TRG Model’) create \PASteps" for network overhead and SPLICE
agency checking

4. If, at TRG Model’, the SRC Model datastore is read, add a loal SPLICE consumer write
\PAStep".

5. If there is an initial node speci ed, annotate that load with an \PAOpenLoad" stereotype.

Figure 6.5 is not a trivial one. For determining the TRG Model node, system model mappings
are used (behavioral diagrams are mapped to worksets, workss to roles and roles to a hardware
node). TRG Model' is also a dynamic generated swimlane, as idepends on how many nodes
the composed system contain. At every node, datastores nesdo be checked in order to obtain
interested consumers: in this case the datastore \Track". f so, then an interested consumer node
receives an extra SPLICE consumer write contribution. The whole chain represents the SPLICE
load for one producer only. For multiple producers, the modébecomes easily very complex.

79

Evaluation of responsiveness

Figure 6.5: Producer transformation

6.4 Simulation

After the analytical model is constructed and calculated, sSmulation models are generated. These
simulation models are transformed using the transformatia rules presented in section 6.3 and use
the UML SPT Pro le [Gro05]. The main purpose of this simulati on is:

1. Veri cation of analytical models - to check if the calculated results are \trustworthy" resul ts

2. Estimation of factors that cannot be shown in an analytical nodel - peak loads can be the
result of correlated distributions. These factors cannot & shown in analytical models.

When simulation models are generated, analytical results ge used as input, and only for behavioral
ow diagrams. Those are the only diagrams that can be simulaéd. When a producer or consumer
is found in a behavioral ow diagram and the contributions are calculated, these numbers are used
as input for the generation of the simulation models. These rodels contain processes annotated
with PAStep from the SPT model, which represents an active service requt. On that service
request, a distribution (or constant values) can be attachel. After that, the simulation is started.

6.4.1 Simulating system analysis models

Distributions are incorporated instead of constants numbes for each individual PAStep. Currently,
the following distributions are supported within the evaluation procedure:

normal distribution
exponential distribution

uniform distribution

P 0 poBE

constant (not a distribution, rather a constant number)

80

The normal distribution, the exponential distribution and the uniform distribution are depicted in
gure 6.6 below.

Figure 6.6: Implemented distributions

To show the impact of using di erent distributions within a s imulation, the previous analytical
example will be used as input for a number of simulation runs. For the rst run, only constant
values are used. This leads to the result depicted in 6.7 bela

Figure 6.7: Example simulation run with only constant values

Figure 6.7 shows the total end-to-end latency of thesystem for the example. It (closely) corre-
sponds to the calculations made on the analytical model: 2@8ms + 22.86ms = 43,14ms = 0,04314
seconds. The small di erence between the example calculaih and the result showed in gure 6.7
is due to rounding di erences in the JAVA simulator, due to mi xing of the integer, oat and double
datatypes.

The X-axis shows the absolute latency and the Y-axis shows th probability that this latency can
occur. For only constant values the probability is (obvioudy) 1, or 100%.

Distributions can be set for each formula individually. Suppose that a normal distribution with
a sigma() of 1 is set for the splice_.network_src formula, with a mean of 11.76ms. Running the
simulation again leads to a di erent outcome, depicted in gure 6.8.

Figure 6.8 shows clearly a normal distribution. The averageload remains at 0,0434 seconds,
because this is the latency with the highest probability (00300). Furthermore, the X axis depicts
3 sigmas left from the mean, and on the right side two sigmas &m the mean. The total latency
is not a constant (probability of 1) anymore. The latencies $.own in 6.8 is the latency that can
occur some moment in time with a certain probability.

Interesting information can be extracted from gure 6.8. The mean lies approximately between
0,04300 and 0,0435. This means that all latencies between@.200s and 0,04400s will occur within
67% of all cases, because 1 sigma on the left and one sigma ore thight spans 67%. A peak-load
of greater than 0,4500 will occur in less than 5% of the time, & 0,4500 lies within more than 2
sigmas from the mean (and two sigmas span 95%).

81

Evaluation of responsiveness

Figure 6.8: Example simulation run with a normal distributi on

Distributions can also mix. When using more than one distribution, latency occurrences can occur
in more than one distribution, resulting in higher probabilities. An example of this is depicted
in gure 6.9, where an exponential distribution is set on the splice_ network dst formula, with an
average of 21,84.

Figure 6.9: Example simulation run with a normal distributi on and an exponential distribution

Figure 6.9 shows that the average latency still lies at apprgimately 0,35 seconds, but now with
a probability of 0,0400. This is due to the fact that the normal distribution of gure 6.8 has now
mixed with the exponential distribution. Another interest ing observation of gure 6.9 is that the
peak-latency that can occur is nhow more than 0,18 second: a @it increase. However, this will
occur with a relatively small probability.

6.5 conclusion

The evaluation procedure presented in this chapter is twoftd: it combines calculated results from
UML system analysis models with simulation models by means fomodeltransformations. Cal-
culated latencies from behavioral ow diagrams are (automdically) incorporated in simulation
models for characterizing the averages and sigmas of variguistributions. These distributions are
usually set by performance engineers. By running the genetad, executable simulation model more
details about the dynamics of the system can be obtained. Thee results are used in order to verify
if the simulation outcome conforms to the expected calculagd result: if it does, the simulation
(and evaluation procedure) is considered successfull. Ogrwise, system engineers need to change
performance parameters or mappings and go back to the drawinpboard.

82

Part Il

Implementation

83

Chapter 7

DESIDE

The proposed approach within this thesis for developing anntegrated performance engineering
method, is supported by a prototype tool, DESIDE. DEcision Qupport In a DEsign environment
(DESIDE) is implemented in IBM R Rational Software Architect, and provides the system engireer
modeling support and pre-con gured transformations. The implementation follows the \one click
on a button" principle, which means that feedback about the responsiveness of a system can be
obtained directly by the provided automated tools. All acti ons are automated as much as possible.

7.1 Rational Software Architect

DESIDE is implemented in the IBM Rational Software product family [Ilbm07]. This product
family encompasses Rational Software Architeck , Rational Systems Developer and Rational
Software Modelerr . All products are based on Eclipse [Ecl07] and integrates UM Modeling and
Modeltransformations with a JAVA-based development envionment (IDE).

Currently, system engineers use the Rational product famy in order to compose system models,
using the provided UML modeling tools. For a developer, it iseasy to add or extend the functional-
ity of the Rational product family using the general Eclipse plugin structure: this plugin structure
provides developers a MVC (model-view controller) design pttern [GHJV95], which separates the
model from views. The existence of the Rational product famly within Thales Netherlands B.V.
and the possibility of adding extra functionality (easily) resulted in choosing IBM Rational Soft-
ware Architect as the implementation technology of choice.

An import issue during the implementation in Rational Softw are Architect was the separation of
concerns(SoC) . SoC means that a computer program is broken into distinct fatures that overlap
functionality as little as possible. As a result, those fundionalities can be assigned to roles. In
this case, a role is someone that uses DESIDE and has a speciiaterest when using it. DESIDE
currently supports the following roles:

1. The system engineer- composes the system and veri es performance results

2. The performance engineer- monitors running systems and analyzes operational data irorder
to build an accurate performance model for DESIDE

The separation of roles led to the development of two tools, bth developed as IBM Rational
plugins:

1. a PerformanceAnnotationTool plugin - that helps system engineers with composing and spec-
ifying systems

2. a PerformanceTransformation plugin - that evaluates system models and generates simulation
models.

Both plugins are described in the next subsequent sections.

85

DESIDE

7.1.1 PerformanceAnnotationTool plugin

The PerformanceAnnotationTool plugin adds an performanceview to the current Eclipse work-
bench of the system engineer. It provides easy access to stetype attributes and provides editing
possibilities without opening any extra windows (the standard RSA behavior). Figure 7.1 shows
this view.

Figure 7.1: PerformanceAnnotationTool plugin screenshot

At the bottom of gure 7.1, the \Performance view" is shown. W hen the user clicks on an UML
element that has an stereotype attached to it, the performarte view immediately shows all com-
posite properties. These properties can be edited directlylt is also possible to extend this plugin
in order to prede ne standard properties and values for the fiture. An overview of the JAVA
structure of the plugin is depicted in gure 7.2.

nl.thales.plugin

nl.thales.plugin.popups l nl.thales.plugin.util l nl.thales.plugin.views l

Figure 7.2: Overview of the PerformanceAnnotationTool structure

86

The basepackage of the PerformanceAnnotationTool pluging the \nl.thales.plugin” package. This
package contains the plugin manifest and the plugin entry chss. The \nl.thales.plugin.popups”
package contains extended menu-items, so any code that negtb be executed when the user clicks
or right-clicks on an UML entity. The \nl.thales.plugin.ut il"package contains various helper classes
such as EMF (Eclipse Modeling Framework), an UML implementaion that provides UML elements
e.g. classes, methods, stereotypes and stereotype attrites to the plugin developer. It prevents the
programmer from directly modifying the XMI resources, which results in a maintainable solution.
Finally, the \nl.thales.plugin.views" package contains the actual implemented views of the Eclipse
model-view-controller pattern.

7.1.2 PerformanceTransformation plugin

The PerformanceTransformation plugin is an extensive plugn. It provides a set of modeltransfor-
mations to the system engineer that can be used to calculaterad analyse UML models. It also
presents the results directly to the user, by changing and ading visual elements (such as images)
and UML elements (attributes that performance results) in the current models.

IBM Rational Software Architect uses the JAVA transformati on API for their transformation en-
gine. This approach distinguishes four important concepts

1. RootTransform - The Root Transform class is an utility class that transformation authors
can use as the root of their transformation. This transformaion has a prede ned structure:
the initialization phase, the main phase and the nalization phase. The main phase can start
other types of transforms, the initialization phase contains all code that have to be executed
before the transformation starts, and the nalization phase contains all code that have to be
executed after the transformation is nished.

2. UMLKindTransform - The UML kind Transform class is an utilization class especilly de-
signed for UML-based transformations. This transformation class provides easy access to
UML elements.

3. ModelRule - A model rule is a utilization class that executes a transfomation rule and
generates a target model element out of a source model elernten

4. Condition - A condition is an utilization class that lters the needed source elements out of
a list of possible source elements that is available for praessing. Typically, a condition is
used in conjunction with a ModelRule to specify the source mdel element.

The four concepts mentioned above results in the following eerview of a complete transformation:

RootTransform

UMLTransformX UMLTransformyY
R1 R2 R3 R1 R2 R3
ConditionX ConditionY

Figure 7.3: Overview of the transformation structure

87

DESIDE

Figure 7.3 shows that in order to transform from model to mode prime, a RootTransform is
executed that contains two transformations: UMLTransformX and UMLTransformY. Both trans-
formations contain their own transformation rules, and ead rule can contain one or more conditions
that Iters UML elements accepted for input.

An important issue when developing a transformation structure is the concept ofreuse Basi-
cally, reuse means using existing items more than once, whiccan be an UMLTransform, a rule
or a condition. Two requirement for reuse arehigh cohesionand low coupling A cohesive module
means that all code is strongly related, whereas a low-couptl module means that the module is
not dependent on other modules.

Most transformation work is performed in individual UML rul es. A rule can be reused within
separate transformations, but dependencies possibly exis Input models or elements may not
be the same, or a rule can depend on same kind of external datdrgcture that can be received
by other transformation rules via a transformation context. The transformation context is the
shared environment where (JAVA) objects can be stored that @n contain information valuable
for transformation rules. However, the use of a global, shad environment does not stimulate the
development of transformation objects that can be reused.

This thesis presents a structure that can be used when programing with transformations that
manages dependencies among rules with the goal of stimulaty reuse. This is achieved by intro-
ducing the design by contract principle, which concretely means that an extra interface § added
to the ModelRule class with the goal of explicitly de ning dependencies. This is depicted in gure
7.4.

Exception ModelRule

+createTarget(context:ITransformContext)

-throws

PassingContextException PassingContextRule

contains #createTarget(context:ITransformContext)
ITransformContext #setRequiredSymbols()
#setExportedSymbols()
+getSymbol(name:String): Object
+setSymbol(obj:Object,name:String)

Figure 7.4: Designing by contract

Instead of directly using the ModelRule class, it is preferable to use thePassingContextRuleclass.
This class extends the ModelRule class and its createTargenethod. Every ModelRule class can
directly use the ITransformContext environment, the environment where shared objects can be
stored. The PassingContextRule ensures that if a ModelRulds de ned that extends from Pass-
ingContextRule, instead of ModelRule, a list of importedSymbolsand requiredSymbolsis speci ed.
Every time that a getSymbol or setSymbol method is called (rérieve or set objects from the shared
environment), the symbol (name-based) is checked among bbtlists. If an object is used that is
not explicitly speci ed via the required list, an exception is raised. Also, when an object is saved
that is not explicitly speci ed via the export list, an excep tion is raised. Setting the required and
exported symbols is a prerequisite for using this class, anxeeption is also raised if an programmer
forgot about it. As a result, if a PassingContextRule is reusd, it is always clear to everyone what
is dependencies are.

88

Within this structure, and the current implementation, the following four transformations are
de ned:

1. Basic feasibility analysis - calculates if demanded resource budgets does not exceedplied
resource budgets. It uses basic hardware-software allodan schemes for calculating the nal
numbers

2. Role-based feasibility analysis- calculates if demanded resource budgets does not exceed
supplied resource budgets. It uses role-workset-softwarallocation schemes for calculating
the nal numbers

3. Behavioral ow feasibility analysis - calculates if demanded responsiveness budgets does not
exceed the demanded responsiveness budgets

4. Simulation analysis - Transforms system analysis models into simulation models

Using these four implemented transformations within RSA isfairly simple, as gure 7.5 (transfor-
mation con guration) shows.

Figure 7.5: IBM Rational transformation con guration

System engineers can choose one of the four transformatioregicted in gure 7.5. Furthermore,

they have to specify a source model and a target model. When #y are nished with composing
the system model and annotating the system model with the neessary quality attributes, the run

the transformation and obtain direct feedback. Feedback isprovided in the model by means of
generating extra visual elements and calculations resultén the form of attributes. An example of

this is depicted in gure 7.6 on the next page.

89

DESIDE

Figure 7.6: Example system after transformation run

Figure 7.6 shows an example of a deployment diagram after stictural budget evaluation(resources)
and behavioral budget evaluation(responsiveness budgélts In this example, three nodes(MZK1,
MZzK2, RT1) still provide su cient resources (behavioral or structural), but one does not(NRT1),
which is clearly depicted by the added red-cross in the model The available budgets still left for
allocation are presented as attributes in the target UML model, which can be inspected by system
engineers. For a more detailed overview, system engineerart consult the generated text le.

The last important issue when building reusable, exible transformations comprises the imple-
mentation of the calculation engine. Chapter 6 already desdbed the evaluation rules that were
executed when assessing responsiveness. These rules weaseld on formulas derived from real
operation data [Tha07]. However, these rules are subject tehange, because Thales Netherlands
B.V. continuously measures its system under various enviroments. New insights and measure-
ments leads new formulas. These formulas (which are used byhé transformation plugin) are
maintained by performance engineers, and change frequentl

During this research thesis, a dedicated ANTLR parser [Ant(0/] was developed in order to provide
a exible method that can specify calculations in a non-ambiuis way. This parser can interpret
\calculation les", where calculations are speci ed using local variables or pro le variables. Pro le
variables represent metamodels attributes and provide a wato connect calculations with elements
of the developed metamodel. An example of such a calculatione is listed below:

/IIMPORTED VARS

localvar import_platform: float ;
/10 = AMD OPTERON, 1=POWER PC

localvar import_nr_consumers: float ;
/IRULES

localvar rule_amd_basicwrite_local: float ;
localvar rule_ppc_basicwrite_local: float ;
localvar rule_basicwrite_local: float ;
localvar result: float ;
1 PROFILEVARS

profilevar DatastoreBudget. attributes.data _entity _size: float ;
profilevar LoadConstraint.loadFrequency: float ;

/IBEGIN PROGRAM

rule_amd_basicwrite_local = 6 + (7 + 4 import_nr_consumers)
+ (10 DatastoreBudget. attributes . data_entity _size);
rule_ppc_basicwrite_local := 18 + (21 + 12 import_nr_consumers)

+ (30 DatastoreBudget. attributes . data_entity _size);
rule_basicwrite_local := 0;

90

rule_basicwrite_local := if (import_platform = 0)
then (rule_basicwrite_local + rule_amd_basicwrite_local)
else (rule_basicwrite_local + rule_ppc_basicwrite_local);
/Iresult is in ms...
result := (rule _basicwrite_local
LoadConstraint.loadFrequency) / 1000;

An overview of the EBNF grammar is presented in appendix A.

The nal structure of the \PerformanceTransformationPlug in" is depicted in gure 7.7 on the
next page. This gure depicts that the mainpackage, \nl.thales.plugin’, consists of three subpack-
ages: \nl.thales.plugin.calc", \nl.thales.plugin.tran sform" and \nl.thales.plugin.util". The \plugin"
package contains the manifest and initial startup classesThe \calc" package contains all informa-
tion related to the calculation process: it contains variows structures for calculating UML model
elements and it contains the dedicated ANTLR parser. The \transform"package contains all UML
rules, exceptions, conditions and transformations that ae necessary to implement the four speci ed
transformations. The nal package, the \util" package, contains a \nl.thales.plugin.util.resources"
packages, which contains resources such as external libias, images, calculation les with formulas
and global con guration les.

7.2 Conclusion

In this chapter the prototype tool was presented. It is implemented as a set of IBM Rational
plugins, which provides a \clean" plugin structure, based o the model-view-controller pattern
provided by Eclipse.

The IBM Rational product family uses the JAVA transformatio n API as their transformation
engine. This has a number of drawbacks as opposed to e.g. QVHIl transformation code has
to be specied in an imperative language (JAVA), whereas QVT provides means to select model
entities by one functional statement. This prevents a lot of repetitive code. Another drawback of
the JAVA transformation API is that managing dependencies among transformation rules is hard.
However, a structure was presented that stimulates reuse byncorporating the design-by-contract
principle.

Finally, in order to specify and manage fomulas that are usedor calculation purposes, a dedicated
ANTLR parser was developed that could manage and interpret alculation les in a non-ambigous
way. This construction connects calculations with the previous developed metamodel, by means
of introducing pro le-variables which represents meta-madel attributes. When a system engineer
speci es such a variable, the implementation automatically walks through all elements of the source
model and collects all speci ed elements. The value of the ement is automatically inserted for
the relevant calculation. All presented implementation constructions provide a high degree of
automation to the system engineer.

91

Z6

r-TNATeS pTUgIuTT TESouTTeS:

Ty

TTETES pTUgTT U TeSouTCES

Figure 7.7: Overview of the PerformanceTransformationPlgin structure

34i1s3d

Part IV

Evaluation

93

Chapter 8

Conclusion

This chapter concludes the thesis. It re ects back on achieed results, presents additional discus-
sion and discusses related work.

The main goal of this research thesis was to develop an integted method for analyzing and pre-
dicting responsiveness of the Combat Management System fdrhales Netherlands B.V. It started
in chapter 2 with the investigation of the current system development process and the identi cation
of (possible) bottlenecks. This resulted in two important observations: performance information
was scattered among system engineers and the speci catiorf available resources (structural and
behavioral) is a prerequisite because of the limited spacenia naval vessel. These two observations
formed the motivation for developing an integrated performance engineering method for early anal-
ysis and prediction of responsiveness.

Next, a literature study was conducted that searched for addtional background information about
performance engineering in general and investigated a nungy of responsiveness de nitions. Also,
proven evaluation techniques were considered, but unfortnately none of them was directly usable,
because the gap between a system model and a (formal) analgsinodel is too big. This resulted
in a model-based approach.

The nal solution presented within this thesis uses model-atefacts produced during the regular
system development process. As a result, a high level of inggation could be achieved. Within
the proposed solution, meta-models were presented that degbed exactly the structure of systems
and performance models. Furthermore, transformations weg presented that could generate inter-
mediate models, with the goal of obtaining an executable simlation model. This closed the gap
between UML system models and formal system analysis model#\nalytical evaluation procedures
were used for calculating the responsiveness of the systemda simulation based methods were used
for verifying the outcome of the analytical models.

Finally, this thesis presented a prototype tool that provid es a high degree of automation to system
engineers. This was a key success factor for successfullypdying performance engineering within
industry.

8.1 Answers to research gquestions

The main research question was stated as:

What process- and product changes are necessary in order te kable to perform early analysis
and prediction of responsiveness for the Combat Managemer8ystem (CMS) used within Thales
Netherlands B.V. ?

With regards to the process used within Thales Netherlands B.V. little changes are necssary
to the current process. Thales Netherlands B.V. uses an imgimentation of the system engineering
process, which generally means that performance assessnésn performed after the integration
phase. If early analysis and prediction of responsiveness ia goal, then responsiveness assess-
ment should be performed after the modeling phase, early diing the overall process. When the

95

Conclusion

evaluation-procedure of the validation step concluded tha the responsiveness of the composed
system is not satis able, models can be changed accordinglyThis prevents expensive changes
afterwards.

The product based changes were extensive. This thesis presented a motlelsed approach with
the goal of obtaining an executable simulation model is abléo calculate and to verify the respon-
siveness of the composed system. However, model-based apgeches directly imply the availability
of metamodels. Unfortunately, existing system metamodelr performance metamodels were not
available, so both models needed to be developed. By combirg the models, and the formulas
obtained from operational measurements, implemented by a edicated ANTLR parser a highly
automated tool could be developed that helps system engineg with measuring and verifying re-
sponsiveness of system models. Veri cation is achieved bydansforming a simulation model out of
an UML system analysis model and feeding this model into a disrete-event JAVA simulator.

The rst subquestion was:
What is responsiveness?

Responsiveness is a very \broad" de nition and the notion of responsiveness di ers among cur-
rent literature. However, some consensus do exists, as in ery de nition the notion of \timeliness"
seems to appear. The most clear, and workable de nition of reponsiveness is “the ability of a
system to meets its objectives for response time or throughgt' [Smi02].

However, determining the responsiveness of a system is nottavial task. Operational laws, such as
Little's law can be used for determining the responsivenesef an abstract system, but it is hard to
apply this on large, complex systems where many factors have® be taken into account. Building
such a closed-form analytical (theoretical) solution is a tme-consuming, almost impossible task.
Instead, a relatively simple analytical solution is built for systems of Thales Netherlands B.V. that
makes use of real operational data. By combining concepts ahodel-driven engineering, such as
automation, abstraction and transformation engines, alorg with formulas that describe the respon-
siveness of the middleware usage, a performance model coldd obtained. Therefore, in this thesis,
responsiveness is de ned as the totaénd-to-end latency of a functional ow that can occur within
a system

The second subquestion was:

Are there general methods and frameworks available withinuerent literature that address per-
formance and responsiveness?

There are methods and frameworks available within current iterature that address performance
related issues. This thesis looked into software performare engineering, a systematic and quan-
tative approach that supports early performance analysis ad prediction. It is, however, only a
process-based framework: it only describes the required teities for performance analysis and
prediction. It does not provide details about the introduced software execution model and the
system execution model, it only describes the general conpts and what activities should be per-
formed during the performance engineering process. Reasog frameworks provide more detail
about models and their relations, but they do not provide any semantics. However, recent devel-
opments within the OMG led to the development of MARTE, a successor of the UML SPT Pro le,
where detailed semantics are provided. Because of the lack one general framework that is able
to express all the concepts mentioned above, this thesis cdrned concepts of all methods.

The third subquestion was:

What is the impact of responsiveness on system design?

System design has a serious impact on responsiveness. A daged system performance due to
responsiveness problems can lead to changes in system desidt is therefore important that sys-
tem engineers have enough possibilities to change things thibut having to change the internals of

the system, because this usually introduces unnecessaryskis. This thesis introduced the notion
of mappings, which provides an easy way to e.g. change the altation structure of hardware and

96

software. Mappings are also used for assigning behavioraliajrams to architectural components
and within these diagrams, the exact responsiveness numbgican be calculated. By changing var-
ious mappings, system engineers can in uence the respongiess of the composed system heavily.

The fourth subquestion was:
How can consistency be achieved between system design andgosmance models?

Generally, system concepts and system analysis concepts dwt map 1-on-1 to each other. This is
called the \gap" between system models and formal system argsis models, already described in
one of the answers above. By using intermediate models durgnthe transformation process with
well-de ned transformation rules, consistency can be actéved among those models.

The fth subquestion was:

How to built a consistent set of tools that supports the modglused within a typical system en-
gineering process?

A consistent set of tools has to support the overall softwareperformance process: from composing
systems to annotating models and the ability to evaluate thecomposed system, that provides direct
feedback to system engineers, afrom the same environment The IBM Rational Software Archi-
tect environment provides a clean, Eclipse based plugin strcture based on a model-view-controller
design pattern, that can be used to extend or add functionaliy. The prototype developed within
this thesis supports all mentioned activities by means of a st of plugins, that can all be used and
executed from the same environment.

The sixth subquestion was:
How can obtained performance results be veri ed?

An important issue within the overall performance engineeing process is verifying if obtained
results are correct. Within the proposed solution, simulaton is used as a veri cation step, because
a simulation can provide insight in aspects of the dynamic beavior of the system that cannot
be obtained when using closed form, analytical solutions. Tie most important information of the
presented simulation is the information that can be extracted from distributions. Distributions
can be used to describe the occurrence of peak-latencies otigne, with a certain probability. This

is information that can be used to verify the certainty of the outcome of the analytical evaluation
procedure (calculation). By combing analytical results with simulation, the trustworthiness of the
results can be assessed.

8.2 Related work

There is a substantial amount of related work available for his subject. Examples include the
investigation of a common software ontology [Cor05], the dscription of several design features
that can impact the performance of distributed applications [RVH95], and tranforming analytical
models, such as a queuing network, from UML speci cations [B02].

An interesting framework, discussed in section 3.3.2, is tl reasoning framework from the Soft-
ware Engineering Institute (SEI). This framework provides a\black-box approach"to non-experts.
It is a rather\static" framework, but if a reasoning framewo rk was incorporated for describing the
overall solution, it would look like gure 8.1 depicted on the next page.

97

Conclusion

Figure 8.1: A model-based performance prediction reasongframework

Figure 8.1 emphasizes the following:

1. It extendsthe architectural description with models
2. It calculatesthe resource utilization among annotated system models
3. It veries the occurrence of peak-latencies

4. It provides feedbackto the system engineer

The reason why a reasoning framework is not incorporated fodescribing the overall solution is
that it does not shows issues such as\the gap"between systemodels and formal analysis models,
which is something that this thesis is explicitly solving.

98

8.3 Recommendations and future work

This research thesis is a valuable contribution for Thales Mtherlands B.V. in a number of ways.
First, it really presents an integrated performance enginering method, with a consistent set of
tools. Second, it contributes towards specifying the struture of systems by means of a number
of developed meta-models, which where non-existing. Thirdthis method closes the gap between
system models and formal system analysis models, a conceptkanowledged within current literate
but di cult to solve. Solving this gap concretely means that system engineers can use their regular
UML models for system composition, without losing (formal) veri cation capabilities.

However, there exists a number of limitations within this research. Interpreting the outcome
of simulation runs is a far from trivial process. Calculations made with multiple distributions can
lead to mixed distributions, which basically leads to resuts that can be unexplainable. The value
of simulation results then has to be estimated by experts. Tle research of automated feedback, on
calculated models or simulation models, can be subject of fther research.

Furthermore, a recommendation is to investigate and de ne anumber of critical quality concerns,
that prevents the system engineer from manually annotatingsystem models. A lot of performance
parameters have to known in advance in order to obtain a reaBtic understanding of the nal
system behavior, and it is not always realistic to assume thathe system engineer knows all the
numbers in advance. Therefore, if quality concerns are de ed that can be used across various ab-
straction levels, system engineers only have to charactezé a system instead of annotating all the
numbers by hand. The composite pattern used within the devedbped metamodels already supports
the grouping of quality attributes, but more research should be put into de ning and identifying
the most critical quality concerns.

Another recommendation is the usage of this method and the deesloped tool in a real project
in order to extensively test the usability of the tool and the method. Valuable feedback can be
obtained that could improve the quality of the overall work.

Finally, there are a number of recommendations regarding tle implementation specically. A

drawback of using Rational Software Architect is that it does not provide good modeling support
for OCL constraints. It only supports the parsing of one OCL gatement attached to a model

element, and checks only if a constraint is syntactically vdid. The constraints of the developed
metamodel requires the execution of calculations, becaughey could be imposed on the result of
the calculations. However, this is a requirement that is curently unachievable when using Rational
Software Architect. The functionality of those constraints are currently implemented by a set of
stereotypes, with some additional JAVA code that is executa after the calculation-transformation

is nished. If OCL support improves, a recommendation is to use OCL for constraint speci cation

instead of stereotypes with JAVA code.

Also, the current incorporated simulator has its limitatio ns: it is e.g. not possible to de ne work-
loads (frequency of produced / consumed items) within subdagrams (callbehavior actions) of
activity diagrams. This means that either an activity diagr am and all subdiagrams have a xed
workload, or the simulation strucure is attened which leads to scattered simulation results. This
is a major drawback of the current simulator, so the incorpomtion of alternate simulators needs to
be researched.

99

100

Appendix A

EBNF grammar

A.1 CalcParser grammar

/I CHANGES

1 2003.04.04 ruys Started (VB 2003).

1 2004.04.12 ruys Modifications for VB 2004.
1 2006.04.22 ruys Updated for Java 5.

11 2007.09.17 s0117587 Modified for Performance Calculations
header f

package nl.thales.plugin.calc.parser;
import java.io.
g

/I fff Parser

class CalcParser extends Parser

options f
k = 1; /I # tokens lookahead
exportVocab = Calc; /I call the vocabulary
buildAST = true ; /I build an AST

defaultErrorHandler = false;
g

/I Imaginary tokens that are used for AST construction.

tokens f
PROGRAM _AST;

g

/I fff Parser: production rules

program
code EOF!
f #program = #([PROGRAM _AST, "program"], #program) ; ¢
/I Without a special root node, the ASTFrame will only
/I contain the first explicit node.

code
((declaration) (statement))+

"Calc"

101

EBNF grammar

declaration
((LOCALVAR® | PROFILEVAR”") IDENTIFIER COLON! type SEMICOLON!)

statement
expr SEMICOLON!
j printStatement SEMICOLON!

expr
exprl (BECOMES" expr)?

exprl
exprN
j IF~ LPAREN! exprN RPAREN! THEN! LPAREN! expr RPAREN! ELSE! L PAREN!
expr RPAREN!

exprN
exprLowPrecedence ((LESS”j LESSEQ" j GREATER" | GREATEREQ"
j EQUAL™ | NEQUAL™) exprN)?

exprLowPrecedence
exprHighPrecedence ((PLUS" | MINUS") exprLowPrecedence)?

exprHighPrecedence
operand ((MULTIPLY~ j DIVIDE”*)operand)

printStatement
: PRINTM LPAREN! expr RPAREN!

operand
IDENTIFIER
j NUMBER
j LPAREN! expr RPAREN!

type
: FLOAT
j INTEGER

/I ggg Parser: production rules
/I ggg Parser

102

A.2 CalcLexer grammar

/I fff Lexer
class CalcLexer extends Lexer;

options f
k = 2; /I needed for WS (for instance)
charVocabulary = 'n3'.."'n377"; /I use ASCIlI character set
exportVocab = Calc; /I call the vocabulary "Calc"
caseSensitive =true ; /I lower and upper case is significant
caseSensitiveliterals =true ; /l literals are case sensitive
testLiterals = false; /I do not check the tokens table

g

tokens f
LOCALVAR
PROFILEVAR
PRINT
INTEGER
FLOAT
IF
THEN
ELSE

"localvar" ;

"profilevar";
"print" ;
"integer" ;

"float";

it

"then";

"else";

g

/I operators

BECOMES : BES
PLUS : +'
MINUS : '
DIVIDE : "
MULTIPLY : '
COLON : Y
SEMICOLON : !
LPAREN : (
RPAREN : !
LESS : <!
LESSEQ : ="
GREATER : >
GREATEREQ : ">
EQUAL : ="
NEQUAL : ="

protected
LOWER : (‘a'..'z")

protected
UPPER : ('‘A'..'ZY)

protected
DIGIT : ('0'..'9")

protected
DOT : Y

protected
DOLLAR : '$;

103

EBNF grammar

/I The option testLiterals is only set to true for the rule IDE NTIFIER!
/I Consequently, after matching the rule, ANTRL will look in the tokens
/I table to check whether the string found is an IDENTIFIER or a TOKEN.
IDENTIFIER

options f testLiterals = true ; g

(DOLLAR j LOWER j UPPER j DOT j '_')
(DOLLAR j LOWER j UPPER j DOT j '_' j DIGIT)
NUMBER

(DIGIT)+ (DOT (DIGIT)+)?

/I Comments ignored
COMMENT
“II" (~' nn') 'nn’

f. newline (); $setType(Token.SKIP); g

/IWhitespace ignored
WS

N G

i "nt’

i "'nf'

/I handle newlines
j ("nrnn" /[Evil DOS
j 'nr’ /I Macintosh
j 'nn’ /I Unix (the right way)

)

f newline(); ¢

)
f $setType(Token.SKIP); g

/I ggg Lexer

104

A.3 CalcChecker grammar

I fif CalcChecker

f import java.util. ; ¢

class CalcChecker extends TreeParser;
options f

buildAST
defaultErrorHandler

true ; // AST does not have to be transformed
false ; /l turn off ANTLR's error handler to
/I propagate CalcExceptions to main

ArraylList idset = new ArraylList();
ArrayList profilevars = new ArrayList();

public boolean isDeclared (ArraylList list, String s)
f
return list.contains(s);
g
public void declare(ArraylList list, String s)
f
list.add(s);
g
g

program
: #(PROGRAM _AST (code)?)

code
((declaration) (statement))+

declaration
(localdeclaration j profiledeclaration)

localdeclaration
. #(LOCALVAR id :IDENTIFIER type)
f if (isDeclared (this .idset, id.getText()))
throw new CalcException(id.getText() + " _is_already _declared");
else
declare(this .idset, id.getText());

g

profiledeclaration
#(PROFILEVAR id : IDENTIFIER type)

f if (isDeclared (this . profilevars, id.getText()))
throw new CalcException(id.getText() + " _is_already_declared");
else

declare(this . profilevars, id.getText());

105

EBNF grammar

statement
: expr
j #(PRINT expr)
expr
: exprl
j #BECOMES id :IDENTIFIER expr)

f if ('isDeclared (this .idset, id.getText()))
throw new CalcException(id.getText() + "is _not_declared");

g

exprl
exprN
j #(IF exprN expr expr)

exprN
. exprLowPrecedence

#(LESS exprLowPrecedence exprLowPrecedence)
#(LESSEQ exprLowPrecedence exprLowPrecedence)
#(GREATER exprLowPrecedence exprLowPrecedence)
#(GREATEREQ exprLowPrecedence exprLowPrecedence)
#EQUAL exprLowPrecedence exprLowPrecedence)
#(NEQUAL exprLowPrecedence exprLowPrecedence)

O A N VN VW

exprLowPrecedence
exprHighPrecedence
j #(PLUS exprLowPrecedence exprLowPrecedence)
j #(MINUS exprLowPrecedence exprLowPrecedence)

exprHighPrecedence
operand
j #(DIVIDE exprLowPrecedence exprLowPrecedence)
j #(MULTIPLY exprLowPrecedence exprLowPrecedence)

operand
id :IDENTIFIER
f if ((VisDeclared (this .idset, id.getText()))
& (lisDeclared (this . profilevars, id.getText())))
throw new CalcException(id.getText() + "is _not_declared");

g
j n :NUMBER

type

: FLOAT
j INTEGER

/I ggg CalcChecker

106

A.4 CalcInterpreter grammar

header f
package nl.thales.plugin.calc.parser;
import java.io.
import java. util .

g

class Calclnterpreter extends TreeParser;
options f importVocab = Calc; ¢

f

private HashMap<String, String> store = new HashMap< String , String > ();
private HashMap< String, String> profileVars = new HashMap< String, String > ();

public HashMap<String, String> getCalculationMap() f
return this .store;
g
public void setProfileValue (String key, String value) f
profileVars.put(key, value);
g
g

program
: #(PROGRAM _AST (declaration j statement)+)

declaration
(localdeclaration j profiledeclaration)

statement f float v = (float)0; ¢
expr
j #(PRINT v=expr)
f System.out.println("value _is:" + v); ¢

profiledeclaration
. #(PROFILEVAR id :IDENTIFIER type)
f
String value = profileVars.get(id.getText());
if (value != null) f
store.put(new String(id.getText()), value);
g
else f
store.put(new String(id.getText()), Float.toString(new Float(1)));
9
g

localdeclaration
. #(LOCALVAR id :IDENTIFIER type)
f store.put(new String(id.getText()), Float.toString(new Float(1))); g

107

EBNF grammar

expr returns [float val] f float v; val = (float)0; ¢
val = exprl
j #(BECOMES id:IDENTIFIER v=expr)
f

store .put(new String(id.getText()), Float.toString(new Float(v)));
val = v;

exprl returns [float val] f float x, y, z; val = (float)0; ¢
val = exprN
j #(IF x=exprl y=expr z=expr)
f
if (x!=0) f val =y; g
else f val = z; ¢

exprN returns [float val] ffloat x, y, z; val=(float)0;g
. val = exprLowPrecedence
j #(LESS x=expr y=expr)
f System.out.println("less"); if (x<y) val=1; else val = 0; g
j #(LESSEQ x=expr y=expr)
f System.out.printin("lesseq"); if (x<=y) val=1; else val = 0; g
j #(GREATER x=expr y=expr)
f System.out.println("greater"); if (x>y) val=1; else val
j #GREATEREQ x=expr y=expr)
f System.out.printin("greatereq"); if (x>=y) val=1; else val = 0; ¢
j #EQUAL x=expr y=expr)
f System.out.println("equal"); if (x=y) val=1; else val = 0; ¢
j #(NEQUAL x=expr y=expr)
f System.out.println("nequal"); if (x!=y) val=1; else val = 0; ¢

1
o
(@]

exprLowPrecedence returns float val] f float x, y; val = (float)0; g
val=exprHighPrecedence

j #(PLUS x=exprLowPrecedence y=exprLowPrecedence) f val =x+vy; g
i #(MINUS x=exprLowPrecedence y=exprLowPrecedence) f val = x Yy, ¢
exprHighPrecedence returns float val] f float x, y; val = (float)0; g
val=operand
j #(DIVIDE x=exprLowPrecedence y=exprLowPrecedence) f val =x /vy, ¢
j #(MULTIPLY x=exprLowPrecedence y=exprLowPrecedence) f val = x y; @

operand returns [float val = (float)0]
id :IDENTIFIER f val Float.parseFloat(store.get(id.getText())); ¢

j n:NUMBER f val Float.parseFloat(n.getText()); g
type

: FLOAT
/' ggg Calclnterpreter

108

Bibliography

[Ant07]

[BBS02]

[BDMIS04]

[BIKMO5]

[BIJR9Y]

[Buz76]

[Cor05]

[Des07]

[Ecl07]

[ESS07]

[Gee07]

[GHJIV95]

[Gro95]
[Gro05]

[Gro07]

[GS07]

[Hoo06]

[Hor06]

http://www.antlr.org, 2007. ANTLR website.

S. Balsamo, M. Bernardo, and M. Simeoni. Combining t®chastic process algebras
and queuing networks for software architecture analysis. 1 ACM Proceedings of the
International Workshop Software and Performance, 109-2022002.

Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-
based performance prediction in software development: A swey. In IEEE Transac-
tions on Software Engineering, Vol30, No5 2004.

L. Bass, J. lvers, M. Klein, and P. Merson. Reasonirg frameworks. Technical report,
Software Engineering Institute, 2005.

G. Booch, I. Jacobsen, and J. RumbaughThe Uni ed Modeling Language User Guide
Addison-Wesley, 1999.

J.P. Buzen. Fundamental Operational Laws of Computer System Performace. Acta
Informatica, 1976.

Vittorio Cortelessa. How far are we from the de nition of a common software per-
formance ontology. In ACM Proceedings of the International Workshop Software and
Performance, 2005.

http://www.desmoj.de, 2007. DesmoJ website.
http://www.eclipse.org, 2007. Eclipse website.
http://www.cse.dcu.ie/essiscope/sm2/9126rettml, 2007. ESSI-SCOPE website.

Boudewijn Geerink. System architecture descriptin of the tacticos combat manage-
ment system based on dodaf. Master's thesis, University of Wecht, 2007.

Erich. Gamma, Richard. Helm, Ralph. Johnson, and Dbhn. Vlissides. Design Patters,
Elements of Reusable Object-Oriented SoftwareAddison-Wesly, 1995.

The Standish Group. The chaos report, 1995.

The Object Management Group. Uml pro le for schedulability, performance and time.
Technical Report 1.1, The Object Management Group, 2005.

The Object Management Group. A uml pro le for marte. Technical Report Beta 1,
The Object Management Group, 2007.

Maurice Glandrup and Rene Scholte. Budget-driven pgormance modeling in software
intensive systems, 2007.

Niek Hoogma. Modeling performance indicators usip the spt and sysml pro les.
Master's thesis, University of Twente, 2006.

Ivo Horst, Ter. Deside, decision-support using sytem simulation in a design environ-
ment, 2006.

109

BIBLIOGRAPHY

[Hor07]

[Ibm07]

[IEEQ7]
[IncO7]

[1s007]
[Kru95]

[Lit61]

[omg07]
[Pag84]

[Pri07]
[PS02]

[RVHO5]

[Sch06]
[Selo4]
[Smi02]

[SWO01]

[Tha07]

110

Ivo Horst, Ter. Performance evaluation in an early cevelopment phase. Master's thesis,
University of Twente, 2007.

http://www.ibm.com/software/rational, 2007. IB M Rational Software product family
website.

http://www.ieee.org, 2007. IEEE website.

http://www.incose.org/practice/whatissystems eng.aspx, 2007. Internation Council on
System Engineering website.

http://www.iso.org, 2007. Internation Standardi zation Group website.

P. Kruchten. Architectural blueprints - the 4+1 vie w model of software architecture.
dde 1995.

J.D.C. Little. A proof of the queuing formula | = w. In Operations Research 9,
383-387 1961.

http://www.omg.org, 2007. Object Management Group website.

Ernest H. Page.Simulation Modeling Methodolgy: Principles and Etiology & Decision
Support PhD thesis, Virginia Polytechnic Institute and State Univ ersity, 1984.

http://www.prismtech.com, 2007. PrismTech website.

C. Dorina Petriu and Hui Shen. Applying the uml performance prole: Graph
grammar-based derivation of lgn models from uml speci catons, 2002.

J. Rolia, V. Vetland, and G. Hills. Ensuring responsiveness and scalability for dis-
tributed applications. In Proceedings of the 1995 conference of the Centre for Advarnte
Studies on Collaborative research1995.

Douglas C. Schmidt. Model-driven engineeringlEEE magazine, 2006.
B Selic. Summer school mdd for dres, 2004. Presernitat slides.

Connie U. Smith. Performance solutions: a practical guide to creating resposive,
scalable software Addison-Wesley, 2002.

Ansgar Schleicher and Bernhard Westfechtel. Beyondtereotyping: Metamodeling
approaches for the uml. InProceedings of the 34th Hawaii International Conference
on System Sciences2001.

Thales Netherlands B.V. Guidelines for application editors, performance manuaj 2007.

	Abstract
	Preface
	I Setting the context
	Introduction
	Context
	Problem statement
	Contribution
	Approach
	Outline

	Thales Netherlands B.V. and the research context
	The Combat Management System
	The development process
	State the problem
	Investigate alternatives
	Model the system
	Integrate
	Launch the system
	Assess performance

	The development product
	TACTICOS
	The logical architecture
	The development architecture

	Problems and observations within the development process and product
	Conclusion

	Early model-based performance prediction
	Designing responsive and scalable systems
	Model building
	Model Evaluation
	Formal models or a model-based approach?

	The model-based approach
	Required methods and tools
	Software Performance Engineering
	Reasoning frameworks
	UML and its metamodeling facilities
	UML Profile for Schedulability, Performance and Time
	UML Profile for Modeling and Analysis of Real-Time Embedded systems

	Conclusion

	II Concept development and solution-design
	Towards a model-based approach for early analysis and prediction of responsiveness
	Requirements
	Approach
	Model the system
	Assess performance

	Supporting budget-driven performance modeling
	Design levels
	Hierarchy and decomposition
	Mappings

	Conclusion

	Integrating the models
	Positioning the metamodels
	A domain-level view of the structure of systems
	A domain-level view of responsiveness
	The SystemModel and AnnotationModel metamodels
	The SystemModel::ModelElement package
	The AnnotationModel::QualityConcern package
	The AnnotationModel::Quality Constraint package
	The AnnotationModel::Scenario package

	conclusion

	Evaluation of responsiveness
	Responsiveness models
	Calculation transformation
	Evaluating resource budgets
	Evaluating allocations
	Evaluating responsiveness budgets

	Simulation transformation
	Transformation rules

	Simulation
	Simulating system analysis models

	conclusion

	III Implementation
	DESIDE
	Rational Software Architect
	PerformanceAnnotationTool plugin
	PerformanceTransformation plugin

	Conclusion

