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This paper provides an overview of the Intelligent Bricks project in
progress at IBM Research. It describes common problems faced by
data center operators and proposes a comprehensive solution based
on brick architectures. Bricks are hardware building blocks.
Because of certain properties, defined here, scalable and reliable
systems can be built with collections of identical bricks. An
important feature is that brick-based systems must survive the
failure of any brick without requiring human intervention, as long as
most bricks are operational. This simplifies systemmanagement and
allows very dense and very scalable systems to be built. A prototype
storage server in the form of a 33 33 3 array of bricks, capable of
storing 26 TB, is operational at the IBMAlmaden Research Center.
It successfully demonstrates the concepts of the Intelligent Bricks
architecture. The paper describes this implementation of brick
architectures based on newly developed communication and cooling
technologies, the software developed, and techniques for building
very reliable systems from low-cost bricks, and it discusses the
performance and the future of intelligent brick systems.

Motivation

The Intelligent Bricks project addresses four common

data center problems that surfaced consistently during

many discussions1 between project team members and

customers. From customers, we learned that

� Today’s systems are too difficult to manage. System

management expenses dominate the total cost of

ownership [1, 2].
� Systems should be more scalable and of lower cost. The

three independent scaling parameters are entry cost,

granularity of scaling, and scaling range. The capital

cost of systems today is compared against that of

racks of low-cost, generic personal computers

connected by Ethernet.
� Better environmental parameters are needed. For some

customers, environmental parameters—system floor

space, power, cooling, and noise—are the most

important ones.

� Better reliability and availability are desirable, but not

at any price. The best systems should be much more

reliable and available than any system now available.

However, while data loss events and outages are

extraordinarily expensive for some applications, they

are minor issues for others. Systems should allow

operators to choose their own reliability and cost

tradeoffs.

Brick-based system architectures

At first glimpse, the four problem groups appear to be

completely unrelated—surely there is no relation between

simplifying management and reducing floor space.

However, it turns out that there is a common approach—

brick architecture—that addresses all four problems

simultaneously.

Zen of simplicity

The guiding principle of the Intelligent Bricks project is

the pursuit of simplicity. Simple systems are easier to

explain, easier to build, easier to maintain, and easier to

�Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

1Between 2001 and 2005, these data center issues and the ideas described here were
discussed during some 70 customer visits to the IBM Almaden Research Center.
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use. They reduce errors in design, in production, in

management, and in operation. To make a system simple,

we make it very modular; a system of virtually any size can

be built with identical bricks that encapsulate complex

components but expose only well-defined interfaces.

This simple approach judiciously reduces customer

choices, freeing them from the complexity that arises

when a system grows to become an unmanageable

hodgepodge of multiple components, subsystems, and

interconnections.

The Intelligent Bricks project has created a prototype,

called IceCube, of such a modular, brick-based system.

Figure 1 shows the system, which is a cube of 33 33 3

bricks, and the internal details of a single brick.

Definition of a brick-based architecture

Our principle of simplicity leads to what we call a brick-

based system architecture. There are eight criteria, most

of which should be fulfilled for an architecture to be

classified as brick-based:

1. Hardware is encapsulated into physical units called

bricks. Systems are collections of bricks.2

2. Bricks are indivisible units of system design and may

not be modified or repaired in the field. Conceptually

speaking, bricks are welded shut.

3. All bricks must contain processing, networking, and

storage functionality. The latter may be minimal in a

brick used as a compute engine and very large for

storage-oriented bricks.3

4. Only a small number of different types of bricks

should be needed to build an entire system.

5. Bricks must have long-lived and public interfaces for

software and for the interfaces defining form factor,

power, cooling, and networking.

6. Bricks that are directly interoperable are said to be

members of a brick family.

7. Bricks should use low-cost, commodity components

and should minimize internal redundancy.

8. Any brick in a system may fail, and the system must

continue to operate without noticeable impact as

long as most of the bricks in the system are alive.

This property, called fail-in-place, requires system-

level redundancy and allows maintenance to be

deferred or even eliminated.

These criteria are inspired by a biological analogy;

bricks correspond to cells4 and systems to multicellular

organisms. Any given cell in an organism can die without

detectable consequences; the same should hold for

sufficiently large brick-based systems.

Brick architectures and the problem set

This section provides a high-level summary of the way in

which brick architectures address the four data center

problems. The remainder of the paper elaborates on these

arguments.

Figure 1

(a) IceCube: an operational intelligent brick storage server. (b) 
Internal view of one prototype brick.

(a)

(b)

2Bricks are not required to have the physical shape commonly associated with the
word. For example, a system using blades or 1U servers qualifies as brick-based if the
other criteria are fulfilled. (See the next section.)
3Bricks should not be confused with thin clients managed by a central server.
4There is no relation to the IBM Cell Broadband Engine** processor.
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� Simplified management: In a brick-based system, there

is no need to deal with failed components quickly, if

ever. Physical maintenance is limited primarily to

adding new bricks. The system is easy to configure

because there are only a few parts to deal with. Some

implementations (for example, the prototype),

contain no internal cables, fans, or other failure-prone

items. With the proper software, many routine

configuration tasks can be performed automatically.
� Scalability and lower cost: Scalability is inherent

in a distributed, modular system. In some

implementations, as demonstrated by the prototype,

very high communications bandwidth and dense

physical packaging allow scaling to thousands of

bricks. Brick systems can be low-cost because bricks

may use commodity components. Expensive central

switches are eliminated. A cost disadvantage specific

to storage servers is the fact that there is more

processing power per disk in a brick system than in a

conventional system. This is a tradeoff between

hardware cost and reducing the (high) cost of system

management.
� Better environmental parameters: Brick-based three-

dimensional (3D) systems can be built at extremely

high density. If liquid cooling is employed, thermal

management of data centers is simplified, and floor

space is reduced even further because systems

can be placed close to one another. Fan noise is

eliminated. Liquid cooling also reduces overall

power consumption because pumps consume

less power than fans.
� Better reliability and availability: A detailed study [3]

shows that it is possible to build extremely reliable

storage servers from commodity components using a

high-performance communications network and

software.

Implementation choices for brick architectures

Brick-based architectures allow a wide variety of

implementations; some examples follow:

� Shelves of standard personal computers, each

containing a switch card and software to enable the

functions described in the eight criteria above.
� Racks of 1U or 2U servers, equipped as above.
� Blade servers with appropriate software (provided

that switches are integrated with the blades).
� Bricks stacked to form 1D towers, 2D walls, or 3D

cubes.

The last option deserves explanation. In a distributed

system, three key design parameters are closely

related: system density,5 cooling, and intrasystem

communications performance. It is easier to achieve high

communications performance if the intrasystem distances

are short, which is the case for dense systems. However,

high-density systems imply high power densities and

therefore cooling challenges. One approach is to use low-

power components within dense systems, but such

components invariably provide lower performance than

same-generation high-power components. The Intelligent

Bricks project takes a different approach by introducing a

new cooling system that can handle extreme power

densities [4].

Cooling is now one of the most difficult problems in

modern data centers, because the heat flux of modern

CMOS processor chips is as high [5] as those of the most

advanced bipolar chips ever used in water-cooled

mainframes. For representative high-performance

systems, the heat load per square foot of system area has

increased from 800 W/ft2 for an IBM eServer* z900

(2000) to 3,000 W/ft2 for an Egenera BladeFrame**

system (2004). A study of numerous systems shows

that the heat load for high-end servers has increased

exponentially since 2000 [6]. The growth rate is forecast to

slow down only because data centers cannot handle

higher heat loads. This has profound implications for the

future of the semiconductor industry, which used to

measure progress primarily by improved performance.

It has also greatly reduced the effective density of data

centers, because racks must be spaced far apart to allow

sufficient airflow. At a rack heat load of 500 W/ft2, air-

cooled racks should cover no more than 12% of the floor

space, down from 30% in typical data centers today.

This difficult situation has prompted us to create a new

thermal architecture, inspired by nuclear reactor designs

and described in detail in the section on thermal

architecture later in this paper. This allows space-filling

stacking of bricks to form a 3D cube of very large

dimensions (thousands of bricks). It should be

emphasized that we see this effective thermal architecture

as complementary to efforts to improve the energy

efficiency of semiconductor devices, not as a replacement.

The thermal problem facing the computer industry is so

severe that the industry needs all the help it can get.

Since the bricks touch one another, wires or fibers

can be eliminated for interbrick communication. This

simplifies installation and maintenance and enables very

high-performance communication at low cost. Details are

discussed in the section on communications and couplers.

Bricks must cooperate closely in order to create a reliable

system. This is true in normal operation and after a brick

failure. In the latter case, large amounts of state may have

to be transferred. For example, if a brick contains just

5For a storage server, system density may be measured in units of storage capacity/
floor space.
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1 TB of data and fails, at least the same amount of data

must be transmitted within the system to create a new

redundant representation of the same data. It takes

2.2 hours to transfer 1 TB over a 1-Gb/s link. During

this time, the system is vulnerable to additional brick

failures, with the degree of vulnerability dependent on the

details of the data representation. These numbers give an

impression of the enormous amount of bandwidth

required to build highly reliable, distributed systems.

More detail is given in the section below discussing the

prevention of data loss with dRAID (distributed

redundant array of independent disks). In general, a high-

performance communication system makes the task of

creating distributed applications much easier and less

likely to fail because of problems such as congestion and

timeouts. In addition, scalability over a wide range also

requires high communication performance.

IceCube—prototype hardware implementation

Storage server prototype

The IceCube prototype shown in Figure 1 is a 27-brick,

26-terabyte system. It was developed by the IBM

Almaden Research Center in collaboration with IBM

Engineering & Technology Services (Mainz, Germany),

the IBM Thomas J. Watson Research Center, and many

external vendors. IceCube successfully implements the

ideas presented above and should be seen, not as a

protoproduct, but as a proof of concept for brick-based

architecture implemented as a 3D cube.

Bricks

Following the brick architectures definition, each brick

contains a switch, a central processing unit (CPU), and

storage for the software and user data. The specific

choices made concerning the CPU, operating system

(OS), and other components are incidental, as long as the

desired brick interfaces and performance requirements

are met.

Figure 2 shows the electronics of each brick. At the core

of the brick is an eight-port Ethernet switch chip which

supports 1 Gb/s per port. Six of its ports are connected to

communications devices on the surfaces of the brick.

These are newly invented system-level capacitive couplers,

described below. The seventh port is connected to the

CPU by an Ethernet-PCI (Peripheral Component

Interface) network interface chip (NIC).

It is known that Transmission Control Protocol/

Internet Protocol (TCP/IP) processing in software puts

substantial loads on the CPU [7]; this is in addition to

the storage software load itself. Therefore, a high-

performance x86 processor was chosen, supported by a

chipset that was widely used in 2002 and is based on an

integrated Northbridge/Southbridge controller chip

(Silicon Integrated Systems SiS735). The CPU consists of

32-bit AMD Athlon** XP x86 processors with a worst-

case die heat flux of about 50 W/cm2.

In each brick are 12 laptop 2.5-in. drives, each with an

80-GB capacity, offering a total storage capacity of

960 GB per brick for user data. The software is stored on

a 256-MB flash memory. The BIOS (basic input/output

system) uses a modified version of Phoenix Technologies

code. The 12 disks are controlled by three Advanced

Technology Attachment (ATA) RAID 0/1 controllers,

operating all drives as ATA masters.

The brick was designed primarily by IBM Engineering

& Technology Services in Mainz, Germany. The overall

function was subdivided into a passive PCI backplane

board, a CPU mother/daughter board which plugs into

the PCI backplane, a communications board, a 12-way

disk controller board, and two power supply boards.

Since two of the boards contained several PCI devices

each (a situation not found in a standard personal

computer), the PCI bus on the backplane is supported

with an auxiliary bus which disambiguates the PCI

addressing.

Figure 1(b) exposes the inside of the brick. The 12

disks, only one of which is visible, are clamped side by

side between two thick aluminum plates, using thermal

conducting material as a buffer. A Fourier analysis of the

vibration spectra of operating disks determined that

vibration coupling between the disks is barely detectable.

Component cooling is described below in the thermal

architecture section.

Figure 2

Electronics of one prototype brick.
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The rectangular blue structures visible on the brick

surfaces are capacitive couplers, which are used to

connect the brick to all of its neighboring bricks. At the

top and the bottom of each brick is a standard floating

power connector, which carries 48 VDC and provides

wiring for a control circuit discussed later.

The dimensions of a brick are 203 20325 cm at 8.9 kg

(roughly 83 83 10 in. at nearly 20 pounds).

Communication and couplers

Capacitive coupling is an excellent match for brick

architectures and has generated considerable interest;

therefore, it is discussed in some detail.

Capacitive couplers are insulated flat metal plates

mounted on all six surfaces of a brick. A pair of plates

consisting of two neighboring bricks forms a small

capacitor that can transmit high-speed electrical signals

between bricks [8]. Using this technology with the brick

architecture has brought the cost of a 10-Gb/s port down

to considerably less than $100, including the per-port cost

of the switch chip itself, the couplers, and the internal

brick wiring. This cost is substantially less than that of

conventional solutions using centralized switches and

long wires or fibers.

Another reason for inventing this interbrick connection

is the mechanical insertion problem. For example, if there

is a hole in the top layer of bricks, one should be able

to simply drop a brick into it. With conventional

connectors, this would be awkward, because the

connections have to be made on multiple sides

simultaneously. Couplers provide an elegant solution to

this problem because they slide past each other when

bricks are inserted. Capacitive coupling is only one of a

variety of related contactless schemes that could be used

for this purpose; others include inductive coupling and

electromagnetic (i.e., wireless or optical) transmissions.

The alignment of capacitive couplers is not very critical

and can be aided by simple mechanical structures [9]. It is

expected that one can scale this technology to support

thousands of bricks without requiring expensive high-

precision mechanical components.

A pair of coaxial cables transmits differential dc-

balanced signals from conventional transceivers to the

back of the metal plates. The transmitting and receiving

paths are identical. No special amplifiers or compensation

networks are required as long as the capacitances are

large enough and there are no parasitic reactances. The

required minimum capacitances are 70 pF for 1-Gb/s

links and 25 pF for 3.125-Gb/s links.6 Such values can

readily be achieved by coating flat metal plates of less

than one cm2 area with thin dielectric layers and having

the plates touch gently.

In Figure 1(b), several capacitive coupler plates are

visible. They are designed for 10-Gb/s transmissions over

four parallel channels. This corresponds to the industry

standards used for 10-Gb/s Ethernet, Fibre Channel, and

InfiniBand**. There are a total of 16 ¼ 4 � 2 � 2 plates

per coupler. This is required to support four-channel

bidirectional transmission, which doubles the number of

wires, and each is differential, which doubles it again.

Thus, the total number of wires is 43 23 2¼ 16, and the

total number of pads is 16. The carrier for the metal

plates is a flat ceramic substrate.

The standard XAUI (10 Gb/s Attachment Unit

Interface) protocol [10] for Ethernet, InfiniBand, andFibre

Channel physical interfaces employs an 8B/10B encoding

scheme [11] to avoid the transmission of low-frequency

signals over optical channels. Fortuitously, this also solves

the low-frequency cutoff problem of capacitive coupling.

The 8B/10B encoding scheme guarantees that the run

length of zeros or ones is limited to five each. The 3-dB low-

frequency cutoff was chosen at 1/50 of the data bit rate.

Figure 3 shows the measured eye pattern for one of the

channels used with 10-Gb/s links at 3.17 Gb/s, which is

slightly faster than that required for 10-Gb/s Ethernet

links. The eye is wide open, as one would expect

for a clear communication channel. Preliminary 3D

electromagnetic field model studies indicate that the

technology may be extendable to 40-Gb/s links.

IceCube base—power, cooling, and control

The collection of bricks sits on a base that provides power,

cooling, and certain control functions to the bricks.

Thermal architecture

This section describes the details of the IceCube thermal

architecture [4] (Figure 4). A vertical array of cold rails

Figure 3

Eye diagram of a capacitive coupler used for 10-Gb/s transmissions.

6It should be emphasized that high serial capacitance is desirable in a capacitive
coupler. This is the opposite of the common situation in high-frequency electronics.
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(R) serves as the thermal backbone of the system. Bricks

slide down along the rails and are clamped to the rails to

make good thermal contact. Liquid coolant removes heat

from the cold rail. Coolant circulates through the cold

rails, is supplied to the bottom ends of the rails, and

returns through tubes (S) internal to the cold rails. Bricks

can be added while the system is running; this was even

done during the assembly of the prototype. For lower-

powered systems, the liquid coolant within the cold rails

could be replaced with a one-way, upward flow of chilled

air.

Note that the liquid coolant does not enter the bricks;

it remains inside the cold rails. Heat is removed by dry

thermal contact between bricks and cold rails, as shown

on the left side of the figure. Hot elements, such as chips

(C) or disks (D) within a brick (B), are in thermal contact

with a thermal backplane (E). Heat-conducting elements

(A), such as heat pipes or aluminum structures, carry heat

from chips (C) or disks (D) to a flat aluminum plate (E),

which is part of a brick and is in good thermal contact

with the cold rail (R). Only the hottest chips require

cooling with heat-conducting elements; the other

components (up to 4 W per component) convectively

dissipate heat into the air inside a brick, which itself is

cooled by the cold metal structure of the brick itself. In

the prototype system, the air temperature within bricks

stabilized at 408C without any use of fans, and the

measured junction temperatures of the Athlon CPU chips

under load are only 25–458C.

A liquid-cooled intelligent brick system is quiet. This

is an important consideration, since it is difficult for

large, fan-cooled systems to adhere to the noise limits

(,75 dBA) set by government regulations.

Nearly all of the heat is removed through the cold rails

and very little through the surface of the bricks. This

means that the cube can scale to very large dimensions, at

least in the horizontal dimension. Vertical scaling is

limited because the cold rail must remove all of the heat

from its column of bricks. Floor loading sets another

limit to vertical scaling.

It may be possible to handle power densities of several

hundred kW/m3 with practical temperature differences

(;208C) between the top and bottom of the cold rails and

carefully designed brick internals. Nuclear reactor cores

cool thermal power densities of approximately one

hundred MW/m3 with similar temperature differentials

[12].

Power system

A 208-VAC-to-48-VDC redundant and modular power

supply located in the base provides the bricks with power.

The power supply can be remotely controlled via Ethernet

and is interlocked with the cooling system. Conventional

hot-swap floating power connectors on the top and

bottom surfaces of each brick carry 48-VDC power

vertically along each of the nine columns in a tapped-bus

arrangement. The lower bricks in a column must carry

the current for the bricks above them. The lower voltages

required for the electronics are created locally within the

bricks using dc/dc converters.

Power distribution at 48 VDC is suitable for (large)

storage server applications, in which the total power

consumption per column is of the order of 1 kW

(assuming 200 W per brick, stacked four to five high).

Future compute bricks, which may dissipate 1–2 kW

each, will have to distribute higher-voltage power along

the columns, complicating conformance with safety

regulations.

Single points of failure

The base of the prototype contains several single points of

failure because it was not an essential project objective to

eliminate them, although this could have been done with

additional engineering effort. The failure points are the

integrity of the coolant distribution system, the control

modules, and parts of the 208-VAC power distribution

system. The 48-VDC system is redundant. A future

system would contain redundant control modules, and

the cooling system could be compartmentalized in various

ways so that a leak would not render the system

inoperative. Note that insertion or removal of a brick

does not require opening the cooling system loop. There

have been no problems with the IceCube cooling system

in more than one year of operation.

Since all bricks in a given column share power and

cooling, there is a higher probability of correlated failures

for vertically stacked bricks. Software recognizes this

Figure 4

Thermal architecture for a 3D brick-based system.
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and avoids storing redundant data on bricks in the same

column.

External connections

In this prototype system, a total of nine Gigabit Ethernet

connections to external application servers was deemed

sufficient. The capacitive couplers on the vertical faces of

nine bricks on the surface of the cube were replaced with

input/output pods, as shown in Figure 1(a). These

connect application servers to the otherwise unused

eighth port of the Gigabit switches in these bricks. Seven

blue light-emitting diodes (LEDs) are controlled by

software and help the user to visualize traffic through the

surface bricks.

Industrial control modules are mounted in the base.

They are used to sense critical system voltages and

temperatures, detect moisture, and measure the coolant

flow rates in the nine cold rail loops; under control of an

external management processor, they can detect the

presence of individual bricks and turn them on or off. The

control modules utilize a point-to-point signaling path to

perform the presence-detect and power-control functions.

This is implemented very robustly by directly controlling

the dc/dc converters without any assistance or

interference from the brick processors or software. Thus,

an errant brick (e.g., one that floods the network with

packets and does not respond to any inputs) can always

be shut down or reset. The point-to-point path uses

additional pins on the floating connectors of the dc power

distribution system.

System reliability—deferred maintenance and
fail-in-place

Overview

The brick architecture as defined herein requires that,

if any brick fails, the system will continue to function

without noticeable impact. This is particularly important

for 3D systems, in which replacement of bricks is

impractical.

Very large systems must use a failure-tolerant

architecture. Petascale systems contain millions of

electronic components, and the chance that they are all

working at the same time is negligible [13]. Once a system

is sufficiently failure-resilient, maintenance may be

deferred. This feature is highly valued by customers

because it eliminates the cost of ongoing maintenance and

avoids the potential for human error when performing

the maintenance. According to IBM internal studies, the

latter has become a very significant source of system

outages. The ultimate goal is to build a system that

requires no maintenance during its entire lifetime.

Whether or not this goal can be achieved depends on both

the reliability of system components and the correctness

of the software managing it.

A companion paper [3] in this issue presents a detailed

analysis of fail-in-place and deferred maintenance. This

section presents only a summary of key results.

Preventing data loss via dRAID

The implementation of deferred maintenance for storage

servers requires that data be replicated over multiple

bricks so that the failure of one (or more) disks or bricks

does not lead to loss of user data. The algorithm for

placement of redundant copies of data over multiple

bricks is called distributed RAID (dRAID) [14].

The following example illustrates the basic idea of

dRAID. It assumes that a file is mirrored on brick A and

brick B. If brick A fails, the file can still be retrieved from

B. However, if B fails, the data will be lost. Therefore,

after the failure of A, system software is required to copy

the file (while maintaining coherency in the face of

concurrent updates to the data) from good brick B

to a third good brick C. There is a time window of

vulnerability after the failure of A and before the copy

operation from B to C is completed. If the file is very

valuable, it can be stored on more than two bricks, thus

further reducing the probability of data loss.

A simple N-way mirroring (i.e., more than two copies

of data are created) is not a good tradeoff between cost

and reliability, but performs very well when writing.

Various RAID schemes are in wide use today, in

particular RAID 5, in which the exclusive-OR of all data

on N disks is written onto an additional disk [15]. This

allows reconstruction of data if one of the N þ 1 disks

fails. The brick architecture, with its distributed

computing power and high-bandwidth interconnect,

enables many versions of dRAID. Its four goals are to

accommodate the addition or loss of bricks, to allow the

storage administrator or user to determine the tradeoff

between cost and probability of data loss, to maintain

acceptable performance, and to use system-wide

spare capacity efficiently. It is possible to achieve

extraordinarily low probabilities for data-loss events with

capacity penalties comparable to those for two-way

mirroring, even while assuming the high failure rates of

commodity disk drives [16]. The target reliability is only

two data-loss events per exabyte-year due to multiple

failures.

The high-bandwidth interconnect of the IceCube mesh

is the key enabler for these dRAID algorithms. It

provides the flexibility to use spare capacity from

anywhere in the cube. This prevents a common problem

with conventional RAID controllers—i.e., the statically

preallocated spare disk capacity for each disk array is

small and fixed, making it very difficult to achieve above-

target reliability unless failed disks are quickly replaced.
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In such a high-pressure repair situation, there is also a

significant probability of replacing the wrong disk, which

itself is a leading cause of data loss.

Brick failures in a 3D mesh

This section presents a summary of the effect of brick

failures. A detailed analysis is found in [3]. The analysis

ignores failures in the IceCube base and errors in the

storage software.

The system can tolerate the failure of numerous bricks;

only after 40% of all bricks have failed is a nonlinear

degradation of performance (bandwidths, usable

capacity, and I/O) observed.

These findings are surprisingly insensitive to the details

of the system studied, such as the overall size of the

system and the level of the storage redundancy chosen.

For optimum performance, a 3D system should be

operated with about 70% of its bricks operational.

Another conclusion from the detailed analysis is that

external application server systems should be connected

to multiple surface bricks, either directly or through an

external switch.

The results, however, are quite sensitive to the

dimensionality of the cube. A 2D mesh requires that

about 85% of the bricks be operational. This is not

surprising, because there are fewer redundant

communication paths in a 2D system than in a 3D

system.

Reliability projections and lifetime estimates

This section discusses the number of spare bricks that

must be provided in order to keep a system operational

for a given period of time without requiring maintenance

(adding more bricks). This depends on the hardware

failure rate of brick electronics and disks. The results,

assuming that the system requires a five-9 (0.99999)

probability of being available, are shown in Figure 5.

The parameters of the curves are percentages of

overprovisioning. If one assumes a rather typical

hardware failure rate of 4.5% per storage brick per year,

equally split between electronics and disks, a system

requires an overprovisioning of 25% to support a

maintenance-free lifetime of 2.5 years. While 25%

overprovisioning is high, more realistic scenarios call for

a much lower number. If a customer buys spare bricks on

demand (that is, only when the actual free capacity in the

system falls below a certain level), the total number of

spare bricks found in the system after a few years is much

lower; this is because the newer bricks have a higher

storage capacity.

Software
The software currently running on IceCube provides a

distributed, scale-out file system. The long-term goals are

to provide a reliable high-performance file service,

decrease administrative costs, and increase system

efficiency.

For the software discussion, it is assumed that the

system is used as a storage server. The present state and

near-term plans for the software are discussed. In a role

as storage server, no end-user application software is

expected to run on the brick processors; only a restricted

set of open-source and IBM-owned programs are used.

End-user applications run on compute-oriented servers,

such as Blue Gene*/L [17], which are collectively called

application servers.

Major components

The software includes four distinct elements: a distributed

file system for storing data in the bricks, a monitoring and

control system for safety and power control of the

hardware modules, a self-management system for

analyzing system state and performing recovery actions

for hardware and software problems, and a user interface

for configuration and reporting.

The system software residing on IceCube and its

attached application servers is shown in Figure 6.

The system software includes software running on a

management processor connected to the IceCube base in

addition to the software running in each of the IceCube

bricks.7 The OS, the mesh routing protocol software, and

a thin layer of IceCube-specific low-level modules that

provide hardware monitoring and control together form

the operating environment.

Figure 5

Required maintenance intervals as a function of brick reliability.
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Two major pieces of user-level code reside on top of the

operating environment. These are the IBM General

Parallel File System (GPFS) [18] and Kybos (the

companion research project building the software for the

IceCube prototype). GPFS is a clustered file system

product developed originally for the IBM SP* family of

parallel supercomputers and has been deployed on SP

systems with up to 2,000 nodes. Kybos provides the self-

management software and a management interface to the

administrator’s Web browser.

Operating environment

The operating environment provides the low-level

software platform on which distributed self-managing

storage services run. All executable software is stored on

a flash memory inside each brick. Each flash contains two

different versions of the software. Thus, if a new code

load renders a brick inoperative, one can revert to the

previous version. For performance reasons, the

executable software is copied onto disks during boot.

Linux** is used for both the bricks and the

management processor. Certain drivers for the specific

brick hardware (that is, the NIC and the eight-port

switch) have been built into the Linux kernel (v2.4) used

in the bricks.

As shown in Figure 7, the management processor

interfaces directly with the industrial control modules in

the base, which connect to thermal, water flow, and brick

presence sensors and also drive power control signals

to each brick. Because of this direct connection, the

management processor has a powerful tool for restoring

system stability after failures are detected.

Each brick individually monitors processor and

drive temperatures and reports the data back to the

management processor using a Linux cluster management

tool called Ganglia [19]. The management processor runs

software that monitors and records the brick states in a

database. This happens approximately once per second

and also serves as a heartbeat detector for the bricks. This

database is read by the Kybos software, which takes

appropriate action (as described below in the Kybos

section) and displays the current state of the bricks, as

shown in Figure 8. The main part of the screen shows

performance statistics gathered from the bricks. The

window in the left corner shows overall status and

parameters for the cube, such as voltages, on/off status,

Figure 6

Software stack implemented on IceCube.
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Block diagram of the IceCube base.

Liquid-
to-liquid

heat
exchanger

Power
supply
N � 1

redundant208 VAC

Liquid
coolant

48
VDC

M
an

ag
em

en
t

pr
oc

es
so

r 
E

th
er

ne
t (

on
ly

 to
 o

ne
co

rn
er

 b
ri

ck
/c

ub
e 

or
ig

in
)

Control modules

B
ri

ck
 p

ow
er

 c
on

tr
ol

 �
27

C
oo

la
nt

 te
m

pe
ra

tu
re

s
an

d 
fl

ow
ra

te
s 

�
9 

B
ri

ck
 p

re
se

nc
e 

de
te

ct
 �

27

Building
water

Ethernet

V, A

System administrator’s console

Brick

Capacitive
coupler

Cold rail

To
data
center

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 W. W. WILCKE ET AL.

189



and coolant flow rates. Sensor data from within one

brick, which is selected and highlighted with an orange

circle and labeled ‘‘2/3/1,’’ is displayed.

Network communications

The switch chip within each brick must be supplied with a

routing table. The routing table depends on the topology

of the system, including the cube itself and external

switches and application servers. This has been

accomplished with the IceCube mesh routing control

software. The commonly used spanning tree algorithm is

unsuitable for a highly connected 3D topology with

loops. Instead, an algorithm determines possible

communication paths between pairs of nodes and selects

one with the minimum hop count. The selected paths

remain in use until the topology of the mesh changes by

the addition or failure of a brick. Possible improvements

include the use of several shortest-distance paths in

parallel. Note that there is a danger of forming loops if

there are connections to an external switch. Special care is

taken to ensure that messages that enter the cube and are

not targeted for a specific brick (such as broadcast

messages) are intercepted before they leave the cube

through another brick.

Ethernet connects the management processor directly

to a brick in one corner, which serves as the origin of the

internal Cartesian coordinate system of the cube. The

position server process in the management processor

provides that service, and each brick can determine its

position with reference to the origin.

A Dynamic Host Configuration Protocol (DHCP)

server in the management processor issues IP addresses to

Control panel for the IceCube operating environment.

Figure 8
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all bricks, enabling TCP/IP and UDP (User Datagram

Protocol) communication between bricks and between

bricks and application servers.

GPFS

GPFS provides the basic I/O service layer for the system.

As seen in Figure 6, the IceCube GPFS cluster has

services running in the management processor and in the

bricks. The management processor GPFS node serves as

the sole quorum node for the IceCube GPFS cluster.

GPFS services running in the bricks are therefore not

required for a quorum (i.e., most bricks could fail and the

GPFS cluster would continue to operate). The major

GPFS function running on all of the bricks is the network

storage device (NSD) service. This GPFS service exports

the disks in the bricks as logically shared disks,

instructing GPFS that all I/O requests for those disks

should be directed to the NSD service exporting the disk.

To access IceCube storage, Blue Gene/L [17] or other

application servers must install a GPFS cluster (separate

from the IceCube GPFS cluster), in which a GPFS node

runs on each Blue Gene/L node that requires access to

IceCube storage. The Blue Gene/L GPFS cluster

remotely mounts an IceCube GPFS file system, allowing

it to make file I/O requests to the IceCube file systems.

When such requests are made, the file requests are

mapped by the Blue Gene/L nodes to NSD nodes in the

IceCube GPFS cluster, and the file requests are sent

directly to the appropriate bricks from the Blue Gene/L

nodes. The management processor is not involved in this

process.

GPFS includes sophisticated controls for disk

management, including performing data and metadata

striping, mirroring, rebalancing, and migration. The

Kybos management software leverages those controls

as described in the next section.

Kybos

The purpose of the Kybos software is to reduce the

administrative effort required to maintain a storage

system. Its management effort scales with the number of

applications using the storage system rather than with the

number of disks in the system, as in many storage systems

today. It is based on a policy-oriented management

interface. An administrator classifies sets of data for each

application according to a small number of clear and

simple service goals, along with rules for the identification

of newly created data (by directory, by user ID, by file

name, by file type, etc.).

Kybos implements a self-management control system

that performs three functions. First, it monitors the state

of the system as reported by the hardware sensors

described earlier and the state of the file system as

reported through the GPFS administrative interface.

Second, it detects important events by analyzing the

current state and trends of the system against the data

service goals set by administrators, along with other

system invariants (such as routing statistics and

acceptable voltage and temperature ranges). Third, it

schedules activities (such as data migration, restoring of

desired data redundancy, and replication or backup of

sets of data) to realign the system state with the data

service goals.

In the Kybos model, the system administrator

expresses the goals for a given set of data by creating a

Kybos resource pool, described in terms of capacity (lower

reserve and upper limit on the number of gigabytes of

storage), performance (lower reserve and upper limit on

the throughput and/or response time), and reliability

(e.g., for the active copy, the number of data losses per

exabyte-year of stored data that are acceptable, and for

GPFS secondary copies, a recovery-time objective).

Kybos remembers the goals for resource pools, and when

a new file is created, identifies the resource pool to which

the new file is to be assigned according to the attributes of

the file. It then determines how the file is to be placed on

physical disks.

Kybos self-management relieves administrators of

other device-oriented management tasks as well. Today,

for example, it requires many distinct steps to install

additional physical storage and make it visible in a typical

storage area network (SAN)-based storage server. The

steps include gathering requirements, installing the disks,

controllers and cables, configuring the RAID arrays and

virtual disks, host mapping, zoning, initiating the

rediscovery of SAN devices in the application servers, and

extending the file system. As an example, in a case study,

25 person-days were required to perform these tasks.

Using the Kybos management model, the time was

estimated to be reduced to seven person-days, of which

most were required for high-level planning. This is

because it is expected that the administrator simply needs

to physically place the bricks in the cube and define the

rather obvious resource pool parameters. This leaves

Kybos to discover, power, and use the bricks.

System status

The prototype cube is connected to a two-rack Blue

Gene/L system at the IBM Almaden Research Center via

Gigabit Ethernet links and other application servers. The

mesh routing control protocol has been implemented and

demonstrated to work in scenarios with multiple failures.

File storage and access from Blue Gene/L using GPFS

and hardware monitoring and visualization are

completed and have been demonstrated.

The first integrated version of Kybos self-management

software is currently being implemented. It provides

resource pools with the ability to set coarse-grain capacity
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goals and limited reliability goals (mirroring/no mirroring

of primary data copy). The first version will also

implement all hardware monitoring and safety controls

for the prototype and sufficient GPFS monitoring

and control to detect failed components and invoke

recovery actions in GPFS. A more extensive set of self-

management algorithms is also being developed on the

Kybos simulation platform.

Other file services

Thus far, the sole storage access method used has been

via GPFS remote mounting of the IceCube GPFS file

systems, although there are other access methods that can

be deployed. For example, selected bricks could also run

Network File Service (NFS) servers, or all bricks could

run distributed NFS servers. Other IBM projects at

Almaden Research are building such capabilities.

Common Internet File Service (CIFS) is another option

that could be implemented on the system. Note that the

cube can, in principle, run any software developed for a

Linux cluster, because that is what it is.

Performance

The following section summarizes the key topological

properties of a 3D mesh architecture. We ignore the

fact that some of the nodes may be broken, since the

performance implications of failing bricks are studied in

another paper [3] in this issue.

For a symmetric cube with N¼ h3 nodes connected by

links of bandwidth z, the following relations hold [The

numbers in parentheses are examples for a symmetric

pristine system with h ¼ 10, N ¼ 1,000 nodes using links

with z ¼ 1.25-GB/s (one-way) bandwidth.]:

� Total cube bandwidth: BWpeak¼ 6 � N � z (7.5 TB/s).
� Cross-sectional cube bandwidth: BWcross ¼ k2 � z

(125 GB/s).
� Average number of hops (for random traffic inside the

cube): davg ¼ h� (1/h) (9.9 hops).
� Usable interior cube bandwidth (random node to

random node traffic): BWusable ¼ BWpeak/davg
(760 GB/s).

Figure 9 shows various bandwidths as a function of

cube size. Surface bandwidth is the total bandwidth

(assuming 10-Gb/s links) through the surface of the cube.

Interior bandwidth is the total usable interior bandwidth

from a random brick to another random brick. Note that

this is not simply the sum of the bandwidths of all bricks;

it is reduced by the fact that a given link inside the cube

has to carry the superposition of all traffic between all

node pairs whose communication paths include that link

(see the usable cube bandwidth equation above). The

external bandwidth is the total bandwidth through the

surface of the cube to random destination bricks inside

the cube. The brick internal I/O bandwidth is the sum of

the bandwidths between the I/O devices inside a brick, for

all bricks, taking into account bus traffic effects and disk

limitations.

By any measure, the numbers for big cubes are very

large and are sufficient to provide I/O for the fastest

supercomputers. For example, the I/O bandwidth

required by the 360-teraflops IBM Blue Gene/L machine

under construction for Lawrence Livermore Laboratory

could be provided by only a 63 63 6 cube. Although the

ratio between surface area and volume decreases linearly

with increasing cube size, the ratio between surface

bandwidth and internal usable bandwidth remains nearly

constant. This can be seen from inspecting the equations

above, and is due to the superposition of traffic discussed

earlier.

Note that the prototype IceCube system is built with

integrated circuits that were first introduced several years

ago. Thus, the prototype system is about an order of

magnitude slower—for all interesting parameters—than

what one could build today with the same number of

bricks. Nevertheless, even the IceCube prototype is

quite a capable system. For example, it could store

5,000 movies in DVD format and simultaneously

stream 900 MPEG-2 streams to users. These numbers

are based on measured sustained data transfer rates

to application servers.

Future

Very large systems

The following section discusses the scalability of the

IceCube architecture to very large systems. As discussed

Figure 9

Calculated bandwidths as a function of IceCube dimensions.
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earlier, thermal and power constraints are not an

important issue for this architecture. A critical concern

is floor loading. Typical limits today are 500–1,200 kg/m2

(100–250 lb/ft2). This effect limits the number of

bricks that can be vertically stacked and forces large

systems to spread out horizontally. Eventually, this will

change the average distance messages must travel

between nodes from scaling with the third root of the

number of bricks (for cubes) to the second root (for a

flat mesh), which is a less favorable scaling. Whether or

not this becomes an issue depends on the application. A

storage server will be more latency-tolerant (in terms of

hop count) than a supercomputer doing more closely

coupled computations. Systems with 1,000 to 2,000

bricks (e.g., five or six bricks high and 15 to 20 bricks

wide and deep) appear to be a practical upper limit. This

corresponds to a dynamic scaling range of two orders of

magnitude if one assumes that the smallest practical

system contains ten bricks.

However, it would be impractical to provide a single

base of such a size. Rather, one could partition the system

into smaller subcubes and assemble the system in situ

from these subcubes. It is likely that one could build

self-aligning capacitive couplers that could tolerate

centimeter-scale misalignments between subcubes. Such

couplers would remove the need to connect subcubes via

cables or fibers; rather, the same 3D mesh structure could

be extended across the entire system. This would greatly

simplify the assembly of very large systems.

Commodity serial ATA 3.5-in. disk drives should

approach one-terabyte capacity in 2007. A 1,000-brick

system, each brick containing eight such drives, provides

eight petabytes (PB) of raw storage capacity. The use of a

strong dRAID algorithm reduces the usable storage

capacity to 4–6 PB [16], with a data-loss probability

resulting from simultaneous failures measured in a only a

few events per exabyte-year. This is an interesting system

for many emerging applications that require storing large

amounts of data, such as images, digital media, and

regulatory compliance data.

Small systems

The brick architecture as described is designed for

medium-sized to very large systems, where the failure of a

few bricks makes little difference. Nevertheless, the ease of

management and scalability promised by the architecture

has prompted inquiries about its applicability to systems

for the small and medium-sized business market, which

require only a small number of bricks. For systems with

fewer than approximately eight bricks—in which the

failure of a single brick becomes noticeable—the brick

design should be modified to include brick-internal RAID

and possibly a provision to hot-swap bricks.

Petaflops compute servers

This project was conceived as an architecture for

petaflops supercomputing, not as a storage server.

Seymour Cray [20] once said: It’s the heat and the

thickness of the (wiring) mat which matters. That is still

true today, and the Intelligent Bricks architecture directly

addresses these two issues. Very powerful processors can

be used because they can be cooled. The architecture

also allows scaling to large numbers of nodes and

provides high, low-cost bandwidth between nodes.

Communication latency, because of the multihop

architecture, is larger than for centralized switch

architectures, but 15 years of experience with message-

passing supercomputers has shown that latency is

dominated by software latency at the endpoint nodes—

not by hardware communication latency [21].

A more detailed analysis of performance ratios based

on traditional ratios between supercomputer system

parameters [such as floating-point operations per second

(flops), total memory size, bus bandwidths within bricks,

I/O bandwidth, and interbrick communication

bandwidths] shows that it is possible to build well-

balanced supercomputers in the petaflops range with

this architecture.

There is one important issue with the fail-in-place

assumption for compute applications: Unlike storage

servers, supercomputers run a wide variety of software

that is provided by users, not the system vendor. If an

application assumes that allocated resources will never go

away, it cannot deal with failing nodes without aborting

and remapping the problem. Fortunately, a growing part

of the information technology industry is dedicated to

grid computing. They must solve exactly the same

problem, and any solution found will be directly

applicable to brick-based supercomputers.

Related work
The approach of distributing data across independent

nodes to build scalable storage systems has been explored

by both academic and commercial projects. These include

DataMesh [22], FAB [23], Self-* [24], Petal [25], and

OceanStore [26], which are primarily research projects.

To the authors’ knowledge, no company has realized

the 3D brick packaging as described here. However,

numerous companies are working on various forms of

distributed enterprise storage. Among these companies

are Panasas [27] (scalable storage for Linux clusters),

Isilon (distributed file system on standard hardware),

Pivot3, Pillar Data Systems (storage management),

Lefthand Networks (iSCSI IP-based SAN software),

Equallogic (iSCSI-based systems), Ibrix (storage software

suite for the enterprise), Cluster File Systems (Lustre**

open source object store software), Google (GFS), and

Archivas (software for reference storage).
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Conclusion
The Intelligent Bricks project is demonstrating the

feasibility of brick architectures. The exact meaning of this

term is defined in this paper. The salient feature is not the

physical shape of the packaging units, but rather the

biologically inspired model that any brick in a system, like

a cell in an organism, may fail without noticeably affecting

the operation of the system as long as most bricks are

functioning normally. The required repair actions are

done by system software, without human intervention.

This model has numerous positive consequences. It

simplifies system management, eliminates common

system failures caused by inappropriate human

intervention, and allows highly efficient packaging with a

concomitant improvement in important parameters such

as scalability, communications performance, system

density, and thermal management.

A working prototype of such a system has been built at

the IBM Almaden Research Center and performs as

expected. It implements a 27-brick, 26-TB storage server.

The system software is based on Linux (the OS for each

processor), GPFS (the distributed file system), and Kybos

(the management software specifically developed for the

project). While it is purely a research project, extensive

external exposure to IBM customers has yielded strong

confirmation that the objectives of the project are well

aligned with market needs.
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