High-Level Semantic Optimization of Numerical Codes

Vijay Menon and Keshav Pingali
Department of Computer Science,
Cornell University, Ithaca, NY 14853.
{vsm,pingali }@cs.cornell.edu

Abstract

This paper presents a mathematical framework to ex-
ploit the semantic properties of matrix operations in
loop-based numerical codes. The heart of this frame-
work 1s an algebraic language called the Abstract Ma-
triz Form which a compiler can use to reason about
matrix computations in terms of loop nests, high-level
matrix operations, and intermediate forms. We demon-
strate how this framework may be used to detect and
exploit matrix products in loop-based languages such
as FORTRAN and MATLAB, and discuss the resulting

performance benefits.

1 Introduction

Algebraic properties of scalar integer and floating point
operations are used by most compilers to optimize pro-
grams. These properties enable compilers to reduce of
the strength of expressions, enhance the power of com-
mon subexpression elimination, and verify the legality
of certain loop transformations [2]. Although matrices
are also endowed with a rich algebra, it is less common
for compilers to exploit matrix algebra to optimize pro-
grams. The major obstacle is that matrix operations
are difficult to detect when they are hidden within loop
nests and array subscripts. Once high-level matrix op-
erations are exposed, there are many ways to exploit
them to enhance program efficiency.

1. Efficient hand-tuned implementations are available
for common high-level matrix operations. These
are usually superior to compiler generated code.
Perhaps the most relevant examples are the Ba-
sic Linear Algebra Subroutines (BLAS) [9]. Care-
fully hand-tuned versions of the BLAS library are
ubiquitous on high performance architectures. Al-
though core BLLAS routines such as matrix-vector
product (DGEMYV) and matrix-matrix product
(DGEMM) are exactly the type of codes for which

OThis work was supported by NSF grants CCR-9720211, EIA-
9726388 and ACI-9870687.

compiler technology is most advanced (perfectly
nested loops), there still remains a gap in perfor-
mance between compiler and hand optimized ver-
sions of these codes. Figure 1 illustrates this mar-
gin on an IBM Power2 processor between hand op-
timized BLAS routines in the ESSL library [1] and
code generated by the IBM XL FORTRAN com-
piler given the loop nests in Figure 2. ' Over a va-
riety of matrix sizes, both BLAS operations main-
tain roughly a 20% performance advantage over
their compiler generated counterparts.

2. In an interpreted language such as MATLAB, uti-
lizing high-level operations is vital for performance.
All MATLAB operations incur overheads such as
memory operations, type checks, and array bounds
checks, but loops can tremendously magnify this
overhead by performing redundant checks in each
iteration. The most effective way to avoid loop
overhead is to simply avoid the use of loops! In
a high-level matrix operation, runtime checks are
only performed once, at the beginning. Transform-
ing MATLAB loops into higher-level operations
provides a much more efficient way of performing
the same computation, as we discuss later in the

paper.

3. Once we are able to detect high-level operations,
we can use their semantic properties to realize op-
timizations that are otherwise not feasible. For ex-
ample, consider the MATLAB expression A* Bxx
where A and B are n x n matrices and zisan x 1
column vector. The MATLAB interpreter, by de-
fault, evaluates expressions left to right; for this
expression it will compute an O(ns) matrix-matrix
product followed by an O(n?) matrix-vector prod-
uct. However, the associativity of matrix products
permits any order of evaluation. In this case, it
is clearly more beneficial to evaluate from right
to left, computing only two O(n?) matrix-vector
products. By utilizing a high-level semantic prop-
erty of matrix products, we obtain an asymptotic
gain in performance.

In this paper, we present a framework for detect-
ing point-wise matrix operations and matrix products

! This comparison was performed on a 120 MHz IBM Power2
Super Chip (p2sc) with a 128KB data cache and 256 MB of
memory. All code was compiled with -03 and -ghot options.

x 10

45

Megaflops
N
«
T
.

~N
T
L

 LLRIRTUERERERRE RN |

Compiled Matrix—Matrix Product

L BLAS Matrix—Matrix Product (DGEMM)]
05 Compiled Matrix-Vector Product

BLAS Matrix—Vector Product (DGEMV)

° O WO WO W WO WO W T

100 200 300 400 500 600 700 800 900 1000
NxN Matrix

Figure 1: BLAS vs. Compiled code

doi=1,n
doj=1,n
y(i) = y(i) + A(i,j) *x(§)
enddo
enddo

Matrix-Vector Product

doi=1,n
doj=1,n
dok =1, n
C(i,j) = C(i,3) + A(i,k)*B(k,J)
enddo
enddo
enddo

Matrix-Matrix Product

Figure 2: Standard loop-nest representations of matrix
products

in loop-based languages like MATLAB and FORTRAN,
and show how the properties of these operations can be
used to optimize programs by source-level transforma-
tion. This framework uses a language called Abstract
Matriz Form (AMF) which is a convenient medium for
performing source-level transformations. The need for
such an intermediate language is not obvious since it
seems at first sight that a language of matrix expres-
sions, transformed by standard matrix identities, should
be adequate for expressing optimizations. However,
such a language is not convenient when programs con-
tain a mixture of loops and high-level matrix operations,
as is often the case in both MATLAB and FORTRAN-
90 programs.

It may also seem that such a framework is unneces-
sary if the programmer codes directly in a matrix lan-
guage like MATLAB or FORTRAN-90. To demonstrate
that this is not the case, we performed a study of the

| —
Original
Restructured
Compiled
Restructured and Compiled

Normalized Execution Time
o) o
w IS 2
T T T

o
N
T

o
e
T

I |

Crank—j\l@olson Finite Difference Galerkin Inc.ChJesky Quasl—Mm;es\dua\

Figure 3: High-Level Optimization of MATLAB Pro-

grams

Falcon benchmark suite of MATLAB programs [6] from
the University of Illinois. It revealed that the transfor-
mations we propose are applicable to five of the twelve
benchmarks in this suite. Figure 3 illustrates the ef-
fect of these transformations. The first two sets of bars
denote the interpreted execution times of the original
and transformed MATLAB codes (the interpreted exe-
cution time is normalized to 1.0). The last two bars in
each set denote the execution time of the original and
transformed codes when compiled by the MathWorks
MCC MATLAB compiler. These results illustrate two
surprising points. First, in all but one case, simple
restructuring of MATLAB code achieves substantially
greater performance gain when compared to MCC com-
pilation! Second, in three of the benchmarks, the per-
formance gains due to restructuring are complementary
to those due to compilation; i.e., high-level restructuring
and compilation combine to produce much faster code
than either alone. These results suggest that source-
level code transformations are important regardless of
whether code is executed by interpretation or by com-
pilation.

We present a more detailed analysis of these perfor-
mance results in [18]. Our focus in this paper is on the
compilation techniques to realize these benefits. The
rest of this paper is organized as follows. First, in Sec-
tion 2, we discuss background work relevant to this pa-
per. In Section 3, we give four motivating examples,
including two from the Falcon benchmark suite. In Sec-
tion 4, we introduce our framework and define our ab-
stract language. In Section 5, we demonstrate how a
compiler may use this framework to realize optimiza-
tions. Finally, we conclude with ongoing directions of
research.

2 Background Work

Algebraic properties of scalar arithmetic are used exten-
sively in compiler optimizations. These properties are
essential to common optimizations like constant fold-
ing and reduction of strength [2]. They may also be

utilized to improve optimizations like common subex-
pression elimination. Commutativity and associativity
of floating-point addition and multiplication are often
essential to the legality of loop transformations such as
tiling to enhance locality [23, 24]. Algebraic properties
are also beneficial in obtaining more precise dependence
information, particularly in the context of automatic
parallelization [12].

The classical example of detecting and exploiting
high-level operations in numerical codes is vectorization
for vector supercomputers [3, 15, 20, 21, 25]. Vectoriz-
ing compilers for languages like FORTRAN reorder and
isolate statements (mostly through loop distribution)
that are then converted to vector operations. However,
most of this work focuses on point-wise assignments and
scalar operations between array objects and, occasion-
ally, on reduction operations. Optimizing preprocessors
for FORTRAN such as KAPF [16] and VAST-2 [19] do
attempt to detect matrix products in loop nests in order
to convert them to BLAS operations. However, these
preprocessors appear to perform a relatively simple pat-
tern match to accomplish this and do not provide a gen-
eral solution. In the motivating examples presented in
the following section, KAPF was unable to detect any
matrix products and VAST-2 only was only successful
on the first example. Finally, an analogous problem oc-
curs in the context of automatic parallelization for mes-
sage passing architectures. Detecting the potential use
of high-level primitives such as broadcasts or reductions
as opposed to low-level sends and receives can result in
substantial savings in the cost of communication [11].

There are four different MATLAB compilers we are
aware of: Falcon [5, 6, 7], a research compiler devel-
oped at Illinois, compiles MATLAB into FORTRAN
90; MCC [17], from the MathWorks, ? compiles into C;
MATCOM [14], from the Israel Institute of Technology,
compiles into C++; and MATCH [22], from Northwest-
ern, compiles directly to special purpose hardware. To
generate efficient code, these compilers, to varying de-
grees, focus upon static techniques to determine infor-
mation such as shape and type of variables at compile-
time. Of these compilers, only Falcon appears to con-
sider high-level optimizations at the MATLAB level.
Falcon [5, 7] utilizes an extensible database of pattern
matching transformations to be performed interactively
by the user on MATLAB code. Pattern replacement
allows for a number of optimizations beyond the scope
of this paper. However, its syntactic nature limits its
ability to optimize loops in the manner we seek. *

Similar tools have been developed for symbolic com-
puter algebra systems such as REDUCE and Maple.
For example, Gentran [8] generates FORTRAN pro-
grams to evaluate REDUCE symbolic expressions much
more efficiently than the REDUCE environment itself.
Optimizations such as common subexpression elimina-
tion are highly critical, and aggressive algorithms for
performing them have been developed in this context.
Transfor [10], a similar package, maps matrix opera-
tions in Maple directly to BLAS operations rather than

?The MathWorks, Inc. is the developer and producer of MAT-
LAB

3We are working with David Padua and his group at Illinois
in order to incorporate our work into the next generation Falcon
compiler.

do i=1,n
dok =1,p
X(i,k) = B(i,k)
do j =1,i-1
X(i,k) = X(i,k) - L(i,j)*X(j,k)
enddo
X(i,k) = X(i,k)/L(i,1i)
enddo
enddo

Figure 4: Lower Triangular Solve with multiple right
hand sides

FORTRAN loops to obtain better performance.

Finally, we cite the classic dynamic programming
algorithm for optimally associating a sequence of matrix
multiplications [13]. However, this algorithm is limited
in its usefulness to compiler optimization by the fact
requires exact size information and an explicit matrix
formulation as opposed to loop nests.

3 Motivating Examples

To motivate our framework and transformation algo-
rithms, we present four examples.

3.1 Example 1

Figure 4, a version of lower triangular solve with mul-
tiple right hand sides, is a simple example that demon-
strates some of the subtleties of detecting matrix prod-
ucts. In this code, we are solving the system L+ X = B
for X where L is an n x n lower triangular matrix and B
is a dense n X p matrix. One way of optimizing this code
is to realize that the innermost statement is perform-
ing a matrix-vector product. Conventional loop trans-
formation technology can isolate the innermost state-
ment as shown in Figure 5. It can be seen that this
loop nest is computing a matrix product of the form
X(,1:p)=X(,1:p)—L(2, 1 :9—1)xX(1 :1—1,1: p).
Automatically detecting this would enable us to convert

it to a single BLAS (DGEMV) call*.

do k = 1,p
do j =1,i-1
X(i,k) = X(i,k) - L(i,j)*X(j,k)
enddo
enddo

Figure 5: Example 1

3.2 Example 2

Our next example is taken from the Falcon project’s
benchmark suite of MATLAB programs [6]. Figure 7
shows the performance bottleneck of a Galerkin method
numerical approximation code. Although this loop nest
represents only six lines of code out of about fifty in the

*It should be noted that the original code in Figure 4 actually
has a BLAS equivalent (DTRSM). Detecting this is, however,
beyond the scope of this paper.

entire program, it consumes about 97% of the total ex-
ecution time. The bottom portion of Figure 7 shows an
equivalent computation formulated as two matrix prod-
ucts. The result is roughly a 300-fold improvement in
the performance of this loop nest and a 30-fold improve-
ment in the entire program!

Without loss of generality, we will use the following
simplified form of this code as our example:

for i=1:N
for j=1:N
phi(k) = phi(k) + a(i,j)*xtemp_se(i)*£(j);
end
end

Figure 6: Example 2

As earlier, this code can be obtained by performing
conventional vectorization techniques: scalar expansion
[25] on xtemp and loop distribution on the ¢ loop. In
addition, we denote the cos expression with the point-
wise scalar function £ for conciseness®. Note that this
loop nest is not a matrix-vector product; rather it is
a vector-matrix-vector product. We must detect this
automatically. ©

3.3 Example 3

Our next example is also taken from the Falcon bench-
mark suite. Figure 8 highlights a single statement that
requires the bulk of the execution time in the Quasi-
Minimal Residual benchmark. In this statement, w_t1d,
q, and w are column vectors; A is a two dimensional ma-
trix; and beta is a scalar. In the original statement, the
computation of A’*q requires most of the computation.
To compute this expression, the MATLAB interpreter
first computes the transpose of the two dimensional ma-
trix A, requiring a two dimensional temporary matrix
and corresponding work. In contrast, when this expres-
sion is converted to the equivalent expression (q*A
)’, only one dimensional vectors need to be transposed.
The result is roughly a 20-fold improvement in the per-
formance of this statement and a 7-fold improvement in
the entire program!

Note that unlike the previous two examples, this
example already contains high-level matrix operations.
Instead of detecting high-level operations, we wish to
utilize the semantics of matrix transpose and product
operations.

3.4 Example 4

Finally, we present a more complex example in which
detection of matrix products and utilization of corre-
sponding semantic information can achieve an asymp-
totic improvement in performance. Consider the loop

5In MATLAB, a scalar function such as cos may be applied
point-wise over an array.

SNote that we are assuming that we have access to shape in-
formation. This information is not explicitly available in MAT-
LAB programs, but it is inferred by the FALCON compiler [6].
In this case, it can prove that phi is a column vector and that
k, y, and L are scalars. pi is a scalar constant, and cos is a
point-wise scalar function.

Original MATLAB Code:
39: for i=1:N
0.24s, 1% 40: xtemp = cos((i-1)*pi*x/L);
0.23s, 1% 41: for j=1:N
16.36s, 88Y% 42: phi(k) = phi(k) + a(i,j)*xtemp
*cos((j-1)*pixy/L);
1.26s, 7% 43: end
0.03s, 0% 44: end

Transformed MATLAB Code:

0.01s, 1% 39:
0.06s, 9% 40:

xtemp_se = cos((0:N-1)*pi*x/L);
phi(k) = phi(k) + xtemp_se*a
*cos((0:N-1)*pi*y/L)’;

Figure 7: Execution Bottleneck of Galerkin Method
Code in MATLAB

Original MATLAB Code:
19.10s, 70% 50: w_tld = (A’%q) - (betarw);

Transformed MATLAB Code:
0.80s, 9% 50: w_tld = (q’#4)’ - (beta*w);

Figure 8: Execution Bottleneck of Quasi-Minimal

Residual Code in MATLAB

nest in Figure 10, where A, B, and C are n X n ma-
trices, and y and x are n vectors. Most FORTRAN
compilers will optimize address calculations and per-
form loop transformations like tiling and unrolling, but
the amount of computation is still O(n*). Closer ex-
amination reveals that the above code is computing
y=y+ Ax BT % Cxx. Computing these high-level
matrix products naively in a left to right order results in
O(ns) work, resulting in a gain in asymptotic efficiency.
Better still, exploiting matrix product associativity to
compute the products in right to left order results in

O(n?) work!

4 The Framework

In this section we define our algebraic language (which
we term Abstract Matrix Form, or AMF) and a set of
equational axioms for this language that encode seman-
tic information. AMF is a restricted language that pro-
vides us with the means of representing loop nests, high-
level matrix operations, and a mixture of the two. In
our framework, a compiler will translate MATLAB or
FORTRAN loop nests or expressions into AMF, per-
form transformations in AMF, and, finally, translate
back into MATLAB or FORTRAN. In this section, we
will define the AMF language and relevant axioms. Our
axiomatic approach is, by nature, extensible; however
we will limit our discussion to those operators and ax-
ioms that are useful to the examples in this paper.

4.1 Abstract Matrix Form

AMF expressions are numerical array objects of ar-
bitrary size and number of dimensions (including, of
course, scalars values). In contrast to programming lan-

guage such as FORTRAN or MATLAB, AMF does not

specify any ordering between dimensions. That is, there

w_tld = (A’xq) - (betaxw);

Figure 9: Example 3

n
y(1) + x(j)*A(i,k)*B(1,k)*C(1,j)

Figure 10: Example 4

is no notion of a first (or row) dimension, a second (or
column) dimension, and so on. AMF expressions can
take the following form:

e s : a scalar variable or constant

e a;; : a scalar value denoted by an array variable
with scalar indices

o fler,ea,... €n) the point-wise application
of the scalar operation f on AMF expressions
€1,62,...,€En

€1...€n and the resulting expression must con-
form; i.e, they have the same size in each dimen-
sion. We will use + to specify point-wise addition
and - to specify point-wise multiplication.

e Viciue @ the expansion of AMF expression e in
the dimension corresponding to the scalar integer
variable ¢

The resulting expression must conform with e with
the exception that it has one additional ¢ dimen-
sion where ¢ takes integer values between the scalar
bounds ! and u. Each slice of the resulting expres-
sion, for a fixed ¢, 1s simply e where the value of ¢
substituted appropriately. In the remainder of this
paper, we will omit the bounds of a V when it is
not relevant to the discussion.

e > .e: the additive reduction of the AMF expres-
sion e in the ¢ dimension

The resulting expression conforms e with the ex-
ception that all values along the ¢ dimension are
collapsed via addition into a single value.

o Pj(e1,e2) : the product of AMF expressions e; and
€2

e1 and ez may only share ¢ as an expanded di-
mension and must be the same size along the @
dimension. The resulting expression is expanded
along the remaining disjoint dimensions of e; and
e2. Note that this is a generalization of matrix
product.

AMF statements take the form ! = e, where [is
a scalar or array variable expanded by zero or more V

operations and e is an arbitrary AMF expression. Note
that I and e must have identical shape. The semantics
of an AMF statement are defined so that e is entirely
computed before any memory location specified by I are
written.

Table 1 displays examples of MATLAB statements
and expressions and the corresponding AMF statements
and expressions. We will describe the conversion process

between MATLAB and AMF in the next section.

4.2 Definitions

To facilitate our discussion, we define the following
terms:

Definition 1 dims(e,t) is a predicate that is true if
and only if € is expanded in the 1 dimension. dims(e) is
the set of all dimensions i, such that dims(e, 1) holds.

Definition 2 constant(e,i) is a predicate that is true
only if e is invariant along the 1 dimension.

Definition 3 compress(e,i), if e is invariant along
the © dimension, ts the value of e for any fized 1.
That 1is, if constant(e,1) then compress(e,i) = é
where e = V;é. Otherwise, if not constant(e,1), define
compress(e,i) = e. Let compress(e,{i1,... ,in}) =
compress(compress(...compress(e,i1)... in—1),1n)
and compress(e) = compress(e, dims(e)).

Definition 4 size(e) is the total number of dimensions
in which e is expanded.

Definition 5 basesize(e) is the number of dimensions,
i, in which constant(e,1) is false. In other words,
basesize(e) = size(compress(e)).

4.3 Axioms

In order to reason about AMF expressions, we must
specify semantic information regarding AMF opera-
tions. We represent this information as a set of axioms.
Note that this list does not capture all the semantic in-
formation available, but only that which we will make
use of in this paper.
Axiom 1 V;f(ei,e2,...,en) = f(Vie1,Viea, ... ,Vien)

The result of an expansion of a point-wise operation
on n expressions is equivalent to the result of a point-
wise operation on n expanded expressions.

Axiom 2 V; Z] e = Z] Vie where i #£ j

Provided that they operate over separate dimen-
sions, an expansion and a reduction operator may be
interchanged.

Axiom 3 Vici,.u,Vjeiu€ = Vjeigiu, Vicyu, € where
both lz and uz are constant with respect to 1 and uy
and vice versa.

Provided that the bounds of j are not dependent on
1 or vice versa, two expansion operators may be freely
interchanged. The proof is trivial.

MATLAB | AMF |
a(i-1,j+1) Ai—1,j+1
a(l1:m,1:n) Viel:mvjelznai,j

a(l:m,1:n) + 5

(Vielzmvjelznai,]) + (Vielzmvjelzn5)

sum(a(l:m,1:n),1)

E,‘ Viel:mvjelznai,]

a(l:m,1:n)’*b(1:1,1:m)’

Pr(Vic1:mVic1:n95,i: Vie1:0Vke1:mb; 1)

for i = 1:n
x(i) = x(i) + y(i);
end

Viernt = Viern(zi + i)

k=k+ El Viel:nl’i

Table 1: Equivalent MATLAB and AMF computations

Axiom 4 Y7 3T e=3" > €

Reductions over different dimensions are indepen-
dent and may be freely interchanged.

Axiom 5 constant(e1,1) =
> (e1-e2) = compress(e, i) -y e

Constant expanded expressions may be hoisted out-
side of a reduction along the same dimension. This fol-
lows directly from the distributive law of arithmetic.

Axiom 6 Z] (e1 - e2) = Pj(compress(er),
compress(ez)) if dims(compress(e1))N
dims(compress(ez)) = j.

This axiom follows directly from the definition of
AMF products.

In addition, we do not explicitly state but will as-
sume standard scalar algebraic properties; for example,
we will make use of the fact that the point-wise appli-
cation of a commutative scalar operation is itself com-
mutative.

4.4 Power of the Axioms

The axioms above permit us to relate a high-level ma-
trix operation such as matrix product with its under-
lying scalar computations. As we shall demonstrate in
the next section, these axioms will allow us to map loop-
based scalar code into high-level matrix products. At
first glance, it may appear surprising that we do not
also include such high-level axioms as matrix product
associativity, since utilizing such a property is one of
our stated goals. However, such an axiom would be
redundant. In conjunction with scalar algebraic prop-
erties, the axioms above are sufficient to express basic
high-level properties of matrix products including, as
we shall see in the process of our transformations, asso-
ciativity and transposed commutativity.
In fact, only one additional axiom

Axiom 7 Y (e1+e2) = (3. e1)+ (3. e2)

is required to arrive at the all of the commutative ring
axioms of n X n matrices over addition and matrix mul-
tiplication. The above axiom is not relevant to the ex-
amples in this paper, but may used to demonstrate to
distributivity of matrix product over addition.

5 Axiom-driven Transformation

At this point, we claim that we have defined enough
machinery to reason about an interesting set of matrix
computations, namely matrix products. Our language,
AMF, provides the means of representing computation
in terms of loops, in terms of high-level operations, and
in a mixture of the two. For any given AMF expression,
our axioms essentially define a space of provably equiv-
alent AMF expressions. That is, by applying a series
of axioms (in either direction) as rewrite rules upon an
AMF expression, we obtain a mathematically equivalent
expression.

What remains is to develop a systematic way of us-
ing these axioms to transform computations into more
desirable forms. In this section, we describe a heuristic
process to accomplish this and motivate it through our
four examples.

Step 1 Conversion to AMF

The first step is to convert MATLAB or FORTRAN
statements and expressions into AMF. As we mentioned
earlier, AMF is designed to express and operate over a
subset of the computation that may appear in a FOR-
TRAN or MATLAB program. We can represent, as a
single AMF statement, a FORTRAN or MATLAB as-
signment statement that is surrounded by zero or more
loops. The loops must carry no flow (read after write)
or output (write after write) dependences 7 except those
due to an additive reduction. The statement must con-
sist of point-wise array operations, additive reductions,
and matrix products. Figure 11 highlights the conver-
sion process from MATLAB to AMF. In this figure, we
use the phrase unify(vi,vs,...,v,) Where vy, vs etc are
variables to mean “make vy, v2 etc the same variable”.
A small detail is that MATLAB permits us to write
expressions of the form a(1:m,1:n) + 5 since 5 is im-
plicitly expanded into an m X n array containing 5. We
will assume that this expansion is carried out explic-
itly during the MATLAB to AMF conversion, as shown
in Table 1(example 3), but we have not shown pseudo-
code for this in Figure 11. The conversion process from

FORTRAN is similar.

7 Anti (write after read) dependences are preserved by the
semantics of AMF statements.

MAT Expr_to_ AMF(e) {
case (e) {
scalar ¢ — return (¢, 1,1)

array point a(ii, i2) = return (a;; .,,1,1)

array section a(ly : u1,l2 1 uz) —
return (Vegiiug —1;4+1Ve€liug—to418r4ly —1,e4ig—1,7,C)

point-wise function f(e1,ez2,...,€n) —
let (€1,71,¢1) = MAT Expr_to_,AMF(eq)

(€%, 7n,cn) = MAT Expr_to_AMF(e,,)
r = unify(ry,...,rn)
¢ = unify(e1,...,¢n)

return (f(€1,€2,...,€n),7,¢)

transposed expression e’ —
let (&, r,¢) = MAT_Expr_to_AMF(e)
return (€, ¢,r)

matrix product e; * ea —
let (€1,71,¢1) = MAT Expr_to_,AMF(eq)
(€2,72,c2) = MAT Expr_to_,AMF(e5)
¢ = unify(eq,r2)
return (P;(€1,€2),71,c2)

else — fail

MAT to AMF(s) {
case (s) {
assignment e; = ey —
let (é1,71,¢1) = Mat_Expr_to_ AMF(ey)
(2,72, c2) = Mat_Expr_to_,AMF(e3)
unify(ry, r2)
unify(eq, ¢2)

return €; = €5

dependence free loop for ¢ =1 :u, e; = ez, end —
let (€1 = é2) = MAT _to_ AMF(e; = e3)
return (Yigi:u—i41€1 = Vietu—141€2)

reduction loop for i =1 :u, e; = ey + €2, end —

let (61 = €1 4 é2) = MAT to_.AMF(e; = e1 + ¢2)
return (€1 = &1 + >, Viet:u—141€2)

else — fail

Figure 11: MATLAB to AMF conversion

For conciseness, we assume that all MATLAB data
objects are scalars or two-dimensional matrices. & We
differentiate between row and column vectors in MAT-
LAB ® by indexing the non-expanded dimension with
1.

The following is the result of converting each of our

8This is true of MATLAB 4.2, to which the Falcon bench-
marks conform. MATLAB 5 and later permit multidimensional
arrays and other data objects. However, as matrix products are
not defined for these types, we do not consider them.

9No such distinction in required in FORTRAN 90.

examples into AMF.
Lo VeXie = Vi(Xie — 22, V5(Liyy - Xjk))
2. phiy = phiy +32,¥: 32 Vj(as; - wtemp_se1 i - (7))
3. Yiw tld;y = Pj(ViV;A;:,V5q51)— (Vibeta)- (Viw; 1)
4. Yy =
Vilyi+22, Y5 205 Ve 20 Vil - Aik - Bk - Cuy))
Step 2 Conversion of Products to Reductions

Next, since our axioms encode the properties of ma-
trix products in terms of underlying scalar operations,
we must first convert any product into reductions of
point-wise scalar operations. The following pseudo-code
describes this process. In this pseudo-code, the phrase
child expression of e refers to a subexpression nested im-
mediately inside e.

Product_to_Reduction(e) {
foreach child expression ¢ of e
¢ = Product_to_Reduction(c¢)

if e == P;(e1,e2) // Axiom 6
e =232 (Vaims(eq)={i}€1 " Vaims(e;)—{i} €2)

In our examples, only the third already contains a
matrix product. The result of converting this is:

3. Yiw_tld; 1 =
Z](ViVJAJ,i ~V,‘VJqJ71) — (V,‘beta) . (V,"w,‘yl)

Step 3 Fapansion Operator Distribution

This next step is crucial to isolating high-level opera-
tions in AMF expressions. Essentially, we are extending
loop distribution from just loop nests into AMF expres-
sions themselves. For example, left to right application
of Axiom 1 may be used to convert a repeated appli-
cation of a scalar function f into a single point-wise
application. The following pseudo-code utilizes Axioms
1 and 2.

Distribute(e) {
if e==V,;é
é = Distribute(é)
case(é) {
point-wise function f(e1,...,en) —
e = f(Vier,...,¥ien) // Axiom 1

2o;e1 = e=3 . Vier [/ Axiom 2

foreach child expression ¢ of e
¢ = Distribute(c)

The following are the effects of expansion operator
distribution on Examples 1, 2, and 4:

1. VeXix =VeXik — Z](VkV]Lm ViV X5 k)

2. phik :phik—l—
2o 2, (VY ai ;) (ViViatemp_sei1) Vi f (V7))

4. Vayi = (Viyi) + Z] 2ok 2 (Vi ViViy)-
(ViV]VleAi,k) . (ViV]Vle Blyk) . (V,'VJVleCM))

Step 4 Invariant Term Hoisting

At this point, we arrive at a high-level representa-
tion of computation. Now, we seek to realize optimiza-
tions. In this step, we hoist constant terms, via Axiom
5, outside of additive reductions. In general, we will
have conflicting choices as to which term we may hoist.
As we will see later, the choice that we make at this
step can determine the associativity of matrix products
down the line.

In the pseudo-code below, we attempt to hoist the
largest array object as far outside as we can. Intuitively,
we are eliminating as much redundant computation in
as large an object. Mathematically, we are enabling
further optimization in the next step.

Hoist_Terms(e) {
if e == Ezl Eln (el N em)
Pick ey such that
1), size(compress(ex, {i1,i2,...,4n})) is minimized
for k € 1...m and
ii), basesize(ex) is maximized among remaining terms.

Reorder 41, ...,4n to i5,...,4},...i, so that constant(ek,ig)
for j € 1...0 — 1 and not constant(ek,i;v) forjel..n.

e = Elll El; l(compress(ek,{il, L in}) - El;
T er

€k—1 - €k+1 - €m)) // Axioms 4 and 5

foreach child expression ¢ of e
¢ = Hoist_Terms(c)

This step is applicable to Examples 2 and 4:

2. For this example, we may arbitrarily choose the
ztemp_se or f(j) terms. In both cases, we are
dealing with redundantly expanded vectors. In the
following, we hoist ztemp_se.

phix = phix+
> i((Vizstempsei1)- 3 ((ViVjai;)-Vif(Y7)))

4. With this example, we may first choose between
hoisting the A and x terms outside of two reduction
operators. We choose A, the larger object: '°

Yiy: = (Voya)+
2o (ViViAik) - Z] IA(CAZAAENE
(ViVVeViBik) - (ViV VeV Ci5)))

Again, we are left with a similar choice between B
and z, and, for the same reasons, we choose B this
time:

Viyi = (Viyi) + 224 (ViVe Aik) - 3 ((ViViViBix)-
ZJ (V¥ ViViy) - (Vi¥;VeViCuy))))

Step 5 Fapansion Operator Hoisting

In this step, as in the previous one, we eliminate
redundant computation. In the case, we hoist V opera-
tors outside of Y operators. Note that if constant(e, j),
evaluating Ve requires only that we evaluate e once and
then copy over the 5 dimension. In the following pseudo-
code, we hoist expansion operators:

L9 Although, to be precise, ¢ is expanded to the same size, it
contains more replication than A, so we consider it smaller.

Hoist _Expansion(e) {
if e == E’.l Eln (e1--em) and
3j € dims(e) such that j ¢ dims(compress(e))
e=VY; Ell D (compress(e1,j) - - -
compress(€m,,j)) // Axioms 2 and 3

foreach child expression ¢ of e
¢ = Hoist_Expansion(c)
}

This step is applicable to Example 4:

4 Viye = (Vaye) + 35 (Ve Ai i) - Vo 32, ((YRVi Bue)-
A Z]((VJV””J) (V3¥1C4))))

At this point, we have achieved our asymptotic
gain in performance in this example. While, even
in the previous step, computation required O(n4)
work, hoisting the V; and V} operators has reduced
the work to O(n?).

Step 6 Product Conversion
Finally, now that our computations are in terms of

optimized additive reductions, we are ready to convert
them into matrix products:

Reduction_to_Product(e) {
foreach child expression ¢ of e
¢ = Reduction_to_Product(c¢)

if e==73,(e1-e2) and
dims(compress(ey)) N dims(compress(ez)) == {i}
e = P;(compress(ey),compress(ez)) // Axiom 6

¥

The results on our examples are:

1. VieXin =VeXin — Pj(Vy L4 5, ViV X5 k)

2. phik :phik—l—
Pi((Viwtemp_sei), Pi((ViVjai;), f(¥53)))

3. Yiw_tld; 1 = PJ(V,‘VJAJV,‘, qu],l) — (V,‘beta) . (V’wl‘yl)

4. Viyi = (Viyi)+

Pr((ViViAix),
P((Vi¥iBuik), P ((Y525), (V;¥1Cuy))))

Step 7 Conversion from AMF

Finally, we are ready to convert our AMF expres-
sions back into FORTRAN or MATLAB. Figure 12
demonstrates the conversion of AMF into MATLAB.
FORTRAN 90, which also allows high-level matrix op-
erations, requires a similar but slightly different process.

It should be noted that, in some cases, it will not be
possible to transform an AMF array object to a single
FORTRAN or MATLAB array expression. Consider,
for example, the AMF expression V;V;z;y;. In such a
case, we can always fall back upon a loop nest to express
the computation.

However, in each of our examples, we may convert di-
rectly into MATLAB or FORTRAN 90 statements with-
out loop nests. We arrive at the our desired optimized
codes:

1. X(i,1:p) = X(i,1:p) - matmul(L(i,1:i-1),
X(1:i-1,1:p))

AMF_to MAT(e; = ez2) { 4. y = y + matnul (A,matmul (transpose(B),
case (e1) { matmul (C, x)))
scalar s —

return s = AMF_Expr_to.MAT(e2,1,1 . . .
(e2.1,1) Note that Figure 12 leaves us with two choices when

array point a;,; — converting products into MATLAB. Because of the cost
return a(i,) = AMF_Expr-to MAT(ez,1,1) of transpose operations in MATLAB, we choose the op-
Yictmdy(iy . where k is independent of § — tl.Ol’l th.at minimizes the number of transposes of two
veturn a(f({ : u), k) = AMF_Expr_to MAT(es,i,1) dimensional matrices and, then, the total number of
transposes. In Example 3, in particular, we choose to
Vigtiuap, (i) Where k is independent of 7 —) transpose vectors twice rather a matrix once.
return a(k, f(! : u)) = AMF_Expr_to-.MAT(e2,1,7)
Vi€t g Vig€louap(iy),g(ia) — 6 Conclusions and Ongoing Work

return a(f(l1 :u1),9(l2 1 uz)) =

AMF Expr-to MAT(ez,i1,i2) We have presented a framework for exploiting high-

else —s fail level semantics in numerical codes. In this paper, we

! have demonstrated the usefulness of our framework in

} the context of matrix products. As our examples have
shown, high-level optimization can result in substantial

AMF _Expr_to.MAT(e,rc) { performance gains. We are currently in the process of
case(e) { implementing this work in the next generation Falcon
scalar s — return s //r == ¢ == compiler in conjunction with David Padua and his group

at Illinois.

array point a; ; — return a(z,) , . .
’ By its very nature, our axiomatic approach can be

Vrei:uay(ry,x Where k is independent of r — extended by adding new axioms, extending the space of
return a(f(l : u), k) provably legal transformations. Axiom 7, which is not
Vretutn,g(ry where & is independent of r - one Of: the axigms in our core §ystem, is spch an example
return a(k, £ (I : u))’ since it permits the distribution of matrix product over
matrix addition, such as converting (A + B) * C to A =

Veet:uy(c),x Where k is independent of r — C + B+ C. In general, merely adding such axioms is

. !
veturn a(f (), k) insufficient since we also need to convey a systematic

Veetiun, s(c) Where k is independent of r — means of utilizing them to transform programs. For

return a(k, f(I : u)) example, given three dense matrices A, B, and C| it is
true that (A4 B)+C, which involves one matrix product
Vretyiug Ve€lgiug G5(r),g(c) = and one addition, would require less work to perform

return a(f{l : ua), glz < uz)) than the equivalent A x C' + B * C, which involves two

Vet ug Veetsus dg(e), 1 (r) = matrix products and one addition. Yet, this does not

return a(g(ls : ua), F(I1 1 u1))’ mean we should always prefer the former to the latter.
A very common computation in numerical linear algebra
is that of a rank-one update of the form (I +u+*u')* A,
where A a dense square matrix, [is an identity matrix
: of the same dimensions, and u is a column vector[9] .

én = AMF Expr_to_-MAT(e,,rc) In this case, distributing the matrix product over the
Compress expanded scalars e if possible addition and then reassociating the remaining product

point-wise function f(e1, ez, ...,ex) —
let €, = AMF _Expr_to_-MAT(eq,r,c

t o en >
return f(ei, ez, ..., en) (to compute A+ u * (u’ * A)) reduces the required work
product P; (¥, Viey, VeVies) or Pi(VoVies, ViVier) — from O(ns) to O(n2). 11 Clearly, to apply a distributive
let & = AMF _Expr_to_MAT (e1,r,i) = axiom usefully, we will need a precise cost model.

_ AMF._Expr-to MAT (ei,c) A second direction is to study extensions to our lan-

€2 = (AMF _Expr_to.MAT (ez,c,i) * . .
AMF Expr_to.MAT(e1 i)’ guage %tself. The purpose of the AMF languz?ge 1s.t0
& = The least expensive of &; and és. conveniently represent the subset of computation with

which we are interested. In this paper, we have limited
ourselves to codes that either have no dependences or
very limited dependences in the form of additive reduc-

else — fail tions. While this may be sufficient to deal with opera-

} tions such as matrix product, it is inadequate for many

} other high-level array or matrix operations that are fre-
quently present in libraries or part of languages such as

Figure 12: AMF to MATLAB conversion MATLAB. As an example, consider a recurrence of the

form z(¢) = k1 * z(i — 1) + k2 computed by a MAT-
LAB loop. This computation could be performed much

11 :
: = : - : Golub and Van Loan [9] often express rank-one updates in

R = + * (A% . > % ;
2 phl (k) phl (k) xtemp (Axcos ((0:N-1) pl‘ the form (I 4+ u = u') * A when formulating a number of algo-
*y/L)) rithms. It is 'understood’ that an implementer should distribute

and reassociate the expression by hand.

3. w_tld = (q’*A)’ - beta * w;

more efficiently via MATLAB’s cumulative summation
operation. '?

Finally, we believe that compile-time application of
semantic information will be useful in performing local-
ity enhancing optimizations. For example, the most ef-
fectively blocked versions of QR and LU factorizations,
as shown by Golub and Van Loan [9] and in the LA-
PACK library [4], are quite different from the standard
unblocked version. In both cases, higher-level semantic
information about matrix operations is used by algo-
rithm developers to produce better blocked codes. To
date, compiler technology has been unable to reason at
this level. Our work may enable compilers to accom-
plish this.

Acknowledgments: We would like to thank
Nawaaz Ahmed, George Almasi, Luiz De Rose, Nikolay
Mateev, David Padua, and the anonymous reviewers for
their helpful comments on earlier versions of this paper.

References

[1] R. C. Agarwal and F. G. Gustavson. Algorithm and
Architecture Aspects of Producing ESSL BLAS on
POWER2.

[2] A. Aho, R. Sethi, and J. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley
Publishing Company, 1986.

[3] R. Allen and K. Kennedy. Automatic translation
of Fortran programs to vector form. ACM Trans-
actions on Programming Languages and Systems,
9(2):491-542, October 1987.

[4] E. Anderson, 7. Bai, C. Bischof, J. Dem-
mel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov, and
D. Sorensen, editors. LAPACK Users’ Guide. Sec-
ond Fdition. STAM, Philadelphia, 1995.

[5] L. De Rose, K. Gallivan, E. Gallopoulos, B. Mar-
solf, and D. Padua. FALCON: A MATLARB inter-
active restructuring compiler. In Languages and
Compilers for Parallel Computing, pages 269-288.
Springer-Verlag, August 1995.

[6] L. De Rose and D. Padua. A MATLAB to Fortran
90 translator and its effectiveness. In 10th ACM
International Conference on Supercomputing, May
1996.

[7] K. Gallivan, B. Marsolf, and E. Gallopoulos. On
the use of algebraic and structural information in a
library prototyping and development environment.
In Proc. 15th IMACS World Congress on Scientific
Computation, Modelling and Applied Mathematics,
volume 4, pages 565-570, Berlin, 1997.

[8] B. Gates. Gentran: An automatic code generation
facility for REDUCE. SIGSAM Bulletin, 19(3):24—
42, August 1985.

[9] G. Golub and C. Van Loan. Matriz Computations.
The Johns Hopkins University Press, 1996.

12 For vectors x and y, a cumulative summation may be defined
as: x = cumsum(y) <= x(n) =Y i, y(4).

[10] C. Gomez and T. Scott. Maple programs for gener-
ating efficient FORTRAN code for serial and vec-
torised machines. Computer Physics Communica-
tions, 115:548-562, 1998.

[11] M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri,
D. Shields, K. Wang, W. Ching, and T. Ngo. An
HPF compiler for the IBM SP2. In Supercomput-
ing, December 1995.

[12] M. Haghighat and C. Polychronopoulos. Symbolic
analysis for parallelizing compilers. ACM Trans-

actions on Programming Languages and Systems,
18(4), 1999.

[13] T. Hu and M. Shing. Some theorems about matrix
multiplication. In Proceedings of the 21st Annual
Symposium on Foundations of Computer Science,
pages 28-35. [EEE Computer Society, 1980.

[14] Y. Keren. MATCOM: A MATLAB to C++ trans-
lator and support libraries. Technical report, Israel
Institute of Technology, 1995.

[15] D. Kuck, R. Kuhn, B. Leasure, and M. Wolfe. The
structure of an advanced vectorizer for pipelined
processors. In Proc. 4th International Computer
Software and Applications Conference, pages 709—
715, October 1980.

[16] Kuck and Associates, Inc. KAP for IBM Fortran
and C. http://www.kai.com /product/ibminf.html.

[17] The MathWorks, Inc. MATLAB Compiler, 1995.

[18] V. Menon and K. Pingali. A case for source-level
transformations in MATLAB. Technical report,
Cornell University, Department of Computer Sci-
ence, April 1999. (Forthcoming).

[19] Pacific Sierra Research Corporation. VAST-2 for
XL Fortran.
http://www.psrv.com /vast /vast xIf.html.

[20] D. Padua and M. Wolfe. Advanced compiler opti-
mization for supercomputers. Communications of
the ACM, 29(12):1184-1201, December 1986.

[21] C. Polychronopoulos. Parallel Programming and
Compilers. Kluwer Academic Publishing, 1988.

[22] The MATCH Project. A MATLAB compilation
environment for distributed heterogeneous adap-
tive computing systems.
http://www.ece.nwu.edu/cpdc/Match/Match.html.

[23] J. Ramanujam and P. Sadayappan. Tiling mul-
tidimensional iteration spaces for multicomputers.
Journal of Parallel and Distributed Computing,
16(2):108-120, October 1992.

[24] M. Wolfe. Iteration space tiling for memory hierar-
chies. In Third SIAM Conference on Parallel Pro-
cessing for Scientific Computing, December 1987.

[25] M. Wolfe. High Performance Compilers for Paral-
lel Computing. Addison-Wesley Publishing Com-
pany, 1995.

