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Abstract

This paper describes a minimal implementation of a
cryptographically secure electronic voting system, built
with a low-cost Xilinx FPGA board. This system,
called VoteBox Nano, follows the same basic design
principles as VoteBox, a full-featured electronic voting
system. As with VoteBox, the votes are encrypted using
Elgamal homomorphic encryption and the accuracy of
the system can be challenged by real voters during an
ongoing election. In order to fit within the limits of a
minimal FPGA, VoteBox Nano eliminates VoteBox’s
sophisticated network replication and storage facilities.
In return, VoteBox Nano runs without any operating
systems or language runtime system, radically shrinking
the implementation complexity. VoteBox Nano also
integrates a hardware true random number generator,
providing improved security for the ballot cryptography.
In order to deter hardware tampering, which might be
done to compromise the random number generator, the
FPGA’s native JTAG interface can be used to verify the
FPGA’s configuration. At boot-time, the proper FPGA
configuration also displays a random number on the built-
in display. Any interaction with the JTAG interface will
replace the random number with another one, allowing
poll workers to detect election-day tampering, simply by
observing whether the number has changed.

1 Introduction

Electronic voting systems offer many advantages for both
the voters and election administrators. Voters seem to
prefer electronic voting systems [13], and administrators
like the speed inherent in electronic tallies. Unfortunately,
present-day commercial electronic voting systems have
well-documented security flaws (see, e.g., the California
Top-to-Bottom Reports [19, 6, 4]), leading many states
to consider dumping their electronic systems for paper-
based voting, often with precinct-based optical scanners.

Our research is an extension of VoteBox [33], one
of many electronic voting systems that aim to offer a
paperless electronic voting experience, desired by many

voters and election administrators, while using end-to-end
cryptographic techniques to verify the correct operation
of the voting system. VoteBox integrates pre-rendered
user interfaces, network ballot replication, homomorphic
ballot encryption, and Benaloh-style ballot challenges.

This paper addresses several weaknesses with the
VoteBox approach. First, while VoteBox’s security model
protects the integrity of a voter’s vote, it does nothing
to protect the voter’s privacy if a VoteBox has been
compromised with malicious software. Such a VoteBox
could simply record the plaintext votes, in the order
cast. Alternatively, a malicious VoteBox could use the
random numbers that are required for the cryptographic
operations as a subliminal channel to leak information
about the plaintext. Second, VoteBox has a substantial
amount of code, both in its Java implementation as well as
in the language runtime system and operating system that
support it; a smaller system might be less likely to have
bugs. This project aims to product a VoteBox-like system,
with a minimal implementation, that can nonetheless
improve on VoteBox’s security properties.

To that end, we built a simplified VoteBox-like system,
which we call VoteBox Nano, using a Xilinx Spartan-3E
500 Starter Kit. Our implementation combines off-the-
shelf modules, such as Xilinx’s “MicroBlaze” soft-CPU
core, with custom logic for fast cryptography and for
generating truly random numbers. The VoteBox Nano ap-
plication, itself, is written in C and runs on the MicroBlaze
processor. Of course, the resources available on a Xilinx
Spartan-3E are far fewer than on a general-purpose com-
puter. We cannot afford the logic for a general-purpose
graphics frame buffer, so we instead use character graph-
ics. Likewise, we have limited on-board storage, so we
could not implement the replication features of VoteBox.
Instead, a VoteBox Nano client would be tethered to its
supervisor console, which would then record the votes.

The paper is organized as follows: In Section 2, we
discuss previous electronic voting technologies and
research on FPGA security, followed by a discussion of
VoteBox in Section 3 and how it differs from VoteBox
Nano. In Section 4, we discuss how our FPGA platform
works. In Section 5, we describe the implementation
of VoteBox Nano, with particular attention paid to
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the implementation and evaluation of our true random
number generator. Section 6 considers threats against
VoteBox Nano, particularly via its JTAG interface, and
describes how we provide tamper-detection. We conclude
and present future work in Section 7.

2 Background
Sastry et al. [35], having similar goals to our project,
built a minimal voting device using Gumstix computing
devices. This architecture allowed Sastry to enforce a
number of important properties. Because distinct hard-
ware components were responsible for different aspects
of the voting machine, the wires between them could be
hand-traced and debugged. For example, the vote cast and
cancel buttons are hard-wired to the computing module
responsible for casting a vote. A user cannot be fooled
into believing they have cast a vote, such as by drawing
a “cast vote” button on the screen that actually does
nothing. Likewise, Sastry leverages the ability to reset a
piece of hardware back to its original boot state. Once
a vote is cast, a dedicated reset module will blast all the
other modules, ensuring that no module can retain state
across votes. Sastry’s implementation, however, still re-
lies on an embedded Linux kernel and offers no particular
mechanism to verify that the running code is authentic.

To address code tampering, Sastry suggests the use of
SWATT [39], which implements a challenge-response
protocol between an external verifier and an embedded
device. The challenges are a function of the contents of
the device’s memory contents. If the embedded device
had different code running, even if it keeps the proper
code in a backup location, then the time it would take to
compute the response would vary due to variation in CPU
effects such as cache hit rates, or in the amount of time
it would take to shuffle the contents of memory back to
their proper configuration.

In an FPGA with a soft-CPU, unfortunately, techniques
such as SWATT or other techniques based around timing
computations [38, 37, 18, 15] are easier to defeat because
the attacker could just build a switch into the FPGA
memory controller, allowing the memory to be instantly
rearranged to its proper state, exclusively to respond to
the challenge. Instead, we would rather pursue techniques
that leverage the structure of the FPGA itself.

Wollinger et al. [42] provide a summary of security
issues while doing cryptography on an FPGA, with a
focus on how to maintain cryptographic secrets within the
FPGA in the face of attacks such as attempts to read out
the FPGA’s bitstream (a “readback attack”), its internal
SRAM, and so forth. If the bitstream of the FPGA, itself,

is a trade secret, then the ability to read it out could well
be sufficient to reverse-engineer the logic within it.

Xilinx and other FPGA manufacturers offer features
aimed at preventing these reverse-engineering attacks
(see, e.g., Lesea [23]). To prevent “IP theft,” FPGA chips
allow the bitstreams that define the FPGA configuration
to be encrypted. When the FPGA boots, it can access an
internal key store and use this to decrypt the bitstream. An
attacker reading the ciphertext would learn nothing and
no queries are available to allow an attacker to read the
decryption key from the FPGA. Alternatively, Alkabani
and Koushanfar [1] show how to leverage chip-to-chip
variations in their behavior to achieve “active hardware
metering.” The FPGA configuration will now be unique
to a given chip; moving it to another chip would not yield
a functioning implementation.

These techniques are aimed at protecting the secrecy
of the FPGA’s bitstream. For our voting machine, secrecy
is a non-issue. We need to detect tampering, which is
a different problem. Dutt and Li [10] propose adding
“parity groups” to the logic blocks within the FPGAs, so
changes to any one logic block will cause parity failures
without corresponding changes elsewhere, which the
randomization makes difficult to defeat. Drimer and
Kuhn [8] describe a protocol to enable an FPGA to reject
configuration updates that are undesirable.

What we really want, though, is some form of ex-
ternally verifiable attestation that the internal state of
the FPGA is correct. Chaves et al. [7] proposes to
leverage the “partial reconfiguration” modes allowed in
modern FPGA’s to effectively lock down an attestation
module which can then speak for the contents of the
rest of the FPGA. Similar approaches are taken by other
authors [17, 11]. All of these techniques rely on external
(computational) verifiers. We would like, if possible, for
unskilled election observers to be able to detect evidence
of tampering without needing computers. We will discuss
our approach to attestation in Section 6.

3 VoteBox
While a complete description of VoteBox is beyond the
scope of this paper, it’s important to describe several of
the features of the system and explain how we adapted or
eliminated these features to fit into the limitations of the
VoteBox Nano platform.

VoteBox is an end-to-end cryptographically secure
voting system platform developed for experimenting
with voting security technologies [33]. VoteBox is
implemented in Java and runs on any PC, Mac, or Linux
computer. The key technical insights in VoteBox are:
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Pre-rendered user interfaces simplify the graphics
subsystem [46]. VoteBox does not use a general-purpose
graphical widget system or require the use of a general-
purpose font rendering system. Instead, a separate tool
prepares PNG files to be copied to the screen along
with an XML description of the ballot. Due to limited
resources in VoteBox Nano’s FPGA, we can only support
character graphics. We still pre-render the user interface
as a series of text-drawing commands.

Network ballot replication increases the availability
of voting records [34] by gossiping every message to
every machine on the precinct-local network. Messages
are all digitally signed, so bogus messages can be trivially
ignored. Messages include hashes of earlier messages,
creating an entangled timeline, which makes it difficult
for an adversary to modify the past [25, 24]. Even
if a voting machine has been tampered or destroyed,
its records will survive in copies on other local voting
machines. VoteBox’s replication features do not require
machines to reach any sort of consensus on the proper
value of any given vote. Instead, any inconsistencies in
the ballots, should there be tampering, are resolved after
the fact using a general-purpose “Querifier” tool [32].

In VoteBox Nano, we could not afford a general-
purpose network stack and data replication scheme.
Instead, VoteBox Nano systems communicate point-to-
point with a precinct controller. VoteBox Nano thus does
not have the fault tolerance of VoteBox, but it does have
the same cryptographic integrity properties.

Homomorphic ballot encryption allows external
observers to tally votes independently and ultimately val-
idate the decrypted totals published by election officials.
VoteBox uses Elgamal encryption [12], a public-key
cryptosystem. Each voting machine knows the public
key of the election authority and can encrypt ballots for
the authority to decrypt. The homomorphic property
for Elgamal, as in any homomorphic cipher, means that
we can define an “addition” function ⊕ that allows any
party who knows two encrypted values Ek(x) and Ek(y)
to compute Ek(x + y) = Ek(x) ⊕ Ek(y) without knowing
the private key corresponding to k or being otherwise
required to derive the plaintext of x or y.

For a ballot with n candidates, there must then be n
homomorphic counters. In any given ballot, these must be
the encryption of either 0 or 1. The entire ballot will then
be signed by the voting machine, using a conventional
digital signature, before being transmitted on the network.
In this respect, VoteBox Nano faithfully implements the
same cryptosystem as VoteBox, and thus helps guarantee

that votes will be counted as they were cast.

Ballot challenges solve the concern that the homomor-
phic counters for any given ballot may not represent the
intent of the voter, perhaps as a consequent of malicious
code running on the voting machine. VoteBox adapts a
technique from Benaloh [3], where the voting process
follows the usual series of dialogs. After the voter
accepts the summary screen, two things happen. First,
the machine computes the encrypted ballot, as above, and
transmits it on the network. Second, the voter is asked
whether he or she wishes to “challenge” the ballot or
“cast” it. If the voter challenges, the machine must reveal
the plaintext on the network, where everybody can see it,
verify it, and know not to include it in any election tally.
(In the case of Elgamal encryption, the actual encryption
operation includes a random number. When challenged,
VoteBox publishes the random numbers used, which is
sufficient to verify the encryption was correct.) If the
voter casts, then the machine announces this fact and
erases its internal plaintext.

Ballot challenges force the voting machine to commit
to the ciphertext of the vote without knowing whether the
voter will actually cast the vote or may be deliberately au-
diting the machine for correctness. If the machine cheats,
it can then be caught in a legally convincing fashion (e.g.,
an auditor may have witnesses and video cameras). If
a normal voter accidentally challenges a ballot, or if a
malicious VoteBox were to deliberately challenge ballots
that the voter wanted to cast, those specific ballot will not
be counted, this fact will be observed by the poll workers
who can offer the voter a chance to vote again.

In this respect, VoteBox Nano faithfully implements
the same challenge system as VoteBox, and thus helps
guarantee that votes will be recorded they were intended.

Privacy Voter privacy, with VoteBox, depends on the
strength of the cipher and the election authority’s key
management, as the ciphertext ballots are recorded (and
timeline entangled) in the order that they were cast. If the
election authority’s secret key was compromised, then in-
dividual votes could be decrypted and voter privacy could
be compromised. Furthermore, the random numbers used
as part of the Elgamal cryptosystem offer a subliminal
channel in which a malicious voting machine might
leak information about a voter’s plaintext preferences.
VoteBox offers no particular protection against such
attacks. VoteBox Nano, however, uses a combination
of attestations as to the platform’s authenticity along
with a hardware-based true random number generator.
Ultimately, our system relies on “true” randomness from
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our FPGA’s configuration. An alternate approach is to
construct a protocol where multiple untrusted machines
can collaboratively derive good random numbers [16],
which could fit in the networked communication model
of VoteBox, but doesn’t match as well to VoteBox Nano.
Randomness is described further in Section 5.

4 Implementation platform
For any hardware design to survive in today’s highly
competitive economy, the total cost should be as low
as possible while satisfying all the design requirements.
Modern general-purpose CPUs are available at a wide
variety of price points, but a computer is more than
just a CPU. Designers must often decide whether to
use off-the-shelf special purpose chips, such as graphics
processors, whether to emulate such devices in software
on a general-purpose CPU, or whether to engineer custom
application-specific integrated circuits (ASICs).

A common rule of thumb is that ASICs are only
economically viable if over a million of any given ASIC
will be manufactured. In the case of a voting machine
design, it’s unlikely that there will ever be sufficient
demand for such a large volume of custom parts. In such
circumstances, field-programmable gate arrays (FPGAs)
have grown in popularity for a variety of reasons. FPGAs
contain a variety of hardware resources and allow the
designer to connect them together with great design flexi-
bility. Modifying an FPGA’s firmware configuration is no
more difficult than recompiling and reloading software
on a traditional computer. Modern FPGAs are sufficiently
large and fast as to be able to implement “soft CPUs” and
a variety of other resources. FPGAs are also valuable for
prototyping designs that will later be moved to custom
ASICs, allowing designers to get a design right before
investing the resources to produce the ASIC. (Kuon and
Rose [22] discuss these tradeoffs in more detail.)

For our work, we used a Xilinx Spartan-3E 500 Starter
Kit, which is widely available and one of the cheapest
platforms. Currently, the development board is around
$150 and the chip (XC3S500E-4FGG320C) is around
$31 ([44, 2]). When purchased in larger quantities, prices
will be significantly lower. (Xilinx makes much larger,
faster, and more expensive parts, some including an
onboard CPU in “hard” logic as well.)

The essential elements of a modern FPGA are config-
urable logic blocks (CLBs). In our Xilinx chip, each CLB
has four “slices.” Each slice has two four-bit lookup tables
(LUT), externally configurable, with one-bit of output.
Half of the slices (“slice-M’s”) additionally have a 16-bit
shift-register and a 16-bit RAM cell. Also on-chip are

Resource Amount
Equivalent gates 500k
CLBs 1164
Slices 4656
Total Distributed RAM 74 kbits
Total Block RAM 360 kbits
18 bit signed multipliers 20

Table 1: Xilinx Spartan-3E FPGA resources.

input-output blocks (IOBs), 18-bit hardware multipliers,
blocks of 18 kbits of RAM, and the interconnections that
allow CLBs and other chip resources to be wired together.

Just as software designers have high-level languages
and compilers that abstract away many of the low-level
details, so do FPGA designers. FPGA configurations
are developed in various hardware description languages
(HDLs) such as Verilog and VHDL. These are then
compiled into bitstreams which the FPGA can load.

There are two methods for loading a bitstream, using
the JTAG port1 to directly program the chip and uploading
the bitstream to a Flash RAM chip, also though JTAG,
and setting the on-board jumpers such that the FPGA
boots from the onboard Flash.

One useful property of the Xilinx chip we use is that
it allows JTAG commands while the chip is running.
This allows us to stop and restart the chip and to read
and modify the configuration of both the FPGA and its
surrounding memory chips. When using the MicroBlaze
soft CPU [43], the debugger uses this functionality to
remotely inspect and modify the machine’s state.

Some more advanced FPGA chips (such as the Xilinx
Virtex-5 series, but not the chip we use in this work) can
alter a part of their configuration, while the chip is still
active, so that a hardware module (which is not needed
anymore) can be substituted with another, which results
in a dynamic configuration increasing the efficiency of the
chip usage. This property is called module-based partial
reconfigurability. If VoteBox Nano were to be ported
to such an FPGA, this functionality would potentially
complicate the security design. (See Section 6 for more
on this.)

1Joint Test Action Group (JTAG) is the common name used
for the IEEE 1149.1 Standard Test Access Port and Boundary-
Scan Architecture, used for test access ports on printed circuit
boards to talk to the individual chips. More details at Wikipedia:
http://en.wikipedia.org/wiki/Joint_Test_Action_Group
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Figure 1: The Xilinx Spartan-3E 500 motherboard running
VoteBox Nano. The left half of first line of the LCD display
is showing how many seconds the FPGA is active in hex;
while the current number of people who have voted is shown
on the the right half. The second line is the random number,
which is used to detect tampering (see Section 6.2).

5 Implementation details
In the process of shoehorning VoteBox into our Xilinx
Spartan-3E 500 starter kit, we had to make a number of
design decisions to simplify the system.

5.1 Computation

We initially considered implementing the VoteBox
application purely on the hardware. This would have
been error-prone and unwieldy. Instead, we decided to
use a MicroBlaze soft CPU (see Section 4) with hooks
that make it easy to access custom logic elsewhere in
the FPGA. This allowed us to reimplement a simplified
VoteBox in a straightforward manner.

We didn’t want to rely on the soft-CPU for the
heavy-weight modular exponentiation of our Elgamal
crypto system. With a ballot having 30 or more issues,
each requiring the encryption of two or more counters,
slow cryptography could well be noticeable by the user.
Luckily, our chip has dedicated multipliers in hard
logic. Our design, based on earlier work [30], performs
multi-precision Montgomery multiplication [27] using
a technique called “coarsely integrated operand scan-
ning [21].” We used eight 16x16 bit multipliers in parallel,
which provides sufficient performance while having a
low slice count. Our multiplier circuit runs at 100 MHz

Figure 2: Screenshot of the VoteBox Nano user interface.

(whereas the MicroBlaze soft CPU and other modules
in the design run at 50 MHz) and performs one 1024-bit
modular exponentiation operation in 20 ms on average.

5.2 User interface

We initially wanted to implement a general-purpose,
full-color frame buffer. It quickly became apparent that
this would consume too much RAM and considerable
chip real-estate, particularly if we wanted a reasonably
high screen resolution. Instead, we adopted an off-the-
shelf character-graphics module which can display 80x60
characters at a time in any of 8 colors [31]. This module
outputs an analog VGA signal at 640x480 pixels. (There
is no DVI output on our board, so there is no easy way
to directly drive a digital monitor.) Figure 2 shows the
VoteBox Nano in action. While certainly not as visually
attractive as a color bitmap graphics system, particularly
for supporting non-Latin character sets, this design
eliminates the need for any graphics libraries.

For user input, we used the on-board rotary dial and
buttons. The dial gives us one-dimensional navigation
through the user-interface. One button then allows the
user to mark the currently selected item on the screen.

The VoteBox Nano is designed to be visually similar
to the original VoteBox, although they use different ballot
definitions. The ballot definition file used by VoteBox
Nano has X,Y coordinates and the color of the text shown
on each screen, simplifying the GUI code substantially.
The advantages of having pre-rendered GUI are covered
by Yee et al. [45].

As discussed in Section 3, the progression of the
VoteBox Nano user experience mimicks that of the full
VoteBox. The voter is presented with one screen per race.
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Figure 3: TRNG with ring oscillators.

Figure 4: TRNG post-processing unit.

After selecting a candidate, the voter can advance to the
next page. At the end, the voter is shown a summary
screen from which any particular race can be directly
selected, giving the voter an opportunity to correct errors.
If the voter indicates that the ballot is correct, then the
encrypted values for every race are written to the serial
port. The voter then receives one final question asking
if they wish to challenge the ballot or cast it. If they cast
the ballot, this is noted on the serial port and the voting
session is complete. If they challenge the ballot, all of the
random numbers used in the cryptography are written to
the serial port. This allows an auditor to decrypt the votes
and validate that the voting machine is not tampering with
them. This process is very similar to the VoteBox’s ballot
challenge mechanism, based on Benaloh’s design [3].

5.3 Random number generation
Every Elgamal-encrypted value in our system requires
a distinct random number. If the algorithm for random
number generation is weak, the numbers could be pre-
dicted by an adversary, allowing the adversary to decrypt
the ciphertexts. Clearly, a voter’s privacy relies on the
unpredictability of the random numbers.

As we are using an FPGA, we can generate truly

random numbers, not just pseudo-random sequences. To
accomplish this:

• The implementation must be purely digital for practi-
cality. So external clocks or any analog components
must be avoided. There is an analog-to-digital
converter on our board which can be used as an
entropy source, however its behavior will vary as the
environment around it changes.

• There are several algorithms that utilize coupled
oscillators for random number generation [40, 29].
However, they will run correctly only if the oscillators
are implemented with phase locked loops (PLLs). Our
target board, the Xilinx Spartan-3E 500, only has a
Delay Locked Loop (DLL) based oscillator, so these
algorithms will not work.

• The algorithm must provide random bits with a reason-
able speed, while maintaining a very low slice count.
We cannot afford to spend much chip real-estate on
random number generation.

5.3.1 Random generator implementation

Given the above constraints, we chose to implement
Schellekens et al. [36]’s circuit for true random number
generation (TRNG). The circuit consists of ring oscilla-
tors, running at frequencies with small differences. Our
entropy source is the jitter of each oscillator.

Figure 3 shows our noise source. Here l denotes the
number of the inverters in each ring, k is the number
of ring oscillators, n[t] is the noise, fs is the sampling
frequency, s[t] is the digitized noise. The XOR gate at the
end harvests the jitter entropy, so even if only one of the k
oscillators provide real random output, the final outcome
will be random. Schellekens claims that using shorter
oscillator rings (e.g., l = 3) will result in more jitter per
period and will therefore have a higher entropy; moreover
it will decrease the area requirements of the circuit. We
also confirmed that shorter rings have less stable frequen-
cies which we directly measured with an oscilloscope
(see Table 2). In their minimal design, Schellekens uses
110 ring oscillators; our implementation has 128 to be
safe while still maintaining a small area. The flip-flop
latches the output of the XOR tree at 25 MHz.

Subsequently, every TRNG needs a post processing
unit (see Figure 4) to increase the entropy by decreasing
the bias in the random bits. With two shift registers of
different size (again borrowing from Schellekens, the first
shift register is 240 bits and the second register is 16 bits),
we compress the output of the random number generator,
which increases entropy while decreasing the throughput.
The XOR taps of the first register are selected according
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l=3 l=5 l=7 l=9 l=11 l=13 l=15
250 MHz 155 MHz 106 MHz 81 MHz 69 MHz 59 MHz 52 MHz

Table 2: Measured frequencies with different oscillator lengths.

to a [256,16,113] cyclic code [9]. For the first 240 cycles,
the second register is disabled and the first register is
filled entirely with the random bits from the source. In
the next 16 cycles, we continue to feed the first register,
while the second register is filled with the XOR output of
the first register. At the end of the 256th cycle, the random
word (r[t]) of 16 bits is ready. This means our TRNG
outputs random bits at around 1.56 Mb/s. For each new
random word, all old bits will be replaced with the new
ones, ensuring that this is a stateless machine.

In our implementation of Schellekens’s TRNG, we
have to violate two digital design rules: First, we create
combinational loops and second, we insert redundant
elements to the circuit (having multiple inverters in the
same path). To overcome these problems in the regular
design flow, we have to instantiate Look-Up Tables (LUT
primitives) as inverters in the Verilog source code, and
manually place them into the FPGA in a pre-defined
fashion using the user constraints file (UCF), so that each
ring oscillator has similar path delays. Moreover, we
have to prevent the Xilinx synthesis tool from optimizing
away the seemingly redundant gates.

5.3.2 Randomness evaluation

As the TRNG is a critical component in our design, we
want to make sure that it is unbiased and unpredictable.
To evaluate the strength of our TRNG implementation,
we captured 860 MB of its output for subsequent analysis.

We first analyzed our random data with the
DIEHARD [26] random test suite, which has 15 in-
ternal tests. The output of each test is normalized into
one or more p-values that should be distributed uniformly
between 0 and 1. If any of them yield a p-value that’s
very close to zero or very close to one (i.e., to six digits
of accuracy), then that would be indicative of a problem.
In practice, our TRNG passed all of these tests.

DIEHARD has not been updated since 1997. We then
used Dieharder [5], which is more comprehensive and
up-to-date. The Dieharder suite is composed of 107 tests
and provides four different scores for each test (passed,
possibly weak, poor, failed). We got 102 “passed,” 3
“possible weak” and 2 “poor” from the test suite with the
default parameters. The reason why our extracted random
data could not pass all the tests is the larger data size
requirement of these tests. In one case, a test rewound our

sample file 20 times, which of course affects the outcome.
When we changed the parameters to avoid this rewinding,
we passed every test.

We then used ENT [41], which conducts a variety of
statistical analyses. Its results can be summarized as
follows:

• Entropy = 8.000000 bits per byte.
• Optimum compression would reduce the size of this

880477629 byte file by 0 percent.
• Chi square distribution for 880477629 samples is

255.63, and randomly would exceed this value 47.71
percent of the times (numbers near 50% are very
random, while numbers close to 0% or 100% are not
random).

• Arithmetic mean value of data bytes is 127.5016 (127.5
= random).

• Monte Carlo value for Pi is 3.141483357 (error 0.00
percent).

• Serial correlation coefficient is -0.000028 (totally
uncorrelated= 0.0).

As a final test, we attempted to compress the output
of our random number generator with the gzip and bzip2
compression utilities, using the “-9” flag to get the best
possible compression. Both utilities yielded output larger
than the input (0.016% larger for gzip and 0.44% larger
for bzip2).

All these tests suggest that our TRNG is doing a good
job of generating random numbers.

5.4 Modules and design complexity
For the design of VoteBox Nano, we took advantage of
the off-the-shelf modules provided by the Xilinx Platform
Studio (XPS) tool and from the OpenCores collection.
For more specialized operations, we wrote our own
modules and attached them to the system.

Table 3 describes the FPGA space requirements of
each module and how many lines of hardware description
language (HDL) code we had to change to adapt the
module for VoteBox Nano. (Modules we implemented
ourselves will have the same number of lines modified as
present in total.) We did not need to modify the source
code of standard modules like the MicroBlaze CPU and
its debugger, the DDR-RAM controller, or the RS232 and
push button controllers. However we needed to remove
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Module Slices HDL Custom
lines lines

Crypto accelerator 2119 760 760
MicroBlaze CPU 1390 N/A 0
DDR-RAM interface 1103 N/A 0
Random numbers 637 132 132 (HDL)

+ 388 (UCF)
VGA 352 2297 281
RS232 151 1228 0
Debug 142 1177 0
Dot-matrix display 115 150 150
Push buttons 64 35 0
Rotary knob 35 52 52
Other modules 1687 N/A N/A
Total 7795 5831 1763

Table 3: Slice count and source code length of each FPGA
module.

the CPU’s instruction and data caches to fit the design
into the minimum possible chip space. For the security
critical components, such as the modular exponentiator
and TRNG, we wrote our own code from scratch. We
similarly needed to write our own drivers for the rotary
controller and the LCD dot matrix display. We used
an off-the-shelf VGA module [31], only modifying its
bus structure to make it compatible with our design
and fine-tuning it to reduce its area requirements. For
our TRNG, as discussed in Section 5.3.1, we had to
define both the gate layout (with HDL) and create a user
constraints file (UCF) to defeat the logic optimizer.

The overall device usage is shown in Table 4. Note that
the total slice count is less than the sum of the slices that
each module requires (see Table 3), because the modules
do not always fully utilize the slices. The Xilinx synthesis
tools will allow separate modules to share resources
within a given slice.

Aside from the FPGA configuration, we needed to
write C code to be used by the MicroBlaze CPU to
present the UI and orchestrate the steps of the voting
machine. The MicroBlaze CPU, even without caches,
is more than sufficiently fast for our performance needs,
particularly given that the slow cryptographic operations
are handled in custom hardware.

Table 5 shows the amount of C source code written
for each of VoteBox Nano’s major functions. The GUI
functions are used to interact with the VGA display. We
similarly needed a wrapper to operate our modular expo-
nentiation unit, implementing the Elgamal cryptosystem.
We wrote our own code for DSA, in which we used an
off-the-shelf SHA1 function written by Niyaz [28], and

Resource Used Total Used %
Slice 4482 4656 96
Slice Register 5060 9312 54
Slice LUT 6760 9312 72
Hardwired Multiplier 12 20 60
Block RAM 15 20 75

Table 4: FPGA resource utilization.

Code Segment LOC Semicolons
GUI functions 86 47
Ballot read/write 169 99
Crypto 215 155
DSA 205 159
State machine 321 220
Total 996 680

Table 5: C code size.

an MPI (multi precision integer) library implemented by
Fromberger [14] for performing operations beyond the
modular multiplication, which we support in hardware.
A modest 321 lines of code implements the bulk of the
VoteBox Nano state machine. The resulting machine code
is approximately 122 KB, including all the necessary
library support. The motherboard includes 32 MB of
DRAM, which provides ample room for our heap and
stack segments, which will grow linearly in total with
respect to the number of races.

6 Tamper detection
Threat modeling for a system like VoteBox Nano is an
unusual task. Given the end-to-end cryptographic mech-
anisms, we’re confident that we can detect a corrupted
machine that is trying to attack the integrity of the votes.
The threat analysis that appears in the original VoteBox
paper [33] applies to VoteBox Nano as well.

Consequently, this paper will only consider threats that
the original VoteBox made no attempt to address: attacks
on the privacy of the voter. These could involve attempts
to weaken the random number generation; if external
observers can predict the random numbers, then they can
decrypt the ballots. Attacks could also involve encoding
voters’ preferences directly into the random number it-
self, or otherwise leaking information about the plaintext
values of the vote (e.g., by flashing the LEDs). We could
also imagine that a clever attacker might try to modify
the UI’s behavior in an attempt to confuse the voter. Any
such attack would require tampering with the FPGA
configuration or the software running on the soft CPU.
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As discussed in Section 2, what we fundamentally need is
a mechanism whereby a VoteBox system can attest to the
correctness of its internal state. Unlike other attestation
architectures, however, we want some aspect of the attes-
tation to be directly visible to the voters and poll workers.

6.1 JTAG

Rather than using a dedicated TPM circuit (although one
could certainly be used here as well), we arrived at a
much simpler solution that works perfectly for VoteBox
Nano, even though it may not be generally applicable to
other FPGA attestation problems.

We observe that any attempt to reconfigure the FPGA
fundamentally requires using the JTAG interface, either
directly from the JTAG pins on the motherboard or
through the USB management port. JTAG commands are
used to initialize the FPGA’s configuration and to load
the software for the soft CPU. In short, JTAG can do
just about anything, including being a vector for security
attacks [20]. Rather than trying to disable the JTAG
interface and lock down the FPGA configuration, either
in whole or in part, we instead want to ensure that we can
detect whether any JTAG commands have been issued
during the election day, and we want to be able to use
JTAG’s ability to extract the state of the FPGA as a mech-
anism to validate that the state is correct. In fact, we could
imagine a commercial VoteBox Nano system extending
the JTAG pins outside the box, to where they could be
accessed without requiring the case to be opened.

If we allow that our attacker may access the JTAG
pins, then we clearly must be able to detect when this has
occurred. At that point, why not have our threat model
allow for the attacker to modify the hardware arbitrarily?
It’s certainly the case that an attacker could substitute
a different board inside the voting machine that looks
like the original with an evil FPGA chip; such an altered
system could externally appear unmodified, yet it could
ignore or emulate the JTAG commands it receives. An
alternative attack can target the off-chip memory that
stores plaintext vote array, because it is pretty much
vulnerable to any external probing attacks.

For purposes of this paper, we’re willing to posit that
an attacker is only capable of soft attacks. Our attackers
may well connect to any external connector and issue
commands or eavesdrop on serial port traffic, but they
cannot eavesdrop on internal chip buses, desolder and
replace chips, or physically damage the hardware. This is
probably a reasonable assumption, since attackers want to
make sure they don’t leave behind any physical evidence
of their attacks. Any detection of hardware modifications

would undermine the effectiveness of an attack. (Also,
we note that every chip on our board is surface mounted;
replacing a chip requires specialized equipment.)

6.2 JTAG tamper detection

As mentioned in Section 4, our Xilinx motherboards have
an onboard LCD display which can show two rows of 16
characters at a time. In a production VoteBox Nano, this
secondary screen could be mounted such that it’s visible
to the voter. When the system is reset, our configuration
will generate a random number and place it on the screen.
Similarly, every time any JTAG command is processed,
we will get a new random number and put it on the
screen. (We were able to hook into the JTAG input pins,
triggering our own logic when commands are sent.) The
random number appears on the bottom line of the display
in Figure 1.

When the VoteBox Nano is powered on for the day,
there may be some JTAG commands sent by the su-
pervisor to initialize the voting machine, but after the
initialization is complete, the machine should be powered
up and running by itself all day with the same, exact
random number displayed. Poll workers can periodically
inspect the machines to verify that, in fact, the same
number is being displayed as was there in the morning.
(A production system would also include some kind
of battery backup to ensure that power failure does not
compromise the system.)

Naturally, an attacker using the JTAG commands could
reconfigure the FPGA and break the link between JTAG
commands and the random number display. However, if
the FPGA was left with this non-standard configuration
at the end of the day, then JTAG commands to extract the
FPGA’s state would return proof of the compromise. If,
on the other hand, the attacker returned before the day
ended to reinstall the proper FPGA configuration, then a
fresh random number would again be assigned to the dis-
play, and the attacker would be unable to control its value.
As such, there is no way for an attacker to compromise
the state of the voting machine, then subsequently return
it to its proper state without being detected. The only
requirement is that poll workers be diligent in recording
the random number at the beginning of the voting day and
verifying it at the end. Also, at the end of the day, prior
to powering-off the machines, poll workers should use a
tool to validate the FPGA configuration (see Section 6.3).

To throw off suspicion, an attacker might try to issue
a JTAG command that addresses the random number
display directly, leaving everything else in the FPGA
alone, perhaps after returning a compromised VoteBox
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Nano back to its proper configuration. In order to do this,
the attacker would first need to pause the FPGA, then
modify the display, then resume the FPGA. This final
command will trigger our logic to sample the random
number generator again, thus overwriting the attacker’s
desired value with a random one.

While we are generally excluding physical attacks
against the hardware, such as desoldering chips or
replacing the motherboard in its entirely, the simplest
attack against our system would be to simply cut the data
pin between the motherboard and the LCD display. The
display would continue showing the same number but
would not receive commands to update it. The simplest
defense is to continuously play an animation of some
sort. If the line is cut, the animation will stop.

The only remaining JTAG attack, then, is a denial of
service attack. An attacker could simply hit the reset
button or pull the power. When the VoteBox Nano
returns to its operational state, it will have a fresh random
number on the display. The poll workers’ procedures,
once they detect this, could be to take the voting machine
out of operation, or they could be to audit the FPGA
configuration. Again, since this requires issuing JTAG
commands, this will change the random number.

If a production VoteBox Nano’s JTAG interface was
externally available but kept under a tamper-sealed or
key-locked door of some kind, the process of sealing and
unsealing the door would be analogous to procedures
used to manage present-day DRE voting systems. Also,
by keeping the JTAG pins away from normal voters, this
would help defeat simplistic denial of service attacks.

6.3 Verification and other attacks

We use Xilinx’s iMPACT tool to verify our FPGA
configuration by examining the contents of the lookup
tables (LUTs) and the inter-connection matrix. iMPACT
ignores changes in the flip-flops, because this state (e.g.,
the CPU’s registers) changes while the system is running.

Do these limitations leave room for an attacker to hide
modifications? Recall that the random number display
is tied to the use of the JTAG interface in the VoteBox
Nano design. Even if an attacker were to issue a JTAG
command to modify FPGA state which are passed over
by iMPACT, such as flip-flops or the external DRAM, it
would still change the random number display as above.

One final attack possibility might be a buffer overflow
against the code running on the soft CPU. Since VoteBox
Nano is implemented in C, it may well have buffer over-
flow vulnerabilities (whereas VoteBox is implemented in
Java, and thus is robust against such attacks). Perhaps the

attacker could inject malformed packets into the protocol
spoken between the VoteBox Nano and the supervisor
console and be able to compromise the software running
on the soft CPU without triggering the random counter.
While we did not explicitly engineer VoteBox Nano to
be robust against such attacks, the codebase is small and
simple enough to be amenable to either mechanized or
manual code auditing.

7 Conclusions and Future Work
We have presented the design and prototype implemen-
tation of VoteBox Nano, an minimalist FPGA-based
voting system with cryptographically strong, end-to-end
guarantees that protect the integrity of votes. VoteBox
Nano leverages the security properties of FPGAs to
generate truly random numbers for its cryptographic
operations and to safely enable the use of the JTAG
interface to audit the FPGA configuration for correctness.

Future work could go in many directions. FPGAs are
often used to prototype designs before building custom
ASICs. VoteBox Nano could well be implemented with
a custom ASIC, eliminating the risks of JTAG tampering
altogether. By prototyping the system first in an FPGA,
we can convince ourselves we have the right feature set
before embarking on an ASIC design project (assuming
it was economically feasible, in the first place).

Alternatively, we could consider the use of a larger
FPGA with more resources and a faster clock rate,
allowing us to use full-color bitmap graphics rather
than characters, and also allowing us to implement the
networking and replication aspects of VoteBox that were
omitted in order to fit within the smaller FPGA.
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