
High�Level Semantic Optimization of Numerical Codes

Vijay Menon and Keshav Pingali

Department of Computer Science�

Cornell University� Ithaca� NY ������

fvsm�pingalig�cs�cornell�edu

Abstract

This paper presents a mathematical framework to ex�
ploit the semantic properties of matrix operations in
loop�based numerical codes� The heart of this frame�
work is an algebraic language called the Abstract Ma�

trix Form which a compiler can use to reason about
matrix computations in terms of loop nests� high�level
matrix operations� and intermediate forms� We demon�
strate how this framework may be used to detect and
exploit matrix products in loop�based languages such
as FORTRAN and MATLAB� and discuss the resulting
performance bene�ts�

� Introduction

Algebraic properties of scalar integer and �oating point
operations are used by most compilers to optimize pro�
grams� These properties enable compilers to reduce of
the strength of expressions� enhance the power of com�
mon subexpression elimination� and verify the legality
of certain loop transformations ���� Although matrices
are also endowed with a rich algebra� it is less common
for compilers to exploit matrix algebra to optimize pro�
grams� The major obstacle is that matrix operations
are di�cult to detect when they are hidden within loop
nests and array subscripts� Once high�level matrix op�
erations are exposed� there are many ways to exploit
them to enhance program e�ciency�

	� E�cient hand�tuned implementations are available
for common high�level matrix operations� These
are usually superior to compiler generated code�
Perhaps the most relevant examples are the Ba�
sic Linear Algebra Subroutines 
BLAS� ���� Care�
fully hand�tuned versions of the BLAS library are
ubiquitous on high performance architectures� Al�
though core BLAS routines such as matrix�vector
product 
DGEMV� and matrix�matrix product

DGEMM� are exactly the type of codes for which

�This work was supported by NSF grants CCR��������� EIA�
�����		 and ACI��	���	�


compiler technology is most advanced 
perfectly
nested loops�� there still remains a gap in perfor�
mance between compiler and hand optimized ver�
sions of these codes� Figure 	 illustrates this mar�
gin on an IBM Power� processor between hand op�
timized BLAS routines in the ESSL library �	� and
code generated by the IBM XL FORTRAN com�
piler given the loop nests in Figure �� � Over a va�
riety of matrix sizes� both BLAS operations main�
tain roughly a �
� performance advantage over
their compiler generated counterparts�

�� In an interpreted language such as MATLAB� uti�
lizing high�level operations is vital for performance�
All MATLAB operations incur overheads such as
memory operations� type checks� and array bounds
checks� but loops can tremendously magnify this
overhead by performing redundant checks in each
iteration� The most e�ective way to avoid loop
overhead is to simply avoid the use of loops� In
a high�level matrix operation� runtime checks are
only performed once� at the beginning� Transform�
ing MATLAB loops into higher�level operations
provides a much more e�cient way of performing
the same computation� as we discuss later in the
paper�

�� Once we are able to detect high�level operations�
we can use their semantic properties to realize op�
timizations that are otherwise not feasible� For ex�
ample� consider the MATLAB expression A �B �x
where A and B are n�n matrices and x is a n� 	
column vector� The MATLAB interpreter� by de�
fault� evaluates expressions left to right� for this
expression it will compute an O
n�� matrix�matrix
product followed by an O
n�� matrix�vector prod�
uct� However� the associativity of matrix products
permits any order of evaluation� In this case� it
is clearly more bene�cial to evaluate from right
to left� computing only two O
n�� matrix�vector
products� By utilizing a high�level semantic prop�
erty of matrix products� we obtain an asymptotic
gain in performance�

In this paper� we present a framework for detect�
ing point�wise matrix operations and matrix products

�This comparison was performed on a ��� MHz IBM Power�
Super Chip �p�sc� with a ��	KB data cache and �
� MB of
memory
 All code was compiled with �O� and �qhot options




100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

8

NxN Matrix

M
eg

af
lo

ps

Compiled Matrix−Matrix Product
BLAS Matrix−Matrix Product (DGEMM)
Compiled Matrix−Vector Product
BLAS Matrix−Vector Product (DGEMV)

Figure 	� BLAS vs� Compiled code

do i � �� n
do j � �� n
y�i� � y�i� � A�i�j��x�j�

enddo
enddo

Matrix�Vector Product

do i � �� n
do j � �� n
do k � �� n
C�i�j� � C�i�j� � A�i�k��B�k�j�

enddo
enddo

enddo

Matrix�Matrix Product

Figure �� Standard loop�nest representations of matrix
products

in loop�based languages like MATLAB and FORTRAN�
and show how the properties of these operations can be
used to optimize programs by source�level transforma�
tion� This framework uses a language called Abstract

Matrix Form 
AMF� which is a convenient medium for
performing source�level transformations� The need for
such an intermediate language is not obvious since it
seems at �rst sight that a language of matrix expres�
sions� transformed by standard matrix identities� should
be adequate for expressing optimizations� However�
such a language is not convenient when programs con�
tain a mixture of loops and high�level matrix operations�
as is often the case in both MATLAB and FORTRAN�
�
 programs�

It may also seem that such a framework is unneces�
sary if the programmer codes directly in a matrix lan�
guage like MATLAB or FORTRAN��
� To demonstrate
that this is not the case� we performed a study of the

Crank−Nicholson Finite Difference Galerkin Inc. Cholesky Quasi−Min. Residual
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

Original
Restructured
Compiled
Restructured and Compiled

Figure �� High�Level Optimization of MATLAB Pro�
grams

Falcon benchmark suite of MATLAB programs ��� from
the University of Illinois� It revealed that the transfor�
mations we propose are applicable to �ve of the twelve
benchmarks in this suite� Figure � illustrates the ef�
fect of these transformations� The �rst two sets of bars
denote the interpreted execution times of the original
and transformed MATLAB codes 
the interpreted exe�
cution time is normalized to 	�
�� The last two bars in
each set denote the execution time of the original and
transformed codes when compiled by the MathWorks
MCC MATLAB compiler� These results illustrate two
surprising points� First� in all but one case� simple
restructuring of MATLAB code achieves substantially
greater performance gain when compared to MCC com�
pilation� Second� in three of the benchmarks� the per�
formance gains due to restructuring are complementary
to those due to compilation� i�e�� high�level restructuring
and compilation combine to produce much faster code
than either alone� These results suggest that source�
level code transformations are important regardless of
whether code is executed by interpretation or by com�
pilation�

We present a more detailed analysis of these perfor�
mance results in �	��� Our focus in this paper is on the
compilation techniques to realize these bene�ts� The
rest of this paper is organized as follows� First� in Sec�
tion �� we discuss background work relevant to this pa�
per� In Section �� we give four motivating examples�
including two from the Falcon benchmark suite� In Sec�
tion �� we introduce our framework and de�ne our ab�
stract language� In Section �� we demonstrate how a
compiler may use this framework to realize optimiza�
tions� Finally� we conclude with ongoing directions of
research�

� Background Work

Algebraic properties of scalar arithmetic are used exten�
sively in compiler optimizations� These properties are
essential to common optimizations like constant fold�
ing and reduction of strength ���� They may also be



utilized to improve optimizations like common subex�
pression elimination� Commutativity and associativity
of �oating�point addition and multiplication are often
essential to the legality of loop transformations such as
tiling to enhance locality ���� ���� Algebraic properties
are also bene�cial in obtaining more precise dependence
information� particularly in the context of automatic
parallelization �	���

The classical example of detecting and exploiting
high�level operations in numerical codes is vectorization
for vector supercomputers ��� 	�� �
� �	� ���� Vectoriz�
ing compilers for languages like FORTRAN reorder and
isolate statements 
mostly through loop distribution�
that are then converted to vector operations� However�
most of this work focuses on point�wise assignments and
scalar operations between array objects and� occasion�
ally� on reduction operations� Optimizing preprocessors
for FORTRAN such as KAPF �	�� and VAST�� �	�� do
attempt to detect matrix products in loop nests in order
to convert them to BLAS operations� However� these
preprocessors appear to perform a relatively simple pat�
tern match to accomplish this and do not provide a gen�
eral solution� In the motivating examples presented in
the following section� KAPF was unable to detect any
matrix products and VAST�� only was only successful
on the �rst example� Finally� an analogous problem oc�
curs in the context of automatic parallelization for mes�
sage passing architectures� Detecting the potential use
of high�level primitives such as broadcasts or reductions
as opposed to low�level sends and receives can result in
substantial savings in the cost of communication �		��

There are four di�erent MATLAB compilers we are
aware of� Falcon ��� �� ��� a research compiler devel�
oped at Illinois� compiles MATLAB into FORTRAN
�
� MCC �	��� from the MathWorks� � compiles into C�
MATCOM �	��� from the Israel Institute of Technology�
compiles into C��� and MATCH ����� from Northwest�
ern� compiles directly to special purpose hardware� To
generate e�cient code� these compilers� to varying de�
grees� focus upon static techniques to determine infor�
mation such as shape and type of variables at compile�
time� Of these compilers� only Falcon appears to con�
sider high�level optimizations at the MATLAB level�
Falcon ��� �� utilizes an extensible database of pattern
matching transformations to be performed interactively
by the user on MATLAB code� Pattern replacement
allows for a number of optimizations beyond the scope
of this paper� However� its syntactic nature limits its
ability to optimize loops in the manner we seek� �

Similar tools have been developed for symbolic com�
puter algebra systems such as REDUCE and Maple�
For example� Gentran ��� generates FORTRAN pro�
grams to evaluate REDUCE symbolic expressions much
more e�ciently than the REDUCE environment itself�
Optimizations such as common subexpression elimina�
tion are highly critical� and aggressive algorithms for
performing them have been developed in this context�
Transfor �	
�� a similar package� maps matrix opera�
tions in Maple directly to BLAS operations rather than

�TheMathWorks� Inc
 is the developer and producer of MAT�
LAB

�We are working with David Padua and his group at Illinois
in order to incorporate our work into the next generation Falcon
compiler


do i � ��n
do k � ��p
X�i�k� � B�i�k�
do j � ��i��
X�i�k� � X�i�k� � L�i�j��X�j�k�

enddo
X�i�k� � X�i�k��L�i�i�

enddo
enddo

Figure �� Lower Triangular Solve with multiple right
hand sides

FORTRAN loops to obtain better performance�
Finally� we cite the classic dynamic programming

algorithm for optimally associating a sequence of matrix
multiplications �	��� However� this algorithm is limited
in its usefulness to compiler optimization by the fact
requires exact size information and an explicit matrix
formulation as opposed to loop nests�

� Motivating Examples

To motivate our framework and transformation algo�
rithms� we present four examples�

��� Example �

Figure �� a version of lower triangular solve with mul�
tiple right hand sides� is a simple example that demon�
strates some of the subtleties of detecting matrix prod�
ucts� In this code� we are solving the system L �X � B

for X where L is an n�n lower triangular matrix and B
is a dense n�p matrix� One way of optimizing this code
is to realize that the innermost statement is perform�
ing a matrix�vector product� Conventional loop trans�
formation technology can isolate the innermost state�
ment as shown in Figure �� It can be seen that this
loop nest is computing a matrix product of the form
X
i� 	 � p� � X
i� 	 � p��L
i� 	 � i�	��X
	 � i�	� 	 � p��
Automatically detecting this would enable us to convert
it to a single BLAS 
DGEMV� call� �

do k � ��p
do j � ��i��

X�i�k� � X�i�k� � L�i�j��X�j�k�
enddo

enddo

Figure �� Example 	

��� Example �

Our next example is taken from the Falcon project�s
benchmark suite of MATLAB programs ���� Figure �
shows the performance bottleneck of a Galerkin method
numerical approximation code� Although this loop nest
represents only six lines of code out of about �fty in the

�It should be noted that the original code in Figure � actually
has a BLAS equivalent �DTRSM�
 Detecting this is� however�
beyond the scope of this paper




entire program� it consumes about ��� of the total ex�
ecution time� The bottom portion of Figure � shows an
equivalent computation formulated as two matrix prod�
ucts� The result is roughly a �

�fold improvement in
the performance of this loop nest and a �
�fold improve�
ment in the entire program�

Without loss of generality� we will use the following
simpli�ed form of this code as our example�

for i��	N
for j��	N
phi�k� � phi�k� � a�i�j��xtemp
se�i��f�j��

end
end

Figure �� Example �

As earlier� this code can be obtained by performing
conventional vectorization techniques� scalar expansion
���� on xtemp and loop distribution on the i loop� In
addition� we denote the cos expression with the point�
wise scalar function f for conciseness� � Note that this
loop nest is not a matrix�vector product� rather it is
a vector�matrix�vector product� We must detect this
automatically� �

��� Example �

Our next example is also taken from the Falcon bench�
mark suite� Figure � highlights a single statement that
requires the bulk of the execution time in the Quasi�
Minimal Residual benchmark� In this statement� w tld�
q� and w are column vectors� A is a two dimensional ma�
trix� and beta is a scalar� In the original statement� the
computation of A��q requires most of the computation�
To compute this expression� the MATLAB interpreter
�rst computes the transpose of the two dimensional ma�
trix A� requiring a two dimensional temporary matrix
and corresponding work� In contrast� when this expres�
sion is converted to the equivalent expression 
 q��A
��� only one dimensional vectors need to be transposed�
The result is roughly a �
�fold improvement in the per�
formance of this statement and a ��fold improvement in
the entire program�

Note that unlike the previous two examples� this
example already contains high�level matrix operations�
Instead of detecting high�level operations� we wish to
utilize the semantics of matrix transpose and product
operations�

��� Example �

Finally� we present a more complex example in which
detection of matrix products and utilization of corre�
sponding semantic information can achieve an asymp�
totic improvement in performance� Consider the loop

�In MATLAB� a scalar function such as cos may be applied
point�wise over an array


�Note that we are assuming that we have access to shape in�
formation
 This information is not explicitly available in MAT�
LAB programs� but it is inferred by the FALCON compiler ���

In this case� it can prove that phi is a column vector and that
k� y� and L are scalars
 pi is a scalar constant� and cos is a
point�wise scalar function


Original MATLAB Code�
��� for i���N

���	s
 �� 	�� xtemp � cos��i��
�pi�x�L
�

����s
 �� 	�� for j���N

�����s
 ��� 	�� phi�k
 � phi�k
 � a�i
j
�xtemp

�cos��j��
�pi�y�L
�

����s
 �� 	�� end

����s
 �� 		� end

Transformed MATLAB Code�

����s
 �� ��� xtemp�se � cos����N��
�pi�x�L
�

����s
 �� 	�� phi�k
 � phi�k
 � xtemp�se�a

�cos����N��
�pi�y�L
��

Figure �� Execution Bottleneck of Galerkin Method
Code in MATLAB

Original MATLAB Code�
�����s
 ��� ��� w�tld � � A��q 
 � � beta�w 
�

Transformed MATLAB Code�
����s
 �� ��� w�tld � � q��A 
� � � beta�w 
�

Figure �� Execution Bottleneck of Quasi�Minimal
Residual Code in MATLAB

nest in Figure 	
� where A� B� and C are n � n ma�
trices� and y and x are n vectors� Most FORTRAN
compilers will optimize address calculations and per�
form loop transformations like tiling and unrolling� but
the amount of computation is still O
n��� Closer ex�
amination reveals that the above code is computing
y � y � A � BT � C � x� Computing these high�level
matrix products naively in a left to right order results in
O
n�� work� resulting in a gain in asymptotic e�ciency�
Better still� exploiting matrix product associativity to
compute the products in right to left order results in
O
n�� work�

� The Framework

In this section we de�ne our algebraic language 
which
we term Abstract Matrix Form� or AMF� and a set of
equational axioms for this language that encode seman�
tic information� AMF is a restricted language that pro�
vides us with the means of representing loop nests� high�
level matrix operations� and a mixture of the two� In
our framework� a compiler will translate MATLAB or
FORTRAN loop nests or expressions into AMF� per�
form transformations in AMF� and� �nally� translate
back into MATLAB or FORTRAN� In this section� we
will de�ne the AMF language and relevant axioms� Our
axiomatic approach is� by nature� extensible� however
we will limit our discussion to those operators and ax�
ioms that are useful to the examples in this paper�

��� Abstract Matrix Form

AMF expressions are numerical array objects of ar�
bitrary size and number of dimensions 
including� of
course� scalars values�� In contrast to programming lan�
guage such as FORTRAN or MATLAB� AMF does not
specify any ordering between dimensions� That is� there



w
tld � � A��q � � � beta�w ��

Figure �� Example �

do i � ��n
do j � ��n
do k � ��n
do l � ��n
y�i� � y�i� � x�j��A�i�k��B�l�k��C�l�j�

enddo
enddo

enddo
enddo

Figure 	
� Example �

is no notion of a �rst 
or row� dimension� a second 
or
column� dimension� and so on� AMF expressions can
take the following form�

� s � a scalar variable or constant

� aij � a scalar value denoted by an array variable
with scalar indices

� f
e�� e�� � � � � en� � the point�wise application
of the scalar operation f on AMF expressions
e�� e�� � � � � en

e� � � � en and the resulting expression must con�
form� i�e� they have the same size in each dimen�
sion� We will use � to specify point�wise addition
and � to specify point�wise multiplication�

� �i�l�ue � the expansion of AMF expression e in
the dimension corresponding to the scalar integer
variable i

The resulting expression must conform with e with
the exception that it has one additional i dimen�
sion where i takes integer values between the scalar
bounds l and u� Each slice of the resulting expres�
sion� for a �xed i� is simply e where the value of i
substituted appropriately� In the remainder of this
paper� we will omit the bounds of a � when it is
not relevant to the discussion�

�
P

i
e � the additive reduction of the AMF expres�

sion e in the i dimension

The resulting expression conforms e with the ex�
ception that all values along the i dimension are
collapsed via addition into a single value�

� Pi
e�� e�� � the product of AMF expressions e� and
e�

e� and e� may only share i as an expanded di�
mension and must be the same size along the i
dimension� The resulting expression is expanded
along the remaining disjoint dimensions of e� and
e�� Note that this is a generalization of matrix
product�

AMF statements take the form l � e� where l is
a scalar or array variable expanded by zero or more �

operations and e is an arbitrary AMF expression� Note
that l and e must have identical shape� The semantics
of an AMF statement are de�ned so that e is entirely
computed before any memory location speci�ed by l are
written�

Table 	 displays examples of MATLAB statements
and expressions and the corresponding AMF statements
and expressions� We will describe the conversion process
between MATLAB and AMF in the next section�

��� De�nitions

To facilitate our discussion� we de�ne the following
terms�

De�nition � dims
e� i� is a predicate that is true if

and only if e is expanded in the i dimension� dims
e� is
the set of all dimensions i� such that dims
e� i� holds�

De�nition � constant
e� i� is a predicate that is true
only if e is invariant along the i dimension�

De�nition � compress
e� i�� if e is invariant along

the i dimension� is the value of e for any �xed i�
That is� if constant
e� i� then compress
e� i� � �e
where e � �i�e� Otherwise� if not constant
e� i�� de�ne
compress
e� i� � e� Let compress
e�fi�� � � � � ing� �
compress
compress
� � � compress
e� i�� � � � � in���� in�
and compress
e� � compress
e�dims
e���

De�nition � size
e� is the total number of dimensions
in which e is expanded�

De�nition � basesize
e� is the number of dimensions�
i� in which constant
e� i� is false� In other words�
basesize
e� � size
compress
e���

��� Axioms

In order to reason about AMF expressions� we must
specify semantic information regarding AMF opera�
tions� We represent this information as a set of axioms�
Note that this list does not capture all the semantic in�
formation available� but only that which we will make
use of in this paper�

Axiom � �if
e�� e�� � � � � en� � f
�ie���ie�� � � � � �ien�

The result of an expansion of a point�wise operation
on n expressions is equivalent to the result of a point�
wise operation on n expanded expressions�

Axiom � �i
P

j
e �
P

j
�ie where i �� j

Provided that they operate over separate dimen�
sions� an expansion and a reduction operator may be
interchanged�

Axiom � �i�l� �u��j�l� �u�e � �j�l��u��i�l��u�e where
both l� and u� are constant with respect to l� and u�
and vice versa�

Provided that the bounds of j are not dependent on
i or vice versa� two expansion operators may be freely
interchanged� The proof is trivial�



MATLAB AMF

a�i���j��� ai���j��

a���m���n� �i���m�j���nai�j
a���m���n� � � ��i���m�j���nai�j� � ��i���m�j���n��

sum�a���m���n����
P

i �i���m�j���nai�j
a���m���n��	b���l���m�� Pk��k���m�i���nak�i��j���l�k���mbj�k�

for i 
 ��n
x�i� 
 x�i� � y�i��

end
�i���nxi � �i���n�xi � yi�

for i 
 ��n
k 
 k � x�i��

end
k � k �

P
i �i���nxi

Table 	� Equivalent MATLAB and AMF computations

Axiom �
P

i

P
j e �

P
j

P
i e

Reductions over di�erent dimensions are indepen�
dent and may be freely interchanged�

Axiom � constant
e�� i� �P
i

e� � e�� � compress
e�� i� �

P
i
e�

Constant expanded expressions may be hoisted out�
side of a reduction along the same dimension� This fol�
lows directly from the distributive law of arithmetic�

Axiom �
P

j
e� � e�� � Pj
compress
e���

compress
e��� if dims
compress
e����
dims
compress
e��� � j�

This axiom follows directly from the de�nition of
AMF products�

In addition� we do not explicitly state but will as�
sume standard scalar algebraic properties� for example�
we will make use of the fact that the point�wise appli�
cation of a commutative scalar operation is itself com�
mutative�

��� Power of the Axioms

The axioms above permit us to relate a high�level ma�
trix operation such as matrix product with its under�
lying scalar computations� As we shall demonstrate in
the next section� these axioms will allow us to map loop�
based scalar code into high�level matrix products� At
�rst glance� it may appear surprising that we do not
also include such high�level axioms as matrix product
associativity� since utilizing such a property is one of
our stated goals� However� such an axiom would be
redundant� In conjunction with scalar algebraic prop�
erties� the axioms above are su�cient to express basic
high�level properties of matrix products including� as
we shall see in the process of our transformations� asso�
ciativity and transposed commutativity�

In fact� only one additional axiom

Axiom �
P

i

e� � e�� � 


P
i
e�� � 


P
i
e��

is required to arrive at the all of the commutative ring
axioms of n�n matrices over addition and matrix mul�
tiplication� The above axiom is not relevant to the ex�
amples in this paper� but may used to demonstrate to
distributivity of matrix product over addition�

� Axiom�driven Transformation

At this point� we claim that we have de�ned enough
machinery to reason about an interesting set of matrix
computations� namely matrix products� Our language�
AMF� provides the means of representing computation
in terms of loops� in terms of high�level operations� and
in a mixture of the two� For any given AMF expression�
our axioms essentially de�ne a space of provably equiv�
alent AMF expressions� That is� by applying a series
of axioms 
in either direction� as rewrite rules upon an
AMF expression� we obtain a mathematically equivalent
expression�

What remains is to develop a systematic way of us�
ing these axioms to transform computations into more
desirable forms� In this section� we describe a heuristic
process to accomplish this and motivate it through our
four examples�

Step � Conversion to AMF

The �rst step is to convert MATLAB or FORTRAN
statements and expressions into AMF� As we mentioned
earlier� AMF is designed to express and operate over a
subset of the computation that may appear in a FOR�
TRAN or MATLAB program� We can represent� as a
single AMF statement� a FORTRAN or MATLAB as�
signment statement that is surrounded by zero or more
loops� The loops must carry no �ow 
read after write�
or output 
write after write� dependences � except those
due to an additive reduction� The statement must con�
sist of point�wise array operations� additive reductions�
and matrix products� Figure 		 highlights the conver�
sion process from MATLAB to AMF� In this �gure� we
use the phrase unify�v� � v�� ���� vn� where v�� v� etc are
variables to mean �make v�� v� etc the same variable��
A small detail is that MATLAB permits us to write
expressions of the form a��	m��	n� � 
 since 
 is im�
plicitly expanded into an m � n array containing �� We
will assume that this expansion is carried out explic�
itly during the MATLAB to AMF conversion� as shown
in Table 	
example ��� but we have not shown pseudo�
code for this in Figure 		� The conversion process from
FORTRAN is similar�

�Anti �write after read� dependences are preserved by the
semantics of AMF statements




MAT Expr to AMF�e� f
case �e� f
scalar c � return �c� ����

array point a�i�� i�� � return �ai��i� �����

array section a�l� � u�� l� � u�� �
return ��r���u��l�	��c���u��l�	�ar	l����c	l���� r� c�

point�wise function f�e�� e�� ���� en� �
let � �e�� r�� c�� � MAT Expr to AMF�e��







� �en� rn� cn� � MAT Expr to AMF�en�
r � unify�r� �


�rn �
c � unify�c� �


�cn �

return �f� �e�� �e�� ���� �en�� r� c�

transposed expression e� �
let ��e� r� c� � MAT Expr to AMF�e�
return ��e� c� r�

matrix product e� � e� �
let � �e�� r�� c�� � MAT Expr to AMF�e��

� �e�� r�� c�� � MAT Expr to AMF�e��
i � unify�c� �r��

return �Pi� �e�� �e��� r�� c��








else � fail
g

g

MAT to AMF�s� f
case �s� f
assignment e� � e� �
let ��e�� r�� c�� � Mat Expr to AMF�e��

��e�� r�� c�� � Mat Expr to AMF�e��
unify�r� � r��
unify�c� � c��

return �e� � �e�

dependence free loop for i � l � u� e� � e�� end �
let ��e� � �e�� � MAT to AMF�e� � e��
return ��i���u�l	��e� � �i���u�l	��e��

reduction loop for i � l � u� e� � e� � e�� end �
let ��e� � �e� � �e�� � MAT to AMF�e� � e� � e��
return ��e� � �e� �

P
i �i���u�l	��e��








else � fail
g

g

Figure 		� MATLAB to AMF conversion

For conciseness� we assume that all MATLAB data
objects are scalars or two�dimensional matrices� 	 We
di�erentiate between row and column vectors in MAT�
LAB 
 by indexing the non�expanded dimension with
	�

The following is the result of converting each of our


This is true of MATLAB �
�� to which the Falcon bench�
marks conform
 MATLAB 
 and later permit multidimensional
arrays and other data objects
 However� as matrix products are
not de�ned for these types� we do not consider them


�No such distinction in required in FORTRAN ��


examples into AMF�

	� �kXi�k � �k
Xi�k �
P

j �j
Li�j �Xj�k��

�� phik � phik �
P

i �i
P

j �j
ai�j �xtemp se��i � f
j��

�� �iw tldi�� � Pj
�i�jAj�i��jqj����
�ibeta��
�iwi���

�� �iyi �
�i
yi�

P
j �j
P

k �k
P

l �l
xj �Ai�k �Bl�k �Cl�j��

Step � Conversion of Products to Reductions

Next� since our axioms encode the properties of ma�
trix products in terms of underlying scalar operations�
we must �rst convert any product into reductions of
point�wise scalar operations� The following pseudo�code
describes this process� In this pseudo�code� the phrase
child expression of e refers to a subexpression nested im�
mediately inside e�

Product to Reduction�e� f
foreach child expression c of e
c � Product to Reduction�c�

if e �� Pi�e�� e�� �� Axiom �
e �
P

i��dims�e�
�fig
e� � �dims�e�
�fig

e��
g

In our examples� only the third already contains a
matrix product� The result of converting this is�

�� �iw tldi�� �P
j
�i�jAj�i � �i�jqj���� 
�ibeta� � 
�iwi���

Step � Expansion Operator Distribution

This next step is crucial to isolating high�level opera�
tions in AMF expressions� Essentially� we are extending
loop distribution from just loop nests into AMF expres�
sions themselves� For example� left to right application
of Axiom 	 may be used to convert a repeated appli�
cation of a scalar function f into a single point�wise
application� The following pseudo�code utilizes Axioms
	 and ��

Distribute�e� f
if e �� �i�e
�e � Distribute��e�
case��e� f
point�wise function f�e� � ���� en� �
e � f��ie�� �����ien� �� Axiom �

P
j e� � e �

P
j �ie� �� Axiom �

g
foreach child expression c of e
c � Distribute�c�

g

The following are the e�ects of expansion operator
distribution on Examples 	� �� and ��

	� �kXi�k � �kXi�k �
P

j
�k�jLi�j � �k�jXj�k�

�� phik � phik�P
i

P
j


�i�jai�j��
�i�jxtemp sei�����if
�jj��

�� �iyi � 
�iyi� �
P

j

P
k

P
l


�i�j�k�lxj��


�i�j�k�lAi�k��
�i�j�k�lBl�k��
�i�j�k�lCl�j��



Step � Invariant Term Hoisting

At this point� we arrive at a high�level representa�
tion of computation� Now� we seek to realize optimiza�
tions� In this step� we hoist constant terms� via Axiom
�� outside of additive reductions� In general� we will
have con�icting choices as to which term we may hoist�
As we will see later� the choice that we make at this
step can determine the associativity of matrix products
down the line�

In the pseudo�code below� we attempt to hoist the
largest array object as far outside as we can� Intuitively�
we are eliminating as much redundant computation in
as large an object� Mathematically� we are enabling
further optimization in the next step�

Hoist Terms�e� f
if e ��

P
i�

���
P

in
�e� � � � em�

Pick ek such that
i�� size�compress�ek� fi�� i�� ���� ing�� is minimized
for k � ����m and

ii�� basesize�ek� is maximized among remaining terms


Reorder i�� ���� in to i��� ���� i
�
l� ���i

�
n so that constant�ek�i

�
j �

for j � ����l� � and not constant�ek�i
�
j � for j � l���n


e �
P

i��
���
P

i�
l��

�compress�ek�fil� ���� ing� �
P

i�
l
���

P
i�n
�e� � � � ek�� � ek	� � � � em�� �� Axioms � and 


foreach child expression c of e
c � Hoist Terms�c�

g

This step is applicable to Examples � and ��

�� For this example� we may arbitrarily choose the
xtemp se or f
j� terms� In both cases� we are
dealing with redundantly expanded vectors� In the
following� we hoist xtemp se�

phik � phik�P
i


�ixtemp sei��� �

P
j


�i�jai�j� � �if
�jj���

�� With this example� we may �rst choose between
hoisting the A and x terms outside of two reduction
operators� We choose A� the larger object� ��

�iyi � 
�iyi��P
k

�i�kAi�k� �

P
j

P
l

�i�j�k�lxj��


�i�j�k�lBl�k� � 
�i�j�k�lCl�j���

Again� we are left with a similar choice between B
and x� and� for the same reasons� we choose B this
time�

�iyi � 
�iyi� �
P

k

�i�kAi�k� �
P

l

�i�k�lBl�k��P
j


�i�j�k�lxj� � 
�i�j�k�lCl�j����

Step � Expansion Operator Hoisting

In this step� as in the previous one� we eliminate
redundant computation� In the case� we hoist � opera�
tors outside of

P
operators� Note that if constant
e� j��

evaluating �je requires only that we evaluate e once and
then copy over the j dimension� In the following pseudo�
code� we hoist expansion operators�

��Although� to be precise� x is expanded to the same size� it
contains more replication than A� so we consider it smaller


Hoist Expansion�e� f
if e ��

P
i�

���
P

in
�e� � � � em� and

�j � dims�e� such that j �� dims�compress�e��
e � �j

P
i�

���
P

in
�compress�e��j� � � �

compress�em�j�� �� Axioms � and �

foreach child expression c of e
c � Hoist Expansion�c�

g

This step is applicable to Example ��

�� �iyi � 
�iyi� �
P

k


�i�kAi�k� � �i

P
l


�k�lBl�k��

�k
P

j

�j�lxj� � 
�j�lCl�j����

At this point� we have achieved our asymptotic
gain in performance in this example� While� even
in the previous step� computation required O
n��
work� hoisting the �i and �k operators has reduced
the work to O
n���

Step � Product Conversion

Finally� now that our computations are in terms of
optimized additive reductions� we are ready to convert
them into matrix products�

Reduction to Product�e� f
foreach child expression c of e
c � Reduction to Product�c�

if e ��
P

i�e� � e�� and
dims�compress�e��� � dims�compress�e��� �� fig

e � Pi�compress�e���compress�e��� �� Axiom �
g

The results on our examples are�

	� �kXi�k � �kXi�k � Pj
�jLi�j ��k�jXj�k�

�� phik � phik�
Pi

�ixtemp sei���� Pj

�i�jai�j �� f
�jj���

�� �iw tldi�� � Pj
�i�jAj�i��jqj���� 
�ibeta� � 
�wi���

�� �iyi � 
�iyi��
Pk

�i�kAi�k��

Pl

�k�lBl�k�� Pj

�jxj�� 
�j�lCl�j����

Step � Conversion from AMF

Finally� we are ready to convert our AMF expres�
sions back into FORTRAN or MATLAB� Figure 	�
demonstrates the conversion of AMF into MATLAB�
FORTRAN �
� which also allows high�level matrix op�
erations� requires a similar but slightly di�erent process�

It should be noted that� in some cases� it will not be
possible to transform an AMF array object to a single
FORTRAN or MATLAB array expression� Consider�
for example� the AMF expression �i�jxi�j � In such a
case� we can always fall back upon a loop nest to express
the computation�

However� in each of our examples� we may convert di�
rectly into MATLAB or FORTRAN �
 statements with�
out loop nests� We arrive at the our desired optimized
codes�

	� X�i��	p� � X�i��	p� � matmul�L�i��	i����
X��	i����	p��



AMF to MAT�e� � e�� f
case �e�� f
scalar s �
return s � AMF Expr to MAT�e������

array point ai�j �
return a�i� j� � AMF Expr to MAT�e������

�i�l�uaf�i
�k where k is independent of i �
return a�f�l � u�� k� � AMF Expr to MAT�e��i���

�i�l�uak�f�i
 where k is independent of i �
return a�k�f�l � u�� � AMF Expr to MAT�e����i�

�i��l��u��i��l��u�af�i�
�g�i�
 �
return a�f�l� � u��� g�l� � u��� �

AMF Expr to MAT�e��i��i��

else � fail
g

g

AMF Expr to MAT�e�r�c� f
case�e� f
scalar s � return s �� r �� c �� �

array point ai�j � return a�i� j�

�r�l�uaf�r
�k where k is independent of r �
return a�f�l � u�� k�

�r�l�uak�f�r
 where k is independent of r �
return a�k�f�l � u���

�c�l�uaf�c
�k where k is independent of r �
return a�f�l � u�� k��

�c�l�uak�f�c
 where k is independent of r �
return a�k�f�l � u��

�r�l��u��c�l��u�af�r
�g�c
 �
return a�f�l� � u��� g�l� � u���

�r�l��u��c�l��u�ag�c
�f�r
 �
return a�g�l� � u��� f�l� � u���

�

point�wise function f�e�� e�� ���� en� �
let �e� � AMF Expr to MAT�e��r�c�







�en � AMF Expr to MAT�en�r�c�

Compress expanded scalars ek if possible
return f�e�� e�� ���� en�

product Pi��r�ie���c�ie�� or Pi��c�ie���r�ie�� �
let �e� � AMF Expr to MAT�e��r�i� �

AMF Expr to MAT�e��i�c�
�e� � �AMF Expr to MAT�e��c�i� �
AMF Expr to MAT�e��i�r���

�e � The least expensive of �e� and �e�









else � fail
g

g

Figure 	�� AMF to MATLAB conversion

�� phi�k� � phi�k� � xtemp��A�cos���	N�����pi
�y�L���

�� w
tld � �q��A�� � beta � w�

�� y � y � matmul�A�matmul�transpose�B��
matmul�C� x���

Note that Figure 	� leaves us with two choices when
converting products into MATLAB� Because of the cost
of transpose operations in MATLAB� we choose the op�
tion that minimizes the number of transposes of two
dimensional matrices and� then� the total number of
transposes� In Example �� in particular� we choose to
transpose vectors twice rather a matrix once�

� Conclusions and Ongoing Work

We have presented a framework for exploiting high�
level semantics in numerical codes� In this paper� we
have demonstrated the usefulness of our framework in
the context of matrix products� As our examples have
shown� high�level optimization can result in substantial
performance gains� We are currently in the process of
implementing this work in the next generation Falcon
compiler in conjunction with David Padua and his group
at Illinois�

By its very nature� our axiomatic approach can be
extended by adding new axioms� extending the space of
provably legal transformations� Axiom �� which is not
one of the axioms in our core system� is such an example
since it permits the distribution of matrix product over
matrix addition� such as converting 
A�B� � C to A �
C � B � C� In general� merely adding such axioms is
insu�cient since we also need to convey a systematic
means of utilizing them to transform programs� For
example� given three dense matrices A� B� and C� it is
true that 
A�B��C� which involves one matrix product
and one addition� would require less work to perform
than the equivalent A � C � B � C� which involves two
matrix products and one addition� Yet� this does not
mean we should always prefer the former to the latter�
A very common computation in numerical linear algebra
is that of a rank�one update of the form 
I�u �u�� �A�
where A a dense square matrix� I is an identity matrix
of the same dimensions� and u is a column vector��� �
In this case� distributing the matrix product over the
addition and then reassociating the remaining product

to compute A�u � 
u� �A�� reduces the required work
from O
n�� to O
n��� �� Clearly� to apply a distributive
axiom usefully� we will need a precise cost model�

A second direction is to study extensions to our lan�
guage itself� The purpose of the AMF language is to
conveniently represent the subset of computation with
which we are interested� In this paper� we have limited
ourselves to codes that either have no dependences or
very limited dependences in the form of additive reduc�
tions� While this may be su�cient to deal with opera�
tions such as matrix product� it is inadequate for many
other high�level array or matrix operations that are fre�
quently present in libraries or part of languages such as
MATLAB� As an example� consider a recurrence of the
form x
i� � k� � x
i � 	� � k� computed by a MAT�
LAB loop� This computation could be performed much

��Golub and Van Loan ��� often express rank�one updates in
the form �I � u � u�� � A when formulating a number of algo�
rithms
 It is �understood� that an implementer should distribute
and reassociate the expression by hand




more e�ciently via MATLAB�s cumulative summation
operation� ��

Finally� we believe that compile�time application of
semantic information will be useful in performing local�
ity enhancing optimizations� For example� the most ef�
fectively blocked versions of QR and LU factorizations�
as shown by Golub and Van Loan ��� and in the LA�
PACK library ���� are quite di�erent from the standard
unblocked version� In both cases� higher�level semantic
information about matrix operations is used by algo�
rithm developers to produce better blocked codes� To
date� compiler technology has been unable to reason at
this level� Our work may enable compilers to accom�
plish this�

Acknowledgments� We would like to thank
Nawaaz Ahmed� George Almasi� Luiz De Rose� Nikolay
Mateev� David Padua� and the anonymous reviewers for
their helpful comments on earlier versions of this paper�

References

�	� R� C� Agarwal and F� G� Gustavson� Algorithm and

Architecture Aspects of Producing ESSL BLAS on
POWER��

��� A� Aho� R� Sethi� and J� Ullman� Compilers�

Principles� Techniques� and Tools� Addison�Wesley
Publishing Company� 	����

��� R� Allen and K� Kennedy� Automatic translation
of Fortran programs to vector form� ACM Trans�
actions on Programming Languages and Systems�
�
�����	 ���� October 	����

��� E� Anderson� Z� Bai� C� Bischof� J� Dem�
mel� J� Dongarra� J� Du Croz� A� Greenbaum�
S� Hammarling� A� McKenney� S� Ostrouchov� and
D� Sorensen� editors� LAPACK Users� Guide� Sec�

ond Edition� SIAM� Philadelphia� 	����

��� L� De Rose� K� Gallivan� E� Gallopoulos� B� Mar�
solf� and D� Padua� FALCON� A MATLAB inter�
active restructuring compiler� In Languages and
Compilers for Parallel Computing� pages ��� ����
Springer�Verlag� August 	����

��� L� De Rose and D� Padua� A MATLAB to Fortran
�
 translator and its e�ectiveness� In ��th ACM

International Conference on Supercomputing� May
	����

��� K� Gallivan� B� Marsolf� and E� Gallopoulos� On
the use of algebraic and structural information in a
library prototyping and development environment�
In Proc� �	th IMACS World Congress on Scienti�c
Computation� Modelling and Applied Mathematics�
volume �� pages ��� ��
� Berlin� 	����

��� B� Gates� Gentran� An automatic code generation
facility for REDUCE� SIGSAM Bulletin� 	�
����� 
��� August 	����

��� G� Golub and C� Van Loan� Matrix Computations�
The Johns Hopkins University Press� 	����

��For vectors x and y� a cumulative summation may be de�ned
as� x � cumsum�y
 	
 x�n� �

Pn
i�� y�i�


�	
� C� Gomez and T� Scott� Maple programs for gener�
ating e�cient FORTRAN code for serial and vec�
torised machines� Computer Physics Communica�
tions� 		����� ���� 	����

�		� M� Gupta� S� Midki�� E� Schonberg� V� Seshadri�
D� Shields� K� Wang� W� Ching� and T� Ngo� An
HPF compiler for the IBM SP�� In Supercomput�

ing� December 	����

�	�� M� Haghighat and C� Polychronopoulos� Symbolic
analysis for parallelizing compilers� ACM Trans�

actions on Programming Languages and Systems�
	�
��� 	����

�	�� T� Hu and M� Shing� Some theorems about matrix
multiplication� In Proceedings of the ��st Annual
Symposium on Foundations of Computer Science�
pages �� ��� IEEE Computer Society� 	��
�

�	�� Y� Keren� MATCOM� A MATLAB to C�� trans�
lator and support libraries� Technical report� Israel
Institute of Technology� 	����

�	�� D� Kuck� R� Kuhn� B� Leasure� and M� Wolfe� The
structure of an advanced vectorizer for pipelined
processors� In Proc� 
th International Computer
Software and Applications Conference� pages �
� 
�	�� October 	��
�

�	�� Kuck and Associates� Inc� KAP for IBM Fortran
and C� http�!!www�kai�com!product!ibminf�html�

�	�� The MathWorks� Inc� MATLAB Compiler� 	����

�	�� V� Menon and K� Pingali� A case for source�level
transformations in MATLAB� Technical report�
Cornell University� Department of Computer Sci�
ence� April 	���� 
Forthcoming��

�	�� Paci�c Sierra Research Corporation� VAST�� for
XL Fortran�
http�!!www�psrv�com!vast!vast xlf�html�

��
� D� Padua and M� Wolfe� Advanced compiler opti�
mization for supercomputers� Communications of
the ACM� ��
	���		�� 	�
	� December 	����

��	� C� Polychronopoulos� Parallel Programming and

Compilers� Kluwer Academic Publishing� 	����

���� The MATCH Project� A MATLAB compilation
environment for distributed heterogeneous adap�
tive computing systems�
http�!!www�ece�nwu�edu!cpdc!Match!Match�html�

���� J� Ramanujam and P� Sadayappan� Tiling mul�
tidimensional iteration spaces for multicomputers�
Journal of Parallel and Distributed Computing�
	�
���	
� 	�
� October 	����

���� M� Wolfe� Iteration space tiling for memory hierar�
chies� In Third SIAM Conference on Parallel Pro�

cessing for Scienti�c Computing� December 	����

���� M� Wolfe� High Performance Compilers for Paral�
lel Computing� Addison�Wesley Publishing Com�
pany� 	����


