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ABSTRACT

This work discusses an improvement to the boundary tracking algorithm introduced by Chen et al 2011. This
method samples points in an image locally and utilizes the CUSUM algorithm to reduce tracking problems due
to noise or texture. However, when tracking problems do arise, the local nature of the algorithm does not give
any mechanism in which to recover. This work introduces a second CUSUM algorithm to detect off-boundary
movement, compensating for such movement by backtracking. Boundary tracking results comparing the two
algorithms are presented, including both image data and a numerical comparison of the effectiveness of the
algorithms.
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1. INTRODUCTION

Boundary tracking methods have been used for various applications from vehicular movement through an un-
familiar environment,1,2 atomic force microscopy,3 to image processing.4,5 For the first two, the local nature
of a “tracker” means that only a fraction of points needs to be sampled in order to obtain information about
the domain. For the last, in which global information is often available, boundary tracking also has significant
benefits due to its simplicity and computational speed.

Chen et al. 20115 introduced a boundary tracking method that was particularly useful for the analysis of
hyperspectral data. Due to its large size, the processing of hyperspectral data can be very computationally
expensive.6,7 With new sensors that are able to capture both high spatial and high spectral resolution data,
efficient methods for boundary and edge detection have become even more important. By only sampling points
near the boundary of an object, the boundary tracking algorithm is able to detect object boundaries with a
high degree of precision. For the fractal-like coastlines especially prevalent in hyperspectral data, high precision
tracking allows the detection of coastal features in great detail.

A significant drawback to boundary tracking in comparison with more traditional image segmentation algo-
rithms,8–11 however, is its relatively weak performance in the presence of noise or textures. As a local algorithm,
it is particularly sensitive to patches of noise, which can lead the tracker astray. Once off of the boundary, only
a chance movement back toward the boundary allows the boundary to be tracked again.

One improvement is the use of a change-point detection algorithm such as Page’s CUSUM algorithm12,13

to “average” noise. Weighted intensities along the path of the tracker are summed, and a boundary detection
is assigned only when a certain threshold of this statistic is reached. This adaptation significantly improves
tracking in noisy and textured data. However, the problem of off-boundary movement still remains.

In this work, we introduce a second CUSUM statistic to track the characteristic behavior of off-boundary
movement. Qualitatively, movement along a boundary should consist of alternating values characteristic of both
sides of the boundary. On the other hand, movement away from the boundary consists of values primarily from
only one region.

To this end, we employ a two-sided CUSUM test of the likelihood ratio of the density functions between
the two regions. If estimates for the density functions are unknown, they can be estimated from samples. The
null hypothesis corresponds to a mean value of 0, indicating movement along the boundary. The alternative
hypothesis is that either an increase or decrease in the mean occurs.

Further author information: E-mail: achen@samsi.info



Once off-boundary movement is detected via the CUSUM test, a backtracking procedure is used to move to
the last detected boundary point. Fortunately, the CUSUM test also provides a good estimate for the detection
delay in off-boundary movement. Experimentally, it was found that slight perturbations in the position and
trajectory vectors result in new paths that may ultimately track the boundary through the problem areas.

One of the most significant applications for boundary tracking is high dimensional or high resolution data
such as hyperspectral images. By sampling only along a path, boundary tracking gives a fast method to detect
the boundaries of an object. Numerical experiments show that the use of the two-sided CUSUM test for off-
boundary movement and backtracking results in fewer tracking failures. This mitigates the most significant
weakness in boundary tracking.

2. ALGORITHM DESCRIPTION

The boundary tracking scheme from Chen et al.5 introduced a tracker initialized at a point ~x0 near the boundary.
The tracker attempts to follow the boundary between two regions Ω1 and Ω2, whose union represents the image
domain Ω. Movement was according to the update equation

~xk = ~xk−1 + (V cos θk−1, V sin θk−1), (1)

where V (e.g. V = 0.5) is a step size chosen depending on the level of desired tracking detail and θk is the angle
of travel chosen according to the update equation:

θk = θk−1 + ωd(~xk), (2)

where ω is an angular increment, chosen based on the expected straightness of edges. By default, ω = 0.5 radians.

In this formulation, a decision function d(·) is required to determine whether the tracker location is in one
region or another. In the simplest form, the decision function is based on a threshold of image intensities in the
grayscale case.

The boundary tracking algorithm works well for a variety of examples and is especially useful for large
data sets such as hyperspectral data. Fig. 1 shows a tracking example for hyperspectral data with the original
boundary tracking algorithm. The decision algorithm used is determined by the minimum spectral angle distance
to each class of reference signatures. The spectral angle distance between two vectors ~u,~v is given by the formula

dSA(~u,~v) = cos−1

(
~u · ~v
‖~u‖‖~v‖

)
(3)

The spectral angle distance is known to work especially well for hyperspectral data,14,15 in part due to its
removal of illumination effects. By defining two classes of objects {~ui}Li=1, {~vj}Kj=1, based on spectral signatures,
two regions can be defined: Ω1 = {~x : mini dSA(~x, ~ui) < minj dSA(~x,~vj)} and Ω2 = Ω\Ω1. The reference
signatures can be chosen by hand or by an automatic selection scheme.16,17

It was found, however, that the tracker could make significant errors in tracking due to noise. The boundary
tracking algorithm therefore included a CUSUM algorithm that modified the decision function. It supposed that
the density functions f, g of image intensities sk (or another function defined on the imaging domain) of the
regions Ω1,Ω2 were known. Then changes from Ω1 to Ω2 could be tracked by registering a change only when
the statistic

Uk = max (Uk−1 + Zk, 0) , U0 = 0 (4)

for Zk = log[g(sk)/f(sk)] exceeded a threshold Ū . This ensured that changes were recorded only when enough
evidence suggested that a region change had been made. Changes from Ω2 to Ω1 were tracked similarly by
tracking the statistic Lk, given by Lk = max(Lk−1 − Zk, 0) and registering a change when L̄ was exceeded. For
boundary tracking applications in moderate noise, relative low values Ū = L̄ = 0.8 are sufficient.



Figure 1. Hyperspectral boundary tracking5 of various objects in the hyperspectral data set from Reno, NV.18 Top Left:
The tracking of a building. Top Right: The reference signatures used in each class for the building tracking. Bottom Left:
The tracking of a river. Bottom Right: The reference signatures used in each class for the river tracking.



However, tracking errors could still occur for excessively noisy or textured images. In case the tracker left
the proximity of the boundary, it could only arrive back at the boundary by chance. Indeed, since the algorithm
assumed that the boundary would be followed closely, no part of the algorithm considered any global mistakes.
The sinusoidal nature of the tracking path ensured that the tracker was often able to self-correct, but the
probability of back-tracking was much lower the farther away the tracker was led.

For this case, we introduce a second CUSUM algorithm that detects and corrects for off-boundary movement.
In fact, the same statistics Uk and Lk can be used for this step. In the previous case, changes from Ω1 to Ω2

were detected when Uk exceeded a certain threshold. This indicated that enough observations likely sampled
from Ω2 had been obtained, when measured against the likelihood of the observations being sampled from Ω1.

In contrast, off-boundary movement assumes that the tracker is still moving in Ω1, so that the criterion
should be reversed: Lk ≥ L̄2 for some threshold L̄2 indicating off-boundary movement. Similarly, off-boundary
movement originating in the region Ω2 can be tracked via the criterion Uk ≥ Ū2.

In practice, off-boundary movement is considerably more rare than correct tracking. Furthermore, the si-
nusoidal movement of the tracker is already somewhat self-correcting, so that only a more serious loss of the
boundary is treated. Thus, Ū2, L̄2 are typically set much higher, at 30. Once this threshold is reached, the
algorithm backtracks by according to the “kicking” introduced in:5 the tracker is placed in the direction of the
last known boundary point at twice the distance.

Fig. 2 shows a comparison of the time series produced by successful and unsuccessful trackings along a
boundary. In a successful tracking, the time series samples points from both sides of the boundary threshold (at
0.5 in the example). For the unsuccessful tracking, however, the tracker remains on one side of the boundary,
so it samples points only above or below the 0.5 threshold. In the example given, the tracker is driven to the
lighter side (above 0.5) from about t = 300 to t = 400 while from t = 400 to t = 1300, the tracker samples points
from below 0.5. This can be seen in the corresponding tracking path.

3. NUMERICAL EXAMPLES

Fig. 3 shows a comparison of the boundary tracking method of Chen et al. and the proposed method on a
noisy “U” image. The same image has been used in each case, with the tracker initialized at different starting
points. The tracking results were classified into three categories. First, in a completely unsuccessful tracking,
the boundary was not followed at all (defined as finding less than ten pixels along the boundary). A partially
successful tracking followed the boundary for more than ten pixels but did not find the entire boundary. Finally,
a completely successful tracking found the entire boundary.

Table 1 shows that the proposed modification results in a much greater percentage of partially successful
trackings. However, the number of completely successful trackings was not improved significantly. This may be
due to the fact that the adjustments in the path due to off-boundary movement sometimes result in the tracker
moving even farther from the boundary. While the CUSUM algorithm correctly identifies cases in which the
tracker moves off of the boundary, a stronger correction algorithm would improve boundary tracking even more.

A comparison of boundary tracking success

Method Completely unsuccessful Partially successful Completely successful

Chen et al. 2011 34 23 43
Proposed Modification 13 43 44

Table 1. A comparison of the number of successful trackings out of 100 trials for the noisy “U” image for the boundary
tracking method of Chen at al.5 and the proposed modification.



Figure 2. A comparison of the time series of successful and unsuccessful boundary tracking paths. Top Left: An unsuc-
cessful tracking path. Top Right: The corresponding time series to the unsuccessful path. Bottom Left: A successful
tracking path. Bottom Right: The corresponding time series to the successful path.



Figure 3. A comparison of the original boundary tracking algorithm and the modified boundary tracking algorithm for
various initial starting points. The top images are trackings by the original tracking algorithm and the bottom images
use the proposed modification. Each set–left, middle, right, respectively use the same initial starting points. The top
right example is a “completely unsuccessful tracking.” The top left, top middle, and bottom left examples are “partially
successful trackings,” while the bottom middle and bottom right examples are “completely successful trackings.”
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