
International Journal of Soft Computing and Engineering (IJSCE)  

ISSN: 2231-2307, Volume-3, Issue-2, May 2013 

264 

Study of Variation in TSP using Genetic Algorithm 

and Its Operator Comparison 
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Abstract—  The Purpose of this Paper is to give near optimal 

solution in terms of quality and computation time. By 

implementing Genetic Optimization Technique, the effectiveness 

of the path has been evaluated in terms of fitness function with 

the parameter such as tour length. In this research work, we see 

different variation in traveling salesmen problem using Genetic 

Algorithm Technique. Considering the Limitation of Nearest 

Neighbor we find that the number of iteration and resulting time 

complexity can be minimized by using Genetic approach. We also 

compare the operator of pursued approach which give the best 

result for finding the shortest path in a shortest time for moving 

toward the goal. Thus the optimal distance with the tour length is 

obtained in a more effective way. 

 

Index Terms—TSP, Fitness Function, Genetic Algorithm, Nearest 

Neighbour, GA operators. 

INTRODUCTION 

A TSP is a ‘NP-hard’ problem first formulated as a 

mathematical problem in 1930,has been receiving 

continuous and growing attention in artificial intelligence, 

computational mathematics and optimization in recent years. 

TSP can be described as follows: Given a set of cities, and 

known distances between each pair of cities, the salesman 

has to find a shortest possible tour that visits each city 

exactly once and that minimizes the total distance travelled. 

The mathematical model of TSP is described below: 

Given a set of cities C = {C1, C2, C3… Cn}, the distance of 

each pair of cities is d(Ci,Cj).The problem is to find a route 

[C1,C2,C3…Cn] that visits each city exactly once and 

makes f(x)=minΣdijxij to have a minimum value. Where, 

f(x) is a fitness function i.e it evaluates each chromosome 

and sets the numeric value to it, which represents the quality 

of the chromosome – e.g. of the solution, which the 

chromosome represents. 

Fitness function is then used for evaluating the population 

and preferring the higher quality of individuals for mating 

and creating offspring. For TSP, the fitness function of 

chromosome is computed at the total distance of the 

represented solution. But even here, computing of the cost 

of solution is not so easy and could be research, as the total 

distance equation does not have to be the best fitness 

function. As TSP algorithm tends sometime to create quite 

long distance connections, root mean square (RMS) value 

could be used to compute the cost. RMS value is just sum of 

square roots of distances between the cities in path which is 

encoded in chromosome. In this way, we could prefer more 

expecting solution of (in distances) 2 3 2 2 (total distance=9, 

RMS cost 21) against chromosome 1 2 1 5 (total distance 9, 

but RMS distance 31). 
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For more difficult applications, the fitness function could be 

defined in complex abstract and non exact way that only 

tries to compare the quality of chromosomes against each 

other, but fitness function by itself does not return any 

meaningful information. 

TSP is the problem of the permutation of n cities. For n 

cities, there should be n! Different permutations. For the 

symmetric TSP, each route has two different ways to 

represent. Therefore, the size of its search space is: S 

=n!/2n= (n-1)!/2. In this paper,we are trying to solve the 

problem with various algorithms.i.e. Genetic Algorithm 

(GA), with the advantages of robustness, flexibility and 

versatility, has been widely studied to solve large-scale 

combinatorial and optimization problems[6][7]. 

Genetic algorithms[8] emulate the mechanics of natural 

selection by a process of randomized data exchange. They 

were inspired by the behavior of natural systems, the 

terminology used to describe them is a mix from both 

biological and computer fields. A genetic algorithm 

manipulates strings of information, usually called 

chromosomes. These encode potential solutions to a given 

problem. Chromosomes are evaluated and assigned a score 

(fitness value) in terms of how well they solve the given 

problem according to criteria defined by the programmer. 

These fitness values are used as a probability of survival 

during a round of reproduction. New chromosomes are 

produced by combining two (or more) parent chromosomes. 

This process is designed to lead to a succession of fitter 

offspring, each encoding better solutions, until an acceptably 

good solution is found[4]. 

RELATED WORK 

Greedy Algorithms[5]  are a method of finding a feasible 

solution to the traveling salesman problem. The algorithm 

creates a list of all edges in the graph and then orders them 

from smallest cost to largest cost. It then chooses the edges 

with smallest cost first, providing they do not create a cycle. 

The greedy algorithm gives feasible solutions however they 

are not always good. 

The Nearest Neighbor algorithm[5] is similar to the greedy 

algorithm in its simple approach. We arbitrarily choose a 

starting city and then travel to the city closest to it that does 

not create cycle. We continue to do this until all cities are in 

is, the edge en1 where n is the number of cities) can be quite 

large. The nearest neighbor algorithm was one of the first 

algorithm used to determine a solution to the travelling 

salesmen problem. In it, the salesman starts at a random city 

and repeatedly visits the nearest city until all have been 

visited. It quickly yields a short tour, but usually not the 

optimal one.  

These are the steps of the algorithm: 

1) Stand on an arbitrary vertex as current  vertex. 

2) Find out the lightest edge connecting current vertex and 

an unvisited vertex V.  

3) Set current vertex to V.  

4) Mark V as visited.  
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5) If all the vertices in domain are visited, then terminate.  

6) Go to step 2.  

The sequence of the visited vertices is the output of the 

algorithm The nearest neighbor algorithm is easy to 

implement and executes quickly, but it can sometimes miss 

shorter routes which are easily noticed with human insight, 

due to its "greedy" nature. As a general guide, if the last few 

stages of the tour are comparable in length to the first stages, 

then the tour is reasonable, if they are much greater, then it 

is likely that there are much better tours. Another check is to 

use an algorithm such as the lower bound algorithm to 

estimate if this tour is good enough. 

In the worst case, the algorithm results in a tour that is much 

longer than the optimal tour. To be precise, for every 

constant r there is an instance of the traveling salesman 

problem such that the length of the tour length computed by 

the nearest neighbor algorithm is greater than r times the 

length of the optimal tour. Moreover, for each number of 

cities there is an assignment of distances between the cities 

for which the nearest neighbor heuristic produces the unique 

worst possible tour. 

PROPOSED ALGORITHM 

A. The Concept 

GAs simulate the survival of the fittest among individuals 

over consecutive generation for solving a problem. Each 

generation consists of a population of character strings that 

are analogous to the chromosome that we see in our DNA. 

Each individual represents a point in a search space and a 

possible solution. The individuals in the population are then 

made to go through a process of evolution[1].GAs are based 

on an analogy with the genetic structure and behavior of 

chromosomes within a population of individuals using the 

following foundations: 

[1] Individuals in a population compete for resources and 

mates.  

[2] Those individuals most successful in each 'competition' 

will produce more offspring than those individuals that 

perform poorly.  

[3] Genes from `good' individuals propagate throughout the 

population so that two good parents will sometimes 

produce offspring that are better than either parent.  

[4] Thus each successive generation will become more 

suited to their environment. 

Search Space 

A population of individuals are is maintained with in search 

space for a GA, each representing a possible solution to a 

given problem. Each individual is coded as a finite length 

vector of components, or variables, in terms of some 

alphabet, usually the binary alphabet {0,1}. To continue the 

genetic analogy these individuals are likened to 

chromosomes and the variables are analogous to genes. 

Thus a chromosome (solution) is composed of several genes 

(variables).A fitness score is assigned to each solution 

representing the abilities of an individual to `compete'. The 

individual with the optimal (or generally near optimal) 

fitness score is sought. The GA aims to use selective 

`breeding' of the solutions to produce `offspring' better than 

the parents by combining information from the 

chromosomes. 

The GA maintains a population of n chromosomes 

(solutions) with associated fitness values. Parents are 

selected to mate, on the basis of their fitness, producing 

offspring via a reproductive plan. Consequently highly fit 

solutions are given more opportunities to reproduce, so that 

offspring inherit characteristics from each parent. As parents 

mate and produce offspring, room must be made for the new 

arrivals since the population is kept at a static size. 

Individuals in the population die and are replaced by the 

new solutions, eventually creating a new generation once all 

mating opportunities in the old population have been 

exhausted. In this way it is hoped that over successive 

generations better solutions will thrive while the least fit 

solutions die out. 

New generations of solutions are produced containing, on 

average, more good genes than a typical solution in a 

previous generation. Each successive generation will contain 

more good `partial solutions' than previous generations. 

Eventually, once the population has converged and is not 

producing offspring noticeably different from those in 

previous generations, the algorithm itself is said to have 

converged to a set of solutions to the problem at hand. 

Based on Natural Selection: 

After an initial population is randomly generated, the 

algorithm evolves the through three operators:  

1. selection which equates to survival of the fittest;  

2. crossover which represents mating between individuals;  

3. mutation which introduces random modifications.  

1. Selection Operator[2] 

 key idea: give preference to better individuals, allowing 

them to pass on their genes to the next generation.  

 The goodness of each individual depends on its fitness.  

 Fitness may be determined by an objective function or 

by a subjective judgment.  

2. Crossover Operator[3] 

 Prime distinguished factor of GA from other 

optimization techniques  

 Two individuals are chosen from the population using 

the selection operator  

 A crossover site along the bit strings is randomly chosen  

 The values of the two strings are exchanged up to this 

point  

 If S1=000000 and s2=111111 and the crossover point is 

2 then S1'=110000 and s2'=001111  

 

 

S1 0 0  0 0 0 0 

S2 1 1  1 1 1 1 

 

S1' 1 1 0 0 0 0 

S2' 0 0  1 1 1 1 

        Fig. 1. Single point Crossover 

 

 The two new offspring created from this mating are put 

into the next generation of the population  

 By recombining portions of good individuals, this 

process is likely to create even better individuals  

3.   Mutation Operator 

 With some low probability, a portion of the new 

individuals will have some of their bits flipped.  

 Its purpose is to maintain diversity within the population 

and inhibit premature convergence.  
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 Mutation alone induces a random walk through the 

search space  

 Mutation and selection (without crossover) create a 

parallel, noise-tolerant, hill-climbing algorithms  

 

Before 0 1 1  1 1 1 1 0 

After 1 1 1 1 1 1 1 0 

Fig. 2. Mutation operation 

Effects of Genetic Operators 

 Using selection alone will tend to fill the population with 

copies of the best individual from the population  

 Using selection and crossover operators will tend to 

cause the algorithms to converge on a good but sub-

optimal solution  

 Using mutation alone induces a random walk through the 

search space.  

 Using selection and mutation creates a parallel, noise-

tolerant, hill climbing algorithm  

B. The Algorithm GA 

1. randomly initialize population(t)  

2. determine fitness of population(t)  

3. repeat  

1. select parents from population(t)  

2. perform crossover on parents creating 

population(t+1)  

3. perform mutation of population(t+1)  

4. determine fitness of population(t+1)  

4. until best individual is good enough  

IV. EXPERIMENT RESULTS 

Experiments are conducted to evaluate the performance of 

GA. The performance is compared with TSP using NN 

Algorithm. To know the performance of each operators Flip, 

Swap and Slide also are tried to compare. All Algorithm are 

executed 10 times on each 5 dataset. The experiment focus 2 

aspects: quality of solution and computation time. Fig. 3. 

shows the performance of single traveling salesmen with 

closed path, giving the city location, distance matrix, best 

solution history and total distance. .  

A. Variation in TSP with Single Salesmen closed loop using 

GA 

 

Fig. 3. Result of TSP using GA 

B. Variation in TSP with Single Salesmen open loop using 

GA 

 
Fig. 4. Result of TSPO using GA 

Fig. 4. shows the performance result of single traveling 

salesmen problem with open path giving city location, 

Distance matrix, Best solution result and Total distance 

 
C.  Variation in TSP using Nearest Neighbor Algorithm 

 

Fig. 5. Result of TSP using NN 

Fig. 5. shows the performance result of Nearest Neighbor 

giving Total distance with 100 population size 

 

D.  Comparison Table of TSP_GA and TSP_NN  

 
No. of cities TSP_GA TSP_NN 

20  37.4493 49.1623 

40 50.4738 63.9431 

60 64.9016 76.2757 

70 68.7479 79.8404 

90 79.4125 97.4385 

 

 

Fig. 6.Comparison graph of TSP_GA and TSP_NN 
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E.  TSP_GA(Operator Comparison) 
 
No. of 

cities 

Iteration  Pop_si

ze 

GA(Flip

)Dist. 

GA(Swap)

Dist. 

GA(Slide)

Dist. 

30 6000 60 43.3758 50.8658 49.7778 

50 10000 100 56.9020 68.1469 66.1501 

70 14000 140 70.6605 84.1625 78.3081 

90 18000 180 76.8693 112.0468 99.5990 

100 20000 200 87.2720 127.9681 112.3047 

 

Fig. 7. Comparison graph of different GA Operator 

V. CONCLUSION 

Genetic algorithms appear to find good solutions for the 

traveling salesman problem in achieving the goal of 

decreasing computing time by studying different variations 

in it. In this paper, we study Traveling Salesmen problem 

using GA and NN and we find that TSP_GA is giving better 

result. Also, GA involves three operator Selection, 

Crossover and mutation, however it depends very much on 

the way the problem is encoded and which crossover and 

mutation methods are used. We are comparing these 

operators to know the better one in respect of reduce 

computation time and quality of solution. It seems that the 

methods that use heuristic information (such as the matrix 

representation and crossover) perform the best and give 

good indications for future work in this area. 

 

VI. FUTURE SCOPE 

Having compared algorithms used to solve TSP, the 

following limitations should need to persuade in future 

work. Compare algorithms applied to solve multiple 

traveling salesman problem with traveling salesman 

problem using genetic operator and traveling salesman 

problem using nearest neighbor algorithm. We are also 

planning to add timer in my result in order to make 

comparison more efficient because optimal solution leads to 

reduce computation time with efficient solution. 
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